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Abstract

Hierarchical statistical models are widely employed in information science and data engi-
neering. The models consist of two types of variables: observable variables that represent
the given data and latent variables for the unobservable labels. An asymptotic analysis
of the models plays an important role in evaluating the learning process; the result of the
analysis is applied not only to theoretical but also to practical situations, such as optimal
model selection and active learning. There are many studies of generalization errors, which
measure the prediction accuracy of the observable variables. However, the accuracy of es-
timating the latent variables has not yet been elucidated. For a quantitative evaluation of
this, the present paper formulates distribution-based functions for the errors in the estima-
tion of the latent variables. The asymptotic behavior is analyzed for both the maximum
likelihood and the Bayes methods.

Keywords: unsupervised learning, hierarchical parametric models, latent variable, max-
imum likelihood method, Bayes method

1. Introduction

Hierarchical probabilistic models, such as mixture models, are mainly employed in unsu-
pervised learning. The models have two types of variables: observable and latent. The
observable variables represent the given data, and the latent ones describe the hidden data-
generation process. For example, in mixture models that are employed for clustering tasks,
observable variables are the attributes of the given data and the latent ones are the unob-
servable labels.

One of the main concerns in unsupervised learning is the analysis of the hidden processes,
such as how to assign clustering labels based on the observations. Hierarchical models have
an appropriate structure for this analysis, because it is straightforward to estimate the
latent variables from the observable ones. Even within the limits of the clustering problem,
there are a great variety of ways to detect unobservable labels, both probabilistically and
deterministically, and many criteria have been proposed to evaluate the results (Dubes and
Jain, 1979). For parametric models, the focus of the present paper, learning algorithms such
as the expectation-maximization (EM) algorithm and the variational Bayes (VB) method
(Attias, 1999; Ghahramani and Beal, 2000; Smidl and Quinn, 2005; Beal, 2003) have been
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Estimation Target \Model Case Regular Case Singular Case
Observable Variable Reg-OV estimation | Sing-OV estimation
Latent Variable Reg-LV estimation | Sing-LV estimation

Table 1: Estimation classification according to the target variable and the model case

developed for estimating the latent variables. These algorithms must estimate both the
parameter and the variables, since the parameter is also unknown in the general case.

Theoretical analysis of the models plays an important role in evaluating the learning
results. There are many studies on predicting performance in situations where both training
and test data are described by the observable variables. The results of asymptotic analy-
sis have been used for practical applications, such as model selection and active learning
(Akaike, 1974; Takeuchi, 1976; Fedorov, 1972). The simplest case of the analysis is when
the learning model contains the true model, which generates the data. Recently, it has been
pointed out that when there is the redundant range/dimension of the latent variables in the
learning model, singularities exist in the parameter space and the conventional statistical
analysis is not valid (Amari and Ozeki, 2001). To tackle this issue, a theoretical analy-
sis of the Bayes method was established using algebraic geometry (Watanabe, 2009). The
generalization performance was then derived for various models (Yamazaki and Watanabe,
2003a,b; Rusakov and Geiger, 2005; Aoyagi, 2010; Zwiernik, 2011). Based on this analysis
of the singularities, some criteria for model selection have been proposed (Watanabe, 2010;
Yamazaki et al., 2005, 2006).

Although validity of the learning algorithms is necessary for unsupervised tasks, sta-
tistical properties of the accuracy of the estimation of the latent variables have not been
studied sufficiently. Table 1 summarizes the classification according to the target variable
of estimation and the model case. We will use the abbreviations shown in the table to
specify the target variable and the model case; for example, Reg-OV estimation stands for
estimation of the observable variable in the regular case. As mentioned above, theoretical
analysis have been conducted in both the Reg-OV and the Sing-OV estimations. On the
other hand, there is no statistical approach to measure the accuracy of the Reg-LV or the
Sing-LV estimation.

The goal of the present paper is to provide an error function for measuring the accuracy,
which is suitable for the unsupervised learning with hierarchical models, and to derive its
asymptotic form. For the first step, we consider the simplest case, in which the attributes,
such as the range and dimension, of the latent variables are known; there is no singularity
in the parameter space. This corresponds to the Reg-OV estimation in the table. Since the
mathematical structure of the parameter is much more complicated in the singular case, we
leave the analysis of the Sing-LV estimation for Yamazaki (2012). The main contributions
of the present paper are the following three items: (1) estimation for the latent variables
falls into three types as shown in Figure 1 and their error functions are formulated in a
distribution-based manner; (2) the asymptotic forms of the error functions are derived on
the maximum likelihood and the Bayes methods in Type I and variants of Types II and III
shown in Figure 2; (3) it is determined that the Bayes method is more accurate than the
maximum likelihood method in the asymptotic situation.
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The rest of this paper is organized as follows: In Section 2 we explain the estimation of
latent variables by comparing it with the prediction of observable variables. In Section 3 we
provide the formal definitions of the estimation methods and the error functions. Section
4 then presents the main results for the asymptotic forms and the proofs. Discussions and
conclusions are stated in Sections 5 and 6, respectively.

2. Estimations of Variables

This section distinguishes between the estimation of latent variables and the prediction of
observable variables. There are variations on the estimation of latent variables due to the
estimated targets.

Assume that the observable data and unobservable labels are represented by the ob-
servable variables = and the latent variables y, respectively. Let us define that z € RM and
y€{1,2,...,K}. In the case of a discrete x such as = € {1,2,..., M}, all the results in this
paper hold if [ dz is replaced with Zyzl A set of n independent data pairs is expressed as
(X™ Y™ ={(z1,91),---,(Tn,yn)}, where X" = {x1,...,zn} and Y" = {y1,...,yn}. More
precisely, there is no dependency between z; and z; or between y; and y; for i # j.

Figure 1 shows a variety of estimations of variables: prediction of an observable variable
and three types of estimations of latent variables. Solid and dotted nodes are the observable
and latent variables, respectively. A data pair is depicted by a connection between two
nodes. The gray nodes are the target items of the estimations. We consider a stochastic
approach, where the probability distribution of the target(s) is estimated from the training
data X".

The top-left panel shows the prediction of unseen observable data. Based on X", the
next observation x = x4 is predicted. The top-right panel shows the estimation of Y™,
which is referred to as Type I. In the stochastic approach, the joint probability of Y™ is
estimated. The bottom-left panel shows marginal estimation, referred to as Type II. The
marginal probability of y; (y1 is the example in the figure) is estimated; the rest of the latent
variables in the probability are marginalized out. Note that there is no unseen/future data
in either of Types I or II. The bottom-right panel shows estimation of y in the unseen data,
which is referred to as Type III. The difference between this and Type II is the training
data; the corresponding observable part of the target is included in the training set in Type
II, but it is not included in Type III. In the present paper we use a distribution-based
approach to analyze the theoretical accuracy of a Type-I estimation, but we also consider
connections to the other types.

3. Formal Definitions of Estimation Methods and Accuracy Evaluations

This section presents the maximum likelihood and Bayes methods for estimating latent vari-
ables and the corresponding error functions. Here, we consider only the Type-I estimation
problem for the joint probability of the hidden part. The other types will be defined and
discussed in Section 5.
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Figure 1: Prediction of observable variables and estimations of latent variables. The ob-
servable data are {x1,...,z,}. Solid and dotted nodes are observable and unob-
servable, respectively. Gray nodes are estimation targets.

Let p(z, y|w) = p(y|w)p(z|y, w) be a learning model, where w € W C R? is the param-
eter. The probability of the observable data is expressed as

K
plalw) = plylw)p(zly, w).
y=1

Assume that the true model generating the data (X™,Y™) is expressed as q(z,y) =
p(y|lw*)p(z|y, w*), where w* is the true parameter, and that the following Fisher infor-
mation matrices exist and are positive definite;

{IXY(w*)}ij =F [alnp(x’ y"w*) alnp(x’ y’w*):| |

8’[1)2' 8wj
. Olnp(z|w*) 0lnp(z|w*)
I i1 :E ’
(It} =5 | R SR
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where the expectation is

K
Elf(e.) = [ 3 ot yhu)do.
y=1

This condition requires the identifiability of the true model, i.e., ¢(y) > 0 for all y and
i #j = q(zly =1) # q(z|y = j). The joint probability distribution of (X™,Y™) is denoted
by q(X",Y") =TIl a(xi, u:)-

We introduce two ways to construct a probability distribution of Y based on the ob-
servable X™. First, we define an estimation method based on the maximum likelihood
estimator. The likelihood is defined by

n

Lx(w) =] [ p(ilw).

=1

The maximum likelihood estimator wx is given by

wx =argmax Lx (w).

Definition 1 (The maximum likelihood method) In the maximum likelihood estima-
tion, the estimated distribution of the latent variables is defined by

n n p(anynhz}X)
Y'X") =
PN =5, Vi)
o p(@, i) = .
=11 > = [ pwilas, ix). (1)
=1

The notation p(Y"|X™, wx) is used when the method is emphasized.
Next, we define the Bayesian estimation. Let the likelihood of the joint probability
distribution be

n

Lxy(w) = Hp(wi, yilw).
i=1

The marginal likelihood functions are given by

200%™ = [ Ly (plwindw,

20" =3 2x"Y") = [ Ly(yplwindu,
Y’VL

where ¢(w;n) is a prior with the hyperparameter . We assume that the support of the
prior includes w*.
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Definition 2 (The Bayes method) In the Bayes estimation, the estimated distribution
of Y™ is expressed as

Z(X™Y")

pOX) =T e)

Based on the posterior distribution defined by

1

p(w|X™) = WLX(WW(@U; ),

the estimated distribution has another equivalent form
p71x7) = [ T] ol wp(wlX")dw. (3)
i=1

Comparing Equation 3 with Equation 1 reveals that the Bayes estimation is based on the
expectation over the posterior instead of the plug-in parameter wx.
The distribution of Y™ in the true model is uniquely expressed as

a(v"x) = [ atwils) = [ 22080

i=1 S0

where g(x;) = Zfz _1q(xi,y;). Accuracy of the latent variable estimation is measured by the
difference between the true distribution ¢(Y"|X"™) and the estimated one p(Y™|X™). For
the present paper, we define the error function as the average Kullback-Leibler divergence,

q(Y"IX”)}

D(n) :%EXn [ZQ(Yn|Xn)1HW (4)

Yn

where the expectation is
Blf(X") = [ F(X"a(xmaxe.

Note that this function is available for any construction of p(Y"|X™) when we consider the
cases of the maximum likelihood and the Bayes methods below.

4. Asymptotic Analysis of the Error Function

In this section we present the main theorems for the asymptotic forms of the error function.

4.1 Asymptotic Errors of the Two Methods

In the unsupervised learning, there is label switching, which makes interpretation of the
estimation result difficult. For example, define the parameter w} as p(x,y = 1llw}) =
p(z,y = 2w*), p(z,y = 2(w]) = p(z,y = 1|w"), and p(z,y = klwg) = p(z,y = klw*) for
k > 2. In this parameter, the label y = 1 and y = 2 are switched compared with w*. It holds
that p(z|w?) = p(z|w*) whereas p(z, y|wk) # p(z, y|w*). Therefore, the estimation methods
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can search for w} as the true parameter instead of w* since there is no information of the
true labels. In the present paper, we focus on the best performance, where we successfully
estimate the true parameter. In other words, we define the true parameter according to the
estimated label assignment. Under the best performance situation, the maximum likelihood
estimator wy converges to w* in probability, and the posterior distribution of the Bayes
method converges to the normal distribution, the mean of which is wx, in law. Then, it is
obvious that the error function D(n) goes to zero at n — oc.
The following theorems show the speed of decrease of the error function;

Theorem 3 (The asymptotic error of the maximum likelihood method) In the
latent wvariable estimation given by FEquation 1, the error function Equation 4 has the
following asymptotic form:

1 . A 1
D(n) :%Tr[{fxy(w ) - Ix(w )}IXl(w*)] + 0<n) .
Theorem 4 (The asymptotic error of the Bayes method) In the latent variable es-
timation given by Equation 2, the error function Equation 4 has the following asymptotic
form:

D(n) :% In det [Ty (w*) T (w)] + o<i)
The proofs are in the appendix. The dominant order is 1/n in both methods, and its
coefficient depends on the Fisher information matrices. It is not an unaccountable result that
the error value depends on the position of w*. For example, let us consider cluster analysis
and assume that distances among the clusters are large. Since we can easily distinguish
the clusters, there is not much additional information on the label y. Then, Ixy(w*) is
close to Ix(w*), which makes D(n) small in both methods. The true parameter generally
determines difficulty of tasks in the unsupervised learning, and the theorems reflect this
fact. We will present a more detailed discussion on the coefficient in Section 5.

The following corollary shows the advantage of the Bayes estimation.

Corollary 5 Let the error functions for the mazimum likelihood and the Bayes methods be
denoted by DME(n) and DPWes(n), respectively. Assume that Ixy (w*) # Ix(w*). For any
true parameter w*, there exists a positive constant ¢ such that

DML(n) . DBayeS(n) Z E +0<1)
n n

The proof is in the appendix. This result shows that DMU(n) > DBaves(p) for a sufficiently
large data size n.

5. Discussion

In this section, we first discuss relations to other error functions such as the generalization
error and the error functions on Types II and III. Next, we consider variants of Types II and
111, and show the asymptotic forms of their error functions. Last, we summarize comparison
between the maximum likelihood and the Bayes methods.
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5.1 Relation to Other Error Functions

We now formulate the predictions of observable data and the remaining estimations for
Types II and III, and we consider the relations of their error functions to that of Type I.

First, we compare the Reg-LV estimation with the Reg-OV estimation. In the
observable-variable estimation, the error function is referred to as the generalization error,
which measures the prediction performance on unseen observable data. The generalization
error is defined as

Da(n) =Exr [ [t lnp(jf,ﬁ()n)dx ,

where z is independent of X" in the data-generating process of ¢(x). The predictive distri-
bution p(x|X™) is constructed by

p(z|X") =p(x|ix)

for the maximum likelihood method and
p(alX") = [ plafu)p(ulX")du

for the Bayes method. Both methods estimation have the same dominant terms in their

asymptotic forms,
d 1
D
2(n) = 2n+ <n>

The coefficient of the asymptotic generalization error depends only on the dimension of the
parameter for any model, but that of D(n) is determined by both the model expression
and the true parameter w*. This dependency appears when the learning model does not
contain the true model in the Reg-OV estimation, and wx is used for approximation of the
error function for model selection (Takeuchi, 1976) and active learning (Fedorov, 1972). In
the same way, by replacing w* with wx, Theorems 3 and 4 enable us to calculate the error
function in the Reg-LV estimation.

In the observable-variable estimation, the error D,(n) is approximated by the cross-
validation and bootstrap methods since unseen data x,1 are interchangeable with one of
the given observable data. On the other hand, there is no substitution for the latent variable,
which means that any numerical approximation does not exist for D(n) in principle. The
theoretical results in the present paper are thus far the only way to estimate the accuracy.

Next, we discuss Type-II estimation; we focus on the value y; from Y and its estimation
accuracy. Based on the joint probability, the estimation of y; is defined by

plyil X™) =Y p(Y"|X™),
Y™\y;

where the summation is taken over Y except for y;. Thus the error function depends on
which y; we exclude. In order to measure the average effect of the exclusions, we define the
error as follows:

Dyjxn(n EX”[ ZZ (yilw:) In yyz‘gim))

i=1 Yi
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The maximum likelihood method has the following estimation,
p Ly U}X
plulx) = 3 TPl
Ym\y; i=1 ilox)

_plaa|dx) - - pxia [0x)p(wi, yilwx )p(wipa [hx) - - - p(an|hx)
[Ti2; p(ilwx)

_p(@iyilix)
p(zilwx)
We can easily find that

Dyjxn(n Exn[ ZZ (ilai) In (ylm)]

i= 1y71 yl|xl7wX)

i x|
=—FExn Yn Xn ].D—A .
nx [;Q( I S alx, o)

p(yi’l‘i’ ’UA))().

Therefore, it holds that Dy xn(n) = D(n) in the maximum likelihood method. However,
the Bayes method has the estimation,

(1] X™) = Jp(@i|w) - p(ziaa|w)p(@s, yilw)p(ziga|w) - - p(an|w)e(w; n)dw
p yZ Z(Xn) 9
which indicates Dy xn(n) # D(n). A sufficient condition for Dy xn(n) = D(n) is to satisfy
p(Y"|X") = [Tizy pyil X™).
Finally, we consider the Type-III estimation. The error is defined by

K
q(ylz)
D n:EXn[/q:c q(y|z) In ————dx
Note that the new observation z is not used for estimation of y, or D,,(n) will be equivalent

to the Type-IT error Dy xn+1(n+1). The maximum likelihood estimation p(y|z, X™) is given
by

n p(ﬂj‘,yhfjx)
p(yle, X") =———"—-,
(y] ) (zlin)
and for the Bayes method it is
n p(z, y|w) n
p(yle, X :/pr dw. 5
(ol X7 = [ B0 S p(wlx") 5)

Using the result in Shimodaira (1993) for a variant Akaike information criterion (AIC) from
partially observed data, we immediately obtain the asymptotic form of D, ,(n) as

Dye) =5 1| { T (0) = 1) 1wy o 1)

We thus conclude that all estimation types have the same accuracy in the maximum like-
lihood method. The difference of the training data between Types II and III does not
asymptotically affect the estimation results. The analysis of the Type-III estimate in the
Bayes method is left for future study.
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Prediction Type I Type 11 Type III
ML d/2 Tr[{Ixy — Ix}'1/2 | Te[{Ixy — Ix}')/2 | Te[{Ixy — Ix}I']/2
Bayes d/2 Indet[IxyIy']/2 unknown unknown

Table 2: Coefficients of the dominant order 1/n in the error functions

.................

yZ::: yw+l yl y2 n yn+L .:-y"""”’
Type II’ Type III’

Figure 2: (Left) Partial marginal estimation for yi,...,yan. (Right) Estimation for future
data Yni1,-- -, Yntan-

5.2 Variants of Types II and III

Table 2 summarizes the results in the previous subsection. The rows indicate the maximum
likelihood (ML) and the Bayes methods, respectively. The Fisher information matrices
Ixy (w*) and Ix(w*) are abbreviated in a form that does not include the true parameter,
i.e., Ixy and Ix. The error functions of Types II and III in the Bayes method are still
unknown. The analysis is not straightforward when there is a single target of estimation,
because the asymptotic expansion is not available when the number of target nodes is
constant with respect to the training data size n.

Consider the variants of Types II and III depicted in Figure 2. Assume that 0 < a <1
is a constant rational number and that n gets large enough to satisfy that an is an integer.
The left panel shows the partial marginal estimation referred to as Type II’. We will consider
the joint probability of y1,..., Yan, where the remaining variables yon+1,--.,yn have been
marginalized out. Type II’ is equivalent to Type I when a@ = 1. Note that the order in
which the target nodes are determined does not change the average accuracy for i.i.d. data.
The right panel indicates the estimations for future data y,4+1,...,Yntan.- We refer to it
as Type II" and construct the joint probability on these variables. In the variant types,
the targets are changed from a single node to an nodes, which enables us to analyze the
asymptotic behavior.

We will use the following notation:

X]. :{.’1717 ce ’xan}7

}/1 :{y17 ce. 7yom,}
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Pred. Type 1 Type IT Type IIT
ML dj2 | T[{Ixy — Ix} /2 | Te[{Ixy — Ix} /2 | To[{Ixy — Ix}5']/2
Bayes | d/2 Indet[IxyIy']/2 Indet[KxyIy']/(2a) | Indet[KxyIy']/(2a)

Table 3: Coefficients of the dominant order 1/n in the error functions

for Type I’ and

X2 :{xn-l—ly cee 7xn+om}7

}/2 :{yn+17 oo 7yn+ozn}

for Type III'. The Bayes estimations are given by

ST p(, yjlw) T g1 (@i w)o(ws n)dw

P Yl Xn) == 3
il I pdlw) (s n)duw
n+an
p xl7yl|w
Ya|Xo, X™) X")d
p(¥alXs, / TT 2y el

for Type II’ and Type III’, respectively. The respective error functions are defined by

Q(Yl\X")]
p(Y1|X™)

1 q(Y2|X>)
=—2Fxn g Yo|Xo)In ————F—F—|.
2

1
Dy, jxn(n) =— Exn [Zq(YﬂX") In

Y1

Dy, |x,(n)

In ways similar to the proofs of Theorems 3 and 4, the asymptotic forms are derived as
follows.

Theorem 6 In Type II’, the error function has the following asymptotic form:

Dy pxn(n) =5 Indet[Kxy (w') Lx (w*) ] + <i>

2an
where Kxy (w) = alxy (w) + (1 — a)lx(w).
The proof is in the appendix.

Theorem 7 In Type III’, the error function has the following asymptotic form:

M o )

This proof is also in the appendix. These theorems show that when Types II’ and III’
have the same «, they asymptotically have the same accuracy. This implies the asymptotic
equivalency of Types II and III by combining the results of the maximum likelihood method.

Table 3 summarizes the results. Based on the definitions, the results for the maximum
likelihood method are also available for Types II” and III'. Using the asymptotic forms, we
can compare the relation of the magnitudes for the maximum likelihood method.

1
IT In det[ny(w

DY2|X2 (n) an
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Corollary 8 Assume that Ixy(w) # Ix(w). For0 < o <1, there exists a positive constant
c1 such that

_ 1 _ c 1
Tr[{Ixy (w) — Ix(w)} ' (w)] — o In det[K xy (w)I " (w)] > El + 0<n>.
The proof is in the appendix. We immediately obtain the following relation, which shows
the advantage of the Bayes estimation in the asymptotic case:

B
DY%?S,L (n) <D¥1}|‘Xn (n)

Dy, (n) <Dy, (n)
for respective a’s.

By comparing the errors of Types I and II’ in the Bayes method, we can obtain the
effect of supplementary observable data. Let us consider the Type-II’ case in which the
estimation target is Y7 and the training data is only X;. This corresponds to the estimation
in Type I with an training data, which we emphasize by calling it Type I'. The difference
between Type I’ and Type I’ is the addition of supplementary data X™ \ Xj.

Corollary 9 Assume that the minimum eigenvalue of Ixy (w*)Iy'(w*) is not less than
one, i.e., \g > 1. The error difference is asymptotically described as

Dlan) = Dy o) =g indetl ey () (7)o 1

o)
274_0 N R
n n

where cg s a positive constant. This shows that Type II’ has a smaller error than Type I’
in the asymptotic situation; the supplementary data make the estimation more accurate.

The proof is in the appendix.

5.3 Comparison Between the Two Methods

Corollaries 5 and 8 show that the Bayes method is more accurate than the maximum
likelihood method for Types I, IT’, and III’. There have been many data-based comparisons
of the predicting performances of these two methods (e.g., Akaike, 1980; Mackay, 1992;
Browne and Draper, 2006). We will now discuss the computational costs of the two methods
for the estimation of latent variables. We note there will be a trade-off between cost and
accuracy.

We will assume that the estimated distribution is to be calculated for a practical purpose.
For example, the value of p(Y"|X™) in Type I is used for sampling label assignments and
for searching for the optimal assignment arg maxyn» p(Y"|X"). The maximum likelihood
method requires the determination of wx for all Types I, II, and III. The computation is
not expensive once wy is successfully found, but the global maximum point of the likelihood
function is not easily obtained. The EM algorithm is commonly used for searching for the
maximum likelihood estimator in models with latent variables, but it is often trapped in
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one of the local maxima. The results of the steepest descent method also depend on the
initial point and the step size of the iteration.

The Bayes method is generally expensive. In the estimated distribution p(Y"|X"™) of
Type I, the numerator Z(X™,Y™) contains integrals that depend on Y”. Sampling y; in
Type II requires the same computation as for Type I: we can obtain y; by ignoring the other
elements Y™ \ y;, which realizes the marginalization ) 3y, p(Y"|X"). A conjugate prior
allows us to have a tractable form of Z(X",Y") (Dawid and Lauritzen, 1993; Heckerman,
1999), which reduces the computational cost. In Type III, Equation 5 shows that there
is no direct sampling method for y. In this case, expensive sampling from the posterior
p(w|X™) is necessary.

The VB method is an approximation that allows the direct computation of P(Y™|X™)
and p(w|X™), which have tractable forms and reduced computational costs. However, the
assumption that P(Y"|X™) and p(w|X"™) are independent does not hold in many cases.
We conjecture that the P(Y"|X"™) of the VB method will be less accurate than that of the
original Bayes method.

6. Conclusions

In the present paper we formalized the estimation from the observable data of the distri-
bution of the latent variables, and we measured its accuracy by using the Kullback-Leibler
divergence. We succeeded in deriving the asymptotic error functions for both the maxi-
mum likelihood and the Bayes methods. These results allow us to mathematically compare
the estimation methods: we determined that the Bayes method is more accurate than the
maximum likelihood method in most cases, while their prediction accuracies are equivalent.
The generalization error has been approximated from the given observable data, such as by
using the cross-validation and bootstrap methods, but there is no approximation technique
for the error of the estimation of the latent variables, because the latent data can not be
obtained. Therefore, these asymptotic forms are thus far the only way we have to estimate
their accuracy.
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Appendix A. Proofs

In this section, we prove the theorems and the corollaries.

A.1 Proof of Theorem 3

Proof First, let us define another Fisher information matrix:

o p(ylar, w) O n plylar, w)

{Iyix(w)}ij =E D0, D,
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Based on p(y|z,w) = p(z, y|w)/p(z|w),

Iyix (w) =Ixy (w) + Ix (w) — Jxy (w) — Jxy (w),

where

[y ()} :E[alnp(m,y\w) 8lnp(x\w)]'

8wi ij

According to the definition, we obtain

{JXY(w)}ij :E[ ( 1 ap(x7y|w)61np($‘w)]

z,ylw)  Ow; ow;
/Z op(x y|w 01np(:v|w)dx
ow;
_ [ Op(z|w) 31112?( w)
_/ 8wi Bwj dr
B Olnp(xz|w) dlnp(x|w) B -
_/ T o plzlw)dr = {Ix(w)}i;.
Thus, it holds that
Iy x (w) =Ixy (w) — Ix(w). (6)

Next, let us divide the error function into three parts:

D(n) =Dy(n) — Da(n) — Ds(n), (™)
D) LB a7
Ds(n) :%Exnyn [Inp(X™,Y"[ix)],
I O
Ds(n) = Ex [I p(X”|1ZJX)}

where the expectation is
Exnyn[f(X™,Y")] = /Zf(X”,Y”)q(X”,Y”)dX".

Because D3(n) is the training error on p(z|wx), the asymptotic form is known (Akaike,

1974):
Ds(n) = — 4 - 0(1>.

Let another estimator be defined by

ﬁ)Xy = arg max ny(w).
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According to the Taylor expansion, Ds(n) can be rewritten as

1 S A
Da(n) = Exnyn [Zlnp(Xi, mwXY)}
=1

Inp(X;, Y;
n EX”Y“ [5sza np i |wXY)}
=1

1 T~ 2 Inp(X;, Yildxy)
=+ %Exnyn |:(5U) ; an (5’11) + Rl ((S’UJ)

1 S A
= Exryn [Z In p(X;, YH@UXY)}
=1

— %EXnyn [5wTIXy(w*)5w] + 0(:&>,

where dw = wx — wxy, and Rj(dw) is the remainder term. The matrix
2
Sy g lnp(X“Y [9xY) was replaced with Ixy(w*) on the basis of the law of large numbers.

As for the ﬁrst term of Do,

1 - .
Dl(n) - EEXnY" [Zlnp(Xi,}/i’wxy)

i=1
d n 1
= —_—— 0] —_
2n n

because it is the training error on p(z, y|wxy). The factor in the second term of Dy can be
rewritten as

EXnyn [5wTIXy (w*)éw]

= Exnyn[(x — w*) Ixy (w*)(dyx — w")]

(
— Exnyn [(xy — w*) Ixy (w”) (dbx — w*)]
— Exnyn [(dx —w*) " Ixy (w*) (xy — w*)]
+ Exnyn[(bxy — w*) Iy (w*) (Wxy — w*)]. (8)

Let us define an extended likelihood function,

La(w12) Zlnp X, Yi|wr) ZIHP(XHU)?);
i=1 )
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where wis = (w] ,wy )7, W12 = (Wgy,0%) ", and w*™ = (w* T, w*T) "

According to the Taylor expansion,

0Ly (w12) :<321np(Xi,Yi|w*)T OZlnp(Xi|w*)T>T

are extended vectors.

a’wlg awl ] an
- M5w12a
dwiz =wiz — w™*
02> Inp(Xy,Yilw*) 0
M = ow?
N 0 _ 92X Inp(Xi|w*)
8w§
According to %ﬁm) =0, 019 = W12 — w** can be written as
) T #\ T\ |
(5'12)12 :Mil BZIDP(XZ’}/Z|M ) ’ aZ].np(XZ|w ) .
811)1 8102

Based on the central limit theorem, §1iy5 is distributed from N'(0,nM X ~1M 1), where

-1 Ixy(w*) ny(w*)
== [J§y(w*) Ix (w") ] '

The covariance nM 'S~ 1M1 of §1b1o directly shows the covariance of the estimators Wy
and wxy in Equation 8. Thus it holds that

Excnyn [Jw Iy (w*)w]
— %Tr [Ixy(w*)fxl(w*)] - %Tr [ny(w*)fxl(w*)}
- %Tr [J}Y(w*)lgl(w*)} + %Tr {Ix(w*)f;}l(w*)] + 0(;)

Considering the relation Equation 7, we obtain that

D) =5 Tollye ()5 )] o ).

Based on Equation 6, the theorem is proved. |

A.2 Proof of Theorem 4

Proof Let us define the following entropy functions:
K*
Sxy ==Y [ ate) (e s,
y=1
Sx =— /q(:c) Ing(z)dz.
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According to the definition, the error function Equation 4 with the Bayes estimation can
be rewritten as

Do) =+{ Frvt) = Fxo) .

where
Fxy(n) =—nSxy — Exnyn [ln Z(anY”)} ,
Fx(n) =—nSx — Exn [an(X")}
Based on the Taylor expansion at w = wyx,

Fx(n) =—nSx — Exn [ln/exp { In p(X"|wx)

21n "w
(w = )T TR () ) s Lt

1
2

= —nSx — Exn[Inp(X"|iox] — Exn [m / e W (w; )N (dx, B /n)dw} :

where 71 (w) is the remainder term and

1 mp(X i)
n ow? ’

Y=

which converges to I'x (w*) based on the law of large numbers. Again, applying the expansion
at w = w* to e Wp(w;n), we obtain

p(X"[dx)

— Exn [ln/ {e”(“’*)cp(w* :n)

eTl(w*) w* -
T0 82( 777)_{_7“2(10)}/\/‘(@)(7{”])((10*)} 1)dw + o(1),

Fx(n) =Exn [m ‘J(Xn)] — Inv2r'/det{nlx (W)}

+ (w — w")

where 7o(w) is the remainder term. The first term is the training error on p(z|wx). Ac-
cording to Akaike (1974), it holds that

q(X") ] d
E n lni,\ = — = +O ]. .
oo S| =2 o)
Then, we obtain
d. n det I'x (w*)
F =—In— 1
X(n) ) n e +1n QO('U)*,T]) O( )’
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which is consistent with the result of Clarke and Barron (1990). By replacing X" with
(X™Ym),

Fxy(n) :g In % + In W +o(1).
Therefore,
D(n) :1{ Indet Ixy (w*) — Indet IX(w*)} + 0<1>’
2n n
which proves the theorem. -

A.3 Proof of Corollary 5

Proof Because [xy (w) is symmetric positive definite, we have a decomposition Ixy (w) =
LLT, where L is a lower triangular matrix. The other Fisher information matrix Ix(w)
is also symmetric positive definite. Thus, LTI;(l(w)L is positive definite. Let A\ > Ao >
- > Ag > 0 be the eigenvalues of LTI)_(l(w)L. According to the assumption, at least one
eigenvalue is different from the others. Then, we obtain
2n{ DM (n) — DB (n)} =Tr[Ixy ()l (w)] — d — Indet[Ixy (w) I (w)] + o(1)
=Tr[L" I;* (w)L] — d—lndet[LTl;(l(w)L] + o(1)

d

=S (-1} —1nHAi +o(1)
i=1 i=1
d

=) {Ai—1—In\}+o(1).
=1

The first term in the last expression is positive, which proves the corollary. |

A.4 Proof of Theorem 6

Proof The error function is rewritten as

Dys e () :1{F§§%<n> - Fx<n>},

an

FU).(n) = — anSxy — (1 — a)nSx — Exn.y; [m / L), (w)e(w; n)dw|

L) (w) =T plej, yjlw) H pl@i|w).

7j=1 i=an+1
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N

Based on the Taylor expansion at w = M, where v = arg max L(l)(w),

(1 ) A\ Y5) y]
EFx =Exny, [Zl x] o w(l) Z n xl|w(1)
i=an+1

s fexp { = nfw - )T GO V)0 = 00) + rafu) botus i

where 73(w) is the remainder term and

1 82 an n .
GO (X", v7) = — (Zlnp ele®) ¢ Y 1np<xi|w“>>>.

i=an+1

The first and the second terms of F)%)/(n) correspond to the training error. Following the
same method as we used in the proof of Theorem 4 and noting that

GM(X™ Y1) — Kxy(w),
we obtain

(1) d n det KXy(w*)
F =—In— +1
xy(n) =g hnge i o(w*;n)

which completes the proof. |

+o(1),

A.5 Proof of Theorem 7

Proof The error function is rewritten as
1

Dy, |x,(n) ZM{F)@/(”) - Fx(n)}

F)%),(n) =—anSxy —nSx — Ex» x,v; [ln/Lg?%,(w)gp(w;n)dw ,

n+an
H p(yjlzj,w H (zi|lw).
j=n+1 =1

N

Based on the Taylor expansion at w = W@, where v = arg max L® (w),

F)%),(n) :EX”,X2,Y2|: Z In y]| J +Zl

j:n+1 (y]|x]7 xl|w )
w1 [ exp { — (0T GE (X X Y — 02) + ra(w) ftws )|
where 74(w) is the remainder term and
@) (xn -7
G\ (X" X5,Ys) n8w2<,zz In p(y;|z;, —I—Zlnp x;|w )
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The first and the second terms of F' )((11)/ (n) correspond to the training error, which are stated

as

EX”X2Y2|: Z In yj’ J +Zl :|

j=n+1 yj\a?] w(g)
= T [ {abypxw) + () B (w) } +o(b)
Following the same method we used in the proof of Theorem 4 and noting that

G (X", Xq,Ya) = Kxy (w),

we obtain

F(n) = = Tr [{alyx (w*) + Lx(w*) } K xy (w*) !

det K *
g P P A XY(w)—{—o(l)
2 2m p(w*;n)
det K *
:gln—n 4 Y xy () +o(1),
2 2me p(w*;n)

which completes the proof.

A.6 Proof of Corollary 8
Proof It holds that

é In det[K xy (w) I (w)] :i Indetfo{ Iy (w) — Ix ()} (w) + E4,

where Ej is the d X d unit matrix. On the other hand,
_ 1 _
Tl{ Ty (w) — L)} ()] = { TladTey (0) — L)) 5 0) + £ - d.

It is easy to confirm that aL] Iy (w)L + Ey is positive definite, where L] L1 = Ixy (w) —
Ix(w). Considering the eigenvalues p1 > g > --- > ug > 0, we can obtain the following
relation in the same way as we did in the proof of Corollary 5:

d

Te{Txy (w) — I ()} (w)] - éln det [K xy (w) I (w)] :é 3 { 4i—1—1n u}

i=1

It is easy to confirm that the right-hand side is positive, which completes the proof. |
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A.7 Proof of Corollary 9
Proof Based on the eigenvalues of Ixy (w*)Iy' (w*), it holds that

Indet[Ixy (w*) Ky (w*)] =Indet[Lyy (w*) I (w*)] — Indet[alxy (w*) I (w*) + (1 — @) By
d d
:ZIH)\Z- - Zln{a)\i +(1—a)} >0,
i=1 =1

which completes the proof. |
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