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Abstract

Recently, Bayesian Optimization (BO) has been used to successfully optimize parametric
policies in several challenging Reinforcement Learning (RL) applications. BO is attrac-
tive for this problem because it exploits Bayesian prior information about the expected
return and exploits this knowledge to select new policies to execute. Effectively, the BO
framework for policy search addresses the exploration-exploitation tradeoff. In this work,
we show how to more effectively apply BO to RL by exploiting the sequential trajectory
information generated by RL agents. Our contributions can be broken into two distinct,
but mutually beneficial, parts. The first is a new Gaussian process (GP) kernel for measur-
ing the similarity between policies using trajectory data generated from policy executions.
This kernel can be used in order to improve posterior estimates of the expected return
thereby improving the quality of exploration. The second contribution, is a new GP mean
function which uses learned transition and reward functions to approximate the surface of
the objective. We show that the model-based approach we develop can recover from model
inaccuracies when good transition and reward models cannot be learned. We give empir-
ical results in a standard set of RL benchmarks showing that both our model-based and
model-free approaches can speed up learning compared to competing methods. Further,
we show that our contributions can be combined to yield synergistic improvement in some
domains.

Keywords: reinforcement learning, Bayesian, optimization, policy search, Markov deci-
sion process, MDP

1. Introduction

In the policy search setting, RL agents seek an optimal policy within a fixed set. The
agent iteratively selects new policies, executes selected policies, and estimates each individ-
ual policy performance. Naturally, future policy selection decisions should benefit from the
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information generated by previous selections. A question arises regarding how the perfor-
mance of untried policies can be estimated using this data, and how to use the estimates to
direct the selection of a new policy. Ideally, the process of selecting new policies accounts for
the agent’s uncertainty in the performance estimates, and directs the agent to explore new
parts of the policy space where uncertainty is high. Bayesian Optimization (BO) tackles
this problem. It is a method of planning a sequence of queries from an unknown objective
function for the purpose of seeking the maximum. In BO uncertainty in the objective func-
tion is encoded in a Bayesian prior distribution that estimates the performance of policies.
Because the method is Bayesian uncertainty in the estimated values is explicitly encoded.
After policy executions a posterior distribution over the objective is computed, and this
posterior is used to guide the exploration process.

Success of BO relies on the quality of the objective function model. In this work, similar
to past efforts applying BO to RL, we focus on GP models of the expected return (Rasmussen
and Williams, 2005). The generalization performance of Gaussian process (GP) models, and
hence the performance of the BO technique, is strongly impacted by the definition of both
the GP mean function, and the kernel function encoding relatedness between points in the
function space.

Prior work applying BO to the RL problem tackled difficult problems of gait optimization
and vehicle control, but ignored the sequential nature of the decision process (Lizotte et al.,
2007; Lizotte, 2008). Execution of a policy generates a trajectory represented by a sequence
of action/observation/reward tuples. Previously, this information was reduced to a Monte-
Carlo estimate of the expected return and all other information present in the observed
trajectories was discarded. By taking advantage of the sequential process, we argue, and
empirically demonstrate, that our methods dramatically improve the data efficiency of BO
methods for RL. To take advantage of trajectory information we propose two complementary
methods. First, we discuss a new kernel function which uses trajectory information to
measure the relatedness of policies. Second, we discuss the incorporation of approximate
domain models into the basic BO framework.

Our first contribution, is a notion of relatedness tailored for the RL context. Past work
has used simple kernels to relate policy parameters. For instance, squared exponential ker-
nels were used by Lizotte et al. (2007), Lizotte (2008) and Brochu et al. (2009). These
kernels relate policies by differences in policy parameter values. We propose that policies
are better related by their behavior rather than their parameters. We use a simple defini-
tion of policy behavior, and motivate an information-theoretic measure of policy similarity.
Additionally, we show that the measure of similarity can be estimated without learning the
transition and reward functions.

Our second contribution incorporates learned domain models (the transition and reward
function) into the BO framework. Learned domain models are used to simulate Monte-Carlo
policy roll-outs for the purpose of estimating policy returns. Crucially, we consider the
setting where the simulator is not an accurate model of the true domain. The domain model
class may have significant bias that prevents close approximation of the true transition and
reward functions. Consequently, Monte-Carlo simulations of the environment, using the
learned functions, can produce substantial errors that prevent the direct application of
standard model-based RL algorithms. To overcome this problem, we propose using the GP
model to correct for errors introduced by the poor domain model approximations, and show

254



USING TRAJECTORY DATA TO IMPROVE BAYESIAN OPTIMIZATION FOR REINFORCEMENT LEARNING

empirically that our algorithm successfully uses the learned transition and reward models
to quickly identify high quality policies.

In the following sections we discuss the general problem of BO, motivate our modeling
efforts, and discuss how to incorporate our changes into BO algorithms. We conclude with
a discussion of empirical evaluation of the new algorithms on five benchmark RL domains.

2. Reinforcement Learning and Bayesian Optimization

We study the reinforcement learning problem in the context of Markov decision processes
(MDPs). MDPs are described by a tuple (S, A, P, Py, R). We consider processes with
continuous state spaces and discrete action spaces. Each state s € S is a vector of real values.
Each action a € A represents a discrete choice available to the agent. The transition function
P is a probability distribution P(s;|s¢—1,a;—1) that defines the probability of transitioning
to state s;, conditioned on the selected action a;_1, and the current state s;_1. Distribution
Py(sp) is the distribution over initial states. It defines the probability of the agent starting in
state sp. The reward function R(s, a, s") returns a numeric value representing the immediate
reward for the state, action, next state triplet. Finally, the agent selects actions according to
a parametric policy mp. The policy is a stochastic mapping from states to actions Py (al|s, )
as a function of a vector of parameters 6 € R*.

We study episodic average reward RL. We define a trajectory to be a sequence of states
and actions £ = (s, ag, ..., ar—1, S7). Trajectories begin in an initial state sg, and terminate
after at most T steps. It follows that the probability of a trajectory is,

T
P(£]0) = Py(so HP S¢|St—1,ap—1)Pr(as—1]s¢—1,0).
=1

This is the probability of observing a trajectory £ given that the agent executes a policy
with parameters 6. The value of a trajectory,

T
= Z R(Stv at, 5t+1)a
t=0

is simply the sum of rewards received. The variable T is assumed to have a maximum value
ensuring that all trajectories have finite length.
We define our objective function to be the expected return,

/R P(e|6)de

The basic policy search problem is to identify the policy parameters that maximize this
expectation,
0* = arg mguxn(ﬁ).

In the RL problem setting the values of the expected return are not known to the agent.
Likewise, the transition function, initial state distribution, and reward function are also
unknown. This complicates the search for the maximum value.
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3. Policy Search Using Bayesian Optimization

Bayesian optimization addresses the general problem of identifying the maximum of a real
valued objective function,

0" = arg mgaxn(ﬁ).

This problem could be solved by optimizing the objective function directly. For instance,
the Covariance Matrix Adaptation algorithm by Hansen (2006), which has already shown
some promise in RL, directly searches the objective function by executing thousands of
queries to identify the maximum. If each evaluation of the objective has a small cost, then
thousands of evaluations could easily be performed. However, when individual evaluations of
the objective incur high costs, algorithms which rely on many evaluations are inappropriate.
Examples of domains with this property are easy to find. For example, the evaluation of
airfoil design and engine components rely on running expensive finite element simulations
of gas flow. These simulations have extreme time costs; evaluations of each design can take
upwards of 24 hours. Other domains, familiar to RL researchers, include robot control.
Running robots is time-consuming and increases the likelihood of physical failures. In cases
like these it is best to minimize the number of objective function evaluations. This is
the ideal setting for the application of BO. To reduce the number of function evaluations
the BO approach uses a Bayesian prior model of the objective function and exploits this
model to plan a sequence of objective function queries. Essentially, BO algorithms trade
computational resources, expended to determine query points, for a reduced number of
objective function evaluations.

Modeling the objective is a standard strategy in learning problems where the true func-
tion may be approximated by, for example, regression trees, neural networks, polynomials,
and other structures that match properties of the target function. Using the parlance of RL,
the Bayesian prior model of the objective function, sometimes called the surrogate func-
tion, can be viewed as a function approximator that supports Bayesian methods of analysis.
However, where standard function approximators generalize across states the model of the
objective function used in BO algorithms generalizes across policies. This is necessary to
support intelligently querying the surrogate representation of the objective function.

The BO method plans a sequence of queries. The process proceeds as follows: (1) A
query is selected. Queries are selected by optimizing a measure of improvement (to be
defined below). Typically, the improvement measure incorporates an exploration strategy
that directs search to poorly modeled regions of the solution space. (2) The query is
evaluated by the true objective function. Real data is gathered from the system being
optimized. Ideally, the computational resources expended in the previous step improves
the quality of the observed data. (3) The system observes the performance at the query
point and updates the posterior model of the objective function. (4) The process returns to
step 1. Below we discuss the key components of BO algorithms including the improvement
function and the prior model of the objective function (the central object of study in this

paper).
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3.1 Measure of Improvement

The selection criteria plays an important role in the quality of the exploration, and conse-
quently the speed of identifying the optimal point. The basic problem of selection can be
framed as identifying the point that minimizes the agent’s expected risk,

min / | 0(6) — (6 || dP (3| Dr.n),

with respect to the posterior distribution (By minimizing the expected difference between
1(f) and the maximum 7(0*) = arg maxgy n(f) we maximize the value of (6)). The data D.,
is a collection of pairs Dy., = {(0;,7(0;)) }|I,. Each pair is a previously selected policy point
0; and the evaluated performance at that point 7(6;). The posterior distribution P(n|D1.y)
encodes all of the agent’s knowledge of the objective function. This risk functional is a
natural foundation for a myopic iterative selection criteria,

6u = argain [ [ 1(6) = 0(6") || dP(s] Dy

Unfortunately, this selection criteria requires solving a computationally demanding minimax
problem. A heuristic method of selection must be used.

A common heuristic called Maximum Expected Improvement (MEI) (Mockus, 1994) is
the method of selection used in this work. The MEI heuristic compares new points to the
point with highest observed return in the data set. We denote the value at this empirically
maximal point to be 7mqe,. Using this maximal value one can construct an improvement
function,

1(0) = maz{0,1(0) — 1Mmaz},
which is positive when 7(6) exceeds the current maximum and zero at all other points. The
MEI criteria searches for the maximum of the expected improvement,

9n+1 = arg IIleaX EP(T]\DL”) [I(Q)] .

Crucially, the expected improvement function exploits the posterior uncertainty. If the
mean value at a new point is less than 7,4, the value of the Expected Improvement may
still be greater than zero. Consider the case where the posterior distribution, P(n(0)|D1.p),
has probability mass on values exceeding nq.- In this case, the expected improvement will
be positive. Therefore, the agent will explore until it is sufficiently certain that no other
policy will improve on the best policy in the data set. Due to the empirical success of the
MEI criterion it has become the standard choice in most work on BO.

When the posterior distribution is Gaussian then the expected improvement function
has a convenient solution,

///(0) — Nmax /1/(9) — Nmax N(Q) — Nmax
E 1(0)] =0o(0 o — )]
P(n(0)|D1n)[ ( )] U( )[ 0_(0) ( 0_(@) )+¢( 0,(0) )]
The functions p(f) and o(6) are the mean and standard deviation of the Gaussian dis-
tribution. Function ®(.) is the cumulative distribution function of the standard Gaussian
distribution, and ¢(.) is the probability distribution function. Please note that the expected
improvement function is zero when the standard deviation is zero.
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Expected Improvement at ) = .86

\ fmax

Expected Improvement

Likelihood

o)

Figure 1: The expected improvement heuristic. The heuristic assesses the value of observing
new points. On the left we consider the point circled (in black) at § = —.86. On
the right we illustrate the expected improvement assuming that P(n(#)|60 = —.86)
is Gaussian. To be considered an improvement the value of 7(f) must exceed the
value of the current maximum fmaz. The probability mass associated with the
expected improvement is shaded. The expected improvement is proportional to
the expected value of the indicated mass.

3.2 Objective Function Model

As a Bayesian method the performance of BO depends profoundly on the quality of the
modeling effort. The specification of the prior distribution determines the nature of the
posterior and hence the generalization performance of the surrogate representation. We
elect to model the objective function using a Gaussian process (Rasmussen and Williams,
2005),

n(0) ~ GP(m(0), k(9,0')).

GP models are defined by a mean function m(f) and a covariance function k(6,6’). The
mean function specifies the expected value at a given point m(0) = E[n(0)]. Likewise, the
covariance function estimates the covariance k(60,0) = E[(n(0) —m(6))(n(0") —m(#'))] The
kernel function encodes how correlated values of the objective are at points 6 and ¢’. Both
of these functions encode knowledge of the underlying class of functions.

For the purpose of computing the improvement function described above, the posterior
distribution at new points must be computed. In the GP model, this posterior has a simple
form. Given the data D;.,, the conditional posterior distribution is Gaussian with mean,

1(1(0n41)|D1:n) = m(Ont1) — k(On11,0)K (8, 9)_1(}’ —m),
where m is a vector of size n with elements m(6,),...,m(6,) and variance,
02(77(0n+1)|D1:n) = k(9n+1, 9n+1) - k(en—i-l’ H)tK(G, 9)71k(6’ 9n+1)-

Define y to be the column vector of observed performances such that y; = n(6;). Define
K(6,0) to be the covariance matrix with elements K; ; = k(6;,0;). Define k(6,,41,6) to be
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Algorithm 1 Bayesian Optimization Algorithm (BOA)
1: Let D1, = {(leﬁ(ol)vgl)}“l:l
2: repeat
3:  Compute the matrix of covariances K.
4: Select the next policy to evaluate: 6,41 = argmaxg Ep oy p) [1(0)].
5:  Execute the policy 6,41 for E episodes. B
6:  Compute Monte-Carlo estimate of expected return §(6,,41) = & Doeee, ., 1U(E)
7
8:

Update Dl:n+1 = Dl:n U (9n+17ﬁ(9n+1))
until Convergence

the column vector of correlations such that the it" element is k(6,11,6;) (K(fni1,6)t is the
transpose of this vector).

3.3 Bayesian Optimization for RL

Algorithm 1 outlines the basic loop of the BO routine discussed above. Line 1 assumes a
batch of data of the form, Dy.,, = {(0;,7(6;),&)}|I,. Hereafter, we will write D to indicate
the collection of n data tuples. The Monte-Carlo estimate for policy 6; is computed using
a set of trajectories & sampled from the target system. Given data D, the surface of the
expected return is modeled using the GP. The kernel matrix K is pre-computed in line 3
for reuse during maximization of the EI. Line 4 maximizes the EI. For this purpose, any
appropriate optimization package can be used. To compute the expected improvement the
GP posterior distribution P(n(0,,+1]/D)) must be computed. This entails computing the
mean function m(6,41), the vector of covariances k(6,,1,6), and performing the required
multiplications. Additional computational costs introduced into the mean and kernel func-
tions will impact the computational cost of the optimization. Our modifications to the
underlying model will increase these costs, but lead to more efficient search of the objective
function space. The additional costs must be balanced against the cost of evaluating the
objective function. Once selection is completed, new trajectories are generated from the
selected policy (line 5), and an estimate of the expected return is recorded (lines 6 and 7).

4. Incorporating Trajectory Information into Bayesian Optimization for
RL

We propose two complementary changes to the GP model of the expected return aimed at
improving performance in RL. We define new covariance and mean functions specifically
designed to exploit trajectory data. Section 4.1 details a new kernel function designed to
compare policies in the RL context. The kernel uses a behavior-based measure of policy
correlation. We motivate the use of this kernel and suggest a simple method for its estima-
tion. Section 4.2 details our method of using a learned approximate Monte-Carlo simulator
of policy performance. We detail how the outputs of this simulator are used to define a GP
mean function and define a method for dealing with errors generated by the simulator.
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17(6)

Figure 2: An illustration of Bayesian Optimization. The agent observes the objective func-
tion (dashed line) at a finite set of points (blue circles). Conditioned on the
observations the agent maintains a model of the underlying objective function.
The solid blue line depicts the mean of this model and the shaded regions illustrate
the model uncertainty (2 standard deviations). Uncertainty is lower near densely
sampled regions of 6 space. The agent selects new data points for purposes of
identifying the true maximum. As new observations are added the quality of the
model improves and observations are focused near the maximal value.
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4.1 Model-Free RL via Bayesian Optimization: A Behavior-Based Kernel
(BBK)

In this section we design a kernel for the RL setting that leverages trajectory data to com-
pute a domain independent measure of policy relatedness. Consider BO algorithms as a
kind of space filling algorithm. Wherever sufficient uncertainty exists, the algorithm will
aim to select a point to fill that space thereby reducing uncertainty in the vicinity of the
selected point. The kernel function defines the volume to be filled. It is important for the
development of BO algorithms for RL that kernel functions are robust to the parametriza-
tion of the policy space. Most kernel functions do not have this property. For instance,
squared exponential kernels require that policies have a finite and fixed number of param-
eters. The kernel cannot compare non-parametric policies. In this case, individual policies
can have distinct structures preventing their comparison using this form of kernel function.
We seek a kernel function which is useful for comparing policies with distinct structural
forms.

To construct an appropriate representation of uncertainty for the RL problem we propose
relating policies by their behaviors. We define the behavior of a policy to be the associated
trajectory density P(£|f). Below, we discuss how to use the definition to construct a kernel
function and how to estimate the kernel values without learning transition and reward
functions.

To develop our kernel and demonstrate its relationship to the expected return we prove
the following theorem:

Theorem 1 For any 0;, and 0;, Rmax > 0

[1(0:) — n(0;)] < Rmazv/2 [\/KL(P(E]0:)[[P(E]0;)) + /K L(P(E]0;)[[P(E]6:))) -

Proof: Below we establish the upper bound stated above. To begin we rewrite the
absolute value of the difference in expected returns,

n(6:) |—'/ REP(EB)IE ~ [ ROPES,) df' ‘ | R - Pleloy)) ag

By moving the absolute value into the integrand we upper bound the difference,

‘/R P(¢]6;) — P(¢]6;) di‘ /rR P(€]6;) — P(¢]6;))] dE.

We define a new quantity Rmax bounding the trajectory reward from above. The trajectory
reward is simply the sum of rewards at each trajectory step. Rmax is defined to be the
maximal trajectory value. Using the Rmax quantity we construct a new bound,

/ [R(€)(P(€]6;) — P(€]6;))| dé < Rmaa / P(¢l6;) — P(EIO,)) de,

expressing the difference in returns as the product of a constant and a term depend-
ing only on the variational difference in the trajectory densities. An upper bound for
the variational distance was developed by Pinsker (1964). The inequality states that
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%(V(P, Q))* < KL(P||Q) where V is the variational distance, [ |(P(z) — Q(z))|dz, and

KL(P,Q) is the Kullback Leibler divergence,

P(£10:)
KI(PEB)IP(En) = [ Peinos (F555 ) e

We can use Pinsker’s inequality to upper bound the variational distance,

Rmaz [ |P(€]6:) ~ P(€l6))|dé < Rmaz VE\[KL(P(El6)]|P(E]6;).

Finally, we use the fact that the variational distance is symmetric [ |(P(z) — Q(z))|dz =

J1@Q(x) ~ P(x).
() = n(0)] < Rmaxz 2/ KL(P(E]0:)]| P(€]6)))
< Rmazv2 [\/ KL(P(E6) | PE16;) + /K LIPE0,) I PE10:)|.

Hence, this simple bound relates the difference in returns of two policies to the trajectory
density [.

Importantly, the bound is a symmetric positive measure of the distance between poli-
cies. It bounds, from above, the absolute difference in expected value, and reaches zero
only when the divergence is zero (the policies are the same). Additionally, computing the
tighter variational bound, Rmaz [ |P(£|6;) — P(£|6;)| d€, inherently requires knowledge of
the domain transition models. Alternatively, the log term of the KL-divergence is a ratio
of path probabilities. Given a sample of trajectories the ratio can be computed with no
knowledge of the domain model. This characteristic is important when learned transition
and reward functions are not available. Our goal is to incorporate the final measure of pol-
icy relatedness into the surrogate representation of the expected return. Unfortunately, the
divergence function does not meet the standard requirements for a kernel (Moreno et al.,
2004). To transform the bound into a valid kernel we first define a function,

D(6:.6;) = \/KL(P(€[6:)||P(£16)) + /KL(P(EI6)[| PE]6:),
and define the covariance function to be the negative exponential of D,
K(Ql, 9]) = exp(—a . D(Gl, HJ))

The kernel has a single scalar parameter a controlling its width. This is precisely what we
sought, a measure of policy similarity which depends on the action selection decisions. The
kernel compares behaviors rather than parameters, making the measure robust to changes
in policy parameterization.

4.2 Estimation of the Kernel Function Values

Below we discuss using estimates of the divergence values in place of the exact values for
D(6;,6;). Computing the exact KL-divergence requires access to a model of the decision
process and is a computationally demanding process. No closed form solution is available.
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The divergence must be estimated. In this work we elect to use a simple Monte-Carlo
estimate of the divergence. The divergence between policy ¢; and 0; is approximated by,

00009 = 310 (i) + 3 0e (i)

£€&i

using a sparse sample of trajectories generated by each policy respectively (; represents
the set of trajectories generated by policy 6;). Because of the definition of the trajectory
density, the term within the logarithm reduces to a ratio of action selection probabilities,

P(£10;) Py(so) Hz;l P(s¢|s¢t—1,a1-1)Pr(at—1|P(s¢-1),0;)

t=1

. (P(fwi)) — log (Po(so) I P(st|st1,at1>Pw<at1|¢><sH>,oi>>

and is easily estimated using trajectory data.

A problem arises when computing the Expected Improvement (Line 4 of the BOA).
Computing the conditional mean and covariance for new points requires the evaluation of
the kernel for policies which have no trajectories present in the data set. We elect to use an
importance sampled estimate of the divergence, because we do not have access to learned
transition and reward functions,

A~ _ P(§|0new) P(&Wnew) P(§|9])
D(Onew05) = £ P(E6) 10g( P(¢lo;) )HOg <P(£|9nw))

Though the variance of this estimate can be large, our empirical results show that errors
in the divergence estimates, including the importance sampled estimates, do not negatively
impact performance. Alternative methods of estimating f-divergences (KL-divergence being
a specific case) have been proposed in the literature (Nguyen et al., 2007), and can be used
for future implementations.

4.3 Model-Based RL via Bayesian Optimization

The behavior based kernel has some important limitations. First, due to the definition of
the BBK the kernel can only compare stochastic policies. The KL divergence is meaningful
when the conditional trajectory densities share the same support. Second, the upper bound
used to construct the kernel function is loose. This can lead to excessive exploration when
the kernel exaggerates the differences between policies. In this section, we introduce a
distinct method of leveraging trajectory data that does not require stochastic policies and
can leverage any appropriate kernel function (including the BBK).

Specifically, our Model-Based Bayesian Optimization Algorithm (MBOA) learns the ini-
tial state distribution, the transition function, and the reward function from the observed
trajectory data. These learned functions are used to generate Monte-Carlo estimates of
policy performance. To compute estimates of the expected return for policy # we gen-
erate trajectory roll-outs. A roll-out is performed by sampling an initial state from the
learned initial state distribution and then executing policy 6 until termination. Simulated
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trajectories are sampled from the approximate trajectory density,
T
P(£l0) = Py(so) HP(5t|5t717atfl)Pﬂ'(at71|¢(5tfl)a 0).
t=1

We write P to indicate that the transition function and initial state distribution have been
learned from the observed trajectory data. From a fixed sample of F simulated trajectories
we compute a model-based Monte-Carlo estimate of the expected return,

1~ -
m(0, D) = ii(6:) = 3 > R(&)-
j=1

The function R indicates the learned reward function.

If the agent has learned accurate domain models an optimal policy can be learned by
maximizing 6* = arg maxg m(6, D). Unfortunately, in many domains it is difficult to specify
and to learn accurate domain models. In the worst case, the domain model classes selected
by the designer may not contain the true domain models. Moreover, the cost of sampling
trajectories may become prohibitive as the complexity of the domain models increases.
Therefore, we wish to allow the designer the flexibility of selecting a class of domain models
that is simple, efficient, and possibly an inaccurate representation of the target system. In
our work we propose a means of accurately estimating the expected return despite domain
model errors.

To overcome problems stemming from the predictive errors we propose using m(6, D) as
the prior mean function for the GP model thereby modeling the deviations from this mean
as a GP. The predictive distribution of the GP changes to be Gaussian with mean,

1(0(6,51)1D) = m(Br41, D) + K (61, 0)K(6,6) " (n — m(9, D)),

where m(0, D) = (m(61, D), ...,m(6,, D)) is a column vector of Monte-Carlo estimates with
an element for each policy in D (This vector must be recomputed when new trajectories
are added to the data). The variance remains unchanged. The new predictive mean is a
sum of the Monte-Carlo approximation of the expected return and the GP’s prediction of
the residual. We illustrate the advantage of this model in Figure 3. As shown in the figure
the model of the residuals directly compensates for errors introduced by the learned domain
models.

In the case where the domain models cannot be effectively approximated, the model-
based estimates of the expected return may badly skew the predictions. Consider the
following degenerate case: m(6, D1.,) underestimates the true mean for all policies resulting
in zero expected improvement in the region of the optimal policy. In this case, the pessimistic
estimates stifle the exploration of the policy space thereby preventing the discovery of the
optimal solution. Our goal is to account for the domain model bias in a principled way.

We propose a new model of the expected return,

n(@) = (1 = B)m(0) + Bna(0).

The new model is a convex combination of two functions governed by the parameter .
We model the function 7;(6) ~ GP(0,k(6,0)) with a zero mean GP, and we model the
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Figure 3: (a) The relationship between the surface of m(, D) and the objective function.
Both surfaces are observed at a fixed set of points. The values of the surfaces at
these points compose the vectors n and m(é, D) respectively. The magnitude of
the residuals are depicted as vertical bars. We build a GP model of these residual
values. (b) The complete model combines the function m(6, D) (as depicted
above) with the GP model of the residuals. The solid blue line corresponds to the
corrected mean of the model. The shaded area depicts two standard deviations
from the mean.
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function n2(0) ~ GP(m(0, D1.,), k(0,0)) with a GP distribution that uses the model-based
mean m(6, D) introduced above. The kernel of both GP priors is identical. The resulting
distribution for n(0) ~ GP(Sm(0, D), c(B)k(0,6)) is a GP with prior mean Sm(f, D) and
covariance computed using the kernel function. This change impacts the predicted mean
which now weights the model estimate by (3,

#(0n+1|D) = Bm(0nr1, D) + k(bn+1,0) K (8,0) " (n(6) — Bm (6, D)).

The variance changes to incorporate a factor ¢(f3).

We choose to optimize the [ parameter using evidence maximization (Rasmussen and
Williams, 2005). For a GP with mean Sm and covariance matrix K the log likelihood of
the data is,

POID) = —5(1(6) ~ fm(6, D)) K (4(6) — Gm(0, D) - 3 log || - S log(2m).

Taking the gradient of the log likelihood and solving for § results in a closed form solution,

__n(0)'K"'m(6, D))
b= m(0, D))!K—'m(60, D))’
Optimizing the value of £, prior to maximizing the expected improvement, allows the model
to control the impact of the mean function on the predictions. This tradeoff is illustrated in
Figure 4. Intuitively, the algorithm can return to the performance of the unmodified BOA
when the domain models are poor (by setting ( to zero).

Algorithm 2 outlines the steps necessary to incorporate the new model into the BOA.
MBOA takes advantage of trajectory data by building an approximate simulator of the
expected return. Like the BBK the prior mean function used by the MBOA only requires
policies to output actions. It is oblivious to the internal structure of policies. Additionally,
by contrast to the BBK, MBOA can compare stochastic and deterministic policies.

Most work in model-based RL assumes the learned transition and reward functions are
unbiased estimators of the true functions. This is difficult to guarantee in real-world tasks.
Due to our limited knowledge transition and reward models frequently exhibit considerable
model bias. MBOA aims to overcome sources of bias by combining a weighted mean function
with a residual model. By construction MBOA can ignore the mean function if it produces
systematic errors, due to model bias, and can benefit from the mean function where the
estimates are accurate. In the results section we provide examples where MBOA benefits
from the use of simple (biased) transition and reward models.

5. Experiment Results

We examine the performance of MBOA and BOA with the behavior based kernel (BBK) in
5 benchmark RL tasks including a mountain car task, a Cart-pole balancing task, a 3-link
planar arm task, an acrobot swing up task, and a bicycle balancing task. Additional details
about the Cart-pole, mountain car, and acrobot domains can be found in Sutton and Barto
(1998). We use the bicycle simulator originally introduced by Randlov and Alstrom (1998).

Comparisons are made between MBOA, BOA with the BBK, the DYNA-Q algorithm,
PILCO (Deisenroth and Rasmussen, 2011), BOA with a squared exponential kernel (Lizotte,
2008), OLPOMDP (Baxter et al., 2001), Q-Learning with CMAC function approximation
(Sutton and Barto, 1998), and LSPI (Lagoudakis et al., 2003).
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m(6,D)
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(a) An illustration of the degenerate case where the mean function systematically under-
estimates the objective function (objective function marked by dashed line).

n(6) -1

(b) The corrected model with control parameter = 1. After correction the model un-
derestimates the objective function.
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(c) The corrected model with control parameter 8 = .1. By reducing the influence of the
mean function the model more accurately estimates the true function.

Figure 4: Illustration of the impact of optimizing f.
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Algorithm 2 Model-based Bayesian Optimization Algorithm (MBOA)
1: Let Dl:n = {GH”?(GL)?E}‘:L:l

2: repeat
3:  Learn the transition function, reward function, and initial state distribution from trajectory
data.

4 Compute the vector m(6, Dy.,) using the approximate simulator.

5 Optimize 8 by maximizing the log likelihood.

6:  Select the next point in the policy space to evaluate: 6,41 = argmaxg E(I(6)|D1.p).
7:  Execute the policy with parameters 6,1 in the MDP.

8: Update Dl:nJrl =Dy.n U (9n+17 n(9n+1)a §n+1)

9: until Convergence.

5.1 Experiment Setup

We detail the special requirements necessary to implement each algorithm in this section.
For all experiments, except Cart-pole, the policy search algorithms search for parametric
soft-max action selection policies,

exp(fq - f(s))
>_yea exp(ly - f(s))
The parameters 6, are the set of policy parameters associated with action y. The function

f(s) computes features of the state.
In the Cart-pole experiments, a linear policy maps directly to the action,

P(als) =

a=0-f(s)+e.

Epsilon is a small noise parameter used in algorithms requiring stochastic policies.
Below we discuss the implementations of each algorithm.

e MBOA and BOA. The GP model used in MBOA and BOA can accept any kernel
function (including the BBK). Below we show results comparing these kernels. Unless
stated otherwise the squared exponential kernel,

H(01,67) = exp(— 3 pl6; — 05)'(6: — 6,)),

is used in our experiments. The width of this kernel is controlled by the scaling
parameter p. The p parameter was tuned for each experiment, and the same value
was used in both MBOA and BOA. The prior mean function of BOA is the zero
function, and MBOA employs the model-based mean function discussed above.

It is necessary to optimize the expected improvement for all of the BO algorithms.
For this purpose we make use of two simple gradient-free black box optimization
algorithms. The DIRECT algorithm detailed by Jones et al. (1993) is used for all tasks
except bicycle. DIRECT is poorly suited for problems with more than 15 dimensions.
In the bicycle riding domain the policy has 100 dimensions. In this case we use
the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm detailed
by Hansen (2006). Both DIRECT and CMA-ES require specifying upper and lower
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bounds on the policy parameters. We specify an upper bound of 1 and a lower bound
of -1 for each dimension of the policy. These bounds hold for all experiments reported
below.

To implement the MBOA the designer must define a class of domain models. For the
experiments reported below linear models were used. The models are of the form,
st = wi - Psi—1,a-1)",rt = wp - G(si-1,a0-1,8)

where s;; is the ith state variable at time t, w; is the weight vector for the ith state
variable, and ¢(s'=1, a?=1, s!) is a column vector of features computed from the states
and actions (and next states in the case of the reward model). The features used in
our experiments are found in Table 1. Parameters w; and w, are estimated from data
using standard linear regression.

e PILCO. We use an implementation of PILCO provided by the authors Deisenroth
and Rasmussen (2011). This implementation uses sparse GPs to learn the transition
and reward functions of the MDP.

e DYNA-Q. We make two slight modifications to the DYNA-Q algorithm. First, we
provide the algorithm with the same linear models employed by MBOA. These are
models of continuous transition functions which DYNA-Q is not normally suited to
handle. The problem arises during the sampling of previously visited states during
internal reasoning. To perform this sampling we maintain a dictionary of past observa-
tions and sample visited states from it. These continuous states are discretized using
a CMAC function approximator. The second change we make is to disallow inter-
nal reasoning until a trial is completed. To reduce the computational cost reasoning
between steps is not allowed. After each trial DYNA-Q is allowed 200000 internal
samples to update its Q-function. This was to ensure that during policy selection
DYNA-Q was allowed computational resources comparable to the resources used by
MBOA and BOA with the BBK.

e Q-Learning with CMAC function approximation. e-Greedy exploration is used
in the experiments (e is annealed after each step). The discretization of the CMAC
approximator was chosen to give robust convergence to good solutions.

e OLPOMDP OLPOMDP is a simple gradient based policy search algorithm (Baxter
et al., 2001). The OLPOMDP implementations use the same policy space optimized
by the BO algorithms.

e LSPI. LSPI results are reported in the cart-pole, acrobot, and bicycle tasks. We
do not report mountain car or arm results because no tested combinations of basis
functions and exploration strategies yielded good performance. We attempted radial
basis, polynomial basis, and hybrid basis, but none of these achieved good results.
Our exploration strategies used policies returned from the LSPI optimization with
added noise (including fully random exploration).
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Domain/Features

Transition Function

Reward Function

Policy

Description

Mountain Car

quadratic expansion:
(1, u, cos(l), cos(u),
action)

quadratic expansion:
(1, u, cos(l), cos(u),
action)

cubic expansion:
l,u

Variable 1 denotes the location and
u denotes the velocity of the car.

Acrobot quadratic expansion: quadratic expansion: (601,62,01,02) (61, 02) are the angles between the
(01, 02,01, 02, action) (01, 02,01, 02,cos(01), links and (é1,92) are the angular

cos(02), action) velocities.
Cart Pole (v, v, w, w, action, (v, v, w,w, action, (v, v, w,w) (v, v/) is the velocity and change in

sin(w), cos(w), sin(w),

1/cos(w))

sin(w), cos(w), sin(w),
1/cos(w), v > 4,v <
4 w>F w< =%)

velocity of the cart, (w, w/), is the
angle of the pole, and angular ve-
locity of the pole.

3-link Planar Arm

(61, 02,03, ¢, yt,
action)

(01,02,03, (zt—z4)7,
(vt — yg)?, action)

(Zt*zg,ytfyg)

Bicycle

(w,w,v,0,2f, Tr, Yy,
Yr, action)

(W, @, v, 0@ p, T, Y,
yr, action, |w| > %))

See Lagoudakis
et al. (2003) for
policy features.

(01,02,03) are the link angles,
(z¢,y+) is the location of the arm
tip, and (zg,yg) is the goal loca-
tion.

Variables (zf, Ty, Yf, Yy, ) represent
the locations of the front and rear
tires respectively.

Table 1: Features for the transition function, reward function, and policy function.

Mountain Car Task

100

150
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Average Return
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-450
]

Figure 5:

of each algorithm.

5.2 Mountain Car Task

&0 100
Episodes

120 140

160 180 200

Mountain Car Task: We report the total return per episode averaged over 40 runs

In the mountain car domain the goal is to accelerate a car from a fixed position at the base
of a hill to the hill’s apex. Our implementation of the mountain car task uses eight features
derived from the standard state variables (velocity and location of the car). The control
policy selects from two actions (applying acceleration forward or to the rear). The policy
has sixteen dimensions. The reward function penalizes the agent -1 for each step taken to
reach the goal. Agents are allowed a maximum of 400 actions for each episode. Results for
the Mountain Car task are shown in Figure 5.
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The sparse reward signal makes Mountain Car an ideal experiment for illustrating the
importance of directed exploration based on differences in policy behavior. Approaches
based on random exploration and exploration weighted by returns are poorly suited to this
kind of domain (we have excluded the other model-free methods from the graph because
they fail to improve within 200 episodes). Visual inspection of the performance of BOA
shows that many of the selected policies, which are unrelated according to the squared
exponential kernel, produce similar action sequences when started from the initial state.
This redundant search is completely avoided when generalization is controlled by the BBK.

Note that the performance of all kernel methods depends on the settings of the pa-
rameters. Optimization of the hyper parameters is not the focus of this work. However,
the parameters of the BBK (and any other kernel used with MBOA) can be automati-
cally optimized using any standard method of model selection for GP models (Rasmussen
and Williams, 2005). We elect to simply set the parameter of the BBK, «, to 1 for all
experiments.

When accurate domain models can be learned, the Monte-Carlo estimates of the ex-
pected return computed by the MBOA will accurately reflect the true objective. Therefore,
if the domain models can be accurately estimated with few data points MBOA will rapidly
identify the optimal policy. To illustrate this we hand-constructed a set of features for the
linear domain models used in the mountain car task. Depicted in Figure 5 are the results
for MBOA with high quality hand-constructed features. Once the domain models are es-
timated, only four episodes are needed to yield accurate domain models. Once accurate
domain models are available MBOA immediately finds an optimal policy. Typically, the in-
sight used to construct model features is not available in complex domains. To understand
the performance of MBOA in settings with poor insight into the correct domain model
class, we remove the hand constructed features from the linear models and examine the
resulting performance. With poor models, the performance of the MBOA degrades. As
shown in the figure, the performance of MBOA is no longer better than the performance of
standard BOA with the model-free BBK. The BBK can be combined with the model-based
mean function used in MBOA. We show the performance of this combination, using the
BBK as the kernel function for the MBOA, labeled Combined, in Figure 5. The results
are comparable to the case where MBOA has access to high quality domain models. The
performance of PILCO is comparable to the combined algorithm. After 20 episodes the
PILCO algorithm has identified a high quality policy for the task. However, PILCO uses
all available transition data to train the sparse GP models of the transition and reward
function. After 30 episodes the kernel matrices consume all available memory and force the
algorithm to page to disk. Due to this problem we terminated the PILCO experiments after
30 episodes, and we report the value of the optimal policy found by PILCO after this point.
By contrast, the cost of GP prediction for MBOA grows with the number of episodes, and
MBOA exploits a less complex (linear) class of domain models. Consequently, it discovers
the optimal policy using less experience and less computational resources.

The performance of MBOA should be contrasted with the performance of DYNA-Q.
During DYNA-Q’s internal simulations errors in the estimated domain models negatively
impact the accuracy of the Q-value estimates. This leads to poor performance in the actual
task. In contrast, MBOA is specifically constructed to mitigate the impact of inaccurate
domain models. Eventually, even if the domain models have significant errors MBOA can
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Figure 6: Acrobot Task: We report the total return per episode averaged over 40 runs of
each algorithm.

still identify the optimal policy. Standard model-based RL algorithms, such as DYNA-Q,
cannot learn optimal policies when confronted with systematic domain model errors.

5.3 Acrobot Task

In the acrobot domain, the goal is to swing the foot of the acrobot over a specified threshold
by applying torque at the hip. Details of the implementation can be found in Sutton and
Barto (1998). Four features are used for the soft-max policy resulting in twelve policy
parameters. The acrobot results are shown in Figure 6.

We were unable to construct accurate linear domain models for this task. Consequently,
the DYNA-Q algorithm is unable to find a good policy. MBOA is able to compensate for
the domain model errors and exhibits the best performance (some policies are accurately
simulated by the poor models). The performance of the BBK is less pronounced in this
domain. The policy class generates a varied set of behaviors such that small changes in
the policy parameters lead to very different action sequences. Therefore, more behaviors
must be searched before good policies are identified. Even so, the behavior based kernel does
outperform BOA with squared exponential kernel and it is competitive with the performance
of MBOA. In contrast to the mountain car task, combining the BBK with MBOA does not
yield improved performance. The performance is comparable to MBOA. The performance
of PILCO is similar to the model-based BOAs. However, PILCO suffered from the same
problems discussed above. Due to these memory issues we were forced to terminate the
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Cart Pole Balancing Task
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Figure 7: Cart Pole Task: We report the total return per episode averaged over 40 runs of
each algorithm.

PILCO results after 50 episodes. Thereafter we report the performance of the best policy
found by PILCO.

5.4 Cart-pole Task

In the Cart-pole domain, the agent attempts to balance a pole fixed to a movable cart. The
policy selects the magnitude of the change in velocity (positive or negative) applied to the
base of the cart. The policy is a function of four features (v,v’,w,w’), the velocity, change
in velocity, angle of the pole, and angular velocity of the pole. The reward function gives a
positive reward for each successful step. A penalty is added to this reward when pole angles
deviate from vertical, and when the location of the cart deviates from the center. A large
positive reward is received after 1000 steps if the pole has been kept upright and the cart
has remained within a fixed boundary. Episodes terminate early if the pole falls or the cart
leaves its specified boundary.

Figure 7 shows the results for the Cart Pole task. Clearly, the BBK outperforms all
of the model-free competitors including BOA with the squared exponential kernel. Its
performance is comparable to MBOA despite being fully model-free. In this task, the
linear domain models are highly accurate. MBOA effectively employs the models to rapidly
identify the optimal policy. By comparison, all other methods, except BOA(BBK), must
accumulate more data to identify a good policy. BOA consistently identifies a policy which
balances the pole for the full 1000 steps. Q-Learning and OLPOMDP require at least 1250
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3-Link Planar Arm Task
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Figure 8: Planar Arm Task: We report the total return per episode averaged over 40 runs
of each algorithm.

episodes before similar performance is achieved. LSPI converges faster but cannot match
the performance of either the BOA or MBOA. Please note that our problem is distinct from
the original LSPI balancing task in the following ways: 1. The force applied by the agent
is more restricted. 2. The cart is constrained to move within a fixed boundary. 3. The
reward function penalizes unstable policies. After 30 episodes the DYNA-Q algorithm has
found a solution comparable to that of MBOA. This performance is unsurprising given the
accuracy of the estimated domain models. PILCO learns a high quality model given two
episodes of experience and finds an optimal policy by the third episode. In the cart-pole
task learning a local model around the balance point is sufficient to perform well and this
contributes to PILCQO’s exceptional performance.

5.5 3-Link Planar Arm Domain

In the 3-link Planar Arm task the goal is to direct the arm tip to a target region on a
2 dimensional plane. Each of the three controllers independently outputs a torque (-1,1)
for one arm joint. Each controller is a soft-max action selection policy. Only two features
are needed for each controller resulting in 12 total policy parameters (policy parameters
are jointly optimized). The features are composed of x and y displacements from the
center of the target location to the arm tip location. The reward function penalizes the
agent proportional to the distance between the arm tip and the target location. A positive
reward is received when the arm tip is placed within the goal space.
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The performance of each algorithm is shown in Figure 8. The generalization of the
divergence-based kernel, BOA(BBK), is particularly powerful in this case. Much of the
policy space is quickly identified to be redundant and is excluded from the search. The
agent fixes on an optimal policy almost immediately. Like the Cart-pole task, the transition
and reward function of the arm task are linear functions. Once the functions are estimated
MBOA quickly identifies the optimal policy (the mean function accurately reflects the true
surface). Additional data is needed before the BOA identifies policies with similar quality.
The other model-free alternatives require 1000 episodes before converging to the same result.
DYNA-Q found a policy comparable to the MBOA, but required more experience. In the
three tasks discussed above the MBOA makes better use of the available computational
resources and remains robust to model bias. PILCO very quickly finds an optimal policy
in this task. After ten episodes PILCO has learned an accurate GP model of the transition
dynamics. Thereafter, PILCO finds a near optimal policy. We have extrapolated PILCO’s
performance beyond the 20th episode. FEach PILCO run required 3 weeks to generate the
first 20 episodes.

5.6 Bicycle Balancing

Agents in the bicycle balancing task must keep the bicycle balanced for ten minutes of
simulated time. For our experiments we use the simulator originally introduced in Randlov
and Alstrom (1998). The state of the bicycle is defined by four variables (w,w, v, 7). The
variable w is the angle of the bicycle with respect to vertical, and w is its angular velocity.
The variable v is the angle of the handlebars with respect to neutral, and » is the angular
velocity. The goal of the agent is to keep the bicycle from falling. Falling occurs when
|w| > 7/15. The same discrete action set used in Lagoudakis et al. (2003) is used in
our implementations. Actions have two components. The first component is the torque
applied to the handlebars T' € (—1,0,1), and the second component is the displacement
of the rider in the saddle p € (—.02,0,.02). Five actions are composed from these values
(T,p) € ((—-1,0),(1,0),(0,—.02),(0,.02),(0,0)). The reward function is defined to be the
squared change in w, (w; —wir1)?, at each time step. An additional -10 penalty is imposed
if the bicycle falls before time expires. Rewards are discounted in time insuring that longer
runs result in smaller penalties. In our implementation the set of 20 features introduced
in Lagoudakis et al. (2003) were used. The softmax policy has 100 parameters. Please
note that our LSPI implementation of bicycle does not benefit from the design decisions
introduced in Lagoudakis et al. (2003).

In Figure 9 we report the performance of MBOA and LSPI. All other implementations,
including MBOA combined with the BBK, show no improvement in 300 episodes. In this
case the BBK performs poorly. It overestimates the distance between policies with dissimilar
action selection distributions. In the bicycle riding task individual sequences of oscillating
actions can produce similar state trajectories. A policy executing right,left,right left,....
behaves much like a policy executing left,right,left,right,... even though the action selection
distributions may be arbitrarily dissimilar. This is a problem with the BBK that must be
addressed in future work. By contrast, after 300 episodes MBOA has found a balancing
policy. For this experiment we used a linear kernel function with automatic relevance
determination. The parameters of the linear kernel function were optimized by maximum
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Bicycle Balancing Task
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Figure 9: Bicycle Balancing Task: We report the total return per episode averaged over
multiple runs of each algorithm (15 runs of MBOA and 30 runs of LSPI).

likelihood after each policy execution. Before optimization of the hyper-parameters the
algorithm was made to choose 20 policies with the uninformed values. MBOA uses very
simple and highly inaccurate linear models in this task. Errors in the linear models are
significant enough to cause DYNA-Q to fail. MBOA exhibits robust performance despite
the predictive errors caused by model bias. It converges to a near optimal policy and
exhibits excellent data efficiency.

We allowed the PILCO algorithm to run for three weeks. After this period each run
had completed only 24 episodes. This was due to the size of the kernel covariance matri-
ces. Taken together these matrices consumed several gigabytes of memory and forced the
algorithm to access the hard disk. This is a serious problem with using (sparse) GP mod-
els to represent the transition and reward function in MDPs. Unfortunately, the PILCO
algorithm had not found a high quality policy given the available experience. We elected
to exclude these results from the depicted experiments.

6. Related Work

By extending the work on BO we place our research squarely within the growing body of
literature on Bayesian RL. Most closely related is extensive work adapting BO methods to
the RL problem (Lizotte et al., 2007; Lizotte, 2008). Like our work, these authors propose
modeling the surface of the expected return, that maps policy parameters to returns, with
a GP model. We have extended this work by designing new GP models of the expected
return that leverage trajectory data and we have empirically demonstrated the performance
benefits of these new models.
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Gaussian processes have been used to model functions of interest in the RL setting.
Related work employing Gaussian processes in RL includes Engel et al. (2003, 2005) in which
the value function is modeled as a Gaussian Process, Ghavamzadeh and Engel (2007a,b)
wherein GPs were used to model the gradient of the expected return, and the work of
Deisenroth and Rasmussen (2011) and Rasmussen and Kuss (2004) where GPs were used
to model the transition and reward functions.

Work by Engel et al. (2003, 2005) focuses on the problem of estimating the value function
given a fixed action selection policy. GP models are used to approximate the value function;
The GP model introduces a smoothness prior on the space of value functions. Similarly,
Ghavamzadeh and Engel (2007a,b) focus on the problem of estimating the gradient of the
value function for a fixed action selection policy. It should be noted that the kernel described
by Ghavamzadeh and Engel (2007b) exploit trajectory information; the authors propose a
Fisher kernel for relating sampled trajectories. This facilitates generalization across sampled
trajectories and leads to improved estimates of the gradient of the value function. The
results of their experiments show consistent improvement, in a set of benchmark problems,
over standard Monte-Carlo methods for estimating the gradient of the expected return.
However, their kernel cannot be used to compare policies as is done in our work. During
the process of policy improvement their approach re-samples trajectory data for each new
policy. In contrast, the GP models discussed in this article perform off-policy estimation of
the expected return and re-use sampled trajectory data to approximate the returns of new
policies.

Numerous model-based Bayesian RL algorithms exploit Bayesian priors on the domain
model parameters (Dearden et al., 1999; Strens, 2000; Duff, 2003; Deisenroth and Ras-
mussen, 2011; Rasmussen and Kuss, 2004). The priors encode the agents uncertainty of the
world it lives within. Like our algorithm, these methods actively explore to reduce uncer-
tainty. For instance, work by Dearden et al. (1999) introduced a method for representing
Bayesian belief states and proposed an action selection policy based on Value of Information
(this policy was first introduced in Dearden et al. 1998). Related work by Strens (2000) and
Duff (2003) introduced new approaches for approximately solving the Bayesian belief state
MDP. An approximate solution of the belief state MDP can be used to derive an action
selection policy that approximates Bayes optimal action selection. Our work explores the
problem of Bayesian parametric policy search and exploits a heuristic for directed explo-
ration of the parametric policy space. However, we avoid Bayesian modeling of the domain
models. Instead, our approach directly represents uncertainty of the expected return. Our
empirical results demonstrate how this impacts practical application.

To understand the consequences of this decision consider the recent work by Deisenroth
and Rasmussen (2011) whom developed the PILCO algorithm. PILCO learns GP models of
the transition and reward functions. The learned transition and reward functions are used
to approximate the expected return via prediction of state-reward sequences. The policy is
optimized by analytic gradient ascent on the approximated expected return. To represent
a GP model of the transition and reward function it is necessary to represent a matrix with
T? elements (where T is the total number of observed state transitions). This is problematic
in the RL setting where agents may take many thousands of steps during their lifetimes.
Our approach to BO uses GPs to model the mapping from policies to expected returns.
Using GP models to directly model the expected return prevents the kernel matrices from
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exploding in size. For instance, in the experiments above our kernel matrices include at
most 300% elements whereas PILCO’s kernel matrices quickly explode to more than 400002
elements. Sparse GP inference can help to reduce the costs of dealing with these large
matrices. However, as is demonstrated in our experiments we found that sparse inference
was not sufficient to overcome the performance problems. The advantage of the approach
can be further improved by introducing heuristic local search techniques for discovering the
maximum of the expected improvement function.

Work by Kakade (2001) presented a metric based on the Fisher information to derive the
natural policy gradient update. Kakade (2001) demonstrated that natural policy gradient
methods outperform standard gradient methods in a difficult Tetris domain. Follow up
work by Bagnell and Schneider (2003) proposed pursuing a related idea within the path
integral framework for RL (the same framework of this paper). Their work considered
metrics defined as functions on the distribution over trajectories generated by a fixed policy
P(&]0). In contrast to our goals both works focus on iteratively improving a policy via
gradient descent. Furthermore, no explicit attention is paid to using the metric information
to guide the exploratory process. However, the insight that policy relationships should be
expressed as functions of the trajectory density has played a key role in the development of
our behavior based kernel.

Work by Peters et al. (2010) and Kober and Peters (2010) is related to our proposed
kernel function. Peters et al. (2010) used a divergence-based bound to control exploration.
Specifically, they attempt to maximize the expected reward subject to a bound proportional
to the KL-divergence between the empirically observed state-action distribution and the
state-action distribution of the new policy. The search for a new policy is necessarily local,
restricted by the bound to be close to the current policy. By contrast, our work uses the
divergence as a measure of similarity and performs a global, aggressive, search of the policy
space. Work by Kober and Peters (2010) derives a lower bound on the importance sampled
estimate of the expected return, as was done in Dayan and Hinton (1997), and observes the
relationship to the KL-divergence of the reward weighted behavior policy and the target
policy. They derive from this relationship an EM-based update for the policy parameters.
An explicit effort is made to construct the update such that exploration is accounted for.
However, their method of state-dependent exploration is based on random perturbations
of the action selection policy. Our method of exploration is instead determined by the
posterior uncertainty and does not depend on a behavior policy.

The BBK leverages a generative model of the trajectory distribution (estimated from
a finite set of samples) to compute a measure of policy similarity that is robust to policy
reformulation (it only depends on the allocation of probability mass). By contrast, most
work on kernel methods can be considered model-free in that they do not make distribu-
tional assumptions regarding the data generating process. Recent work has explored the
advantages of incorporating generative assumptions into the kernel function (Lafferty and
Lebanon, 2005; Belkin and Niyogi, 2002; Moreno et al., 2004). In particular, our work is
closely related to work by Moreno et al. (2004) which introduces a kernel based on the
symmetric KL-divergence. Our BBK is a modification of this kernel for the purpose of GP
modeling of the expected return. In addition, we describe a method of estimating the kernel
values given off-policy trajectory samples whereas previous work typically assumes access
to a generative model.
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7. Conclusions

General black box Bayesian optimization algorithms have been adapted to the RL policy
search problem, and have shown promise in difficult domains. We show how to improve
these algorithms by exploiting trajectory data generated by agents.

For model-free RL, we presented a new kernel function for GP models of the expected
return. The kernel compares sequences of action selection decisions from pairs of policies.
We motivated our kernel by examining a simple upper bound on the absolute difference of
expected returns for two arbitrary policies. We used this upper bound as the basis for our
kernel function, argued that the properties of the bound ensure a more reasonable measure
of policy relatedness, and demonstrated empirically that this kernel can substantially speed
up exploration. The empirical results show that the derived kernel is competitive with
the model-based RL algorithms MBOA and Dyna-Q, and converge more quickly than the
model-free algorithms tested. Additionally, we showed that in certain circumstances BBK
can be combined with the MBOA to improve the quality of exploration.

For model-based RL we presented MBOA for model-based RL. MBOA improves on
the standard BOA algorithm by using collections of trajectories to learn an approximate
simulator of the decision process. The simulator is used to define an approximation of the
underlying objective function. Potentially, such a function provides useful information about
the performance of unseen policies which are distant (according to a measure of similarity)
from previous data points. Empirically, we show that the MBOA has exceptional data
efficiency. Its performance exceeds LSPI, OLPOMDP, Q-Learning with CMAC function
approximation, BOA, and DYNA-Q in all but one of our tasks. MBOA performs well even
when the learned domain models have serious errors. Overall, MBOA appears to be a useful
step toward combining model-based methods with Bayesian optimization for the purposes
of handling approximate models and improving data efficiency.

The penalty for taking this approach is straightforward. A substantial increase in com-
putational cost is incurred during optimization of the surrogate function. This occurs when
evaluating MBOA'’s approximate simulator, or when estimating the values of the behavior
based kernel. In both cases the cost of evaluating the kernel function grows linearly in
the length of the trajectories. However, the cost is compounded during optimization and
will make these approaches infeasible when trajectory lengths become huge. Overcoming
this barrier is an important step towards taking advantage of trajectory data generated in
complex domains.
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