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Abstract

Given a dictionary of Mn predictors, in a random design regression setting with n ob-
servations, we construct estimators that target the best performance among all the linear
combinations of the predictors under a sparse `q-norm (0 ≤ q ≤ 1) constraint on the linear
coefficients. Besides identifying the optimal rates of convergence, our universal aggregation
strategies by model mixing achieve the optimal rates simultaneously over the full range of
0 ≤ q ≤ 1 for any Mn and without knowledge of the `q-norm of the best linear coefficients
to represent the regression function.

To allow model misspecification, our upper bound results are obtained in a framework
of aggregation of estimates. A striking feature is that no specific relationship among the
predictors is needed to achieve the upper rates of convergence (hence permitting basically
arbitrary correlations between the predictors). Therefore, whatever the true regression
function (assumed to be uniformly bounded), our estimators automatically exploit any
sparse representation of the regression function (if any), to the best extent possible within
the `q-constrained linear combinations for any 0 ≤ q ≤ 1.

A sparse approximation result in the `q-hulls turns out to be crucial to adaptively
achieve minimax rate optimal aggregation. It precisely characterizes the number of terms
needed to achieve a prescribed accuracy of approximation to the best linear combination
in an `q-hull for 0 ≤ q ≤ 1. It offers the insight that the minimax rate of `q-aggregation is
basically determined by an effective model size, which is a sparsity index that depends on
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q, Mn, n, and the `q-norm bound in an easily interpretable way based on a classical model
selection theory that deals with a large number of models.

Keywords: high-dimensional sparse learning, minimax rate of convergence, model selec-
tion, optimal aggregation, sparse `q-constraint

1. Introduction

Learning a high-dimensional function has become a central research topic in machine learn-
ing. In this paper, we intend to provide a theoretical understanding on how well one can
adaptively estimate a regression function by sparse linear combinations of a number of
predictors based on i.i.d observations.

1.1 Motivation

Sparse modeling has become a popular area of research to handle high-dimensional linear
regression learning. One notable approach is to exploit the assumption that the “true”
linear coefficients have a bounded `q-norm (or simply q-norm) for some 0 ≤ q ≤ 1, which
implies that the parameter space is necessarily sparse in a proper sense. A major recent
theoretical advancement is made by Raskutti, Wainwright, and Yu (2012), who derive
minimax rates of convergence both for estimating the regression function and for estimating
the parameter vector, which spells out how the sparsity parameter q (in conjunction with the
number of predictors, say, Mn) affects the intrinsic capability of estimation for the `q-hulls.
The results confirm that even if Mn is much larger than the sample size n, relatively fast
rates of convergence in learning the linear regression function are possible. In a Gaussian
sequence model framework, Donoho and Johnstone (1994) identify precisely how the `q-
constraint (q > 0) on the mean vector affects estimation accuracy under the `p-loss (p ≥ 1).

In this paper, differently from the fixed design setting in Raskutti et al. (2012); Negahban
et al. (2012), under a random design, we examine the issue of minimax optimal estimation of
a linear regression function in the `q-hulls for 0 ≤ q ≤ 1. Besides confirming the same role of
q on determining the minimax rate of convergence for estimation of the regression function
also for the random design, we prove that the minimax rate can be adaptively achieved
without any knowledge of q or the `q-radius of the linear coefficients. The adaptation results
show that in high-dimensional linear regression learning, theoretically speaking, should the
regression function happen to depend on just a few predictors (i.e., hard sparsity or q = 0)
or only a small number of coefficients really matter (i.e., soft sparsity or 0 < q ≤ 1), the
true sparsity nature is automatically exploited, leading to whatever the optimal rate of
convergence for the situation. No restriction is imposed on Mn. To our knowledge, this is
the most general result on minimax learning in the `q-hulls for 0 ≤ q ≤ 1.

In reality, obviously, the soft or hard sparsity is only an approximation that hopefully
captures the nature of the target function. To deal with possible model misspecification
(i.e., the sparsity assumption may or may not be suitable for the data), our upper bound
results on regression estimation will be given in a framework that permits the regression
function to be outside of the `q-hulls. The risk bounds show that whichever soft or hard
sparse representation of the true regression function by linear combination of the predictors
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best describes the truth, the corresponding optimal performance (in rate) is automatically
achieved (with some additional conditions for deriving matching minimax lower bounds).

Our aim of simultaneous adaptive estimation over the `q-hulls for all 0 ≤ q ≤ 1 and
positive `q-radius, especially with possible model misspecification, requires a deeper under-
standing of sparse approximation of functions in the `q-hulls than what is available in the
literature. As a solution, we provide a sharp sparse approximation error bound for `q-hulls
with 0 ≤ q ≤ 1, which may also be relevant for studying other linear representation based
high-dimensional sparse learning methods.

The aforementioned flexible approach to optimal estimation that allows model misspec-
ification is done in the framework of aggregation of estimates. Besides the aspect of not
assuming the true target function to have any specific relationship to the predictors/the
initial estimates to be aggregated, the theory of aggregation emphasizes that the predic-
tors/the initial estimates are basically arbitrary in their association with each other. With
this characteristic in sight, the minimax rate of aggregation is properly determined by find-
ing a specific set of initial estimates with known relationship (e.g., independence) under
which an existing upper bound can be shown to be un-improvable up to a constant factor.
In contrast, for minimax optimal regression, one works with whatever (hopefully weak) as-
sumptions imposed on the predictors and tries to achieve the minimax rate of convergence
for the function class of interest. With the above, the problem of aggregation of estimates
is closely related to the usual regression estimation: A risk upper bound on aggregation of
estimates readily gives a risk upper bound for regression estimation, but one has to derive
minimax lower bounds for the specific regression learning settings. In this work, we will
first give results on aggregation of estimates (where most work is on the upper bounds
under minimal assumptions on the initial estimates) and then present results on minimax
regression in `q-hulls (where most work is on deriving lower rates of convergence). The
focus is on random design and additions results on fixed design are in Wang et al. (2011).

1.2 Aggregation of Estimates

The idea of sharing strengths of different learning procedures by combining them instead of
choosing a single one has led to fruitful and exciting research results in statistics and machine
learning. The theoretical advances have centered on optimal risk or loss bounds that require
almost no assumption on the behaviors of the individual estimators to be aggregated. See,
e.g., Yang (1996, 2000a); Catoni (1997, 2004); Juditsky and Nemirovski (2000); Nemirovski
(2000); Yang (2004); Tsybakov (2003); Leung and Barron (2006) for early representative
work (the reader is referred to Cesa-Bianchi and Lugosi 2006 for interesting results and
references from an individual sequence perspective). While there are many different ways
that one can envision to combine the advantages of the candidate procedures, the combining
methods can be put into two main categories: those intended for combining for adaptation,
which aim at combining the procedures to perform adaptively as well as the best candidate
procedure no matter what the truth is, and those for combining for improvement, which
aim at improving over the performance of all the candidate procedures in certain ways.
Whatever the goal is, for the purpose of estimating the regression function, we expect to
pay a price: the risk of the combined procedure is typically larger than the target risk. The
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difference between the two risks (or a proper upper bound on the difference) is henceforth
called risk regret of the combining method.

The research attention is often focused on one but the main step in the process of
combining procedures, namely, aggregation of estimates, wherein one has already obtained
estimates by all the candidate procedures (based on initial data, most likely from data
splitting or previous studies; some exceptions are in e.g., Leung and Barron 2006; Dalalyan
and Salmon 2012), and is trying to aggregate these estimates into a single one based on
data that are independent of the initial data. The performance of the aggregated estimator
(conditional on the initial estimates) plays the most important role in determining the total
risk of the whole combined procedure, although proportion of the initial data and the later
one certainly also influences the overall performance. In this work, we will mainly focus on
the aggregation step.

It is now well-understood that given a collection of procedures, one only needs to pay a
relatively small price for aggregation for adaptation (Yang 2000b; Catoni 2004; Tsybakov
2003). In contrast, aggregation for improvement under a convex constraint or `1-constraint
on coefficients is associated with a higher risk regret (as shown in Juditsky and Nemirovski
2000; Nemirovski 2000; Yang 2004; Tsybakov 2003). Several other directions of aggregation
for improvement, defined via proper constraints imposed on the `0-norm alone or in con-
junction with the `1-norm of the linear coefficients, have also been studied, including linear
aggregation (no constraint, Tsybakov 2003), aggregation to achieve the best performance
of a linear combination of no more than a given number of initial estimates (Bunea et al.
2007) and also under an additional constraint on the `1-norm of these coefficients (Lounici
2007). Interestingly, combining for adaptation plays a fundamental role in combining for
improvement: it serves as an effective tool in constructing multi-directional (or universal)
aggregation methods, that is methods which simultaneously achieve the best performance
in multiple specific directions of aggregation for improvement. This strategy was taken in,
e.g., Yang (2004), Tsybakov (2003), Bunea et al. (2007), Rigollet and Tsybakov (2010), and
Dalalyan and Tsybakov (2012b).

The goal of our work on aggregation is to propose aggregation methods that achieve the
performance (in risk with/without a multiplying factor), up to a multiple of the optimal risk
regret as defined in Tsybakov (2003), of the best linear combination of the initial estimates
under the constraint that the `q-norm (0 ≤ q ≤ 1) of the linear coefficients is no larger than
some positive number tn (henceforth the `q-constraint). We call this type of aggregation
`q-aggregation. It turns out that the optimal rate is simply determined by an effective model
size m∗, which roughly means that only m∗ terms are really needed for effective estimation.
We strive to achieve the optimal `q-aggregation simultaneously for all q (0 ≤ q ≤ 1) and tn
(tn > 0).

It is useful to note that the `q-aggregation provides a general framework: our proposed
strategies enable one to reach the optimal bounds automatically and simultaneously for the
major state-of-art aggregation strategies and more, as will be seen.

1.3 Plan of the Paper

The paper is organized as follows. In Section 2, we introduce notation and some prelimi-
naries of the estimators and aggregation algorithms that will be used in our strategies for

1678



Adaptive Optimal Estimation over Sparse `q-Hulls

learning. In Section 3, we derive optimal rates of `q-aggregation and show that our methods
achieve multi-directional aggregation. In Section 4, we derive the minimax rate for linear
regression with `q-constrained coefficients. A discussion is then reported in Section 5. Fi-
nally, we report in Appendix A the derivation of metric entropy and approximation error
bounds for `Mn

q,tn-hulls, while Appendix B provides an insight from the sparse approximation
bound based on classical model selection theory. The proofs of the results in Sections 3 and
4 are then provided in the Appendix C.

2. Preliminaries

Consider the regression problem where a dictionary of Mn prediction functions (Mn ≥ 2
unless stated otherwise) are given as initial estimates of the unknown true regression func-
tion. The goal is to construct a linearly combined estimator using these estimates to pursue
the performance of the best (possibly constrained) linear combinations. A learning strat-
egy with two building blocks will be considered. First, we construct candidate estimators
from subsets of the given estimates. Second, we aggregate the candidate estimators using
aggregation algorithms to obtain the final estimator.

2.1 Notation and Definition

Let (X1, Y1), . . . , (Xn, Yn) be n (n ≥ 2) i.i.d. observations where Xi = (Xi,1, . . . , Xi,d),
1 ≤ i ≤ n, take values in X with a probability distribution PX . We assume the regression
model

Yi = f0(Xi) + εi, i = 1, . . . n, (1)

where f0 is the unknown true regression function to be estimated. The random errors εi,
1 ≤ i ≤ n, are independent of each other and of Xi, and have the probability density
function h(x) (with respect to the Lebesgue measure or a general measure µ) such that
E(εi) = 0 and E(ε2i ) = σ2 < ∞. The quality of estimating f0 by using the estimator f̂ is
measured by the squared L2 risk (with respect to PX)

R(f̂ ; f0;n) = E‖f̂ − f0‖2 = E

(∫
(f̂ − f0)2dPX

)
,

where, as in the rest of the paper, ‖ · ‖ denotes the L2-norm with respect to the distribution
of PX .

Let Fn = {f1, f2, . . . , fMn} be a dictionary of Mn initial estimates of f0. In this pa-
per, unless stated otherwise, ‖fj‖ ≤ 1, 1 ≤ j ≤ Mn. The condition is satisfied, pos-
sibly after a scaling, if the fj ’s are uniformly bounded between known constants, and
it may require additional assumptions on the distribution of PX to check its validity
for a general case. Consider the constrained linear combinations of the estimates F ={
fθ =

∑Mn
j=1 θjfj : θ ∈ Θn, fj ∈ Fn

}
, where Θn is a subset of RMn . Let

d2(f0;F) = inf
fθ∈F

‖fθ − f0‖2

denote the smallest approximation error to f0 over a function class F .
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The problem of constructing an estimator f̂ that pursues the best performance in F
is called aggregation of estimates. We consider aggregation of estimates with sparsity con-
straints on θ. For any θ = (θ1, . . . , θMn)′, define the `0-norm and the `q-norm (0 < q ≤ 1)
by

‖θ‖0 =

Mn∑
j=1

I(θj 6= 0), and ‖θ‖q =

Mn∑
j=1

|θj |q
1/q

,

where I(·) is the indicator function. Note that for 0 < q < 1, ‖ · ‖q is not a norm but a
quasinorm, and for q = 0, ‖ · ‖0 is not even a quasinorm. However, we choose to refer them
as norms for ease of exposition. For any 0 ≤ q ≤ 1 and tn > 0, define the `q-ball

Bq(tn;Mn) =
{
θ = (θ1, θ2, . . . , θMn)′ : ‖θ‖q ≤ tn

}
.

When q = 0, tn is understood to be an integer between 1 and Mn, and sometimes denoted
by kn to be distinguished from tn when q > 0. Define the `Mn

q,tn-hull of Fn to be the class of
linear combinations of functions in Fn with the `q-constraint

Fq(tn) = Fq(tn;Mn;Fn) =

fθ =

Mn∑
j=1

θjfj : θ ∈ Bq(tn;Mn), fj ∈ Fn

 , 0 ≤ q ≤ 1, tn > 0.

One of our goals is to propose an estimator f̂Fn =
∑Mn

j=1 θ̂jfj such that its risk is upper
bounded by a multiple of the smallest risk over the class Fq(tn) plus a small risk regret
term

R(f̂Fn ; f0;n) ≤ C inf
fθ∈Fq(tn)

‖fθ − f0‖2 +REGq(tn;Mn),

where C is a constant that does not depend on f0, n, and Mn, or C = 1 for some estimators.
In various situations (e.g., adaptive estimation with data splitting as in Yang 2000a), the
initial estimates can be made such that inffθ∈Fq(tn) ‖fθ−f0‖

2 approaches zero as n→∞ in
a proper manner. Thus, results with C > 1 (especially under heavy tailed random errors)
are also of interest.

2.2 Two Starting Estimators

A key step of our strategy is the construction of candidate estimators using subsets of the
initial estimates. The T- and AC-estimators, described below, were chosen because of the
relatively mild assumptions for them to work with respect to the squared L2 risk (each of
them gives cleaner results in different aspects). Under the data generating model (1) and
i.i.d. observations (X1, Y1), . . . , (Xn, Yn), suppose we are given m terms {g1, . . . , gm} (i.e.,
m functions of the original explanatory variables) as regressors.

When working on the minimax upper bounds in random design settings, we always make
the following assumption on the true regression function.

Assumption BD: There exists a known constant L > 0 such that ‖f0‖∞ ≤ L <∞.
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To our knowledge, Assumption BD is typically assumed in the literature of aggregation
of estimates. A recent work of Birgé (2014) successfully removes this limitation in a density
estimation framework.

(T-estimator) Birgé (2006, 2004) constructed the T-estimator and derived its L2 risk
bounds under the Gaussian regression setting. The following proposition is a simple conse-
quence of Theorem 3 of Birgé (2004). Suppose
T1. The error distribution h(·) is normal;
T2. 0 < σ <∞ is known.

Proposition 1 Suppose Assumptions BD and T1, T2 hold. We can construct a T-
estimator f̂ (T ) such that

E‖f̂ (T ) − f0‖2 ≤ CL,σ

 inf
ϑ∈Rm

∥∥∥∥∥∥
m∑
j=1

ϑjgj − f0

∥∥∥∥∥∥
2

+
m

n

 ,

where CL,σ is a constant depending only on L and σ.

(AC-estimator) For our purpose, consider the class of linear combinations with the
`1-constraint Gs = {g =

∑m
j=1 ϑjgj : ‖ϑ‖1 ≤ s} for some s > 0. Audibert and Catoni

proposed a sophisticated AC-estimator f̂
(AC)
s (Audibert and Catoni 2010, page 25). The

following proposition is a direct result from Theorem 4.1 in Audibert and Catoni (2010)
under the following conditions.
AC1. There exists a constant H > 0 such that supg,g′∈Gs,x∈X |g(x)− g′(x)| = H <∞.
AC2. There exists a constant σ′ > 0 such that supx∈X E

(
(Y − g∗s(X))2|X = x

)
≤ (σ′)2 <

∞, where g∗s = infg∈Gs ‖g − f0‖
2.

Proposition 2 Suppose Assumptions AC1 and AC2 hold. For any s > 0, we can construct

an AC-estimator f̂
(AC)
s (that may depend on H and σ′) such that

E‖f̂ (AC)
s − f0‖2 ≤ inf

g∈Gs
‖g − f0‖2 + c

(
2σ′ +H

)2 m
n
,

where c is a pure constant.

The risk bound for the AC-estimator improves over that for the T-estimator in terms of i)
reducing the multiplying constant in front of the optimal approximation error to the best
possible; ii) relaxing the normality assumption on the errors. But this is achieved at the
expense of restricting the `1-norm of the linear coefficients in approximation. Note also that

under the assumption ‖f0‖∞ ≤ L, we can always enforce the estimators f̂ (T ) and f̂
(AC)
s to

be in the range of [−L,L] with the same risk bounds in the propositions.
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2.3 Two Aggregation Algorithms for Adaptation

Suppose N estimates f̌1, . . . , f̌N are obtained from N candidate procedures based on some
initial data. Two aggregation algorithms, the ARM algorithm (Adaptive Regression by
Mixing, Yang 2001) and Catoni’s algorithm (Catoni 2004, 1999), can be used to construct
the final estimator f̂ by aggregating the candidate estimates f̌1, . . . , f̌N based on n additional
i.i.d. observations (Xi, Yi)

n
i=1. The ARM algorithm requires knowing the form of the error

distribution but it allows heavy tail cases. In contrast, Catoni’s algorithm does not assume
any functional form of the error distribution, but demands exponential decay of the tail
probability.

(The ARM algorithm) Suppose
Y1. There exist two known constants σ and σ such that 0 < σ ≤ σ ≤ σ <∞;
Y2. The error density has the form h(x) = h0(x/σ)/σ, where h0 is known and has mean
zero, variance 1, and a finite fourth moment. In addition, for each pair of constants R0 > 0
and 0 < S0 < 1, there exists a constant BS0,R0 (depending on S0 and R0) such that for all
|R| < R0 and S0 ≤ S ≤ S−10 ,∫

h0(x) log
h0(x)

S−1h0((x−R)/S)
dx ≤ BS0,R0((1− S)2 +R2).

The condition Y2 can be shown to hold for Gaussian, Laplace and Student’s t (with
at least 3 degrees of freedom) distributions. We can construct an estimator f̂Y which
aggregates f̌1, . . . , f̌N by the ARM algorithm with prior probabilities πk (

∑N
k=1 πk = 1) on

the procedures.

Proposition 3 (Yang 2004, Proposition 1) Suppose Assumptions BD and Y1, Y2 hold,
and ‖f̌k‖∞ ≤ L < ∞ with probability 1, 1 ≤ k ≤ N . The estimator f̂Y by the ARM
algorithm has the risk

R(f̂Y ; f0;n) ≤ CY inf
1≤k≤N

(
‖f̌k − f0‖2 +

σ2

n

(
1 + log

1

πk

))
,

where CY is a constant that depends on σ, σ, L, and also h (through the fourth moment of
the random error and BS0,R0 with S0 = σ/σ,R0 = L).

(Catoni’s algorithm) Suppose for some positive constant α < ∞, there exist known
constants Uα, Vα <∞ such that
C1. E(exp(α|εi|)) ≤ Uα;

C2.
E(ε2i exp(α|εi|))
E(exp(α|εi|)) ≤ Vα.

Let λC = min{ α2L , (Uα(17L2 + 3.4Vα))−1} and πk be the prior for f̌k, 1 ≤ k ≤ N .

Proposition 4 (Catoni 2004, Theorem 3.6.1) Suppose Assumptions BD and C1, C2 hold,
and ‖f̌k‖∞ ≤ L <∞, 1 ≤ k ≤ N . The estimator f̂C that aggregates f̌1, . . . , f̌N by Catoni’s
algorithm has the risk

R(f̂C ; f0;n) ≤ inf
1≤k≤N

(
‖f̌k − f0‖2 +

2

nλC
log

1

πk

)
.
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Juditsky et al. (2008) (p. 2200) give a similar result under simplified conditions.

3. `q-Aggregation of Estimates

Consider the setup from Section 2.1. We focus on the problem of aggregating the estimates
in Fn to pursue the best performance in Fq(tn) for 0 ≤ q ≤ 1, tn > 0, which we call
`q-aggregation of estimates. To be more precise, when needed, it will be called `q(tn)-
aggregation, and for the special case of q = 0, we call it `0(kn)-aggregation for 1 ≤ kn ≤Mn.

3.1 The Strategy

For each 1 ≤ m ≤ Mn ∧ n and each subset model Jm ⊂ {1, 2, . . . ,Mn} of size m, define
FJm = {

∑
j∈Jm θjfj : θj ∈ R, j ∈ Jm}. Let FLJm,s = {fθ =

∑
j∈Jm θjfj : ‖θ‖1 ≤ s, ‖fθ‖∞ ≤

L} (s = 1, 2, ...) be the class of `1-constrained linear combinations in Fn with a sup-norm
bound on fθ. Our strategy is as follows.

Step I. Divide the data into two parts: Z(1) = (Xi, Yi)
n1
i=1 and Z(2) = (Xi, Yi)

n
i=n1+1.

Step II. Based on data Z(1), obtain a T-estimator for each function class FJm , or
obtain an AC-estimator for each function class FLJm,s with s ∈ N.

Step III. Based on data Z(2), combine all estimators obtained in step II and the
null model (f ≡ 0) using Catoni’s or the ARM algorithm. Let p0 be a small pos-
itive number in (0, 1). In all, we have to combine

∑Mn∧n
m=1

(
Mn

m

)
T-estimators with

the weight πJm = (1 − p0)
(

(Mn ∧ n)
(
Mn

m

))−1
and the null model with the weight

π0 = p0, or combine countably many AC-estimators with the weight πJm,s = (1 −

p0)
(

(1 + s)2(Mn ∧ n)
(
Mn

m

))−1
and the null model with the weight π0 = p0. (Note

that sub-probabilities on the models do not affect the validity of the risk bounds to
be given.)

For simplicity of exposition, from now on and when relevant, we assume n is even and
choose n1 = n/2 in our strategy. However, similar results hold for other values of n and n1.

We use the expression “E-G strategy” for ease of presentation where E = T or AC
represents the estimators constructed in Step II, and G = C or Y stands for the aggregation
algorithm used in Step III. By our construction, Assumption AC1 is automatically satisfied:
for each Jm, HJm,s = supf,f ′∈FLJm,s,x∈X

|f(x) − f ′(x)| ≤ 2L. Assumption AC2 is met with

(σ′)2 = σ2 + 4L2.
We assume the following conditions are satisfied for each strategy, respectively.

AT−C and AT−Y : BD, T1, T2.

AAC−C : BD, C1, C2.

AAC−Y : BD, Y1, Y2.

Given that T1, T2 are stronger than C1, C2 and Y1, Y2, it is enough to require their
satisfaction in AT−C and AT−Y.
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3.2 Minimax Rates for `q-Aggregation of Estimates

Consider general Mn, tn and 0 < q ≤ 1. The ideal model size (in order) that balances the
approximation error and the estimation error under the `q-constraint over 1 ≤ m ≤Mn ∧n
is

m∗ = m∗(q, tn) =
⌈
2
(
nt2nτ

)q/2⌉ ∧Mn ∧ n,

where τ = σ−2 is the precision parameter. The effective model size (in order) that yields
the optimal rate of convergence, as will be shown, is

m∗ = m∗(q, tn) =


m∗ if m∗ = Mn ∧ n,⌈

m∗

(1+log Mn
m∗ )

q/2

⌉
otherwise.

See Appendix B for an explanation on why m∗ is expected to yield the minimax rate of
convergence. Let FLq (tn) = Fq(tn) ∩ {f : ‖f‖∞ ≤ L} for 0 ≤ q ≤ 1, and define

mF∗ =


m∗(q, tn) for case 1: F = Fq(tn), 0 < q ≤ 1,
kn ∧ n for case 2: F = F0(kn),
m∗(q, tn) ∧ kn for case 3: F = Fq(tn) ∩ F0(kn), 0 < q ≤ 1.

Note that in the third case, we are simply taking the smaller one between the effective
model sizes from the soft sparsity constraint (`q-constraint with 0 < q ≤ 1) and the hard
sparsity one (`0-constraint), and this smaller size determines the final sparsity. Define

REG(mF∗ ) = σ2

1 ∧
mF∗ ·

(
1 + log

(
Mn

mF∗

))
n

 ,

which will be shown to be typically the optimal rate of the risk regret for `q-aggregation.
For case 3, we intend to achieve the best performance of linear combinations when both

`0- and `q-constraints are imposed on the linear coefficients, which results in `q-aggregation
using just a subset of the initial estimates and is called `0 ∩ `q-aggregation. For the special
case of q = 1, this `0 ∩ `1-aggregation is studied in Yang (2004) (page 36) for multi-
directional aggregation and in Lounici (2007) (called D-convex aggregation) more formally,
giving also lower bounds. Our results below not only handle q < 1 but also close a gap of
a logarithmic factor in upper and lower bounds in Lounici (2007).

For ease of presentation, we may use the same symbol (e.g., C) to denote possibly
different constants of the same nature.

Theorem 5 Suppose AE−G holds for the E-G strategy respectively. Our estimator f̂Fn
simultaneously has the following properties.

(i) For T- strategies, for F = Fq(tn) with 0 < q ≤ 1, or F = F0(kn), or F = Fq(tn) ∩
F0(kn) with 0 < q ≤ 1, we have

R(f̂Fn ; f0;n) ≤
[
C0d

2(f0;F) + C1REG(mF∗ )
]
∧
[
C0

(
‖f0‖2 ∨

C2σ
2

n

)]
.
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(ii) For AC- strategies, for F = Fq(tn) with 0 < q ≤ 1, or F = F0(kn), or F = Fq(tn)∩
F0(kn) with 0 < q ≤ 1, we have

R(f̂Fn ; f0;n) ≤ C1REG(mF∗ ) +

C0


d2(f0;FLq (tn)) + C2σ2 log(1+tn)

n for case 1,

infs≥1

(
d2(f0;F1(s) ∩ FL0 (kn)) + C2σ2 log(1+s)

n

)
for case 2,

d2(f0;FLq (tn) ∩ FL0 (kn)) + C2σ2 log(1+tn)
n for case 3.

Also, R(f̂Fn ; f0;n) ≤ C0

(
‖f0‖2 ∨ C2σ2

n

)
.

For all these cases, C0, C1, and C2 do not depend on n, f0, tn, q, kn,Mn. These constants
may depend on L, p0, σ

2 or σ2/σ2, α, Uα, Vα when relevant. An exception is that C0 = 1
for the AC-C strategy.

Remark 6 For case 2, the boundedness assumption of ‖fj‖ ≤ 1, 1 ≤ j ≤ Mn is not
necessary.

Remark 7 If the true function f0 happens to have a small L2-norm such that ‖f0‖2 ∨ σ2

n
is of a smaller order than REG(mF∗ ), then its inclusion in the risk bounds may improve the
rate of convergence.

Discussion of the bounds. Note that an extra term of log(1 + tn)/n is present in
the upper bounds of the estimator obtained by AC- strategies. For case 1, let us focus
on the high-dimensional situation of Mn between order n and order eO(n). When tn is no
larger (in order) than σn1/q−1/2, the extra price log(1 + tn)/n does not damage the rate

of convergence if log(1+tn)
tqn

is no larger in order than nq/2

σq (logMn)1−q/2, which does hold as

n → ∞ when q is fixed. When tn is at least of order σn1/q−1/2, REG(mF∗ ) is of order 1,
and from Proposition 15 in the Appendix, it can be seen that under the conditions of the
theorem, the risks of the AC- strategies are also of order 1. For case 2, the extra term in
Theorem 5 is harmless in rate if for some s ≤ ecn ∧ eckn(1+log(Mn/kn)) for some constant
c > 0, the `1-norm constraint does not enlarge the approximation error order.

Comparison to the existing literature. When q = 1, our theorem covers some
important previous aggregation results. With tn = 1, Juditsky and Nemirovski (2000)
obtained the optimal result for large Mn; Yang (2004) gave upper bounds for all Mn, but
the rate is slightly sub-optimal (by a logarithmic factor) when Mn = O(

√
n) and with

a factor larger than 1 in front of the approximation error; Tsybakov (2003) derived the
optimal rates for both large and small Mn (and also for linear aggregation) but under the
assumption that the joint distribution of {fj(X), j = 1, ...,Mn} is known. For the case
Mn = O(

√
n), Audibert and Catoni (2010) have improved over Yang (2004) and Tsybakov

(2003) by giving an optimal risk bound. Thus in the special case of q = 1, our result
overcomes the aforementioned shortcomings by integrating the previous understandings
together, with the additional generality of tn. In the direction of adaptive aggregation,
Dalalyan and Tsybakov (2012b) give risk bounds, up to a logarithmic factor, suitable for
q = 0, 1. Our result here closes the logarithmic factor gap and also handles q between 0 and
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1. Note also that Rigollet and Tsybakov (2010) obtain adaptive optimal `q-aggregation for
q = 0, 1 under a fixed design Gaussian regression setting.

Next, we establish lower bounds for the aggregation problems that match (up to a
multiplicative constant) the upper bounds above, which then implies that the estimators
by our strategies are indeed minimax adaptive for `q-aggregation of estimates (with respect
to both q and the `q-radius). Let f1, . . . , fMn be an orthonormal basis with respect to the
distribution of X. Since the earlier upper bounds are obtained under the assumption that
the true regression function f0 satisfies ‖f0‖∞ ≤ L for some known (possibly large) constant
L > 0, for our lower bound result below, this assumption will also be considered. For the
last result in part (iii) below under the sup-norm constraint on f0, the functions f1, . . . , fMn

are specially constructed on [0, 1] and PX is the uniform distribution on [0, 1]. See the proof
for details.

In order to give minimax lower bounds without any norm assumption on f0, let m̃F∗ be
defined the same as mF∗ except that the ceiling of n is removed. Define

REG(m̃F∗ ) =
σ2m̃F∗ ·

(
1 + log

(
Mn

m̃F∗

))
n

∧
{
t2n for cases 1 and 3,
∞ for case 2,

REG(mF∗ ) = REG(mF∗ ) ∧
{
t2n for cases 1 and 3,
∞ for case 2.

Theorem 8 Suppose the noise ε follows a normal distribution with mean 0 and variance
σ2 > 0.

(i) For any aggregated estimator f̂Fn based on an orthonormal dictionary Fn = {f1, . . . , fMn},
for F = Fq(tn), or F = F0(kn), or F = Fq(tn)∩F0(kn) with 0 < q ≤ 1, one can find
a regression function f0 (that may depend on F) such that

R(f̂Fn ; f0;n)− d2(f0;F) ≥ C ·REG(m̃F∗ ),

where C may depend on q (and only q) for cases 1 and 3 and is an absolute constant
for case 2.

(ii) Under the additional assumption that ‖f0‖ ≤ L for a known L > 0, the above lower
bound becomes C

′ · REG(mF∗ ) for the three cases, where C
′

may depend on q and L
for cases 1 and 3 and on L for case 2.

(iii) With the additional knowledge ‖f0‖∞ ≤ L for a known L > 0, the lower bound C
′′ ·

REG(mF∗ ) also holds for the following situations: 1) for F = Fq(tn) with 0 < q ≤ 1,
if supfθ∈Fq(tn) ‖fθ‖∞ ≤ L; 2) for F = F0(kn), if sup1≤j≤Mn

‖fj‖∞ ≤ L < ∞ and
k2n
n (1 + log Mn

kn
) are bounded above; 3) for F = F0(kn), if Mn/

(
1 + log Mn

kn

)
≤ bn for

some constant b > 0 and the orthonormal basis is specially chosen.

Remark 9 Consider the interesting high-dimensional case of Mn between order n and order
eO(n). Then REG(mF∗ ) is of the same order as REG(mF∗ ) unless t2n is of a smaller order
than logMn/n. Thus, except this situation of small tn, the lower bounds above match the
orders of the upper bounds in the previous theorem.
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For satisfaction of supfθ∈Fq(tn) ‖fθ‖∞ ≤ L, consider uniformly bounded functions fj ,
then for 0 < q ≤ 1,

‖
Mn∑
j=1

θjfj‖∞ ≤
Mn∑
j=1

|θj |‖fj‖∞ ≤

(
sup

1≤j≤Mn

‖fj‖∞

)
‖θ‖1 ≤

(
sup

1≤j≤Mn

‖fj‖∞

)
‖θ‖q.

Thus, under the condition that
(
sup1≤j≤Mn

‖fj‖∞
)
tn is upper bounded, supfθ∈Fq(tn) ‖fθ‖∞ ≤

L is met.
The lower bounds given in part (iii) of the theorem for the three cases of `q-aggregation

of estimates are of the same order of the upper bounds in the previous theorem, respec-
tively, unless tn is too small. Hence, under the given conditions, the minimax rates for
`q-aggregation are identified according to the definition of the minimax rate of aggregation
in Tsybakov (2003). When no restriction is imposed on the norm of f0, the lower bounds
can certainly approach infinity (e.g., when tn is really large). That is why REG(m̃F∗ ) is
introduced. The same can be said for later lower bounds.

For the new case 0 < q < 1, the `q-constraint imposes a type of soft-sparsity more
stringent than q = 1: even more coefficients in the linear expression are pretty much
negligible. For the discussion below, assume m∗ < n. When the radius tn increases or
q → 1, m∗ increases given that the `q-ball enlarges. When m∗ = m∗ = Mn < n, the `q-
constraint is not tight enough to impose sparsity: `q-aggregation is then simply equivalent
to linear aggregation and the risk regret term corresponds to the estimation price of the full
model, Mnσ

2/n. In contrast, when 1 < m∗ < Mn ∧ n, the rate for `q-aggregation is

σ2−qtqn

 log
(

1 + Mn

(nτt2n)
q/2

)
n

1−q/2

.

When m∗ ≤ (1 + log(Mn/m
∗))q/2 or equivalently m∗ = 1, the `q-constraint restricts the

search space of the optimization problem so much that it suffices to consider at most one
fj and the null model may provide a better risk.

Now let us explain that our `q-aggregation includes the commonly studied aggregation
problems in the literature. First, when q = 1, we have the well-known convex or `1-
aggregation (but now with the `1-norm bound allowed to be general). Second, when q = 0,
with kn = Mn ≤ n, we have the linear aggregation. For other kn < Mn ∧ n, we have the
aggregation to achieve the best linear performance of only kn initial estimates. The case
q = 0 and kn = 1 has a special implication. Observe that from Theorem 5, we deduce that
for both the T- strategies and AC- strategies, under the assumption supj ‖fj‖∞ ≤ L, our
estimator satisfies

R(f̂Fn ; f0;n) ≤ C0 inf
1≤j≤Mn

‖fj − f0‖2 + C1σ
2

(
1 ∧ 1 + logMn

n

)
,

where C0 = 1 for the AC-C strategy. Together with the lower bound of the order

σ2
(

1 ∧ 1+logMn

n

)
on the risk regret of aggregation for adaptation given in Tsybakov (2003),

we conclude that `0(1)-aggregation directly implies the aggregation for adaptation (model
selection aggregation). As mentioned earlier, `0(kn) ∩ `q(tn)-aggregation pursues the best
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performance of the linear combination of at most kn initial estimates with coefficients sat-
isfying the `q-constraint, which includes the D-convex aggregation as a special case (with
q = 1).

Some additional interesting results on combining procedures are in Audibert (2007,
2009); Birgé (2006); Bunea and Nobel (2008); Catoni (2012); Dalalyan and Tsybakov (2007,
2012a); Giraud (2008); Goldenshluger (2009); Györfi et al. (2002); Györfi and Ottucsák
(2007); Wegkamp (2003); Yang (2001).

4. Linear Regression with `q-Constrained Coefficients under Random
Design

Let’s consider the linear regression model with Mn predictors X1, . . . , XMn . Suppose the
data are drawn i.i.d. from the following model

Y = f0(X) + ε =

Mn∑
j=1

θjXj + ε. (2)

As previously defined, for a function f(x1, . . . , xMn) : X → R, the L2-norm ‖f‖ is the
square root of Ef2(X1, . . . , XMn), where the expectation is taken with respect to PX , the
distribution of X. Denote the `Mn

q,tn-hull in this context by

Fq(tn;Mn) =

fθ =

Mn∑
j=1

θjxj : ‖θ‖q ≤ tn

 , 0 ≤ q ≤ 1, tn > 0.

For linear regression, we assume coefficients of the true regression function f0 have a
sparse `q-representation (0 < q ≤ 1) or `0-representation or both, i.e., f0 ∈ F where
F = Fq(tn;Mn), F0(kn;Mn) or Fq(tn;Mn)

⋂
F0(kn;Mn).

Assumptions BD and AE−G are still relevant in this section. As in the previous section,
for AC-estimators, we consider `1- and sup-norm constraints.

For each 1 ≤ m ≤Mn∧n and each subset Jm of sizem, let GJm = {
∑

j∈Jm θjxj : θ ∈ Rm}
and GLJm,s = {

∑
j∈Jm θjxj : ‖θ‖1 ≤ s, ‖fθ‖∞ ≤ L}. We introduce now the adaptive estimator

f̂A, built with the same strategy used to construct f̂Fn except that we now consider GJm
and GLJm,s instead of FJm and FLJm,s.

4.1 Upper Bounds

We give upper bounds for the risk of our estimator assuming f0 ∈ FLq (tn;Mn), FL0 (kn;Mn),

or FLq (tn;Mn) ∩ FL0 (kn;Mn), where FL = {f : f ∈ F , ‖f‖∞ ≤ L} for a positive constant
L. Let αn = supf∈FL0 (kn;Mn)

inf{‖θ‖1 : fθ = f} be the maximum smallest `1-norm needed

to represent the functions in FL0 (kn;Mn).
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Recall m∗ =
⌈
2
(
nt2n/σ

2
)q/2⌉ ∧ Mn ∧ n and m∗ equals m∗ when m∗ = Mn ∧ n and⌈

m∗

(1+log Mn
m∗ )

q/2

⌉
otherwise. For ease of presentation, define ΨF as follows:

ΨF
L
q (tn;Mn) =



σ2 if m∗ = n,
σ2Mn
n if m∗ = Mn < n,

σ2−qtqn

(
1+log Mn

(nt2nτ)
q/2

n

)1−q/2

∧ σ2 if 1 < m∗ < Mn ∧ n,(
t2n ∨ σ2

n

)
∧ σ2 if m∗ = 1,

ΨF
L
0 (kn;Mn) = σ2

1 ∧
kn

(
1 + log Mn

kn

)
n

 ,

ΨF
L
q (tn;Mn)∩FL0 (kn;Mn) = ΨF

L
q (tn;Mn) ∧ΨF

L
0 (kn;Mn).

In addition, for lower bound results, let ΨF
L
q (tn;Mn) (0 ≤ q ≤ 1) and ΨF

L
q (tn;Mn)∩FL0 (kn;Mn)

(0 < q ≤ 1) be the same as ΨF
L
q (tn;Mn) and ΨF

L
q (tn;Mn)∩FL0 (kn;Mn), respectively, except that

when 0 < q ≤ 1 and m∗ = 1, ΨF
L
q (tn;Mn) takes the value σ2 ∧ t2n instead of σ2 ∧

(
t2n ∨ σ2

n

)
and ΨF

L
q (tn;Mn)∩FL0 (kn;Mn) is modified the same way.

Corollary 10 Suppose AE−G holds for the E-G strategy respectively, and sup1≤j≤Mn
‖Xj‖∞ ≤

1. The estimator f̂A simultaneously has the following properties.

(i) For T- strategies, for F = FLq (tn;Mn) with 0 < q ≤ 1, or F = FL0 (kn;Mn), or

F = FLq (tn;Mn) ∩ FL0 (kn;Mn) with 0 < q ≤ 1, we have

sup
f0∈F

R(f̂A; f0;n) ≤ C1Ψ
F ,

where the constant C1 does not depend on n.

(ii) For AC- strategies, for F = FLq (tn;Mn) with 0 < q ≤ 1, or F = FL0 (kn;Mn), or

F = FLq (tn;Mn) ∩ FL0 (kn;Mn) with 0 < q ≤ 1, we have

sup
f0∈F

R(f̂A; f0;n) ≤ C1Ψ
F + C2

{
σ2 log(1+αn)

n for F = FL0 (kn;Mn),
σ2 log(1+tn)

n otherwise,

where the constants C1 and C2 do not depend on n.

We need to point out that closely related work has been done under a fixed design
setting. While determining the minimax rate of convergence, Raskutti et al. (2012) derive
optimal estimators of a function (only at the design points) in the `q-hulls for 0 ≤ q ≤ 1,
but the estimators require knowledge of q and tn. Negahban et al. (2012), when applying
their general M -estimation methodology to the same fixed design regression setting, give
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an optimal estimator of the true coefficient vector (as opposed to the regression function)
assumed in any `q-ball for 0 ≤ q ≤ 1 under the squared error loss. It requires that the
predictors satisfy a restricted eigenvalue (RE) condition. Raskutti et al. (2010) show that
under broad Gaussian random designs, the RE condition holds with exponentially small
exception probability. Therefore, the fixed design performance bounds in Negahban et al.
(2012), as well as those in Raskutti et al. (2012) (which do not need the RE condition), can
be used to draw some conclusions for Gaussian random designs or more general random
design in the latter case. Our risk upper bounds (directly under the global squared L2 loss)
do not require the Gaussian assumption on the covariates nor the RE condition. In addition,
differently from the aforementioned two papers, our performance bounds hold without any
restriction on the relationship between M and n.

4.2 Lower Bounds

The lower bounds used in the previous section for deriving the minimax rate of aggregation
are not suitable for obtaining the minimax rate of convergence for the current regression
estimation problem. We make the following near orthogonality assumption on sparse sub-
collections of the predictors. Such an assumption, similar to the sparse Riesz condition
(SRC) (Zhang 2010) under fixed design, is used only for lower bounds but not for upper
bounds.

Assumption SRC: For some γ > 0, there exist two positive constants a and a that do
not depend on n such that for every θ with ‖θ‖0 ≤ min(2γ,Mn) we have

a‖θ‖2 ≤ ‖fθ‖ ≤ a‖θ‖2.

Theorem 11 Suppose the noise ε follows a normal distribution with mean 0 and variance
0 < σ2 <∞.

(i) For 0 < q ≤ 1, under Assumption SRC with γ = m∗, we have

inf
f̂

sup
f0∈Fq(tn;Mn)

E‖f̂ − f0‖2 ≥ cΨF
L
q (tn;Mn).

(ii) Under Assumption SRC with γ = kn, we have

inf
f̂

sup
f0∈F0(kn;Mn)∩{fθ:‖θ‖2≤an}

E‖f̂−f0‖2 ≥ c
′


ΨF

L
0 (kn;Mn) if an ≥ c̃σ

√
kn
(
1+log Mn

kn

)
n ,

a2n if an < c̃σ

√
kn
(
1+log Mn

kn

)
n .

where c̃ is a pure constant.

(iii) For any 0 < q ≤ 1, under Assumption SRC with γ = kn ∧m∗, we have

inf
f̂

sup
f0∈F0(kn;Mn)∩Fq(tn;Mn)

E‖f̂ − f0‖2 ≥ c
′′
ΨF

L
q (tn;Mn)∩FL0 (kn;Mn).
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For all cases, inf f̂ is over all estimators and the constants c, c
′

and c
′′

may depend on

a, a, q and σ2.

For the second case (ii), the lower bound is stated in a more informative way because
the effect of the bound on ‖θ‖2 is clearly seen.

4.3 The Minimax Rates of Convergence

Combining the upper and lower bounds, we give a representative minimax rate result with
the roles of the key quantities n, Mn, q, and kn explicitly seen in the rate expressions. Below
“�” means of the same order when L, L0, q, tn = t, and σ2 ( σ2 is defined in Corollary 12
below) are held constant in the relevant expressions.

Corollary 12 Suppose the noise ε follows a normal distribution with mean 0 and variance
σ2, and there exists a known constant σ such that 0 < σ ≤ σ <∞. Also assume there exists
a known constant L0 > 0 such that sup1≤j≤Mn

‖Xj‖∞ ≤ L0 <∞.

(i) For 0 < q ≤ 1, under Assumption SRC with γ = m∗,

inf
f̂

sup
f0∈FLq (t;Mn)

E‖f̂ − f0‖2 � 1 ∧


1 if m∗= n,
Mn
n if m∗= Mn < n,(
1+log Mn

(nt2τ)q/2

n

)1−q/2

if 1 ≤ m∗ < Mn ∧ n.

(ii) If there exists a constant K0 > 0 such that
k2n

(
1+log Mn

kn

)
n ≤ K0, then under Assump-

tion SRC with γ = kn,

inf
f̂

sup
f0∈FL0 (kn;Mn)∩{fθ:‖θ‖∞≤L0}

E‖f̂ − f0‖2 � 1 ∧
kn

(
1 + log Mn

kn

)
n

.

(iii) If σ > 0 is actually known, then under the condition
k2n

(
1+log Mn

kn

)
n ≤ K0 and

Assumption SRC with γ = kn, we have

inf
f̂

sup
f0∈FL0 (kn;Mn)

E‖f̂ − f0‖2 � 1 ∧
kn

(
1 + log Mn

kn

)
n

,

and for any 0 < q ≤ 1, under Assumption SRC with γ = kn ∧m∗, we have

inf
f̂

sup
f0∈FL0 (kn;Mn)∩FLq (t;Mn)

E‖f̂ − f0‖2 � 1 ∧


kn
(
1+log Mn

kn

)
n if m∗ > kn,(

1+log Mn

(nt2τ)q/2

n

)1−q/2

if 1 ≤ m∗ ≤ kn.
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5. Conclusion

Sparse modeling by imposing an `q-constraint on the coefficients of a linear representation
of a target function to be learned has found consensus among academics and practitioners
in many application fields, among which, just to mention a few, compressed sensing, signal
and image compression, gene-expression, cryptography and recovery of loss data. The
`q-constraints promote sparsity essential for high-dimensional learning and they also are
often approximately satisfied on natural classes of signal and images, such as the bounded
variation model for images and the bump algebra model for spectra (see Donoho 2006).

In the direction of using the `1-constraints in constructing estimators, algorithmic and
theoretical results have been well developed. Both the Lasso and the Dantzig selector have
been shown to achieve the rate kn log(Mn)/n under different conditions on correlations
of predictors and the hard sparsity constraint on the linear coefficients (see van de Geer
and Bühlmann 2009 for a discussion about the sufficient conditions for deriving oracle
inequalities for the Lasso). Our upper bound results do not require any of those conditions,
but we do assume the sparse Riesz condition for deriving the lower bounds. Computational
issues aside, we have seen that the approach of model selection/combination with descriptive
complexity penalty has provided the most general adaptive estimators that automatically
exploit the sparsity characteristics of the target function in terms of linear approximations
subject to `q-constraints.

In our results, the effective model size m∗ (as defined in Section 3.2 and further explained
in Appendix B) plays a key role in determining the minimax rate of `q-aggregation for
0 < q ≤ 1. With the extended definition of the effective model size m∗ to be simply the
number of nonzero components kn when q = 0 and re-defining m∗ to be m∗ ∧ kn under
both `q- (0 < q ≤ 1) and `0-constraints, the minimax rate of aggregation is unified to be

the simple form 1 ∧
m∗
(
1+log

(
Mn
m∗

))
n .

The `q-aggregation includes as special cases the state-of-art aggregation problems, namely
aggregation for adaptation, convex and D-convex aggregations, linear aggregation, and sub-
set selection aggregation, and all of them can be defined (or essentially so) by considering
linear combinations under `0- and/or `1-constraints. Our investigation provides optimal
rates of aggregation, which not only agrees with (and, in some cases, improves over) pre-
vious findings for the mostly studied aggregation problems, but also holds for a much
larger set of linear combination classes. Indeed, we have seen that `0-aggregation includes
aggregation for adaptation over the initial estimates (or model selection aggregation) (`0(1)-
aggregation), linear aggregation when Mn ≤ n (`0(Mn)-aggregation), and aggregation to
achieve the best performance of linear combination of kn estimates in the dictionary for
1 < kn < Mn (sometimes called subset selection aggregation) (`0(kn)-aggregation). When
Mn is large, aggregating a subset of the dictionary under an `q-constraint for 0 < q ≤ 1
can be advantageous, which is just `0(kn) ∩ `q(tn)-aggregation. Since the optimal rates of
aggregation as defined in Tsybakov (2003), can differ substantially in different directions
of aggregation and typically one does not know which direction works the best for the un-
known regression function, multi-directional or universal aggregation is important so that
the final estimator is automatically conservative and aggressive, whichever is better (see
Yang 2004). Our aggregation strategy is indeed multi-directional , achieving the optimal
rates over all `q-aggregation for 0 ≤ q ≤ 1 and `0 ∩ `q-aggregation for all 0 < q ≤ 1.
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Our focus in this work is of a theoretical nature to provide an understanding of the fun-
damental theoretical issues about `q-aggregation or linear regression under `q-constraints.
Computational aspects will be studied in the future.
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Appendix A. Metric Entropy and Sparse Approximation Error of
`Mn
q,tn-Hulls

It is well-known that the metric entropy plays a fundamental role in determining minimax-
rates of convergence, as shown, e.g., in Birgé (1986); Yang and Barron (1999).

For each 1 ≤ m ≤ Mn and each subset Jm ⊂ {1, 2, . . . ,Mn} of size m, recall FJm =
{
∑

j∈Jm θjfj : θj ∈ R, j ∈ Jm}. Recall also

d2(f0;F) = inf
fθ∈F

‖fθ − f0‖2

is the smallest approximation error to f0 over a function class F .

Theorem 13 (Metric entropy and sparse approximation bound for `Mn
q,tn-hulls)

Suppose Fn = {f1, f2, ..., fMn} with ‖fj‖L2(ν) ≤ 1, 1 ≤ j ≤ Mn, where ν is a σ-finite
measure.

(i) For 0 < q ≤ 1, there exists a positive constant cq depending only on q, such that
for any 0 < ε < tn, Fq(tn) contains an ε-net {ej}Nεj=1 in the L2(ν) distance with ‖ej‖0 ≤
5(tnε

−1)2q/(2−q) + 1 for j = 1, 2, ..., Nε, where Nε satisfies

logNε ≤

 cq
(
tnε
−1) 2q

2−q log(1 +M
1
q
− 1

2
n t−1n ε) if ε > tnM

1
2
− 1
q

n ,

cqMn log(1 +M
1
2
− 1
q

n tnε
−1) if ε ≤ tnM

1
2
− 1
q

n .
(3)

(ii) For any 1 ≤ m ≤ Mn, 0 < q ≤ 1, tn > 0, there exists a subset Jm and fθm ∈ FJm
with ‖θm‖1 ≤ tn such that the sparse approximation error is upper bounded as follows

‖fθm − f0‖2 − d2(f0;Fq(tn)) ≤ 22/q−1t2nm
1−2/q. (4)
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Remark 14 The metric entropy estimate (3) is the best possible. Indeed, if fj, 1 ≤ j ≤
Mn, are orthonormal functions, then (3) is sharp in order for any ε satisfying that ε/tn
is bounded away from 1 (see Kühn 2001). Part (i) of Theorem 13 implies Lemma 3 of

Raskutti et al. (2012), with an improvement of a log(Mn) factor when ε ≈ tnM
1
2
− 1
q

n , and

an improvement from (tnε
−1)

2q
2−q log(Mn) to Mn log(1 + M

1
q
− 1

2
n tnε

−1) when ε < tnM
1
2
− 1
q

n .
These improvements are needed to derive the exact minimax rates for some of the possible
situations in terms of Mn, q, and tn.

A.1 Proof of Theorem 13

(i) Because {ej}Nεj=1 is an ε-net of Fq(tn) if and only if {t−1n ej}Nεj=1 is an ε/tn-net of Fq(1),
we only need to prove the theorem for the case tn = 1. Recall that for any positive integer
k, the unit ball of `Mn

q can be covered by 2k−1 balls of radius εk in `1 distance, where

εk ≤ c


1 1 ≤ k ≤ log2(2Mn)(

log2(1+
2Mn
k

)

k

) 1
q
−1

log2(2Mn) ≤ k ≤ 2Mn

2−
k

2Mn (2Mn)
1− 1

q k ≥ 2Mn

(c.f., Edmunds and Triebel 1998, page 98). Thus, there are 2k−1 functions gj , 1 ≤ j ≤ 2k−1,
such that

Fq(1) ⊂
2k−1⋃
j=1

(gj + F1(εk)).

Note that without loss of generality, gj can be assumed to belong to Fq(1) (because if not
we can replace it by a member in Fq(1) closest to it in `1 distance on the coefficient vectors
(which is a real distance), the effect of which is merely a change of the constant c above).
For any g ∈ F1(εk), g can be expressed as g =

∑Mn
i=1 cifi with

∑Mn
i=1 |ci| ≤ εk. Following the

idea of Maurey’s empirical method (see, e.g., Pisier 1981), we define a random function U ,
such that

P(U = sign(ci)εkfi) = |ci|/εk, P(U = 0) = 1−
Mn∑
i=1

|ci|/εk.

Then, we have ‖U‖2 ≤ εk a.s. and EU = g under the randomness just introduced. Let
U1, U2, ..., Um be i.i.d. copies of U , and let V = 1

m

∑m
i=1 Ui. We have

E‖V − g‖2 ≤
√

1

m
‖Var(U)‖2 ≤

√
1

m
E‖U‖22 ≤

εk√
m
.

In particular, there exists a realization of V , such that ‖V − g‖2 ≤ εk/
√
m. Note that V

can be expressed as εkm
−1(k1f1 + k2f2 + · · ·+ kMnfMn), where k1, k2, ..., kMn are integers,

and |k1| + |k2| + · · · + |kMn | ≤ m. Thus, the total number of different realizations of V is
upper bounded by

(
2Mn+m

m

)
. Furthermore, ‖V ‖0 ≤ m.

If log2(2Mn) ≤ k ≤ 2Mn, we choose m to be the largest integer such that
(
2Mn+m

m

)
≤ 2k.

Then we have
1

m
≤ c′

k
log2

(
1 +

2Mn

k

)
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for some positive constant c′. Hence, Fq(1) can be covered by 22k−1 balls of radius

εk

√
c′k−1 log2

(
1 +

2Mn

k

)
in L2 distance.

If k ≥ 2Mn, we choose m = Mn. Then Fq(1) can be covered by 2k−1
(
2Mn+m

m

)
balls of

radius εkM
−1/2
n in L2 distance. Consequently, there exists a positive constant c′′ such that

Fq(1) can be covered by 2l−1 balls of radius rl, where

rl ≤ c′′


1 1 ≤ l ≤ log2(2Mn),

l
1
2
− 1
q [log2(1 + 2Mn

l )]
1
q
− 1

2 log2(2Mn) ≤ l ≤ 2Mn,

2−
l

2Mn (2Mn)
1
2
− 1
q l ≥ 2Mn.

For any given 0 < ε < 1, by choosing the smallest l such that rl < ε/2, we find an ε/2-net
{ui}Ni=1 of Fq(1) in L2 distance, where

N = 2l−1 ≤


exp

(
c′′′ε
− 2q

2−q log(1 +M
1
q
− 1

2
n ε)

)
ε > M

1
2
− 1
q

n ,

exp

(
c′′′Mn log(1 +M

1
2
− 1
q

n ε−1)

)
ε < M

1
2
− 1
q

n ,

and c′′′ is some positive constant.
It remains to show that for each 1 ≤ i ≤ N , we can find a function ei so that ‖ei‖0 ≤

5ε2q/(q−2) + 1 and ‖ei − ui‖2 ≤ ε/2.
Suppose ui =

∑Mn
j=1 cijfj , 1 ≤ i ≤ N , with

∑Mn
j=1 |cij |q ≤ 1. Let Li = {j : |cij | >

ε2/(2−q)}. Then, |Li|ε2q/(2−q) ≤
∑
|cij |q ≤ 1, which implies |Li| ≤ ε2q/(q−2) and also∑

j /∈Li

|cij | ≤
∑
j /∈Li

|cij |q[ε2/(2−q)]1−q ≤ ε
2−2q
2−q .

Define vi =
∑

j∈Li cijfj and wi =
∑

j /∈Li cijfj . We have wi ∈ F1(ε
2−2q
2−q ). By the probability

argument above, we can find a function w′i such that ‖w′i‖0 ≤ m and ‖wi−w′i‖2 ≤ ε
2−2q
2−q /

√
m.

In particular, if we choose m to be the smallest integer such that m ≥ 4ε2q/(q−2). Then,
‖wi − w′i‖2 ≤ ε/2.

We define ei = vi + w′i, we have ‖ui − ei‖2 ≤ ε/2, and then we can show that

‖ei‖0 = ‖vi‖0 + ‖w′i‖0 ≤ |Li|+m ≤ 5ε2q/(q−2) + 1.

(ii) Let f∗θ =
∑Mn

j=1 cjfj = arg inffθ∈Fq(tn) ‖fθ − f0‖2 be a best approximation of f0

over the class Fq(tn). For any 1 ≤ m ≤ Mn, let L∗ = {j : |cj | > tnm
−1/q}. Because∑Mn

j=1 |cj |q ≤ t
q
n, we have |L∗|tqn/m <

∑
|cj |q ≤ tqn. So, |L∗| < m. Also,

D :=
∑
j /∈L∗
|cj | ≤

∑
j /∈L∗
|cj |q[tn(1/m)1/q]1−q =

∑
j /∈L∗
|cj |qt1−qn (1/m)(1−q)/q ≤ tnm1−1/q.
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Define v∗ =
∑

j∈L∗ cjfj and w∗ =
∑

j /∈L∗ cjfj . We have w∗ ∈ F1(D). Define a random
function U so that P(U = Dsign(cj)fj) = |cj |/D, j /∈ L∗. Thus, EU = w∗, where E
denotes expectation with respect to the randomness P (just introduced). Also, ‖U‖ ≤
D sup1≤j≤Mn

‖fj‖ ≤ D. Let U1, U2, ..., Um be i.i.d. copies of U , then ∀x ∈ X ,

E

(
f0(x)− v∗(x)− 1

m

m∑
i=1

Ui(x)

)2

= (f∗θ (x)− f0(x))2 +
1

m
Var (U(x)) .

Together with Fubini,

E

∥∥∥∥∥f0 − v∗ − 1

m

m∑
i=1

Ui

∥∥∥∥∥
2

≤ ‖f∗θ − f0‖2 +
1

m
E‖U‖2 ≤ ‖f∗θ − f0‖2 + t2nm

1−2/q.

In particular, there exists a realization of v∗+ 1
m

∑m
i=1 Ui, denoted by fθm , such that ‖fθm−

f0‖2 ≤ ‖f∗θ − f0‖2 + t2nm
1−2/q. Note that ‖θm‖1 ≤ tn and ‖θm‖0 ≤ 2m− 1. If we consider

m̃ = b(m+ 1)/2c instead, we have 2m̃− 1 ≤ m and m̃ ≥ m/2. The conclusion then follows.
This completes the proof of the theorem.

Appendix B. An Insight from the Sparse Approximation Bound Based
on Classical Model Selection Theory

Consider general Mn, tn and 0 < q ≤ 1. With the approximation error bound in Theorem
13, classical model selection theories can provide key insight on what to expect regarding
the minimax rate of convergence for estimating a function in the `Mn

q,tn-hull.
Suppose Jm is the best subset model of size m in terms of having the smallest L2

approximation error to f0. Then, the estimator based on Jm is expected to have the risk
(under some squared error loss) of order

22/qt2nm
1−2/q +

σ2m

n
.

Minimizing this bound over m, we get the best choice (in order) in the range 1 ≤ m ≤
Mn ∧ n :

m∗ = m∗(q, tn) =
⌈
2
(
nt2nτ

)q/2⌉ ∧Mn ∧ n,

where τ = σ−2 is the precision parameter. When q = 0 with tn = kn, m
∗ should be

taken to be kn ∧ n. It is the ideal model size (in order) under the `q-constraint because it
provides the best possible trade-off between the approximation error and estimation error
when 1 ≤ m ≤ Mn ∧ n. The calculation of balancing the approximation error and the
estimation error is well-known to lead to the minimax rate of convergence for general full
approximation sets of functions with pre-determined order of the terms in an approximation
system (see section 4 of Yang and Barron 1999). However, when the terms are not pre-
ordered, there are many models of the same size m∗, and one must pay a price for dealing
with exponentially many or more models (see, e.g., section 5 of Yang and Barron 1999). The
classical model selection theory that deals with searching over a large number of models
tells us that the price of searching over

(
Mn

m∗

)
many models is the addition of the term
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log
(
Mn

m∗

)
/n (e.g., Barron and Cover 1991; Yang and Barron 1998; Barron et al. 1999; Yang

1999; Baraud 2000; Birgé and Massart 2001; Baraud 2002; Massart 2007). That is, the risk
(under squared error type of loss) of the estimator based on subset selection with a model
descriptive complexity term of order log

(
Mn

m

)
added to the AIC-type of criteria is typically

upper bounded in order by the smallest value of

(squared) approximation errorm +
σ2m

n
+
σ2 log

(
Mn

m

)
n

over all the subset models, which is called the index of the resolvability of the function

to be estimated. Note that m
n +

log (Mnm )
n is uniformly of order m

(
1 + log

(
Mn
m

))
/n over

0 ≤ m ≤Mn. Evaluating the above bound at m∗ in our context yields a quite sensible rate
of convergence. Note also that log

(
Mn

m∗

)
/n (price of searching) is of a higher order than m∗

n
(price of estimation) when m∗ ≤Mn/2. Define

SER(m) = 1 + log

(
Mn

m

)
�
m+ log

(
Mn

m

)
m

, 1 ≤ m ≤Mn,

to be the ratio of the price with searching to that without searching (i.e., only the price of
estimation of the parameters in the model). Here “�” means of the same order as n→∞.

Observe that reducing m∗ slightly will reduce the order of searching price m∗SER(m∗)
n (since

x(1 + log (Mn/x)) is an increasing function for 0 < x < Mn) and increase the order of the

squared bias plus variance (i.e., 22/qt2nm
1−2/q + σ2m

n ). The best choice will typically make

the approximation error 22/qt2nm
1−2/q of the same order as

m(1+log Mn
m

)

n (as also pointed out
in Raskutti et al. 2012 from a different analysis). Define

m∗ = m∗(q, tn) =


m∗ if m∗ = Mn ∧ n,⌈

m∗

(1+log Mn
m∗ )

q/2

⌉
=
⌈

m∗

SER(m∗)q/2

⌉
otherwise.

We call this the effective model size (in order) under the `q-constraint because evaluating
the index of resolvability expression from our general oracle inequality (see Proposition 15
in the Appendix) at the best model of this size gives the minimax rate of convergence, as
shown in this work. When m∗ = n, the minimax risk is of order 1 (or higher sometimes)
and thus does not converge. Note that the down-sizing factor SER(m∗)q/2 from m∗ to m∗
depends on q: it becomes more severe as q increases; when q = 1, the down-sizing factor

reaches the order
(
1 + log

(
Mn
m∗

))1/2
. Since the risk of the ideal model and that by a good

model selection rule differ only by a factor of log(Mn/m
∗), as long as Mn is not too large,

the price of searching over many models of the same size is small, which is a fact well known
in the model selection literature (see, e.g., Yang and Barron 1998, section III.D).

For q = 0, under the assumption of at most kn ≤ Mn ∧ n nonzero terms in the linear
representation of the true regression function, the risk bound immediately yields the rate(

1 + log
(
Mn

kn

))
/n �

kn
(
1+log Mn

kn

)
n . Thus, from all above, we expect that m∗SER(m∗)

n ∧ 1 is

the unifying optimal rate of convergence for regression under the `q-constraint for 0 ≤ q ≤ 1.
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Appendix C.

In this appendix, the theorems in Sections 3-4 are proved, with additional results given as
preparations.

C.1 Some General Oracle Inequalities

The proofs of the upper bound results rely on some oracle inequalities, which may be of
interest in other applications. Consider the setting in Section 3.2 of the main paper.

Proposition 15 Suppose AE−G holds for the E-G strategy, respectively. Then, the follow-
ing oracle inequalities hold for the estimator f̂Fn.

(i) For T-C and T-Y strategies,

R(f̂Fn ; f0;n)

≤ c0 inf
1≤m≤Mn∧n

(
c1 inf

Jm
d2(f0;FJm) + c2

m

n1
+ c3

1 + log
(
Mn

m

)
+ log(Mn ∧ n)− log(1− p0)

n− n1

)

∧c0
(
‖f0‖2 + c3

1− log p0
n− n1

)
,

where c0 = 1, c1 = c2 = CL,σ, c3 = 2
λC

for the T-C strategy; c0 = CY , c1 = c2 = CL,σ,

c3 = σ2 for the T-Y strategy.
(ii) For AC-C and AC-Y strategies,

R(f̂Fn ; f0;n)

≤ c0 inf
1≤m≤Mn∧n

(
R(f0,m, n) + c2

m

n1
+ c3

1 + log
(
Mn

m

)
+ log(Mn ∧ n)− log(1− p0)

n− n1

)

∧c0
(
‖f0‖2 + c3

1− log p0
n− n1

)
,

where

R(f0,m, n) = c1 inf
Jm

inf
s≥1

(
d2(f0;FLJm,s) + 2c3

log(1 + s)

n− n1

)
,

and c0 = c1 = 1, c2 = 8c(σ2 + 5L2), c3 = 2
λC

for the AC-C strategy; c0 = CY , c1 = 1,

c2 = 8c(σ2 + 5L2), c3 = σ2 for the AC-Y strategy.

From the proposition above, the risk R(f̂Fn ; f0;n) is upper bounded by a multiple of
the best trade-off of the different sources of errors (approximation error, estimation error
due to estimating the linear coefficients, and error associated with searching over many
models of the same dimension). For a model J, let IR(f0; J) generically denote the sum
of these three sources of errors. Then, the best trade-off is IR(f0) = infJ IR(f0; J), where
the infimum is over all the candidate models. Following the terminology in Barron and
Cover (1991), IR(f0) is the so-called index of resolvability of the true function f0 by the
estimation method over the candidate models. We call IR(f0; J) the index of resolvability
at model J. The utility of the index of resolvability is that for f0 with a given characteristic,
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an evaluation of the index of resolvability at the best J immediately tells us how well the
unknown function is “resolved” by the estimation method at the current sample size. Thus,
accurate index of resolvability bounds often readily show minimax optimal performance of
the model selection based estimator.

Proof of Proposition 15.

(i) For the T-C strategy,

R(f̂Fn ; f0;n) ≤ inf
1≤m≤Mn∧n

{
CL,σ

(
inf
Jm

d2(f0;FJm) +
m

n1

)
+

2

λC

(
log(Mn ∧ n) + log

(
Mn

m

)
− log(1− p0)

n− n1

)}
∧
{
‖f0‖2 −

2

λC

log p0
n− n1

}
.

For the T-Y strategy,

R(f̂Fn ; f0;n) ≤ CY inf
1≤m≤Mn∧n

{
CL,σ inf

Jm
d2(f0;FJm) + CL,σ

m

n1
+

σ2

(
1 + log(Mn ∧ n) + log

(
Mn

m

)
− log(1− p0)

n− n1

)}
∧ CY

{
‖f0‖2 + σ2

1− log p0
n− n1

}
.

(ii) For the AC-C strategy,

R(f̂Fn ; f0;n)

≤ inf
1≤m≤Mn∧n

{
inf
Jm

inf
s≥1

(
d2(f0;FLJm,s) + c(2σ′ +H)2

m

n1
+

2

λC
×(

log(Mn ∧ n) + log
(
Mn

m

)
− log(1− p0)

n− n1
+

2 log(1 + s)

n− n1

))}
∧
{
‖f0‖2 −

2

λC

log p0
n− n1

}
≤ inf

1≤m≤Mn∧n

{
inf
Jm

inf
s≥1

(
d2(f0;FLJm,s) + 8c(σ2 + 5L2)

m

n1
+

2

λC
×(

log(Mn ∧ n) + log
(
Mn

m

)
− log(1− p0)

n− n1
+

2 log(1 + s)

n− n1

))}
∧
{
‖f0‖2 −

2

λC

log p0
n− n1

}
.

For the AC-Y strategy,

R(f̂Fn ; f0;n)

≤ CY inf
1≤m≤Mn∧n

{
inf
Jm

inf
s≥1

(
d2(f0;FLJm,s) + c(2σ′ +H)2

m

n1
+ σ2

(
1 + log(Mn ∧ n)

n− n1
+

+
log
(
Mn

m

)
n− n1

+
− log(1− p0) + 2 log(1 + s)

n− n1

))}
∧ CY

{
‖f0‖2 + σ2

1− log p0
n− n1

}
≤ CY inf

1≤m≤Mn∧n

{
inf
Jm

inf
s≥1

(
d2(f0;FLJm,s) + 8c(σ2 + 5L2)

m

n1
+ σ2

(
1 + log(Mn ∧ n)

n− n1
+

+
log
(
Mn

m

)
n− n1

+
− log(1− p0) + 2 log(1 + s)

n− n1

))}
∧ CY

{
‖f0‖2 + σ2

1− log p0
n− n1

}
.
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This completes the proof of Proposition 15.

C.2 Proof of Theorem 5

To derive the upper bounds, we only need to examine the index of resolvability for each
strategy. The nature of the constants in Theorem 5 follows from Proposition 15.

(i) For T- strategies, according to Theorem 13 and the general oracle inequalities in
Proposition 15, for each 1 ≤ m ≤Mn ∧ n, there exists a subset Jm and the best fθm ∈ FJm
such that

R(f̂Fn ; f0;n) ≤ c0

(
c1‖fθm − f0‖2 + 2c2

m

n
+ 2c3

1 + log
(
Mn

m

)
+ log(Mn ∧ n)− log(1− p0)

n

)

∧c0
(
‖f0‖2 + 2c3

1− log p0
n

)
.

Under the assumption that f0 has sup-norm bounded, the index of resolvability evaluated
at the null model fθ ≡ 0 leads to the fact that the risk is always bounded above by

C0

(
‖f0‖2 + C2σ2

n

)
for some constant C0, C2 > 0.

For F = Fq(tn), and when m∗ = m∗ = Mn < n, evaluating the index of resolvability at
the full model JMn , we get

R(f̂Fn ; f0;n) ≤ c0c1d2(f0;Fq(tn)) +
CMn

n
with

CMn

n
=
Cm∗

(
1 + log

(
Mn
m∗

))
n

.

Thus, the upper bound is proved when m∗ = m∗ = Mn.

For F = Fq(tn), and when m∗ = m∗ = n < Mn, then clearly m∗

(
1 + log

(
Mn
m∗

))
/n is

larger than 1, and then the risk bound given in the theorem in this case holds.

For F = Fq(tn), and when 1 ≤ m∗ ≤ m∗ < Mn∧n, for 1 ≤ m < Mn, and from Theorem
13, we have

R(f̂Fn ; f0;n) ≤ c0

(
c1d

2(f0;Fq(tn)) + c12
2/q−1t2nm

1−2/q + 2c2
m

n

+2c3
1 + log

(
Mn

m

)
+ log(Mn ∧ n)

n
− 2c3

log(1− p0)
n

)
.

Since log
(
Mn

m

)
≤ m log

(
eMn
m

)
= m

(
1 + log Mn

m

)
, then

R(f̂Fn ; f0;n) ≤ c0c1d
2(f0;Fq(tn)) + C

(
22/qt2nm

1−2/q +
m
(
1 + log Mn

m

)
n

+
log(Mn ∧ n)

n

)

≤ c0c1d
2(f0;Fq(tn)) + C

′

(
22/qt2nm

1−2/q +
m
(
1 + log Mn

m

)
n

)
,
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where C and C ′ are constants that do not depend on n, q, tn, and Mn (but may depend on
σ2, p0 and L). Choosing m = m∗, we have

22/qt2nm
1−2/q +

m
(
1 + log Mn

m

)
n

≤ C ′′
m∗

(
1 + log

(
Mn
m∗

))
n

,

where C ′′ is an absolute constant. The upper bound for this case then follows.
For F = F0(kn), by evaluating the index of resolvability from Proposition 15 at m = kn,

the upper bound immediately follows.
For F = Fq(tn) ∩ F0(kn), both `q- and `0-constraints are imposed on the coefficients,

the upper bound will go with the faster rate from the tighter constraint. The result follows.
(ii) For AC- strategies, three constraints ‖θ‖1 ≤ s (s > 0), ‖θ‖q ≤ tn (0 ≤ q ≤ 1, tn > 0)

and ‖fθ‖∞ ≤ L are imposed on the coefficients. Notice that ‖θ‖1 ≤ ‖θ‖q when 0 < q ≤ 1,
then the `1-constraint is satisfied by default as long as s ≥ tn and ‖θ‖q ≤ tn with 0 < q ≤ 1.
Using similar arguments as used for T-strategies, the desired upper bounds can be easily
derived. This completes the proof of Theorem 5.

C.3 Global Metric Entropy and Local Metric Entropy

The derivations of the lower bounds in the main paper require some preparations.
Consider estimating a regression function f0 in a general function class F based on i.i.d.

observations (Xi, Yi)
n
i=1 from the model

Y = f0(X) + σ · ε, (5)

where σ > 0 and ε follows a standard normal distribution and is independent of X.
Given F , we say G ⊂ F is an ε-packing set in F (ε > 0) if any two functions in G are

more than ε apart in the L2 distance. Let 0 < α < 1 be a constant.
Definition 1: (Global metric entropy) The packing ε-entropy of F is the logarithm of

the largest ε-packing set in F . The packing ε-entropy of F is denoted by M(ε).
Definition 2: (Local metric entropy) The α-local ε-entropy at f ∈ F is the logarithm of

the largest (αε)-packing set in B(f, ε) = {f ′ ∈ F :‖ f ′−f ‖≤ ε}. The α-local ε-entropy at f
is denoted by Mα(ε | f). The α-local ε-entropy of F is defined as M loc

α (ε) = maxf∈FMα(ε |
f).

Suppose that M loc
α (ε) is lower bounded by M loc

α (ε) (a continuous function), and assume
that M(ε) is upper bounded by M(ε) and lower bounded by M(ε) (with M(ε) and M(ε)
both being continuous).

Suppose there exist εn, εn, and εn such that

M loc
α (σεn) ≥ nε2n + 2 log 2, (6)

M(
√

2σεn) = nε2n, (7)

M(σεn) = 4nε2n + 2 log 2. (8)

Proposition 16 (Yang and Barron 1999) The minimax risk for estimating f0 from model
(5) in the function class F is lower-bounded as the following

inf
f̂

sup
f0∈F

E‖f̂ − f0‖2 ≥
α2σ2ε2n

8
,
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inf
f̂

sup
f0∈F

E‖f̂ − f0‖2 ≥
σ2ε2n

8
.

Let F be a subset of F . If a packing set in F of size at least exp(M loc
α (σεn)) or exp(M(σεn))

is actually contained in F , then inf f̂ supf0∈F E‖f̂−f0‖
2 is lower bounded by α2σ2ε2n

8 or
σ2ε2n
8 ,

respectively.

Proof. The result is essentially given in Yang and Barron (1999), but not in the concrete
forms. The second lower bound is given in Yang (2004). We briefly derive the first one.

Let N be an (αεn)-packing set in B(f, σεn) = {f ′ ∈ F :‖ f ′ − f ‖≤ σεn}. Let Θ denote
a uniform distribution on N. Then, by applying the upper bound on mutual information
displayed in the middle of page 1571 of Yang and Barron (1999), together with the specific
form of the K-L divergence between the Gaussian regression densities (see the first paragraph
of the proof of Theorem 6 of Yang and Barron 1999 on page 1583), the mutual information
between Θ and the observations (Xi, Yi)

n
i=1 is upper bounded by n

2 ε
2
n, and an application

of Fano’s inequality (see the proof of Theorem 1 in Yang and Barron 1999, particularly
Equation 1 on page 1571) to the regression problem gives the minimax lower bound

α2σ2ε2n
4

(
1− I (Θ; (Xi, Yi)

n
i=1) + log 2

log |N |

)
,

where |N | denotes the size of N. By our way of defining εn, the conclusion of the first lower
bound follows.

For the last statement, we prove for the global entropy case and the argument for the
local entropy case similarly follows. Observe that the upper bound on I (Θ; (Xi, Yi)

n
i=1) by

log(|G|) + nε2n, where G is an εn-net of F under the square root of the Kullback-Leibler
divergence (see Yang and Barron 1999, page 1571), continues to be an upper bound on
I (Θ; (Xi, Yi)

n
i=1) , where Θ is the uniform distribution on a packing set in F . Therefore, by

the derivation of Theorem 1 in Yang and Barron (1999), the same lower bound holds for F
as well. This completes the proof.

C.4 Proof of Theorem 8

Assume f0 ∈ F in each case of F so that d2(f0;F) = 0. Without loss of generality, assume
σ = 1.

(i) We first derive the lower bounds without L2 or L∞ upper bound assumption on f0.
To prove case 1 (i.e., F = Fq(tn)), it is enough to show that

inf
f̂

sup
f0∈Fq(tn)

E‖f̂ − f0‖2 ≥ Cq


Mn
n if m̃∗ = Mn,

tqn

(
1+log Mn

(nt2n)q/2

n

)1−q/2

if 1 < m̃∗ ≤m̃∗ < Mn,

t2n if m̃∗= 1,

in light of the fact that, by definition, when m̃∗ = Mn, m̃∗ = Mn and when 1 < m̃∗ ≤ m̃∗ <
Mn, we have

m̃∗(1+log Mn
m̃∗

)

n is upper and lower bounded by multiples (depending only on q)
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of tqn

(
1+log Mn

(nt2n)q/2

n

)1−q/2

. Note that m̃∗ and m̃∗ are defined as m∗ and m∗ except that no

ceiling of n is imposed there.

Given that the basis functions are orthonormal, the L2 distance on Fq(tn) is the same
as the `2 distance on the coefficients in Bq(tn;Mn) = {θ : ‖θ‖q ≤ tn}. Thus, the entropy of
Fq(tn) under the L2 distance is the same as that of Bq(tn;Mn) under the `2 distance.

When m̃∗ = Mn, we use the lower bound tool in terms of local metric entropy. Given
the `q-`2-relationship ‖θ‖q ≤Mn

1/q−1/2‖θ‖2 for 0 < q ≤ 2, for ε ≤
√
Mn/n, taking f∗0 ≡ 0,

we have

B(f∗0 ; ε) = {fθ : ‖fθ − f∗0 ‖ ≤ ε, ‖θ‖q ≤ tn} = {fθ : ‖θ‖2 ≤ ε, ‖θ‖q ≤ tn} = {fθ : ‖θ‖2 ≤ ε},

where the last equality holds because when ε ≤
√
Mn/n, for ‖θ‖2 ≤ ε, ‖θ‖q ≤ tn is always

satisfied. Consequently, for ε ≤
√
Mn/n, the (ε/2)-packing of B(f∗0 ; ε) under the L2 distance

is equivalent to the (ε/2)-packing of Bε = {θ : ‖θ‖2 ≤ ε} under the `2 distance. Note that
the size of the maximum packing set is at least the ratio of volumes of the balls Bε and Bε/2,

which is 2Mn . Thus, the local entropy M loc
1/2(ε) of Fq(t) under the L2 distance is at least

M loc
1/2(ε) = Mn log 2 for ε ≤

√
Mn/n. The minimax lower bound for the case of m̃∗ = Mn

then directly follows from Proposition 16.

When 1 < m̃∗ ≤ m̃∗ < Mn, the use of global entropy is handy. Applying the minimax
lower bound in terms of global entropy in Proposition 16, with the metric entropy order
for larger ε (which is tight in our case of orthonormal functions in the dictionary) from
Theorem 13 the minimax lower rate is readily obtained. Indeed, for the class Fq(tn), with

ε > tnM
1
2
− 1
q

n , there are constants c′ and c′ (depending only on q) such that

c′
(
tnε
−1) 2q

2−q log(1 +M
1
q
− 1

2
n t−1n ε) ≤M(ε) ≤M(ε) ≤ c′

(
tnε
−1) 2q

2−q log(1 +M
1
q
− 1

2
n t−1n ε).

Thus, we see that εn determined by (8.4) is lower bounded by c
′′′
t
q
2
n

(
(1 + log Mn

(nt2n)
q/2 )/n

) 1
2
− q

4
,

where c
′′′

is a constant depending only on q.

When m̃∗ = 1, note that with f∗0 = 0 and ε ≤ tn,

B(f∗0 ; ε) = {fθ : ‖θ‖2 ≤ ε, ‖θ‖q ≤ tn} ⊃ {fθ : ‖θ‖q ≤ ε}.

Observe that the (ε/2)-packing of {fθ : ‖θ‖q ≤ ε} under the L2 distance is equivalent to
the (1/2)-packing of {fθ : ‖θ‖q ≤ 1} under the same distance. Thus, by applying Theorem
13 with tn = 1 and ε = 1/2, we know that the (ε/2)-packing entropy of B(f∗0 ; ε) is lower

bounded by c
′′

log(1 + 1
2M

1/q−1/2
n ) for some constant c

′′
depending only on q, which is at

least a multiple of nt2n when m̃∗ ≤
(
1 + log Mn

m̃∗
)q/2

. Therefore we can choose 0 < δ < 1
small enough (depending only on q) such that

c
′′

log(1 +
1

2
M1/q−1/2
n ) ≥ nδ2t2n + 2 log 2.

The conclusion then follows from applying the first lower bound of Proposition 16.
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To prove case 2 (i.e., F = F0(kn)), noticing that for Mn/2 ≤ kn ≤ Mn, we have

(1 + log 2)/2Mn ≤ kn

(
1 + log Mn

kn

)
≤ Mn, together with the monotonicity of the minimax

risk in the function class, it suffices to show the lower bound for kn ≤Mn/2. Let Bkn(ε) =
{θ : ‖θ‖2 ≤ ε, ‖θ‖0 ≤ kn}. As in case 1, we only need to understand the local entropy of the
set Bkn(ε) for the critical ε that gives the claimed lower rate. Let η = ε/

√
kn. Then Bkn(ε)

contains the set Dkn(η), where

Dk(η) = {θ = ηI : I ∈ {1, 0,−1}Mn , ‖I‖0 ≤ k}.

Clearly ‖ηI1 − ηI2‖2 ≥ η (dHM (I1, I2))
1/2 , where dHM (I1, I2) is the Hamming distance

between I1, I2 ∈ {1, 0,−1}Mn . From Lemma 4 of Raskutti et al. (2012) (the result there
actually also holds when requiring the pairwise Hamming distance to be strictly larger than
k/2; see also Lemma 4 of Birgé and Massart 2001 or the derivation of a metric entropy
lower bound in Kühn 2001), there exists a subset of {I : I ∈ {1, 0,−1}Mn , ‖I‖0 ≤ k} with

more than exp
(
k
2 log 2(Mn−k)

k

)
points that have pairwise Hamming distance larger than

k/2. Consequently, we know the local entropy M loc
1/
√
2
(ε) of F0(kn) is lower bounded by

kn
2 log 2(Mn−kn)

kn
. The result follows.

To prove case 3 (i.e., Fq(tn) ∩ F0(kn)), for the larger kn case, from the proof of case
1, we have used fewer than kn nonzero components to derive the minimax lower bound
there. Thus, the extra `0-constraint does not change the problem in terms of lower bound.

For the smaller kn case, note that for θ with ‖θ‖0 ≤ kn, ‖θ‖q ≤ k
1/q−1/2
n ‖θ‖2 ≤ k

1/q−1/2
n ·√

Ckn

(
1 + log Mn

kn

)
/n for θ with ‖θ‖2 ≤

√
Ckn

(
1 + log Mn

kn

)
/n for some constant C >

0. Therefore the `q-constraint is automatically satisfied when ‖θ‖2 is no larger than the

critical order

√
kn

(
1 + log Mn

kn

)
/n, which is sufficient for the lower bound via local entropy

techniques. The conclusion follows.

(ii) Now, we turn to the lower bounds under the L2-norm condition. When the regression
function f0 satisfies the boundedness condition in L2-norm, the estimation risk is obviously
upper bounded by L2 by taking the trivial estimator f̂ = 0. In all of the lower boundings in
(i) through local entropy argument, if the critical radius ε is of order 1 or lower, the extra con-
dition ‖f0‖ ≤ L does not affect the validity of the lower bound. Otherwise, we take ε to be L.
Then, since the local entropy stays the same, it directly follows from the first lower bound in
Proposition 16 that L2 is a lower order of the minimax risk. The only case remained is that

of
(
1 + log Mn

m∗

)q/2 ≤ m∗ < Mn. If tqn
(

(1 + log Mn

(nt2)q/2
)/n
)1−q/2

is upper bounded by a con-

stant, from the proof of the lower bound of the metric entropy of the `q-ball in Kühn (2001),
we know that the functions in the special packing set satisfy the L2 bound. Indeed, consider

{fθ : θ ∈ Dmn(η)} with mn being a multiple of
(
nt2n/

(
1 + log Mn

(nt2n)
q/2

))q/2
and η being a

(small enough) multiple of
√

(1 + log Mn

(nt2n)
q/2 )/n. Then these fθ have ‖fθ‖ upper bounded

by a multiple of tqn
(

(1 + log Mn

(nt2n)
q/2 )/n

)1−q/2
and the minimax lower bound follows from

the last statement of Proposition 16. If tqn
(

(1 + log Mn

(nt2n)
q/2 )/n

)1−q/2
is not upper bounded,
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we reduce the packing radius to L (i.e., choose η so that η
√
mn is bounded by a multiple

of L). Then the functions in the packing set satisfy the L2 bound and furthermore, the

number of points in the packing set is of a larger order than ntqn
(

(1 + log Mn

(nt2n)
q/2 )/n

)1−q/2
.

Again, adding the L2 condition on f0 ∈ Fq(t) does not increase the mutual information
bound in our application of Fano’s inequality. We conclude that the minimax risk is lower
bounded by a constant.

(iii) Finally, we prove the lower bounds under the sup-norm bound condition. For 1),
under the direct sup-norm assumption, the lower bound is obvious. For the general Mn

case 2), note that the functions fθ’s in the critical packing set satisfies that ‖θ‖2 ≤ ε with ε

being a multiple of

√
kn
(
1+log Mn

kn

)
n . Then together with ‖θ‖0 ≤ kn, we have ‖θ‖1 ≤

√
kn‖θ‖2,

which is bounded by assumption. The lower bound conclusion then follows from the last

part of Proposition 16. To prove the results for the case Mn/
(

1 + log Mn
kn

)
≤ bn, as in

Tsybakov (2003), we consider the special dictionary Fn = {fi : 1 ≤ i ≤Mn} on [0, 1], where

fi(x) =
√
MnI[ i−1

Mn
, i
Mn

)(x), i = 1, ...,Mn.

Clearly, these functions are orthonormal. By the last statement of Proposition 16, we only
need to verify that the functions in the critical packing set in each case do have the sup-
norm bound condition satisfied. Note that for any fθ with θ ∈ Dkn(η) (as defined earlier),
we have ‖fθ‖ ≤ η

√
kn and ‖fθ‖∞ ≤ η

√
Mn. Thus, it suffices to show that the critical

packing sets for the previous lower bounds without the sup-norm bound can be chosen

with θ in Dkn(η) for some η = O
(
M
−1/2
n

)
. Consider η to be a (small enough) multiple of√(

1 + log Mn
kn

)
/n = O

(
M
−1/2
n

)
(which holds under the assumption Mn

1+log Mn
kn

≤ bn). From

the proof of part (ii) without constraint, we know that there is a subset of Dkn(η) that

with more than exp(kn2 log 2(Mn−kn)
kn

) points that are separated in `2 distance by at least√
kn

(
1 + log Mn

kn

)
/n. This completes the proof.

C.5 Proof of Corollary 10

Since f0 belongs to FLq (tn;Mn), or FL0 (kn;Mn), or both, thus d2(f0,F) is equal to zero for

all cases (except for AC- strategies when F = FL0 (kn;Mn), which we discuss later).

(i) For T- strategies and F = FLq (tn;Mn). For each 1 ≤ m ≤Mn ∧ n, according to the

general oracle inequalities in the proof of Theorem 5, the adaptive estimator f̂A has

sup
f0∈F

R(f̂A; f0;n) ≤ c0

(
2c2

m

n
+ 2c3

1 + log
(
Mn

m

)
+ log(Mn ∧ n)− log(1− p0)

n

)

∧c0
(
‖f0‖2 − 2c3

log p0
n

)
.

When m∗ = m∗ = Mn < n, the full model JMn results in an upper bound of order
Mn/n.
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When m∗ = m∗ = n < Mn, we choose the null model and the upper bound is simply of
order one.

When 1 < m∗ ≤ m∗ < Mn ∧ n, the similar argument of Theorem 5 leads to an up-

per bound of order 1 ∧ m∗
n

(
1 + log Mn

m∗

)
. Since (nt2n)q/2

(
1 + log Mn

(nt2n)
q/2

)−q/2
≤ m∗ ≤

4(nt2n)q/2
(

1 + log Mn

2(nt2n)
q/2

)−q/2
, then the upper bound is further upper bounded by cqt

q
n·(

1+log Mn

(nt2n)q/2

n

)1−q/2

for some constant cq only depending on q.

When m∗ = 1, the null model leads to an upper bound of order ‖f0‖2 + 1
n ≤ t2n + 1

n ≤
2(t2n ∨ 1

n) if f0 ∈ FLq (tn;Mn).

For F = FL0 (kn;Mn) or F = FLq (tn;Mn)∩FL0 (kn;Mn), one can use the same argument
as in Theorem 5.

(ii) For AC- strategies, for F = FLq (tn;Mn) or F = FLq (tn;Mn) ∩ FL0 (kn;Mn), again

one can use the same argument as in the proof of Theorem 5. For F = FL0 (kn;Mn),

the approximation error is infs≥1

(
inf{θ:‖θ‖1≤s,‖θ‖0≤kn,‖fθ‖∞≤L} ‖fθ − f0‖

2 + 2c3
log(1+s)

n

)
≤

inf{θ:‖θ‖1≤αn,‖θ‖0≤kn,‖fθ‖∞≤L} ‖fθ − f0‖
2 + 2c3

log(1+αn)
n = 2c3

log(1+αn)
n if f0 ∈ FL0 (kn;Mn).

The upper bound then follows. This completes the proof.

C.6 Proof of Theorem 11

Without loss of generality, we assume σ2 = 1 for the error variance. First, we give a simple
fact. Let Bk(η) = {θ : ‖θ‖2 ≤ η, ‖θ‖0 ≤ k} and Bk(f0; ε) = {fθ : ‖fθ‖ ≤ ε, ‖θ‖0 ≤ k}
(take f0 = 0). Then, under Assumption SRC with γ = k, the a

2a -local ε-packing entropy of
Bk(f0; ε) is lower bounded by the 1

2 -local η-packing entropy of Bk(η) with η = ε/a.

(i) The proof is essentially the same as that of Theorem 8. When m∗ = Mn, the previous

lower bounding method works with a slight modification. When
(
1 + log Mn

m∗

)q/2
< m∗ <

Mn, we again use the global entropy to derive the lower bound based on Proposition 16. The
key is to realize that in the derivation of the metric entropy lower bound for {θ : ‖θ‖q ≤ tn}
in Kühn (2001), an optimal size packing set is constructed in which every member has at
most m∗ non-zero coefficients. Assumption SRC with γ = m∗ ensures that the L2 distance
on this packing set is equivalent to the `2 distance on the coefficients and then we know the
metric entropy of Fq(tn;Mn) under the L2 distance is at the order given. The result follows

as before. When m∗ ≤
(
1 + log Mn

m∗

)q/2
, observe that Fq(tn;Mn) ⊃ {βxj : |β| ≤ tn} for any

1 ≤ j ≤Mn. The use of the local entropy result in Proposition 16 readily gives the desired
result.

(ii) As in the proof of Theorem 8, without loss of generality, we can assume kn ≤Mn/2.
Together with the simple fact given at the beginning of the proof, for Bkn(ε/a) = {θ :‖θ‖2 ≤
ε/a, ‖θ‖0 ≤ kn}, with η′ = ε/(a

√
kn), we know Bkn(ε/a) contains the set

{θ = η′I : I ∈ {1, 0,−1}Mn , ‖I‖0 ≤ kn}.

For θ1 = η′I1, θ2 = η′I2 both in the above set, by Assumption SRC, ‖fθ1 − fθ2‖2 ≥
a2η

′2dHM (I1, I2) ≥ a2ε2/(2a2) when the Hamming distance dHM (I1, I2) is larger than kn/2.
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With the derivation in the proof of part (i) of Theorem 8 (case 2), we know the local en-
tropy M loc

a/(
√
2a)

(ε) of F0(kn;Mn) ∩ {fθ : ‖θ‖2 ≤ an} with an ≥ ε is lower bounded by

kn
2 log 2(Mn−kn)

kn
. Then, under the condition an ≥ C

√
kn

(
1 + log Mn

kn

)
/n for some constant

C, the minimax lower rate kn

(
1 + log Mn

kn

)
/n follows from a slight modification of the

proof of Theorem 8 with ε = C ′
√
kn

(
1 + log Mn

kn

)
/n for some constant C ′ > 0. When

0 < an < C

√
kn

(
1 + log Mn

kn

)
/n, with ε of order an, the lower bound follows.

(iii) For the larger kn case, from the proof of part (i) of the theorem, we have used fewer
than kn nonzero components to derive the minimax lower bound there. Thus, the extra
`0-constraint does not change the problem in terms of lower bound. For the smaller kn case,

note that for θ with ‖θ‖0 ≤ kn, ‖θ‖q ≤ k1/q−1/2n ‖θ‖2 ≤ k1/q−1/2n

√
Ckn

(
1 + log Mn

kn

)
/n for θ

with ‖θ‖2 ≤
√
Ckn

(
1 + log Mn

kn

)
/n. Therefore the `q-constraint is automatically satisfied

when ‖θ‖2 is no larger than the critical order

√
kn

(
1 + log Mn

kn

)
/n, which is sufficient for

the lower bound via local entropy techniques. The conclusion follows. This completes the
proof.

C.7 Proof of Corollary 12

(i) We only need to derive the lower bound part. Under the assumptions that supj ‖Xj‖∞ ≤
L0 < ∞ for some constant L0 > 0, for a fixed tn = t > 0, we have ∀fθ ∈ Fq(tn;Mn),

‖fθ‖∞ ≤ supj ‖Xj‖∞ ·
∑Mn

j=1 |θj | ≤ L0‖θ‖1 ≤ L0‖θ‖q ≤ L0t. Then the conclusion follows
directly from Theorem 11 (Part (i)). Note that when tn is fixed, the case m∗ = 1 does not
need to be separately considered.

(ii) For the upper rate part, we use the AC-C upper bound. For fθ with ‖θ‖∞ ≤ L0,
clearly, we have ‖θ‖1 ≤MnL0, and consequently, since log(1+MnL0) is upper bounded by a

multiple of kn

(
1 + log Mn

kn

)
, the upper rate kn

n

(
1 + log Mn

kn

)
∧ 1 is obtained from Corollary

10. Under the assumptions that supj ‖Xj‖∞ ≤ L0 <∞ and kn

√(
1 + log Mn

kn

)
/n ≤

√
K0,

we know that ∀fθ ∈ F0(kn;Mn)
⋂
{fθ : ‖θ‖2 ≤ an} with an = C

√
kn

(
1 + log Mn

kn

)
/n for

some constant C > 0, the sup-norm of fθ is upper bounded by

‖
Mn∑
j=1

θjxj‖∞ ≤ L0‖θ‖1 ≤ L0

√
knan = CL0kn

√
1 + log Mn

kn

n
≤ C

√
K0L0.

Then the functions in F0(kn;Mn)
⋂
{f : ‖θ‖2 ≤ an} have sup-norm uniformly bounded.

Note that for bounded an, ‖θ‖2 ≤ an implies that ‖θ‖∞ ≤ an. Thus, the extra restriction
‖θ‖∞ ≤ L0 does not affect the minimax lower rate established in part (ii) of Theorem 11.

(iii) The upper and lower rates follow similarly from Corollary 10 and Theorem 11. The
details are thus skipped. This completes the proof.
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Ecole Normale Supèrieure, Paris, France, 1997.

O. Catoni. Universal aggregation rules with exact bias bounds. Preprint 510, Laboratoire
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