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Abstract

Fully simplified expressions for Multivariate Normal updates in non-conjugate variational
message passing approximate inference schemes are obtained. The simplicity of these ex-
pressions means that the updates can be achieved very efficiently. Since the Multivariate
Normal family is the most common for approximating the joint posterior density function of
a continuous parameter vector, these fully simplified updates are of great practical benefit.

Keywords: Bayesian computing, graphical models, matrix differential calculus, mean
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1. Introduction

Recently Knowles and Minka (2011) proposed a prescription for handling non-conjugate
exponential family factors in variational message passing approximate inference schemes.
Dubbed non-conjugate variational message passing, it widens the scope of tractable models
for variational message passing and mean field variational Bayes in general. For a given
exponential family factor, the non-conjugate variational message passing updates depend
on the inverse covariance matrix of the natural statistic and derivatives of the non-entropy
component of the Kullback-Leibler divergence.

The Multivariate Normal distribution is the most common multivariate exponential
family distribution and a prime candidate for approximating the joint posterior density
function of a continuous parameter vector, such as a set of regression coefficients. Knowles
and Minka (2011) provide formulae for Univariate Normal updates, which correspond to
less accurate diagonal covariance matrix approximations to joint posterior density functions.
However, when combined with the derived variable infrastructure described Appendix A of
Minka and Winn (2008), the Univariate Normal updates in Knowles and Minka (2011) are
able to produce full covariance matrix Multivariate Normal approximations for regression
models. This fact is utilized by the Infer. NET computational framework (Minka et al., 2013),
although the mathematical description of the updates is somewhat verbose. This aspect
hinders extension to more complicated models, including those not supported by Infer.NET.

Recently, Tan and Nott (2013) utilized non-conjugate variational message passing for
approximate Bayesian inference in hierarchical generalized linear mixed models. Their nu-
merical studies showed that their variational algorithms can achieve high levels of accuracy.
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This accuracy is partly due to their use of Multivariate Normal, rather than Univariate
Normal, factors.

This article’s main contribution is full simplification of the inverse covariance matrix
of the natural statistic and then to show that the updates admit a particularly simple
form in terms of derivatives with respect to the common Multivariate Normal parameters,
that is, the mean and covariance matrix. When combined with an additional novel matrix
result, this article’s second theorem, non-conjugate mean field variational Bayes algorithms
involving Multivariate Normal updates are straightforward to derive and implement. This
explicitness allows much easier accommodation of Multivariate Normal posterior density
functions within the non-conjugate variational message passing framework. Algorithm 3 of
Tan and Nott (2013) relies on Theorems 1 and 2, presented in Section 4. This leads to
considerable computational efficiency for the methodology in Tan and Nott (2013).

Non-conjugate variational message passing (Knowles and Minka, 2011) is one of several
recent contributions aimed at widening the set of models that can be handled via the mean
field variational Bayes paradigm. Others include Braun and McAuliffe (2010), Wand et al.
(2011) and Wang and Blei (2013).

Section 2 lays out notation needed for the main theorems, which are presented in Section
4. The utility of these theorems is then illustrated in Section 5 for a Bayesian Poisson mixed
model and a heteroscedastic additive model. A series of appendices contains proofs of the
theorems and other mathematical details.

2. Notation

The main results makes ample use of the matrix differential calculus technology of Magnus
and Neudecker (1999). Therefore, I mainly adhere to their notation.

2.1 The vec, vech and Duplication Matrix Notations

If Ais a d x d matrix then vec(A) denotes the d? x 1 vector obtained by stacking the
columns of A underneath each other in order from left to right. Also, vech(A) denotes the
3 d(d+1) x 1 vector obtained from vec(A) by eliminating each of the above-diagonal entries
of A. For example,

5

(IR H N

If A is a symmetric, but otherwise arbitrary d x d matrix, then vech(A) contains each of
the distinct entries of A whereas vec(A) repeats the off-diagonal entries. It follows that
there is a unique d? x %d(d + 1) matrix D, of zeros and ones such that

=N © ot

Dgvech(A) = vec(A) for A= AT
and is called the duplication matriz of order d. The Moore-Penrose inverse of Dy is

D} = (DI D) 'D}.
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Note that
D7 vec(A) = vech(A) for A= AT,

The simplest non-trivial examples of D; and D:lr are

00 1000
Dy=|.7 1 | and Dy=10 35 50
00 1 0001

Note that, for general d, Dy can be obtained via the duplication.matrix() function
in the package matrixcalc (Novomestky, 2008) within the R computing environment (R
Development Core Team, 2013).

If a is a d®> x 1 vector then vec™!(a) is defined to be the d x d matrix formed from
listing the entries of @ in a column-wise fashion in order from left to right. Note that vec™!
is the usual function inverse when the domain of vec is restricted to square matrices. In
particular,

vec '(vec(A)) = A for d x d matrices A

and
vec(vec 1(a)) =a for d® x 1 vectors a.

There are numerous identities involving vec, vech, D4 and D;, and some of these are
given in Chapter 3 of Magnus and Neudecker (1999). One that is relevant to the current
article is:

Lemma 1 If A is a symmetric d X d matriz then

vec(A) = D;TDdT vec(A).

2.2 The diagonal and diag Notations

If Ais a d x d matrix then diagonal(A) denotes the d x 1 vector containing the diagonal
entries of A. If a is a d x 1 vector then diag(a) is the d x d matrix with the entries of a on
the diagonal and all other entries equal to zero. For example,

8 1 —7 8 —4 -4 0 0
diagonal 3 6 24 = 6 and diag 7 = 07 0
-4 11 -9 -9 31 0 0 31

2.3 Derivative Vector and Hessian Matrix Notation

Let f be a RP-valued function with argument = € R?. The derivative vector of f with
respect to @, Dy f, is the p x d matrix whose (i, j) entry is

ofi(z)
a$j '
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where f;(x) is the ith entry of f(x) and x; is the jth entry of x. For example

1
2

5 [ tan(zy + 7x2) ] B [ so—{tan(z1 + Tra)} 72 {tan(x1 + 72)} ]
L5 ]| sed(s+9ad) 23248+ 923)) A {30t(8+ D)}
[ sec?(z1 + Txe) Tsec?(zy + 7o)

1223 (8 4 923) 8lzix3

In the case p = 1, the Hessian matriz of f with respect to , Hy f, is the d x d matrix

3. Non-Conjugate Variational Message Passing

Non-conjugate variational message passing (Knowles and Minka, 2011) is an extension of
mean field variational Bayes (e.g. Wainwright and Jordan, 2008) where, due to difficulties
arising from non-conjugacy, one or more density functions is forced to have a particular
exponential family distribution.

Consider a hierarchical Bayesian model with data vector y and parameter vectors 8 and
¢. Mean field variational Bayes approximates the joint posterior density function p(8, ¢|y)
by

q6,(61) - - g, (O1) q¢(¢)a (1)

where {01,...,60,} is a partition of 8 and each subscripted ¢ is an unrestricted density
function. The solutions satisfy

qp,(0:) o< exp[Ey_g,){log p (0i]y, 0\8:, 9)}], 1<i< M,
g (P) x explEq—g){log p (¢ly, 0)}],

where 0\0; means 0 with 6, excluded and E4(—e,) denotes expectation with respect to the
g-densities of all parameters except ;. A similar definition applies to E,_g)-

In the event that E,_g){log p(¢ly,0)} is intractable, non-conjugate variational mes-
sage passing offers a way out by replacing (1) with

q0,(01) - q0,,(01r1) g (P;m),

where ¢¢(¢;m) is an exponential family density function with natural parameter vector n
and natural statistic T(¢). Then, with backing from Theorem 1 of Knowles and Minka
(2011), the optimal densities ¢*(01),...,¢"(0r) and ¢*(¢; n) may be found using

1 < [var{T(¢)}] " [Dy Eyo.4){l0g p(y, 0, $)}]". .

Here and elsewhere var(v) denotes the covariance matrix of a random vector v. As pointed
out in Knowles and Minka (2011), the graphical structure of the hierarchical Bayesian model
can be used to provide a simpler expression for D, Eyg,4){log p(y, 8, ¢)} that only depends
on factors of p(y, 0, ¢) involving ¢.
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3.1 Multivariate Normal Factor

Now consider the special case where ¢(¢;m) corresponds to a d-dimensional Multivariate
Normal density function. Then the natural statistic (defined in Section 4) is

7612 arlpar) |

Since T'(¢) has d + d(d + 1)/2 entries, the number of entries in var{T(¢)} is quartic in d.
Consequently, for large d, the n update in (2) is numerically challenging if done directly.
In Section 4 T present theoretical results that allow explicit updating without the need for
inversion of var{T'(¢)}. I also present results in terms of the common Multivariate Normal
parametrization, involving mean vectors and covariance matrices.

4. Main Results

Consider a generic Multivariate Normal d x 1 random vector @
2 ~ N(p,3). (3)
Then the density function of x is
p(x) = @2n) = exp{-j(@ - )= (z - p)}
= exp{T(x)"n — A(n) - §log(2m)}.
Here

7= [watean | 1= [ ][ ptten ] @

defines the natural statistic and natural parameter pairing and
-1
A(m) = =0T {vec (D )}y — Slog| — 2vec (D} my)

is the log-partition function.
Note that the inverse of the natural parameter transformation is

—1
p= —%{Vecfl(D(—;T%)} m
Y = 1 —1/p+T -1 (5)
—§{V6C (Dd 172)}

and can be derived from (4) using Lemma 1.

Theorem 1 Consider the d x 1 random vector  ~ N(u,X) with natural statistic vector
T(x) and natural parameter vector n given by (4) and define

v={o.] Ly }T, V = var{T(2)} = HyAln)

vec(
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M=2D;(p®1I,;) and S=2D}(T®X)D}”.

Then
> 0
(@) v= [ MX SDY } ’
(b) S =3Dg(="' @ x Dy,
by >MT
(<) V_[ME S+M2MT}’
_ >tymTstm —mTs
1 _
(d) \4 - |: *SilM Sfl :| )
1, [ I —-MTDY
and
1 g _ | 9-2Gp
(£) vy [ vec(G) ] B [ Dlvec(@) }

for every d x 1 vector g and symmetric d x d matriz G.

Appendix A contains a proof of Theorem 1.
Let s be a smooth function of 1, the natural parameter vector in a Multivariate Normal
factor, and consider an iterative scheme with updates of the form

n <V !(Dys)". (6)

Note that the update in (2) is a special case of (6) with s(n) = Dy, Eqg,4){log p(y,0,1)}.
By the chain rule of matrix differential calculus (Theorem 8, Chapter 5, of Magnus and
Neudecker, 1999)

B . o o T_ 1 (D, s)"
Vo=Vl o ol )] -V ool

Let (phoy, Xo) and (g, .., Xnew), respectively, denote the old and new values of (u, X)
in the updating scheme (6). Then, it follows from Theorem 1(f) that

E;aﬂnew = [(DM S)T —2vec ! ((Dvec(z) S)T) N]

and ngec(—%E_l) = [Dg(DveC(z)s)T]

new

=M1, 2=201d

M=o, X=201d
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The mean and covariance parameter updates are therefore given by

Yiew = {2 vec ™! S [Dvec(z) 3]u=u01d,2=zold }T)}_l
and I’l’ncw = I’l’old + EUCW([DH S]/—L:“oldvgzzold)T'

It follows that (6) is equivalent to the updates:

2 — { — 2V6C71((Dvec(2) S)T)}_l (7)
p p+ (D5,

The simplified form of V~U in Theorem 1 can be explained via the inverse relationship
that exists between V' = H,, A(n) and the derivative of the mean parameter vector E{T (x)}
with respect to the natural parameter vector 7. This relationship is pointed out in Section
4.1 of Hensman et al. (2012). Note that my U involves the derivative of [u? vec(Z)7]T,
rather than E{T(x)}, with respect to n in the chain rule. This corresponds to differentiation
of s with respect to the more convenient vec(X).

The update for X, given at (7), involves vec™((Dvecs) s)”). Simplification of this ex-
pression for regression models is aided by:

Theorem 2 Let A be an n X d matriz, B be a d X d matriz and b be an n x 1 vector.
Define
QA =(A®1T) o (1T ® A)

where 1 is the d X 1 vector with all entries equal to 1. Then

(a) diagonal (ABAT) = Q(A) vec(B)
and
(b) vec (AT diag(b)A) = Q(A)T b.

See Appendix B for a proof of Theorem 2.
The following section illustrates the usefulness of Theorems 1 and 2 for assembling non-
conjugate variational message passing algorithms involving Multivariate Normal factors.

5. Illustrations

We now provide illustrations of non-conjugate variational message passing that use Multi-
variate Normal updates. The first Illustration involves a Poisson mixed model and simulated
data. We show, in detail, how Theorems 1 and 2 lead to a simple variational algorithm
for such models. The second illustration involves heteroscedastic additive model analy-
sis of data from an air pollution study, using non-conjugate variational message passing
methodology with Multivariate Normal factors, recently developed by Menictas and Wand
(2014).
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5.1 Poisson Mixed Model
Consider the single variance component Poisson mixed model:
yi| B,u independently distributed as Poisson[exp{(X B8+ Zu);}], 1<i<n,

u|o? ~ N(0,0%Ig), o~ Half-Cauchy(A) and B~ N(O, O'%Ip), 8)

where X is a n x p fixed effects design matrix, Z is a n x K random effects design matrix
and o ~ Half-Cauchy(A) means that
(0) 2 >0
o) = o .
PR = A+ (0/A)2)
Note that, courtesy of Result 5 of Wand et al. (2011), one can replace o ~ Half-Cauchy(A)
by the more convenient auxiliary variable representation

o?la ~ Inverse-Gammal(3, 1/a), a ~ Inverse-Gamma(3, 1/A?),

where v ~ Inverse-Gamma(A, B) means that

v~ A7 exp(—B/v), v > 0.

Consider the mean field approximation
p(0?,a, 8, u,|y) ~ q(0®) q(a) 4(B, U; 450y Zq(Bu) (9)
where
q(B,U; B3y Xq(Bu)) 18 the  N(pggu), Xq(8,u)) density function.
Then application of (2) leads to the optimal g-densities for o2 and a being such that
¢*(0?) is an Inverse—Gamma(%(K + 1), By(42)) density function
and ¢"(a) is an Inverse-Gamma(1, By(,) density function

for rate parameters By,2) and By(,). Let

Ha(1/02) = Ey(o2)(1/0%) = 5(K +1)/By(o2)

and fiy(1/q) be defined similarly. Also let pg(,) and X,,) be mean vector and covariance
matrix of ¢*(u). Lastly, let
C=[X Z].

Algorithm 1 provides explicit forms of the updates required to obtain the optimal parameters

of ¢*(B,u), ¢*(a) and ¢*(c?).
The derivation of Algorithm 1 is given in Appendix C. The approximate marginal log-
likelihood admits the explicit expression:
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Figure 1: Upper panels and lower left panel: approximate posterior density functions for 5y,
B1 and o2 based on the variational approximation scheme described by Algorithm
1 and MCMC, for the first replication of the simulation study described in the
text. Accuracy values, according to (11), with the exact posterior density function
replaced by the MCMC-based posterior density function are also given. Lower
right panel: Side-by-side boxplots of all 1000 accuracy values obtained for each
parameter in the simulation study.

log p(y;q) = $(K +p)+1logl(3(K + 1)) —log(m) —log(A) — 1" log(y!) — iplog(c)
+yTCuq(ﬁ7u) — 1T exp {C,uq(ﬂ’u) + %diagonal(CEq(ﬁvu)CT)}
—ﬁ{\\uq(a)\lz +tr(By8)} + 3 10g |25,

(K + 1)10g (5 {90 + r(Zq(a)} + Hg1/a))
—10g(1g(1/02) + A7) + Bg(1/02)Hq(1/a)-

It is noteworthy that the variational message passing algorithm with derived variables,
as described in Appendix A of Minka and Winn (2008), leads to an alternative to Algorithm
1 that requires only Univariate Normal updates corresponding to (7) of Knowles and Minka
(2011). Such an approach is used in the Infer.NET computational framework (Minka et al.,
2013). However, this alternative version is not as succinct as Algorithm 1. The simplified
version that arises from Theorems 1 and 2 allows easier extension to more complicated
models.
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Initialize: pg(1/02) > 0, Pgpu) @ (P + K) x 1 vector and 3y, a (p+ K) x (p + K)
positive definite matrix.
Cycle:

Wy(B,u) < €XP {Cuq(@u) + %diagonal(CEq(ﬁyu)CT)}

p — (CTdia {w }C + [ 0521‘0 0 })4
q(Bu) 81 Wq(B,u) 0 Mq(1/02)IK

—2
T | s I, 0
Hq(Bu) < Ho(pu) T BB {C (Y — wy(s.u) [ T ] Nq(ﬁ,u)}

K+1

" P Ha(1/a) € 1/ (Bg(1/02) + A7),
21q(1/a) T | g l1* + t1(Zg(u)) q(1/a) /(Bq(1/02) )

Hq(1/02)

until the absolute change in p(y;q) is negligible.

Algorithm 1: Iterative scheme for determination of the optimal parameters in ¢*(3,u),
q*(0?) and ¢*(a) for the posterior density function approximation (9).

I replicated 1000 data-sets corresponding to the simulation setting

Y;7|U; ~ Poisson (exp(By + B1 zij + Us)) , Uilo? ~ N(0,02),
1<i<m, 1<j<n, (10)

o%|a ~ Inverse-Gamma(3,1/a), a ~ Inverse-Gamma(3, A7%), B~ N(O, 0[23 I)

The hyperparameters were set at og = A = 10° and the sample sizes were m = 100, n = 10.
Note that (10) is a special case of (8) with Z = I,,, ® 1,,, where 1,, is the n x 1 vector with
all entries equal to one.

For each data-set I obtained approximate posterior density functions for By, 81 and o
using both Algorithm 1 and Markov chain Monte Carlo (MCMC). For MCMC T used the
package BRugs (Ligges et al., 2012) within the R computing environment (R Development
Core Team, 2013) with a burnin of size 5000 followed by the generation of 5000 samples,
with a thinning factor of 5. This resulted in MCMC samples of size 1000 being retained
for inference. The iterations in Algorithm 1 were terminated when the relative change in
log p(y; q) fell below 1074,

Figure 1 displays side-by-side boxplots of accuracy scores defined by

o0

accuracy(q*) = 100 <1 —1 / | q*(0) — p(fly) | d0> %. (11)

—0o0

for a generic parameter 6, and with p(|y) replaced by a kernel density estimate based on
the MCMC sample. The boxplots show that the majority of accuracy scores exceed 95%,
and that they rarely drop below 90%.
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Figure 1 allows visual assessment of the variational approximate posterior density func-
tions against the MCMC-based benchmark for a single replication of the simulation study.
The accuracy is seen to be excellent for By and 31 and very good for o2.

As discussed in Knowles and Minka (2011), convergence of non-conjugate variational
message passing is not guaranteed. In the simulation study the algorithm converged in all
replications regardless of starting values, but in about 2% of the cases this required some
adjustment to avoid inverting a singular matrix in the ¥,,,) update during the early
iterations. The adjustment involves adding eI to the matrix requiring inversion, with € > 0
chosen so that the condition number stayed below 10'6. In almost all cases, this adjustment
was only necessary for the first few iterations.

In this section we have shown that non-conjugate variational message passing leads to an
attractive variational inference algorithm for Poisson mixed models. Since the exponential
moments of Multivariate Normal random vectors are available in closed form, no quadrature
is required in the Poisson case. Other generalized linear mixed models, such as logistic
mixed models, require quadrature. The logistic analogue of (8) is such that only univariate
quadrature is required. Details are given in Appendix B of Tan and Nott (2013).

5.2 Heteroscedastic Additive Model

This illustration involves analysis of data from the Californian air pollution study described
in Breiman and Friedman (1985). The response variable is

y = ozone concentration (ppm) at Sandburg Air Force Base
and three predictors variables are

x1 = pressure gradient (mm Hg) from Los Angeles International Airport
to Daggett, California,
x9 = inversion base height (feet)

and z3 = inversion base temperature (degrees Fahrenheit).

The data comprises 345 measurements on each of these 4 variables. Let (x;1, 3, Ti3, ¥i),
1 <4 < 345 denote the full regression data set.
We entertained the heteroscedastic additive model

vi ~ N(Bo+ (@) + Falwn) + folwss), exp (30 + ha(ans) + ha(en) + h(@si) ), (12)

for 1 <4 < 345. Here f; and g;, j = 1,2, 3, and smooth but otherwise arbitrary functions.
Bayesian mixed model-based penalized splines (e.g. Ruppert et al., 2003) were used to model
the smooth functions as follows:

K;
filx) = Bjx+ Zujk Zjp(x),  uj iid N(O, agj)

i (13)

and hj(z) = vjx+ Zvjk zin(x), v iid N(Oaagg‘)-
k=1

1361



25 30

20

contribution to mean

| — MCMC

—— var. approx.

25 30

20

WAND

contribution to mean

contribution to mean

15
1
15
1

-
© 1w ! SRR TR RN } © L g I I TR ° 1L

50

i HH\IIH‘IIHII il \III\I‘
0 1000
inversion base height

2000 3000 4000 5000 -50 0

Daggett pressure gradient

40
inversion base temperature

50 60 70 80

contribution to standard deviation contribution to standard deviation contribution to standard deviation

© 1w ! SRR TR RN } © L g Il L °

0 1000
inversion base height

2000 3000 4000 5000 -50 0

Daggett pressure gradient

30 40

inversion base temperature

50 60 70

Upper panels: approximate pointwise posterior means and 95% credible sets for
the mean function contributions fi, fo and f3 according to the heteroscedastic
additive model (12). Vertical alignment of the estimated functions is described
in the text. Lower panels: approximate pointwise posterior means and 95% cred-
ible sets for the standard deviation function contributions exp(ha/2), exp(ha/2)
and exp(hs/2). Approximate Bayesian inference is based on both non-conjugate
variational message passing and MCMC.

Figure 2:

where iid stands for ‘independently and identically distributed as’. The {z;; : 1 <k < Kj},
Jj = 1,2,3, are spline bases of sizes K; respectively. My default for the z;, are suitably
transformed cubic O’Sullivan splines, as described in Section 4 of Wand and Ormerod
(2008). The priors on the regression coefficients and standard deviation parameters are

B; iid N(0,03), v; iid N(O,a?y), oy; iid Half-Cauchy(A,), o0,; iid Half-Cauchy(A,). (14)

The regression data replaced by standardized versions and the hyperparameters were set
to be og = 04 = A, = A, = 10°, corresponding to non-informativity. The results were
transformed to the original units after fitting. The basis function sizes were all fixed at
K =Ky, = K3 =18.

The Bayesian model given by (12), (13) and (14) admits a closed form non-conjugate
variational message passing algorithm, with the regression coefficients for the full mean
and variance functions each being Multivariate Normal. Details are given in Menictas and
Wand (2014). Figure 2 shows the estimated mean function (f;) contributions, and the stan-
dard deviation function (exp(h;/2)) contributions based on both variational approximation
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and MCMC. The MCMC inference was carried out in the same fashion as for the illustra-
tion described in Section 5.1. The abbreviated names inversion base height, Daggett
pressure gradient and inversion base temperature are used for 1, x2 and z3. The
estimated f; display is vertically aligned to match the response data by evaluating the esti-
mate of fy at To and estimate of f3 at T3, where To and T3 are the sample means of the xo;
and xg;, respectively. Analogous alignment strategies were used for the fs and f3 displays.
Figure 2 shows that there is excellent agreement between non-conjugate variational
message passing, with Multivariate Normal coefficient vectors, and MCMC. The former
approach is considerably faster. The heteroscedasticity is seen to be relatively mild for
inversion base height and Daggett pressure gradient. However, there is pronounced
heteroscedasticity in inversion base temperature that is captured by model (12).
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Appendix A: Proof of Theorem 1
Proof of (a)

For the upper-left block of U note that p = 37, and so dy, p = ¥ dn;. Theorem 6 of
Magnus and Neudecker (1999) leads to Dy, u = 3. The lower-right block of U involves the
relation ¥ = —1{vec™!(D}"n,)} ! given in (5). Then Rule 3.3.5 in Wand (2002) and the
identity

vec(ABC) = (CT @ A)vec(B) (15)

leads to
dp, vec(X) = 2vec(E{vec H (DI dn,)} £) = 2(E ® £) D7 dn,.

Hence, making use of Theorem 13 (b), Chapter 3, of Magnus and Neudecker (1999),
Dy, vec(E) =2(X @ ) D’ =2D,D} (£ ® £)D}" = D,S = (SD)".
The expression for the lower-left block of U follows from
dp, p = 25{vec™ (D} dny)} Sy = 2vec(S{vec (DT dny)} p) = 2(u” © B)DJ T dn,
where Rule 3.3.5 in Wand (2002) and (15) have been used again. This gives
Dy, = 2(u” @ 2)D}T = (2DF (n 2 D) = (2DF (n e 1)(1 © )}T = (ME)7

For the upper-left block note that, from (5), dy, vec(X) = 0dy,, and so D, vec(X) = 0.

Proof of (b)

This is an immediate consequence of Theorem 13(d), Chapter 3, of Magnus and Neudecker
(1999).
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Proof of (c)
The upper-left block is var(x) = X. The lower-right block is
var{vech(zz”)} = D} var{vec(ml:cT)}D;rT = D var(vec(z ® mT))DIT
= Di(Ip+K)(20X+Eeuu’ +pp” @ 2)D"

where (15) and Theorem 4.3 (iv) of Magnus and Neudecker (1979) has been used. Here
K ; denotes the commutation matriz of order d, defined by K (A ® B) = (B ® A)K 4 for

arbitrary d x d matrices A and B. Noting the identity %D:{(Idg + Ky = Djl', which is

an immediate consequence of (15) in Chapter 3 of Magnus and Neudecker (1999), one then

gets
var{vech(zz’)} = S + 2D} (T @ pp’ + pp’ @ T)DJT.

Theorem 12(a), Chapter 3, of Magnus and Neudecker (1999) states that K4yD; = Dy,
which implies that

D} ={(KuDy)"K.Ds} 'DjK} = (DJKjK.Dy) 'DjK;=DjK,  (16)

Here I have used K7 = K ;1 = K as stated in (2) of Chapter 3 of Magnus and Neudecker
(1999). The identity D} = D;Kd leads to

D} (Zeup")D;" = Dy Ky(Sopp")D;" = Dy (pp" @2)K D" = D} (pp" ©X)DJ"
leading to var{vech(zz?)} = S + 4D} (up” © )DIT. Since
(" @) = (pe)(p" @ 1) = (pel)1eT)(p" @ 1) = (pe I)S(pe 1)

I conclude that
var{vech(zz’)} = S + MXMT".

The (i,7) entry of the lower-left block is

d2
cov(vech(zz!);, ;) = cov({D}vec(zz)};, x;) = Z(D;)Zk cov(vec(xx? )i, x;).  (17)
k=1

Let |z denote the largest integer less than or equal to . Then using one of the fundamental
identities for generalized cumulants given on page 58 of McCullagh (1987),

cov(vec(wa” ), x5) = cOV(Tp_q|(kh—1)/d] T|(k-1)/d)+1+ Tj)
= ,U«kde(kfl)/dJEL(kfl)/dJ+1,j =+ ML(kfl)/dj+12kfdukfl)/dj J
= (B + (1@ X))y,

Combining this with (17), the lower-left block equals D} (X ® p + p ® £). But, courtesy
of (16), this equals

Di(p®%)+ DKy ®u) =2D;(p23) = M,
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Proof of (d)

It is straightforward to verify that
b smT styrmTs—tMm —MmTs ]
M S + MZMT _SflM S*l - Id+d(d+1)/2'

The stated expression for V' ~! immediately follows.

Proof of (e)

vy — [ >ty MTS'M —MTS! ] [ > 0 }

I -M"™DY
-S7'M s MY  SDY ‘

0 DY
Proof of (f)
First note that

ol o] -[s [

With the help of Lemma 1 and (15) one then has
MDY vec(G) = 2(p” @ I5) D" Dlvec(G) = 2(u" @ I;) vec(G) =2Gu

and the stated result is obtained.

Appendix B: Proof of Theorem 2

Proof of (a)

Let Aj; and Bjj, respectively, denote the (i,7) entry of A and B. Then a listing of the
entries of Q(A) reveals that its entry is (7, 7) is

Q(A)ij = Ai |(j-1y/aj41 Aij-dl-1)/a)y 1 <i<n, 1<j<d (18)
Similarly, the ith entry of vec(B) is

vee(B)j = Bj_q|(j-1)/d),|-1)jdj+1, 1< j<d (19)
Hence
d2
{Q(A)vec(B)}i = > A (i1)ja+1 Aij-dl(-1)/d) Bi-alG-1)/d).[G-1)/a)+1
j=1
d 2d d?
= (2+ > et D Aj | (-1)/d)+1 Aij—d| (-1)/d)
j=1  j=d+1 j=(d—1)d+1

X Bj_d|(j—1)/d),[(j-1)/d]+1

d d d
= Z AinAijBij + Z Ai2AijBoj + ... + Z AigAijBaj

j=1 j=1 j=1
d d
= Z Ay Ay By = diagonal(ABAT);
j=14'=1
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and the result follows immediately.

Proof of (b)
Letting b; denote the ith entry of b and making use of (18) one has

{QA) b} = > {2A) }ibi=) Q(A)yb
=1 =1

= Z bi A; | (j—1)/d)+1 Aij—d|(j—1)/d)-
1=1

Application of (19) to ATdiag(b)A gives

vec(ATdiag(b)A); = (ATdiag(b)A);_a|j-1)/d), |(j-1)/d)+1

= Zbz’(AT)j—dL(j—l)/dJ7iAi7L(j—1)/dJ+1

Z G=1)/d)+1 A j—a(i-1)a) = {Q(A)T b},

which proves equality between Q(A)” b and vec(AT diag(b)A).

Appendix C: Derivation of Algorithm 1

Derivation of ¢*(o?)

logq*(0?) = E,{logp(c?|rest)} + const
= {—3(K+1) = 1}log(0®) — {3 Egllull® + pg(1/a) }/0” + const.

where ‘const’ denotes terms not involving o2. Using
Eqllull? = lttgul? + tr(Zqqu)
I then get ¢*(0?) ~ Inverse-Gamma(%(K + 1), By(42)) where
Byo2y = 5 {ll#quI* + 1 (Zqu)} + Ho1/a)-

Derivation of ¢*(a)

logg*(a) = Eq{logp(alrest)} + const
= (=1—=1)log(a) = (kqg(1/02) + A™?)/a + const.

This gives ¢*(a) ~ Inverse-Gamma(1, By(,) where

—2
By(a) = Hg(1/02) T A
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Derivation of the (p,3.4) X¢(3,u)) Updates
Note that
E{logp(y,B,u,0%,a)} = Eg{log p(y|B,u)+ log p(3,ulo?) +log p(c?|a) + log p(a)}
= S+ terms not involving pyg ) Or Xy(g.u)

where
S = S(M’q(ﬁ,u)a zq(ﬁ,u)) = Eq{log p(y’ﬁa ’LL) + IOg p(ﬁ? U‘0'2)}-
Then

S = yTC,u,q(ﬂ,u) —1Texp {C’uq(@u) + %diagonal(CEq(ﬂu)CT)}
Pl § 0
(] 7" | s amisn + Zanest)
2 0 pye I {9 Hg(pu) + BB}
—3(p+ K)log(2m) — § plog(03) — § K E{log(c®)} — 17 log(y!)
and so
T
Apypy S = Y Cditgpu)
—1Tdiag[exp{Cuq(B7u) + %diagonal(CZq(@,u)CT)}]C dpq(ﬂu)

052Ip 0

T
~Hy(3.u) [ 0 } d By (B.u)

tq(1 /o)L K
T
= ( [y —exp{Clygu) + %diagonal(C’Eq(@u)CT)}} C

-2
oz 1 0
" } )dttg(o.)

T
Ha(p.u) [ 0 py/en Ik
Thus, by Theorem 6, Chapter 5, of Magnus and Neudecker (1999),

{D”q(ﬁ’u) S}T = C7 [y — exp{C’uq(ﬁ’u) + %diagonal(CEq(ﬁ,u)CT)}}

B [ 052Ip 0

0 Hgq/o2)IK ] Halpi)

Next, using Theorem 2 of Section 4 and Rule 3.3.2 of Wand (2002),
dvec(Sya,u) S = —1" diaglexp{C g ) + gdiagonal(CEy 5., C")}]3Q(C) dvec(Eya.u))
el | 0 r
lvec<[aﬁ p }) dvec(X (8w
2 0 pya/02) Ik Fatp)
= (= 3 exD{Clay(p.u) + Sdingonal(C (s, CT)}T Q(C)
221 0 g
—Wec([aﬁ p }) dvec(X, 8y
5 0 Mq(l/a2)IK ) ( q(B,u)
= —gvec (CTdiag[eXP{C”q(ﬁ,u) + %diagonal(CEq(gyu)CT)}]C
+ ["EQIP 0

T
dvec(S
0 MQ(I/UQ)IK]> veelFato )
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and so
vec™! <(Dvec(gq(57u)) S)T) = —% (CTdiag[exp{Cuq(ﬂvu) + %diagonal(CEq([;’u)CT)}] C
N [ 052110 0 } '
0 /o2yl
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