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Abstract

Flexible covariate-dependent density estimation can be achieved by modelling the joint
density of the response and covariates as a Dirichlet process mixture. An appealing aspect
of this approach is that computations are relatively easy. In this paper, we examine the
predictive performance of these models with an increasing number of covariates. Even for
a moderate number of covariates, we find that the likelihood for x tends to dominate the
posterior of the latent random partition, degrading the predictive performance of the model.
To overcome this, we suggest using a different nonparametric prior, namely an enriched
Dirichlet process. Our proposal maintains a simple allocation rule, so that computations
remain relatively simple. Advantages are shown through both predictive equations and
examples, including an application to diagnosis Alzheimer’s disease.
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1. Introduction

Dirichlet process (DP) mixture models have become popular tools for Bayesian nonparamet-
ric regression. In this paper, we examine their behavior in prediction and aim to highlight
the difficulties that emerge with increasing dimension of the covariate space. To overcome
these difficulties, we suggest a simple extension based on a nonparametric prior developed
in Wade et al. (2011) that maintains desirable conjugacy properties of the Dirichlet process
and leads to improved prediction. The motivating application is to Alzheimer’s disease
studies, where the focus is prediction of the disease status based on biomarkers obtained
from neuroimages. In this problem, a flexible nonparametric approach is needed to account
for the possible nonlinear behavior of the response and complex interaction terms, resulting
in improved diagnostic accuracy.

DP mixtures are widely used for Bayesian density estimation, see, for example, Ghosal
(2010) and references therein. A common way to extend these methods to nonparametric
regression and conditional density estimation is by modelling the joint distribution of the
response and the covariates (X,Y ) as a mixture of multivariate Gaussians (or more general
kernels). The regression function and conditional density estimates are indirectly obtained
from inference on the joint density, an idea which is similarly employed in classical kernel
regression (Scott, 1992, Chapter 8).

This approach, which we call the joint approach, was first introduced by Müller et al.
(1996), and subsequently studied by many others including Kang and Ghosal (2009); Shah-
baba and Neal (2009); Hannah et al. (2011); Park and Dunson (2010); and Müller and
Quintana (2010). The DP model uses simple local linear regression models as building
blocks and partitions the observed subjects into clusters, where within clusters, the linear
regression model provides a good fit. Even though within clusters the model is parametric,
globally, a wide range of complex distributions can describe the joint distribution, leading
to a flexible model for both the regression function and the conditional density.

Another related class of models is based on what we term the conditional approach.
In such models, the conditional density of Y given x, f(y|x), is modelled directly, as a
convolution of a parametric family f(y|x, θ) with an unknown mixing distribution Px for
θ. A prior is then given on the family of distributions {Px, x ∈ X} such that the Px’s
are dependent. Examples for the law of {Px, x ∈ X} start from the dependent DPs of
MacEachern (1999); Gelfand et al. (2005) and include Griffin and Steel (2006); Dunson
and Park (2008); Ren et al. (2011); Chung and Dunson (2009); and Rodriguez and Dunson
(2011), just to name a few. Such conditional models can approximate a wide range of
response distributions that may change flexibly with the covariates. However, computations
are often quite burdensome. One of the reasons the model examined here is so powerful is
its simplicity. Together, the joint approach and the clustering of the DP provide a built-in
technique to allow for changes in the response distribution across the covariate space, yet it
is simple and generally less computationally intensive than the nonparametric conditional
models based on dependent DPs.

The random allocation of subjects into groups in joint DP mixture models is driven by
the need to obtain a good approximation of the joint distribution of X and Y . This means
that subjects with similar covariates and similar relationship between the response and
covariates will tend to cluster together. However, difficulties emerge as p, the dimension of
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the covariate space, increases. As we will detail, even for moderately large p the likelihood
of x tends to dominate the posterior of the random partition, so that clusters are based
mainly on similarity in the covariate space. This behaviour is quite unappealing if the
marginal density of X is complex, as is typical in high dimensions, because it causes the
posterior to concentrate on partitions with many small clusters, as many kernels are needed
to describe f(x). This occurs even if the conditional density of Y given x is more well
behaved, meaning, a few kernels suffice for its approximation. Typical results include poor
estimates of the regression function and conditional density with unnecessarily wide credible
intervals due to small clusters and, consequently, poor prediction.

This inefficient performance may not disappear with increasing samples. On one hand,
appealing to recent theoretical results (Wu and Ghosal, 2008, 2010; Tokdar, 2011), one
could expect that as the sample size increases, the posterior on the unknown density f(x, y)
induced by the DP joint mixture model is consistent at the true density. In turn, posterior
consistency of the joint is likely to have positive implications for the behavior of the random
conditional density and regression function; see Rodriguez et al. (2009); Hannah et al.
(2011); and Norets and Pelenis (2012) for some developments in this direction. However, the
unappealing behaviour of the random partition that we described above could be reflected
in worse convergence rates. Indeed, recent results by Efromovich (2007) suggest that if the
conditional density is smoother than the joint, it can be estimated at a faster rate. Thus,
improving inference on the random partition to take into account the different degree of
smoothness of f(x) and f(y|x) appears to be a crucial issue.

Our goal in this paper is to show that a simple modification of the nonparametric prior
on the mixing distribution, that better models the random partition, can more efficiently
convey the information present in the sample, leading to more efficient conditional density
estimates in term of smaller errors and less variability, for finite samples. To achieve this
aim, we consider a prior that allows local clustering, that is, the clustering structure for the
marginal ofX and the regression of Y on xmay be different. We achieve this by replacing the
DP with the enriched Dirichlet process (EDP) developed in Wade et al. (2011). Like the DP,
the EDP is a conjugate nonparametric prior, but it allows a nested clustering structure that
can overcome the above issues and lead to improved predictions. An alternative proposal
is outlined in Petrone and Trippa (2009) and in unpublished work by Dunson et al. (2011).
However, the EDP offers a richer parametrization. In a Bayesian nonparametric framework,
several extensions of the DP have been proposed to allow local clustering (see, e.g., Dunson
et al. 2008; Dunson 2009; Petrone et al. 2009). However, the greater flexibility is often
achieved at the price of more complex computations. Instead, our proposal maintains an
analytically computable allocation rule, and therefore, computations are a straightforward
extension of those used for the joint DP mixture model. Thus, our main contributions are to
highlight the problematic behavior in prediction of the joint DP mixture model for increasing
p and also offer a simple solution based on the EDP that maintains computational ease.
In addition, we give results on random nested partitions that are implied by the proposed
prior.

This paper is organized as follows. In Section 2, we review the joint DP mixture model,
discuss the behavior of the random partition, and examine the predictive performance.
In Section 3, we propose a joint EDP mixture model, derive its random partition model,
and emphasize the predictive improvements of the model. Section 4 covers computational
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procedures. We provide a simulated example in Section 5 to demonstrate how the EDP
model can lead to more efficient estimators by making better use of information contained
in the sample. Finally, in Section 6, we apply the model to predict Alzheimer’s disease
status based on measurements of various brain structures.

2. Joint DP Mixture Model

A joint DP mixture model for multivariate density estimation and nonparametric regression
assumes that

(Xi, Yi)|P
iid∼ f(x, y|P ) =

∫
K(x, y|ξ)dP (ξ),

where Xi is p-dimensional, Y is usually univariate, and the mixing distribution P is given
a DP prior with scale parameter α > 0 and base measure P0, denoted by P ∼ DP(αP0).
Due to the a.s. discrete nature of the DP, the model reduces to a countable mixture

f(x, y|P ) =

∞∑
j=1

wjK(x, y|ξ̃j),

where the mixing weights wj have a stick breaking prior with parameter α and ξ̃j
iid∼ P0,

independently of the wj . This model was first developed for Bayesian nonparametric re-
gression by Müller et al. (1996), who assume multivariate Gaussian kernels Np+1(µ,Σ) with
ξ = (µ,Σ) and use a conjugate normal inverse Wishart prior as the base measure of the DP.
However, for even moderately large p, this approach is practically unfeasible. Indeed, the
computational cost of dealing with the full p+1 by p+1 covariance matrix greatly increases
with large p. Furthermore, the conjugate inverse Wishart prior is known to be too poorly
parametrized; in particular, there is a single parameter ν to control variability, regardless
of p (see Consonni and Veronese, 2001).

A more effective formulation of this model has been recently proposed by Shahbaba
and Neal (2009), based on two simple modifications. First, the joint kernel is decomposed
as the product of the marginal of X and the conditional of Y |x, and the parameter space
consequently expressed in terms of the parameters ψ of the marginal and the parameters θ of
the conditional. This is a classic reparametrization which, in the Gaussian case, is the basis
of generalizations of the inverse Wishart conjugate prior; see Brown et al. (1994). Secondly,
they suggest using simple kernels, assuming local independence among the covariates, that
is, the covariance matrix of the kernel for X is diagonal. These two simple modifications
allow several important improvements. Computationally, reducing the covariance matrix
to p variances can greatly ease calculations. Regarding flexibility of the base measure, the
conjugate prior now includes a separate parameter to control variability for each of the
p variances. Furthermore, the model still allows for local correlations between Y and X
through the conditional kernel of Y |x and the parameter θ. In addition, the factorization
in terms of the marginal and conditional and the assumption of local independence of
the covariates allow for easy inclusion of discrete or other types of response or covariates.
Note that even though, within each component, we assume independence of the covariates,
globally, there may be dependence.
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This extended model, in full generality, can be described through latent parameter
vectors as follows:

Yi|xi, θi
ind∼ Fy(·|xi, θi), Xi|ψi

ind∼ Fx(·|ψi), (1)

(θi, ψi)|P
iid∼ P, P ∼ DP(αP0θ × P0ψ).

Here the base measure P0θ × P0ψ of the DP assumes independence between the θ and the
ψ parameters, as this is the structurally conjugate prior for (θ, ψ), and thus, results in
simplified computations, but the model could be extended to more general choices. We
further assume that P0θ and P0ψ are absolutely continuous, with densities p0θ and p0ψ.
Since P is discrete a.s., integrating out the subject-specific parameters (θi, ψi), the model
for the joint density is

f(yi, xi|P ) =

∞∑
j=1

wjK(yi|xi, θ̃j)K(xi|ψ̃j), (2)

where the kernels K(y|x, θ) and K(x|ψ) are the densities associated to Fy(·|x, θ) and Fx(·|ψ).
In the Gaussian case, K(x|ψ) is the product of N(µx,h, σ

2
x,h) Gaussians, h = 1, . . . , p, and

K(y|x, θ) is N(xβ, σ2
y|x), where x = (1, x′). Shahbaba and Neal (2009) focus on the case

when Y is categorical and the local model for Y |x is a multinomial logit. Hannah et al.
(2011) extend the model to the case when, locally, the conditional distribution of Y |x
belongs to the class of generalized linear models (GLM), that is, the distribution of the
response belongs to the exponential family and the mean of the response can be expressed
a function of a linear combination of the covariates.

Model (2) allows for flexible conditional densities

f(y|x, P ) =

∑∞
j=1wjK(x|ψ̃j)K(y|x, θ̃j)∑∞

j′=1wj′K(x|ψ̃j′)
≡
∑
j

wj(x)K(y|x, θ̃j),

and nonlinear regression

E[Y |x, P ] =
∞∑
j=1

wj(x) E[Y |x, θ̃j ],

with E[Y |x, θ̃j ] = xβ∗j for Gaussian kernels. Thus, the model provides flexible kernel based
density and regression estimation, and MCMC computations are standard. However, the DP
only allows joint clusters of the parameters (θi, ψi), i = 1, . . . , n. We underline drawbacks
of such joint clustering in the following subsections.

2.1 Random Partition and Inference

One of the crucial features of DP mixture models is the dimension reduction and clustering
obtained due to the almost sure discreteness of P. In fact, this implies that a sample (θi, ψi),
i = 1, . . . , n from a DP presents ties with positive probability and can be conveniently
described in terms of the random partition and the distinct values. Using a standard
notation, we denote the random partition by a vector of cluster allocation labels ρn =
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(s1, . . . , sn), with si = j if (θi, ψi) is equal to the jth unique value observed, (θ∗j , ψ
∗
j ), for

j = 1, . . . , k, where k = k(ρn) is the number of groups in the partition ρn. Additionally,
we will denote by Sj = {i : si = j} the set of subject indices in the jth cluster and use the
notation y∗j = {yi : i ∈ Sj} and x∗j = {xi : i ∈ Sj}. We also make use of the short notation
x1:n = (x1, . . . , xn).

Often, the random probability measure P is integrated out and inference is based on
the posterior of the random partition ρn and the cluster-specific parameters (θ∗, ψ∗) ≡
(θ∗j , ψ

∗
j )
k
j=1;

p(ρn, θ
∗, ψ∗|x1:n, y1:n) ∝ p(ρn)

k∏
j=1

p0θ(θ
∗
j )p0ψ(ψ∗j )

k∏
j=1

∏
i∈Sj

K(xi|ψ∗j )K(yi|xi, θ∗j ).

As is well known (Antoniak, 1974), the prior induced by the DP on the random partition
is p(ρn) ∝ αk

∏k
j=1 Γ(nj), where nj is the size of Sj . Marginalizing out the θ∗, ψ∗, the

posterior of the random partition is

p(ρn|x1:n, y1:n) ∝ αk
k∏
j=1

Γ(nj)hx(x∗j )hy(y
∗
j |x∗j ). (3)

Notice that the marginal likelihood component in (3), say h(x1:n, y1:n|ρn), is factorized as
the product of the cluster-specific marginal likelihoods hx(x∗j )hy(y

∗
j |x∗j ) where hx(x∗j ) =∫

Ψ

∏
i∈Sj

K(xi|ψ)dP0ψ(ψ) and hy(y
∗
j |x∗j ) =

∫
Θ

∏
i∈Sj

K(yi|xi, θ)dP0θ(θ).
Given the partition and the data, the conditional distribution of the distinct values is

simple, as they are independent across clusters, with posterior densities

p(θ∗j |ρn, x1:n, y1:n) ∝ p0θ(θ
∗
j )
∏
i∈Sj

K(yi|xi, θ∗j ),

p(ψ∗j |ρn, x1:n, y1:n) ∝ p0ψ(ψ∗j )
∏
i∈Sj

K(xi|ψ∗j ). (4)

Thus, given ρn, the cluster-specific parameters (θ∗j , ψ
∗
j ) are updated based only on the

observations in cluster Sj . Computations are simple if p0θ and p0ψ are conjugate priors.
The above expressions show the crucial role of the random partition. From Equation (3),

we have that given the data, subjects are clustered in groups with similar behaviour in the
covariate space and similar relationship with the response. However, even for moderate p the
likelihood for x tends to dominate the posterior of the random partition, so that clusters are
determined only by similarity in the covariate space. This is particularly evident when the
covariates are assumed to be independent locally, that is, K(xi|ψ∗j ) =

∏p
h=1K(xi,h|ψ∗j,h).

Clearly, for large p, the scale and magnitude of changes in
∏p
h=1K(xi,h|ψ∗j,h) will wash

out any information given in the univariate likelihood K(yi|θ∗j , xi). Indeed, this is just the
behavior we have observed in practice in running simulations for large p (results not shown).

For a simple example demonstrating how the number of components needed to approxi-
mate the marginal of X can blow up with p, imagine X is uniformly distributed on a cuboid
of side length r > 1. Consider approximating

f0(x) =
1

rp
1(x ∈ [0, r]p) by fk(x) =

k∑
j=1

wjNp(x|µj , σ2
j Ip).
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Since the true distribution of x is uniform on the cube [0, r]p, to obtain a good approxima-
tion, the weighted components must place most of their mass on values of x contained in
the cuboid. Let Bσ(µ) denote a ball of radius σ centered at µ. If a random vector V is
normally distributed with mean µ and variance σ2Ip, then for 0 < ε < 1,

P (V ∈ Bσz(ε)(µ)) = 1− ε, where z(ε)2 = (χ2
p)
−1(1− ε),

that is, the square of z(ε) is the (1 − ε) quantile of the chi-squared distribution with p
degrees of freedom. For small ε, this means that the density of V places most of its mass
on values contained in a ball of radius σz(ε) centered at µ. For ε > 0, define

f̃k(x) =

k∑
j=1

wjN(x;µj , σ
2
j Ip) ∗ 1(x ∈ Bσjz(εj)(µj)),

where εj = ε/(kwj). Then, f̃k is close to fk (in the L1 sense):∫
Rp

|fk(x)− f̃k(x)|dx =

∫
Rp

k∑
j=1

wjN(x;µj , σ
2
j Ip) ∗ 1(x ∈ Bc

σjz(εj)(µj))dx = ε.

For f̃k to be close to f0, the parameters µj , σj , wj need to be chosen so that the balls
Bσjz(ε/(kwj))(µj) are contained in the cuboid. That means that centers of the balls are
contained in the cuboid,

µj ∈ [0, r]p, (5)

with further constraints on σ2
j and wj , so that the radius is small enough. In particular,

σjz

(
ε

kwj

)
≤ min(µ1, r − µ1, . . . , µp, r − µp) ≤

r

2
. (6)

However, as p increases the volume of the cuboid goes to infinity, but the volume of any ball
Bσjz(ε/(kwj))(µj) defined by (5) and (6) goes to 0 (see Clarke et al., 2009, Section 1.1). Thus,
just to reasonably cover the cuboid with the balls of interest, the number of components
will increase dramatically, and more so, when we consider the approximation error of the
density estimate. Now, as an extreme example, imagine that f0(y|x) is a linear regression
model. Even though one component is sufficient for f0(y|x), a large number of components
will be required to approximate f0(x), especially as p increases.

It appears evident from (4) this behavior of the random partition also negatively affects
inference on the cluster-specific parameters. In particular, when many kernels are required
to approximate the density of X with few observations within each cluster, the posterior
for θ∗j may be based on a sample of unnecessarily small size, leading to a flat posterior with
an unreliable posterior mean and large influence of the prior.

2.2 Covariate-dependent Urn Scheme and Prediction

Difficulties associated to the behavior of the random partition also deteriorate the predictive
performance of the model. Prediction in DP joint mixture models is based on a covariate-
dependent urn scheme (Park and Dunson, 2010; Müller and Quintana, 2010), such that
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conditionally on the partition ρn and x1:n+1, the cluster allocation sn+1 of a new subject
with covariate value xn+1 is determined as

sn+1|ρn, x1:n+1 ∼
ωk+1(xn+1)

c0
δk+1 +

k∑
j=1

ωj(xn+1)

c0
δj , (7)

where

ωk+1(xn+1) =
αh0,x(xn+1)

α+ n
,

ωj(xn+1) =
nj
∫
K(xn+1|ψ)p(ψ|x∗j )dψ

α+ n
≡ nj hj,x(xn+1)

α+ n
,

and c0 = p(xn+1|ρn, x1:n) is the normalizing constant. This urn scheme is a generalization
of the classic Pólya urn scheme that allows the cluster allocation probability to depend on
the covariates; the probability of allocation to cluster j depends on the similarity of xn+1 to
the xi in cluster j as measured by the predictive density hj,x. See Park and Dunson (2010)
for more details.

From the urn scheme (7) one obtains the structure of the prediction. The predictive
density at y for a new subject with a covariate of xn+1 is computed as

f(y|y1:n, x1:n+1)

=
∑
ρn

∑
sn+1

f(y|y1:n, x1:n+1, ρn, sn+1)p(sn+1|y1:n, x1:n+1, ρn) p(ρn|y1:n, x1:n+1)

=
∑
ρn

ωk+1(xn+1)

c0
h0,y(y|xn+1) +

k∑
j=1

ωj(xn+1)

c0
hj,y(y|xn+1)

 c0p(ρn|x1:n, y1:n)

p(xn+1|x1:n, y1:n)

=
∑
ρn

ωk+1(xn+1)

c
h0,y(y|xn+1) +

k∑
j=1

ωj(xn+1)

c
hj,y(y|xn+1)

 p(ρn|x1:n, y1:n), (8)

where c = p(xn+1|x1:n, y1:n). Thus, given the partition, the conditional predictive density is
a weighted average of the prior guess h0,y(y|x) ≡

∫
K(y|x, θ)dP0θ(θ) and the cluster-specific

predictive densities of y at xn+1,

hj,y(y|xn+1) =

∫
K(y|xn+1, θ)p(θ|x∗j , y∗j )dθ,

with covariate-dependent weights. The predictive density is obtained by averaging with
respect to the posterior of ρn. However, for moderate to large p, the posterior of the
random partition suffers the drawbacks discussed in the previous subsection. In particular,
too many small x-clusters lead to unreliable within cluster predictions based on small sample
sizes. Furthermore, the measure which determines similarity of xn+1 and the jth cluster
will be too rigid. Consequently, the resulting overall prediction may be quite poor.
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These drawbacks will also affect the point prediction, which, under quadratic loss, is

E[Yn+1|y1:n, x1:n+1]

=
∑
ρn

ωk+1(xn+1)

c
E0[Yn+1|xn+1] +

k∑
j=1

ωj(xn+1)

c
Ej [Yn+1|xn+1]

 p(ρn|x1:n, y1:n), (9)

where E0[Yn+1|xn+1] is the expectation of Yn+1 with respect to h0,y and Ej [Yn+1|xn+1] ≡
E[E[Yn+1|xn+1, θ

∗
j ]|x∗j , y∗j ] is the expectation of Yn+1 with respect to hj,y.

Example. When K(y|x, θ) = N(y;xβ, σ2) and the prior for (β, σ2) is the multivariate normal
inverse gamma with parameters (β0, C

−1, ay, by), (9) is

∑
ρn

ωk+1(xn+1)

c
xn+1β0 +

k∑
j=1

ωj(xn+1)

c
xn+1β̂j

 p(ρn|x1:n, y1:n),

where β̂j = Ĉ−1
j (Cβ0 + X ′jy

∗
j ), Ĉj = C + X ′jXj , Xj is a nj by p + 1 matrix with rows xi

for i ∈ Sj , and (8) is

ωk+1(xn+1)

c
T
(
y|xn+1β0,

by
ay
W−1, 2ay

)
+

k∑
j=1

ωj(xn+1)

c
T
(
y|xn+1β̂j ,

b̂y,j
ây,j

W−1
j , 2ây,j

)
,

where T (·;µ, σ2, ν) denotes the density of a random variable V such that (V − µ)/σ has a
t-distribution with ν degrees of freedom; ây,j = ay + nj/2;

b̂y,j = by +
1

2
(y∗j −Xjβ0)′(Inj −XjĈ

−1
j X ′j)(y

∗
j −Xjβ0);

W = 1− xn+1(C + x′n+1xn+1)−1x′n+1;

and Wj is defined as W with C replaced by Ĉj .

3. Joint EDP Mixture Model

As seen, the global clustering of the DP prior on P(Θ×Ψ), the space of probability measures
on Θ×Ψ, does not allow one to efficiently model the types of data discussed in the previous
section. Instead, it is desirable to use a nonparametric prior that allows many ψ-clusters,
to fit the complex marginal of X, and fewer θ-clusters. At the same time, we want to
preserve the desirable conjugacy properties of the DP, in order to maintain fairly simple
computations. To these aims, our proposal is to replace the DP with the more richly
parametrized enriched Dirichlet process (Wade et al., 2011). The EDP is conjugate and has
an analytically computable urn scheme, but it gives a nested partition structure that can
model the desired clustering behavior.

Recall that the model (1) was obtained by decomposing the joint kernel as the product
of the marginal and conditional kernels. The EDP is a natural alternative for the mixing
distribution of this model, as it is similarly based on the idea of expressing the unknown
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random joint probability measure P of (θ, ψ) in terms of the random marginal and con-
ditionals. This requires the choice of an ordering of θ and ψ, and this choice is problem
specific. In the situation described here, it is natural to consider the random marginal dis-
tribution Pθ and the random conditional Pψ|θ, to obtain the desired clustering structure.
Then, the EDP prior is defined by

Pθ ∼ DP(αθP0θ),

Pψ|θ(·|θ) ∼ DP(αψ(θ)P0ψ|θ(·|θ)), ∀θ ∈ Θ,

and Pψ|θ(·|θ) for θ ∈ Θ are independent among themselves and from Pθ. Together these
assumptions induce a prior for the random joint P through the joint law of the marginal and
conditionals and the mapping (Pθ, Pψ|θ)→

∫
Pψ|θ(·|θ)dPθ(θ). The prior is parametrized by

the base measure P0, expressed as

P0(A×B) =

∫
A
P0ψ|θ(B|θ)dP0θ(θ)

for all Borel sets A and B, and by a precision parameter αθ associated to θ and a collection
of precision parameters αψ(θ) for every θ ∈ Θ associated to ψ|θ. Note the contrast with
the DP, which only allows one precision parameter to regulate the uncertainty around P0.

The proposed EDP mixture model for regression is as in (1), but with

P ∼ EDP(αθ, αψ(θ), P0)

in place of P ∼ DP(αP0θ × P0ψ). In general, P0 is such that θ and ψ are dependent, but
here we assume the same structurally conjugate base measure as for the DP model (1), so
P0 = P0θ × P0ψ. Using the square breaking representation of the EDP (Wade et al., 2011,
Proposition 4) and integrating out the (θi, ψi) parameters, the model for the joint density
is

f(x, y|P ) =
∞∑
j=1

∞∑
l=1

wjwl|jK(x|ψ̃l|j)K(y|x, θ̃j).

This gives a mixture model for the conditional densities with more flexible weights

f(y|x, P ) =
∞∑
j=1

∑∞
l=1wl|jK(x|ψ̃l|j)∑∞

j′=1wj′
∑∞

l′=1wl′|j′K(x|ψ̃l′|j′)
K(y|x, θ̃j′) ≡

∞∑
j=1

w̃j(x)K(y|x, θ̃j).

3.1 Random Partition and Inference

The advantage of the EDP is the implied nested clustering. The EDP partitions subjects
in θ-clusters and ψ-subclusters within each θ-cluster, allowing the use of more kernels to
describe the marginal of X for each kernel used for the conditional of Y |x. The random
partition model induced from the EDP can be described as a nested Chinese Restaurant
Process (nCRP).

First, customers choose restaurants according to the CRP induced by Pθ ∼ DP(αθP0θ),
that is, with probability proportional to the number nj of customers eating at restaurant j,
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the (n+1)th customer eats at restaurant j, and with probability proportional to αθ, she eats

at a new restaurant. Restaurant are then colored with colors θ∗j
iid∼ P0θ. Within restaurant

j, customers sit at tables as in the CRP induced by the Pψ|θ∗j ∼ DP(αψ(θ∗j )P0ψ|θ(·|θ∗j )).

Tables in restaurant j are then colored with colors ψ∗l|j
iid∼ P0ψ|θ(·|θ∗j ).

This differs from the nCRP proposed by Blei et al. (2010), which had the alternative
aim of learning topic hierarchies by clustering parameters (topics) hierarchically along a
tree of infinite CRPs. In particular, each subject follows a path down the tree according to
a sequence of nested CRPs and the parameters of subject i are associated with the cluster
visited at a latent subject-specific level l of this path. Although related, the EDP is not a
special case with the tree depth fixed to 2; the EDP defines a prior on a multivariate random
probability measure on Θ×Ψ and induces a nested partition of the multivariate parameter
(θ, ψ), where the first level of the tree corresponds to the clustering of the θ parameters
and the second corresponds to the clustering of the ψ parameters. A generalization of
the EDP to a depth of D ≤ ∞ is related to Blei et al.’s nCRP with depth D ≤ ∞, but
only if one regards the parameters of each subject as the vector of parameters (ξ1, . . . , ξD)
associated to each level of the tree. Furthermore, this generalization of the EDP would
allow a more flexible specification of the mass parameters and possible correlation among
the nested parameters.

The nested partition of the EDP is described by ρn = (ρn,y, ρn,x), where ρn,y =
(sy,1, ..., sy,n) and ρn,x = (sx,1, ..., sx,n) with sy,i = j if θi = θ∗j , the jth distinct θ-value

in order of appearance, and sx,i = l if ψi = ψ∗l|j , the lth color that appeared inside the jth

θ-cluster. Additionally, we use the notation Sj+ = {i : sy,i = j}, with size nj , j = 1, . . . , k,
and Sl|j = {i : sy,i = j, sx,i = l}, with size nl|j , l = 1, . . . , kj . The unique parameters will be

denoted by θ∗ = (θ∗j )
k
j=1 and ψ∗ = (ψ∗1|j , . . . , ψ

∗
kj |j)

k
j=1. Furthermore, we use the notation

ρnj ,x = (sx,i : i ∈ Sj+) and y∗j = {yi : i ∈ Sj+}, x∗j = {xi : i ∈ Sj+}, x∗l|j = {xi : i ∈ Sl|j}.

Proposition 1 The probability law of the nested random partition defined from the EDP
is

p(ρn) =
Γ(αθ)

Γ(αθ + n)
αkθ

k∏
j=1

∫
Θ
αψ(θ)kj

Γ(αψ(θ))Γ(nj)

Γ(αψ(θ) + nj)
dP0θ(θ)

kj∏
l=1

Γ(nl|j).

Proof From independence of random conditional distributions among θ ∈ Θ,

p(ρn, θ
∗) = p(ρn,y)

k∏
j=1

p0θ(θ
∗
j )p(ρn,x|ρn,y, θ∗) = p(ρn,y)

k∏
j=1

p0θ(θ
∗
j )p(ρnj ,x|θ∗j ).

Next, using the results of the random partition model of the DP (Antoniak, 1974), we have

p(ρn, θ
∗) =

Γ(αθ)

Γ(αθ + n)
αkθ

k∏
j=1

p0θ(θ
∗
j )αψ(θ∗j )

kj
Γ(αψ(θ∗j ))Γ(nj)

Γ(αψ(θ∗j ) + nj)

kj∏
l=1

Γ(nl|j).

Integrating out θ∗ leads to the result.

From Proposition 1, we gain an understanding of the types of partitions preferred by the
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EDP and the effect of the parameters. If for all θ, αψ(θ) = αθP0θ({θ}), that is αψ(θ) = 0
if P0θ is non-atomic, we are back to the DP random partition model, see Proposition 2 of
Wade et al. (2011). In the case when P0θ is non-atomic, this means that the conditional
Pψ|θ is degenerate at some random location with probability one (for each restaurant—one
table).

In general, αψ(θ) may be a flexible function of θ, reflecting the fact that within some
θ-clusters more kernels may be required for good approximation of the marginal of X. In
practice, a common situation that we observe is a high value of αψ(θ) for average values
of θ and lower values of αψ(θ) for more extreme θ values, capturing homogeneous outlying
groups. In this case, a small value of αθ will encourage few θ-clusters, and, given θ∗, a large

αψ(θ∗j ) will encourage more ψ-clusters within the jth θ-cluster. The term
∏k
j=1

∏kj
l=1 Γ(nl|j)

will encourage asymmetrical (θ, ψ)-clusters, preferring one large cluster and several small
clusters, while, given θ∗, the term involving the product of beta functions contains parts
that both encourage and discourage asymmetrical θ-clusters. In the special case when
αψ(θ) = αψ for all θ ∈ Θ, the random partition model simplifies to

p(ρn) =
Γ(αθ)

Γ(αθ + n)
αkθ

k∏
j=1

α
kj
ψ

Γ(αψ)Γ(nj)

Γ(αψ + nj)

kj∏
l=1

Γ(nl|j).

In this case, the tendency of the term involving the product of beta functions is to slightly
prefer asymmetrical θ-clusters with large values of αψ boosting this preference.

As discussed in the previous section, the random partition plays a crucial role, as its pos-
terior distribution affects both inference on the cluster-specific parameters and prediction.
For the EDP, it is given by the following proposition.

Proposition 2 The posterior of the random partition of the EDP model is

p(ρn| x1:n, y1:n) ∝ αkθ
k∏
j=1

∫
Θ

Γ(αψ(θ))Γ(nj)

Γ(αψ(θ) + nj)
αψ(θ)kjdP0θ(θ)hy(y

∗
j |x∗j )

kj∏
l=1

Γ(nl|j)hx(x∗l|j).

The proof relies on a simple application of Bayes theorem. In the case of constant αψ(θ),
the expression for the posterior of ρn simplifies to

p(ρn| x1:n, y1:n) ∝αkθ
k∏
j=1

Γ(αψ)Γ(nj)

Γ(αψ + nj)
α
kj
ψ hy(y

∗
j |x∗j )

kj∏
l=1

Γ(nl|j)hx(x∗l|j).

Again, as in (3), the marginal likelihood component in the posterior distribution of ρn
is the product of the cluster-specific marginal likelihoods, but now the nested clustering
structure of the EDP separates the factors relative to x and y|x, being h(x1:n, y1:n|ρn) =∏k
j=1 hy(y

∗
j |x∗j )

∏kj
l=1 hx(x∗l|j). Even if the x-likelihood favors many ψ-clusters, now these

can be obtained by subpartitioning a coarser θ-partition, and the number k of θ-clusters
can be expected to be much smaller than in (3).

Further insights into the behavior of the random partition are given by the induced
covariate-dependent random partition of the θi parameters given the covariates, which is
detailed in the following propositions. We will use the notation Pn to denote the set of all
possible partitions of the first n integers.
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Proposition 3 The covariate-dependent random partition model induced by the EDP prior
is

p(ρn,y|x1:n) ∝ αkθ

k∏
j=1

∑
ρnj,x∈Pnj

∫
Θ

Γ(αψ(θ))Γ(nj)

Γ(αψ(θ) + nj)
αψ(θ)kjdP0θ(θ)

kj∏
l=1

Γ(nl|j)hx(x∗l|j).

Proof An application of Bayes theorem implies that

p(ρn|x1:n) ∝αkθ
k∏
j=1

∫
Θ

Γ(αψ(θ))Γ(nj)

Γ(αψ(θ) + nj)
αψ(θ)kjdP0θ(θ)

kj∏
l=1

Γ(nl|j)hx(x∗l|j). (10)

Integrating over ρn,x, or equivalently summing over all ρnj ,x in Pnj ,x for j = 1, . . . , k leads
to,

p(ρn,y|x1:n) ∝
∑
ρn1+,x

. . .
∑
ρnk+,x

αkθ

k∏
j=1

∫
Θ

Γ(αψ(θ))Γ(nj)

Γ(αψ(θ) + nj)
αψ(θ)kjdP0θ(θ)

kj∏
l=1

Γ(nl|j)hx(x∗l|j),

and, finally, since (10) is the product over the j terms, we can pull the sum over ρnj ,x within
the product.

This covariate-dependent random partition model will favor θ-partitions of the subjects
which can be further partitioned into groups with similar covariates, where a partition with
many desirable subpartitions will have higher mass.

Proposition 4 The posterior of the random covariate-dependent partition induced from
the EDP model is

p(ρn,y|x1:n, y1:n) ∝αkθ
k∏
j=1

hy(y
∗
j |x∗j )

×
∑

ρnj,x∈Pnj

∫
Θ

Γ(αψ(θ))Γ(nj)

Γ(αψ(θ) + nj)
αψ(θ)kjdP0θ(θ)

kj∏
h=1

Γ(nl|j)hx(x∗l|j).

The proof is similar in spirit to that of Proposition 3. Notice the preferred θ-partitions
will consist of clusters with a similar relationship between y and x, as measured by marginal
local model hy for y|x and similar x behavior, which is measured much more flexibly as a
mixture of the previous marginal local models.

The behavior of the random partition, detailed above, has important implications for
the posterior of the unique parameters. Conditionally on the partition, the cluster-specific
parameters (θ∗, ψ∗) are still independent, their posterior density being

p(θ∗, ψ∗|y1:n, x1:n, ρn) =
k∏
j=1

p(θ∗j |y∗j , x∗j )
kj∏
l=1

p(ψ∗l|j |x
∗
l|j),
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where

p(θ∗j |y∗j , x∗j ) ∝ p0θ(θ
∗
j )
∏
i∈Sj+

K(yi|θ∗j , xi), p(ψ∗l|j |x
∗
l|j) ∝ p0ψ(ψ∗l|j)

∏
i∈Sj,l

K(xi|ψ∗l|j).

The important point is that the posterior of θ∗j can now be updated with much larger
sample sizes if the data determines that a coarser θ-partition is present. This will result
in a more reliable posterior mean, a smaller posterior variance, and larger influence of the
data compared with the prior.

3.2 Covariate-dependent Urn Scheme and Prediction

Similar to the DP model, computation of the predictive estimates relies on a covariate-
dependent urn scheme. For the EDP, we have

sy,n+1|ρn, x1:n+1, y1:n) ∼ ωk+1(xn+1)

c0
δk+1 +

k∑
j=1

ωj(xn+1)

c0
δj , (11)

where c0 = p(xn+1|ρn, x1:n), but now the expression of the ωj(xn+1) takes into account the
possible allocation of xn+1 in subgroups, being

ωj(xn+1) =
∑
sx,n+1

p(xn+1|ρn, x1:n, y1:n, sy,n+1 = j, sx,n+1)p(sx,n+1|ρn, x1:n, y1:n, sy,n+1 = j).

From this, it can be easily found that

ωk+1(xn+1) =
αθ

αθ + n
h0,x(xn+1),

ωj(xn+1) =
nj

αθ + n

πkj+1|jh0,x(xn+1) +

kj∑
l=1

πl|jhl|j,x(xn+1)

 ,

where

πl|j =

∫
nl|j

αψ(θ) + nj
dP0θ(θ|x∗j , y∗j ), πkj+1|j =

∫
αψ(θ)

αψ(θ) + nj
dP0θ(θ).

In the case of constant αψ(θ) = αψ, these expressions simplify to

πl|j =
nl|j

αψ + nj
, πkj+1|j =

αψ
αψ + nj

.

Notice that (11) is similar to the covariate-dependent urn scheme of the DP model. The
important difference is that the weights, which measure the similarity between xn+1 and
the jth cluster, are much more flexible.

It follows, from similar computations as in Section 2.2, that the predictive density at y
for a new subject with a covariate value of xn+1 is

f(y|y1:n, x1:n+1)

=
∑
ρn

ωk+1(xn+1)

c
h0,y(y|xn+1) +

k∑
j=1

ωj(xn+1)

c
hj,y(y|xn+1)

 p(ρn|x1:n, y1:n), (12)
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where c = p(xn+1|x1:n, y1:n).

Under the squared error loss function, the point prediction of yn+1 is

E[Yn+1|y1:n, x1:n+1]

=
∑
ρn

ωk+1(xn+1)

c
E0[Yn+1|xn+1] +

k∑
j=1

ωj(xn+1)

c
Ej [Yn+1|xn+1]

 p(ρn|x1:n, y1:n). (13)

The expressions for the prediction density (12) and point prediction (13) are quite similar
to those of the DP, (8) and (9), respectively; in both cases, the cluster-specific predictive
estimates are averaged with covariate-dependent weights. However, there are two important
differences for the EDP model. The first is that the weights in (11) are defined with a more
flexible kernel; in fact, it is a mixture of the original kernels used in the DP model. This
means that we have a more flexible measure of similarity in the covariate space. The second
difference is that k will be smaller and nj will be larger with a high posterior probability,
leading to a more reliable posterior distribution of θ∗j due to larger sample sizes and better
cluster-specific predictive estimates. We will demonstrate the advantage of these two key
differences in simulated and applied examples of Sections 5 and 6.

4. Computations

Inference for the EDP model cannot be obtained analytically and must therefore be approx-
imated. To obtain approximate inference, we rely on Markov Chain Monte Carlo (MCMC)
methods and consider an extension of Algorithm 2 of Neal (2000) for the DP mixture model.
In this approach, the random probability measure, P, is integrated out, and the model is
viewed in terms of (ρn, θ

∗, ψ∗). This algorithm requires the use of conjugate base measures
P0θ and P0ψ. To deal with non-conjugate base measures, the approach used in Algorithm
8 of Neal (2000) can be directly adapted to the EDP mixture model.

Algorithm 2 is a Gibbs sampler which first samples the cluster label of each subject
conditional on the partition of all other subjects, the data, and (θ∗, ψ∗), and then samples
(θ∗, ψ∗) given the partition and the data. The first step can be easily performed thanks to
the Pólya urn which marginalizes the DP.

Extending Algorithm 2 for the EDP model is straightforward, since the EDP maintains
a simple, analytically computable urn scheme. In particular, the conditional probabilities
p(si|ρ−in−1, θ

∗, ψ∗, x1:n, y1:n) (provided in the Appendix) have a simple closed form, which

allows conditional sampling of the individual cluster membership indicators si, where ρ−in−1

denotes the partition of the n−1 subjects with the ith subject removed. To improve mixing,
we include an additional Metropolis-Hastings step; at each iteration, after performing the
n Gibbs updates for each si, we propose a shuffle of the nested partition structure obtained
by moving a ψ-cluster to be nested within a different or new θ-cluster. This move greatly
improves mixing. A detailed description of the sampler, including the Metropolis-Hastings
step, can be found in the Appendix.
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MCMC produces approximate samples, {ρsn, ψ∗s, θ∗s}Ss=1 , from the posterior. The pre-
diction given in Equation (13) can be approximated by

1

S

S∑
s=1

ωsk+1(xn+1)

ĉ
Ehy [Yn+1|xn+1] +

ks∑
j=1

ωsj (xn+1)

ĉ
EFy [Yn+1|xn+1, θ

∗s
j ],

where ωsj (xn+1) for j = 1, . . . , ks + 1, are as previously defined in (11) with (ρn, ψ
∗, θ∗)

replaced by (ρsn, ψ
∗s, θ∗s) and

ĉ =
1

S

S∑
s=1

ωsk+1(xn+1) +
ks∑
j=1

ωsj (xn+1).

For the predictive density estimate at xn+1, we define a grid of new y values and for each
y in the grid, we compute

1

S

S∑
s=1

ωsk+1(xn+1)

ĉ
hy(y|xn+1) +

ks∑
j=1

ωsj (xn+1)

ĉ
K(y|xn+1, θ

∗s
j ). (14)

Note that hyperpriors may be included for the precision parameters, αθ and αψ(·), and
the parameters of the base measures. For the simulated examples and application, a Gamma
hyperprior is assigned to αθ, and αψ(θ) for θ ∈ Θ are assumed to be i.i.d. from a Gamma
hyperprior. At each iteration, αsθ and αsψ(θ) at θ∗sj for j = 1, . . . , ks are approximate samples
from the posterior using the method described in Escobar and West (1995).

5. Simulated Example

We consider a toy example that demonstrates two key advantages of the EDP model; first,
it can recover the true coarser θ-partition; second, improved prediction and smaller credible
intervals result. The example shows that these advantages are evident even for a moderate
value of p, with more drastic differences as p increases. A data set of n = 200 points were
generated where only the first covariate is a predictor for Y . The true model for Y is
a nonlinear regression model obtained as a mixture of two normals with linear regression
functions and weights depending only on the first covariate;

Yi|xi
ind∼ p(xi,1)N(yi|β1,0 + β1,1xi,1, σ

2
1) + (1− p(xi,1))N(yi|β2,0 + β2,1xi,1, σ

2
2),

where

p(xi,1) =
τ1 exp

(
− τ21

2 (x1,i − µ1)2
)

τ1 exp
(
− τ21

2 (x1,i − µ1)2
)

+ τ2 exp
(
− τ22

2 (x1,i − µ2)2
) ,

with β1 = (0, 1)′, σ2
1 = 1/16, β2 = (4.5, 0.1)′, σ2

2 = 1/8 and µ1 = 4, µ2 = 6, τ1 = τ2 = 2.
The covariates are sampled from a multivariate normal,

Xi = (Xi,1, . . . , Xi,p)
′ iid∼ N(µ,Σ), (15)
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centered at µ = (4, . . . , 4)′ with a standard deviation of 2 along each dimension, that is,
Σh,h = 4. The covariance matrix Σ models two groups of covariates: those in the first group
are positively correlated among each other and the first covariate, but independent of the
second group of covariates, which are positively correlated among each other but indepen-
dent of the first covariate. In particular, we take Σh,l = 3.5 for h 6= l in {1, 2, 4, . . . , 2bp/2c}
or h 6= l in {3, 5, . . . , 2b(p− 1)/2c+ 1} and Σh,l = 0 for all other cases of h 6= l.

We examine both the DP and EDP mixture models;

Yi|xi, βi, σ2
y,i

ind∼ N(xiβi, σ
2
y,i), Xi|µi, σ2

x,i
ind∼

p∏
h=1

N(µi,h, σ
2
x,h,i),

(βi, σ
2
y,i, µi, σ

2
x,i)|P

iid∼ P

with P ∼ DP or P ∼ EDP. The conjugate base measure is selected; P0θ is a multivariate
normal inverse gamma prior and P0ψ is the product of p normal inverse gamma priors, that
is

p0θ(β, σ
2
y) = N(β;β0, σ

2
yC
−1)IG(σ2

y ; ay, by),

and

p0ψ(µ, σ2
x) =

p∏
h=1

N(µh;µ0,h, σ
2
x,hc

−1
h )IG(σ2

x,h; ax,h, bx,h).

For both models, we use the same subjective choice of the parameters of the base
measure. In particular, we center the base measure on an average of the true parameters
values with enough variability to recover the true model. A list of the prior parameters can
be found in the Appendix. We assign hyperpriors to the mass parameters, where for the

DP model, α ∼ Gamma(1, 1), and for the EDP model, αθ ∼ Gamma(1, 1), αψ(β, σ2
y)

iid∼
Gamma(1, 1) for all β, σ2

y ∈ Rp+1 × R+.

The computational procedures described in Section 4 were used to obtain posterior
inference with 20,000 iterations and burn in period of 5,000. An examination of the trace and
autocorrelation plots for the subject-specific parameters (βi, σ

2
y,i, µi, σ

2
x,i) provided evidence

of convergence. Additional criteria for assessing the convergence of chain, in particular, the
Geweke diagnostic, also suggested convergence, and the results are given in Table 6 of the
Appendix (see the R package coda for implementation and further details of the diagnostic).
It should be noted that running times for both models are quite similar, although slightly
faster for the DP.

The first main point to emphasize is the improved behavior of the posterior of the
random partition for the EDP. We note that for both models, the posterior of the partition
is spread out. This is because the space of partitions is very large and many partitions are
very similar, differing only in a few subjects; thus, many partitions fit the data well. We
depict representative partitions of both models with increasing p in Figure 1. Observations
are plotted in the x1–y space and colored according to the partition for the DP and the
θ-partition for the EDP. As expected, for p = 1 the DP does well at recovering the true
partition, but as clearly seen from Figure 1, for large values of p, the DP partition is
comprised of many clusters, which are needed to approximate the multivariate density of
X. In fact, the density of Y |x can be recovered with only two kernels regardless of p, and
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(b) DP, p=5
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(d) DP, p=15
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(e) EDP, p=1
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(f) EDP, p=5
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(g) EDP, p=10
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(h) EDP, p=15

Figure 1: The y partition with the highest estimated posterior probability. Data points are
plotted in the x1 vs. y space and colored by cluster membership with estimated
posterior probability included in the plot title.

p = 1 p = 5 p = 10 p = 15

k̂ α̂ k̂ α̂ k̂ α̂ k̂ α̂

DP 3 0.51 14 2.75 16 3.25 15 3.09
EDP 3 0.56 2 0.35 2 0.39 2 0.36

Table 1: The posterior mode number of y clusters, denoted k̂ for both models, and the
posterior mean of α, αθ, denoted α̂ for both models, as p increases.

the θ-partitions of the EDP depicted in Figure 1, with only two θ-clusters, are very similar
to the true configuration, even for increasing p. On the other hand, the (θ, ψ)-partition
of the EDP (not shown) consists of many clusters and resembles the partition of the DP
model.

This behavior is representative of the posterior distribution of the random partition
that, for the DP, has a large posterior mode of k and large posterior mean of α for larger
values of p, while most of the EDP θ-partitions are composed of only 2 clusters with only
a handful of subjects placed in the incorrect cluster and the posterior mean of αθ is much
smaller for large p. Table 1 summarizes the posterior of k for both models and the posterior
of the precision parameters α, αθ. It is interesting to note that posterior samples of αψ(θ)
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(f) EDP, p=5

* *
***

***
** * * ******* *

0 2 4 6 8

−
4

−
2

0
2

4
6

8

x1

E
[y

|x
]

●
●

●
●

●
●●

●
●

●

●
● ●

● ● ●●● ● ●

(g) EDP, p=10

* *
***

***
** * * ******* *

0 2 4 6 8

−
4

−
2

0
2

4
6

8

x1

E
[y

|x
]

●
●

●
●

●
●●

●
●

●

●
● ●

● ● ●●● ● ●

(h) EDP, p=15

Figure 2: The point predictions for 20 test samples of the covariates are plotted against x1

and represented with circles (DP in blue and EDP in red) with true prediction
as black stars. The bars about the prediction depict the 95% credible intervals.

p = 1 p = 5 p = 10 p = 15

l̂1 l̂2 l̂1 l̂2 l̂1 l̂2 l̂1 l̂2
DP 0.03 0.05 0.16 0.2 0.25 0.34 0.26 0.34

EDP 0.04 0.05 0.06 0.1 0.09 0.16 0.12 0.21

Table 2: Prediction error for both models as p increases.

for θ characteristic of the first cluster tend to be higher than posterior samples of αψ(θ)
for the second cluster; that is, more clusters are needed to approximate the density of X
within the first cluster. A non-constant αψ(θ) allows us to capture this behavior.

As discussed in Section 3, a main point of our proposal is the increased finite sample
efficiency of the EDP model. To illustrate this, we create a test set with m = 200 new co-
variates values simulated from (15) with maximum dimension p = 15 and compute the true
regression function E[Yn+j |xn+j ] and conditional density f(y|xn+j) for each new subject.
To quantify the gain in efficiency of the EDP model, we calculate the point prediction and
predictive density estimates from both models and compare them with the truth.

Judging from both the empirical l1 and l2 prediction errors, the EDP model outperforms
the DP model, with greater improvement for larger p; see Table 2. Figure 2 displays the
prediction against x1 for 20 new subjects. Recall that each new x1 is associated with
different values of (x2, . . . , xp), which accounts for the somewhat erratic behavior of the
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Figure 3: Predictive density estimate (DP in blue and EDP in red) for the first new subject
with true conditional density in black. The pointwise 95% credible intervals are
depicted with dashed lines (DP in blue and EDP in red).
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Figure 4: Predictive density estimate (DP in blue and EDP in red) for the fifth new subject
with true conditional density in black. The pointwise 95% credible intervals are
depicted with dashed lines (DP in blue and EDP in red).

p = 1 p = 5 p = 10 p = 15

DP 0.13 0.5 0.66 0.68
EDP 0.12 0.15 0.24 0.29

Table 3: l1 density regression error for both models as p increases.

prediction as a function of x1 for increasing p. The comparison of the credible intervals is
quite interesting. For p > 1, the unnecessarily wide credible intervals for the DP regression
model stand out in the first row of Figure 2. This is due to small cluster samples sizes for
the DP model with p > 1.

The density regression estimates for all new subjects were computed by evaluating (14)
at a grid of y-values. As a measure of the performance of the models, the empirical l1
distance between the true and estimated conditional densities for each of the new covariate
values is shown in Table 3. Again the EDP model outperforms the DP model. Figures
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3 and 4 display the true conditional density (in black) for two new covariate values with
the estimated conditional densities in blue for the DP and red for the EDP. It is evident
that for p > 1 the density regression estimates are improved and that the pointwise 95%
credible intervals are almost uniformly wider both in y and x for the DP model, sometimes
drastically so. It is important to note that while the credible intervals of the EDP model
are considerably tighter, they still contain the true density.

6. Alzheimer’s Disease Study

Our primary goal in this section is to show that the EDP model leads to improved inference
in a real data study with the important goal of diagnosing Alzheimer’s disease (AD). In
particular, EDP leads to improved predictive accuracy, tighter credible intervals around the
predictive probability of having the disease, and a more interpretable clustering structure.

Alzheimer’s disease is a prevalent form of dementia that slowly destroys memory and
thinking skills, and eventually even the ability to carry out the simplest tasks. Unfortu-
nately, a definitive diagnosis cannot be made until autopsy. However, the brain may show
severe evidence of neurobiological damage even at early stages of the disease before the
onset of memory disturbances. As this damage may be difficult to detect visually, improved
methods for automatically diagnosing disease based on MRI neuroimaging is needed.

Data were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database,
which is publicly accessible at UCLA’s Laboratory of Neuroimaging.1 The data set consists
of summaries of fifteen brain structures computed from structural MRI obtained at the first
visit for 377 patients, of which 159 have been diagnosed with AD and 218 are cognitively
normal (CN). The covariates include whole brain volume (BV), intracranial volume (ICV),
volume of the ventricles (VV), left and right hippocampal volume (LHV, RHV), volume of
the left and right inferior lateral ventricle (LILV, RILV), thickness of the left and right mid-
dle temporal cortex (LMT, RMT), thickness of the left and right inferior temporal cortex
(LIT, RIT), thickness of the left and right fusiform cortex (LF, RF), and thickness of the
left and right entorhinal cortex (LE, RE). Volume is measured in cm3 and cortical thickness
is measured in mm.

The response is a binary variable with 1 indicating a cognitively normal subject and 0
indicating a subject who has been diagnosed with AD. The covariate is the 15-dimensional

1. The ADNI was launched in 2003 by the National Institute on Ageing (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private
pharmaceutical companies and non-profit organizations, as a $ 60 million, 5-year public-private partner-
ship. The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI),
positron emission tomography (PET), other biological markers, and clinical and neuropsychological as-
sessment can be combined to measure the progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD). Determination of sensitive and specific markers of very early AD progression
is intended to aid researchers and clinicians to develop new treatments and monitor their effectiveness,
as well as lessen the time and cost of clinical trials. The Principal Investigator of this initiative is Michael
W. Weiner, MD, VA Medical Center and University of California-San Francisco. ADNI is the result of
efforts of many co-investigators from a broad range of academic institutions and private corporations,
and subjects have been recruited from over 50 sites across the U.S. and Canada. The initial goal of ADNI
was to recruit 800 adults, ages 55 to 90, to participate in the research, approximately 200 cognitively
normal older individuals to be followed for 3 years, 400 people with MCI to be followed for 3 years and
200 people with early AD to be followed for 2 years. For up-to-date information, see www.adni-info.org.
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vector of measurements of various brain structures. Our model builds on local probit models
and can be stated as follows:

Yi|xi, βi
ind∼ Bern(Φ(xiβi)), Xi|µi, σ2

i
ind∼

p∏
h=1

N(µi,h, σ
2
i,h),

(βi, µi, σ
2
i )|P

iid∼ P, P ∼ Q.

The analysis is first carried using a DP prior for P with mass parameter α and base
measure P0β × P0ψ, with P0β = N(0p, C

−1) and P0ψ defined as the product of p normal
inverse gamma measures. A list of the prior parameters can be found in the Appendix. The
mass parameter is given a hyperprior of α ∼ Gamma(1, 1).

The prior parameters were carefully selected based on prior knowledge of the brain
structures and their relationship with the disease and empirical evidence. The base measure
for β was chosen to be centered on zero because even though we have prior belief about how
each structure is related to AD individually, the joint relationship may be more complex.
For simplicity, the covariance matrix is diagonal. The variances were chosen to reflect
belief in the maximum range of the coefficient for each brain structure. We also explored
the idea of defining C through a g-prior, where C−1 = g(X ′X)−1 with g fixed or given
a hyperprior. However, this proposal was unsatisfactory because prior information about
the maximum range of the coefficient for each brain structure is condensed in a single
parameter g. For example, there was no way to incorporate the belief that while the
variability of hippocampal volume and inferior lateral ventricular volume are similar, the
correlation between hippocampal volume and disease status is stronger. The parameters
of the base measure for X were chosen based on prior knowledge and exploratory analysis
of the average volume and cortical thickness of the brain structures (µ0) and variability
(bx). The parameter ax was chosen to equal 2, so that mean of the inverse gamma prior is
properly defined and the variance is relatively large. The parameter cx is equal to 1/2 to
increase variability of µ given σx.

In this example, correlation between the measurements of the brain structures is ex-
pected. Furthermore, univariate histograms of the covariates show non-normal behavior.
These facts suggest that many Gaussian kernels with local independence of the covariates
will be needed to approximate the density of X. The conditional density of the response,
on the other hand, may not be so complicated. This motivates the choice of an EDP prior.
We emphasize that the same conjugate base measure is used with the identical subjective
choice of parameters. The hyperpriors for the mass parameter of

αβ ∼ Gamma(1, 1), αψ(β)
iid∼ Gamma(1, 1) ∀β ∈ Rp+1.

If αψ(β) ≈ 0 for all β ∈ Rp+1 the model converges to a DP mixture model, suggesting that
the extra flexibility of the EDP is unnecessary. On the other hand, αβ ≈ 0 suggests that a
linear model is sufficient for modelling the conditional response distribution.

The data were randomly split into a training sample of size 185 and a test sample of
size 192. Inference is based on the algorithm explained in Section 4 with the added step of
sampling a latent normal variable to deal with the binary response. For both results the
number of iterations is 50,000 with burn in period of 10,000. An examination of the trace
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Figure 5: Data points are plotted in the covariate space and colored by the partition with
the highest posterior probability for the DP model.
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Figure 6: Data points are plotted in the covariate space and colored by the β-partition with
the highest posterior probability for the EDP model.

and autocorrelation plots for the subject-specific parameters (βi, µi, σ
2
i ) provided evidence

of convergence, which was further checked via the Geweke and Raftery and Lewis methods.
Computation times are quite similar for both models, although slightly faster for the DP.

The DP based model requires many kernels to approximate the joint distribution, while
the EDP prefers a coarser β-partition for the conditional density of Y |x. The posterior of k
and the precision parameters α and αβ are summarized and compared for the two models in
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k̂ k̃ [kl, ku] α̂ [αl, αu]

DP 16 16 [14,19] 3.41 [1.79, 5.59]
EDP 3 4 [2,7] 0.71 [0.11, 1.76]

Table 4: The posterior of k for both models is summarized through the posterior mode,
denoted k̂; the posterior median, denoted k̃; and the 95% credible intervals, de-
noted [kl, ku]. The posterior of the precision parameter α for the DP and αβ for
the EDP is summarized through the posterior mode, denoted α̂, and 95% credible
intervals, denoted [αl, αu].

Accuracy AUC MXE

DP 82.81% 0.88 0.42
EDP 86.46% 0.90 0.38

Table 5: Predictive accuracy, area under the ROC curve (AUC), and mean cross entropy
(MXE) for the test set.

Table 4. Posterior samples of αψ(β) tend to be higher for average values of β, meaning that
more kernels are needed for the density of X within such β-clusters. The added flexibility
of a β-dependent precision parameter for ψ allows us to capture this behavior.

The posterior of the partition is quite spread out across many similar partitions for the
DP and EDP models. A representative partition, the partition with the highest estimated
posterior probability, for the DP mixture models is depicted in Figure 5, where the data
points are plotted in the covariate space and colored by the partition. Notice the high
number of kernels with small sample sizes within each cluster. Figure 6 depicts a repre-
sentative β-partition for the EDP mixture model, where the data points are colored by the
β-partition. Not only are there fewer clusters with larger sample sizes, but the clusters
are much more interpretable as well. In particular, the posterior concentrates on partitions
similar to the one depicted in Figure 6 with a general cluster and two extreme clusters
of 100% AD and 100% non-AD patients (the green and black clusters, respectively). The
black cluster of non-AD patients display high brain volume compared to intracranial vol-
ume, low ventricular volume, high hippocampal volume, and high cortical thickness; this
behavior could be expected as AD is associated with shrinking brain tissue and increased
cerebrospinal fluid, while intracranial volume remained fixed. The green cluster of AD pa-
tients display lower hippocampal volume and interestingly, low intracranial volume and low
cortical thickness with a “right-less-than-left” pattern.

To quantify the gain in efficiency with the EDP model, we computed the predictive
accuracy, area under the ROC curve (AUC), and mean cross entropy (MXE) for the test
set, using the ROCR package in R. The larger sample sizes of the EDP model improve all
predictive criteria when compared to the DP model (Table 5).

Finally, we note that by allowing for a coarser β-partition when appropriate, the in-
creased cluster sample sizes not only result in improved accuracy for the EDP model but
also allow for much tighter credible intervals. This is shown in Figure 7 which depicts the
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(b) EDP

Figure 7: Predicted probability of being healthy against subject index for 10 new subjects
represented with circles (DP in blue and EDP in red) with the true outcome as
black stars. The bars about the prediction depict the 95% credible intervals.

estimated probability of being healthy for 10 subjects along with lower and upper bounds for
95% credible intervals, as a function of subject index. Notice the tighter credible intervals
for the EDP model with some dramatic examples given by subjects 1 and 8.

We also compared with Gaussian process (GP), support vector machine (SVM), and
random forest (RF) models, which are implemented in the kernlab and randomForest pack-
ages in R. The results of the EDP are comparable with these other standard nonparametric
classification methods, in particular the predictive accuracy of the GP, SVM, and RF models
are 85.42%, 86.46%, and 86.46%, respectively. The results remain quite comparable with
different random splits into training and test sets, which also confirmed the conclusions
suggested by Figures 5, 6, and 7 and Tables 4 and 5.

7. Discussion

In this paper, we have highlighted a drawback of DP mixture models when the aim is
estimation of the regression function and conditional distribution. We have proposed a
simple, but efficient, solution based on the EDP, which overcomes the problems of the DP
mixture model by introducing a nested partition structure. An important feature of the
proposed EDP mixture model is that computations remain relatively simple; unlike other
modifications of the DP for conditional distribution modeling we maintain the ability to
marginalize out the random measure and induce a simple urn scheme. In scaling up to
larger numbers of predictors p, this simplified structure should be advantageous.
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Appendix A. Computations

This appendix contains further details of the MCMC algorithm described in Section 4.
The conditional distribution of si = (si,y, si,x), which denotes the vector containing the

y-cluster and x-cluster membership for subject i, is

si|ρ−in−1, θ
∗, ψ∗, x1:n, y1:n ∼

ωk−i+1,1(yi, xi)

c1
δ(k−i+1,1)

+

k−i∑
j=1

ωj,k−i
j +1(yi, xi)

c1
δ(j,k−i

j +1) +

k−i
j∑
l=1

ωj,l(yi, xi)

c1
δ(j,l)

 , (16)

where for j = 1, . . . , k−i and l = 1, . . . , k−ij ,

ωj,l(yi, xi) =
n−ij n

−i
l|j

αψ(θ∗−ij ) + n−ij
K(yi|xi, θ∗−ij )K(xi|ψ∗−il|j ),

for j = 1, . . . , k−i ,

ωj,k−i
j +1(yi, xi) =

n−ij αψ(θ∗−ij )

αψ(θ∗−ij ) + n−ij
K(yi|xi, θ∗−ij )hx(xi),

ωk−i+1,1(yi, xi) = αθhy(yi|xi)hx(xi),

and

c1 = ωk−i+1,1(yi, xi) +
k−i∑
j=1

ωj,k−i
j +1(yi, xi) +

k−i
j∑
l=1

ωj,l(yi, xi)

 .

Here, ρ−in−1 represents the partition of the n−1 subjects with the ith subject removed where

k−i, k−ij , n−ij , n
−i
l|j are defined from ρ−in−1. Similarly, θ∗−ij and ψ∗−il|j are the unique cluster

parameters associated to the clusters of ρ−in−1.
Next, we describe the Metropolis-Hastings step, which proposes to move a ψ-cluster to

be nested with a different or new θ-cluster. This step is separated into three possible moves:
1) a ψ-cluster, among those within θ-clusters with more than one ψ-cluster, is moved to
a different θ-cluster; 2) a ψ-cluster, among those within θ-clusters with more than one ψ-
cluster, is moved to a new θ-cluster; 3) a ψ-cluster, among those within θ-clusters with only
one ψ-cluster, is moved to a different θ-cluster.
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Let kx,2+ be the number of ψ-clusters within a θ-cluster with more than one ψ-cluster
and kx,1 be the number of ψ-clusters within a θ-cluster with only one ψ-cluster. The
proposal distributions for the three moves are as follows. For the first move, the ψ-cluster
is uniformly selected with probability k−1

x,2+ and moved within a different θ-cluster selected

uniformly with probability (k − 1)−1. For the second, the ψ-cluster is again uniformly
selected with probability k−1

x,2+ and moved to a new cluster. Lastly, for the third, the ψ-

cluster is uniformly selected with probability k−1
x,1 and moved within a different θ-cluster

selected uniformly with probability (k − 1)−1.
Let ρ∗n be the proposed partition defined by moving ψ-cluster l in θ-cluster j to θ-

cluster h. For the first move, h ∈ {1, . . . , j − 1, j + 1, . . . , k} and the acceptance probability
is min(1, p), where

p =
Γ(nj − nl|j)Γ(nh + nl|j)

Γ(nj)Γ(nh)

Γ(αψ(θ∗j ) + nj)Γ(αψ(θ∗h) + nh)

Γ(αψ(θ∗j ) + nj − nl|j)Γ(αψ(θ∗h) + nh + nl|j)

αψ(θ∗h)

αψ(θ∗j )∏
i∈Sl|j

K(yi|xi, θ∗h)∏
i∈Sl|j

K(yi|xi, θ∗j )
kx,2+

k∗x,2+

,

and k∗x,2+ is the number of ψ-clusters within a θ-cluster with more than one ψ-cluster under
the proposed partition. For the second move, h = k+ 1 and let θ∗k+1 ∼ P (θ|y∗l|j , x

∗
l|j) be the

proposed parameter of the k + 1 θ-cluster. The acceptance probability is min(1, p), where

p =
Γ(nj − nl|j)Γ(nl|j)

Γ(nj)

Γ(αψ(θ∗j ) + nj)Γ(αψ(θ∗k+1))

Γ(αψ(θ∗j ) + nj − nl|j)Γ(αψ(θ∗k+1) + nl|j)
αθ
αψ(θ∗k+1)

αψ(θ∗j )

hy(y
∗
l|j |x

∗
l|j)∏

i∈Sl|j
K(yi|xi, θ∗j )

kx,2+

k∗x,1k
,

and k∗x,1 is the number of ψ-clusters within a θ-cluster with only one ψ-cluster under the
proposed partition. Finally, for the third move, h ∈ {1, . . . , j − 1, j + 1, . . . , k} and the
acceptance probability is min(1, p), where

p =
Γ(nh + nl|j)

Γ(nl|j)Γ(nh)

Γ(αψ(θ∗j ) + nl|j)Γ(αψ(θ∗h) + nh)

Γ(αψ(θ∗j ))Γ(αψ(θ∗h) + nh + nl|j)

1

αθ

αψ(θ∗h)

αψ(θ∗j )

∏
i∈Sl|j

K(yi|xi, θ∗h)

hy(y∗l|j |x
∗
l|j)

kx,1k − 1

k∗x,2+

.

Each iteration of the MCMC algorithm is summarized as follows:

• For i = 1, . . . , n,

– if si,y = j and n−ij = 0,

∗ then remove θ∗j and ψ∗l|j from (θ∗, ψ∗).

– Otherwise, if si,y = j, si,x = l and n−il|j = 0,

∗ then remove ψ∗l|j from ψ∗.

– Next, sample si given ρ−in−1, θ
∗, ψ∗, x1:n, y1:n as defined by Equation (16).

– If si,y = k−i + 1,
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p = 1 p = 5 p = 10 p = 15

β0,i
DP -0.91 -0.13 -1.22 -3.15

EDP -1.86 0.59 1.24 -0.67

β1,i
DP 0.61 -0.22 0.79 3.25

EDP 1.54 -0.64 2.08 -0.42

σ2
y,i

DP -1.51 1.35 -0.13 1.06
EDP 0.49 1.1 -2.09 -3.51

Table 6: The Z-score from Geweke diagnostic for the subject-specific θ-parameters of one
subject.

∗ sample θ∗
k−i+1

given yi, xi and ψ∗
1|k−i+1

given xi and concatenate them to

(θ∗, ψ∗).

– Otherwise, if si,y = j and si,x = k−ij + 1,

∗ sample ψ∗
k−i
j +1|j given xi and concatenate it to ψ∗.

• Carry out the first move described in the Metropolis-Hastings step.

• Sample u ∼ U(0, 1). If u < 0.5, perform move 2, otherwise perform move 3.

• For j = 1, . . . , k,

– sample θ∗j given (y∗j , x
∗
j ), that is, from the posterior based on p0θ(θ

∗
j ) and∏

i∈Sj+
K(yi|xi, θ∗j ),

– and for l = 1, . . . , kj ,

∗ sample ψ∗l|j given x∗l|j , that is, from the posterior based on p0ψ(ψ∗l|j) and∏
i∈Sj,l

K(xi|ψ∗l|j).

Appendix B. Simulation Study

The prior parameters used for the simulation study in Section 5 are β0 = (2.25, 0.55, 0, . . . , 0)′,
C = diag (0.05, 1, . . . , 1); ay = 2, by = 0.1, µ0 = (4, . . . , 4)′, c = (0.25, . . . , 0.25)′; ax =
(2, . . . , 2)′, bx = (1, . . . , 1)′.

Table 6 lists the Z-scores for the θ parameters of the one subject from the Geweke
diagnostic for assessing convergence of the MCMC chain, which are slightly high for p = 10
and p = 15 but a thinning of 2 improves the scores.

Appendix C. Alzheimer’s Disease Study

For the prior parameters for the AD study in Section 6, C−1 is a diagonal matrix with
diagonal elements (400, .0001, .0001, 0.0004, 4, 4, .25, .25, 4, 4, 4, 4, 1, 1, 1, 1), and
µ0 = (1000, 1450, 45, 3.25, 3.25, 2, 2, 2.4, 2.4, 2.5, 2.5, 2.3, 2.3, 2.75, 2.75)′; cx,h = 1/2, ax,h =
2 ∀h; and bx = (10000, 10000, 150, .25, .25, .25, .25, .04, .04, .04, .04, .04, .04, .1, .1)′.
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