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Abstract

An undirected graphical model is a joint probability distribution defined on an undirected
graph G*, where the vertices in the graph index a collection of random variables and
the edges encode conditional independence relationships among random variables. The
undirected graphical model selection (UGMS) problem is to estimate the graph G* given
observations drawn from the undirected graphical model. This paper proposes a framework
for decomposing the UGMS problem into multiple subproblems over clusters and subsets
of the separators in a junction tree. The junction tree is constructed using a graph that
contains a superset of the edges in G*. We highlight three main properties of using junction
trees for UGMS. First, different regularization parameters or different UGMS algorithms
can be used to learn different parts of the graph. This is possible since the subproblems
we identify can be solved independently of each other. Second, under certain conditions,
a junction tree based UGMS algorithm can produce consistent results with fewer obser-
vations than the usual requirements of existing algorithms. Third, both our theoretical
and experimental results show that the junction tree framework does a significantly better
job at finding the weakest edges in a graph than existing methods. This property is a
consequence of both the first and second properties. Finally, we note that our framework
is independent of the choice of the UGMS algorithm and can be used as a wrapper around
standard UGMS algorithms for more accurate graph estimation.

Keywords: Graphical models, Markov random fields, junction trees, model selection,
graphical model selection, high-dimensional statistics, graph decomposition

1. Introduction

An undirected graphical model is a joint probability distribution Px of a random vector X
defined on an undirected graph G*. The graph G* consists of a set of vertices V = {1,...,p}
and a set of edges F(G*) C V x V. The vertices index the p random variables in X and
the edges E(G*) characterize conditional independence relationships among the random
variables in X (Lauritzen, 1996). We study undirected graphical models (also known as
Markov random fields) so that the graph G* is undirected, that is, if an edge (,j) € E(G*),
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(8) Graph G* (b) Graph H (c) Junction tree (d) Region graph

Figure 1: Our framework for estimating the graph in (a) using (b) computes the junction
tree in (c) and uses a region graph representation in (d) of the junction tree to
decompose the UGMS problem into multiple subproblems.

then (j,7) € E(G*). The undirected graphical model selection (UGMS) problem is to
estimate G* given n observations X" = (X W ... X (")) drawn from Pyx. This problem is
of interest in many areas including biological data analysis, financial analysis, and social
network analysis; see Koller and Friedman (2009) for some more examples.

This paper studies the following problem: Given the observations X"
drawn from Px and a graph H that contains all the true edges E(G*), and
possibly some extra edges, estimate the graph G*.

A natural question to ask is how can the graph H be selected in the first place? One
way of doing so is to use screening algorithms, such as in Fan and Lv (2008) or in Vats (to
appear), to eliminate edges that are clearly non-existent in G*. Another method can be
to use partial prior information about X to remove unnecessary edges. For example, this
could be based on (i) prior knowledge about statistical properties of genes when analyzing
gene expressions, (ii) prior knowledge about companies when analyzing stock returns, or
(iii) demographic information when modeling social networks. Yet another method can be
to use clever model selection algorithms that estimate more edges than desired. Assuming
an initial graph H has been computed, our main contribution in this paper is to show how
a junction tree representation of H can be used as a wrapper around UGMS algorithms for
more accurate graph estimation.

1.1 Overview of the Junction Tree Framework

A junction tree is a tree-structured representation of an arbitrary graph (Robertson and
Seymour, 1986). The vertices in a junction tree are clusters of vertices from the original
graph. An edge in a junction tree connects two clusters. Junction trees are used in many
applications to reduce the computational complexity of solving graph related problems
(Arnborg and Proskurowski, 1989). Figure 1(c) shows an example of a junction tree for the
graph in Figure 1(b). Notice that each edge in the junction tree is labeled by the set of
vertices common to both clusters connected by the edge. These set of vertices are referred
to as a separator.

Let H be a graph that contains all the edges in G*. We show that the UGMS problem
can be decomposed into multiple subproblems over clusters and subsets of the separators
in a junction tree representation of H. In particular, using the junction tree, we construct
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Figure 2: Structure of the graph used to analyze the junction tree framework for UGMS.

a region graph, which is a directed graph over clusters of vertices. An example of a region
graph for the junction tree in Figure 1(c) is shown in Figure 1(d). The first two rows in the
region graph are the clusters and separators of the junction tree, respectively. The rest of the
rows contain subsets of the separators.! The multiple subproblems we identify correspond
to estimating a subset of edges over each cluster in the region graph. For example, the
subproblem over the cluster {1,2,3,5} in Figure 1(d) estimates the edges (2,3) and (2,5).

We solve the subproblems over the region graph in an iterative manner. First, all
subproblems in the first row of the region graph are solved in parallel. Second, the region
graph is updated taking into account the edges removed in the first step. We keep solving
subproblems over rows in the region graph and update the region graph until all the edges
in the graph H have been estimated.

As illustrated above, our framework depends on a junction tree representation of the
graph H that contains a superset of the true edges. Given any graph, there may exist several
junction tree representations. An optimal junction tree is a junction tree representation
such that the maximum size of the cluster is as small as possible. Since we apply UGMS
algorithms to the clusters of the junction tree, and the complexity of UGMS depends on
the number of vertices in the graph, it is useful to apply our framework using optimal
junction trees. Unfortunately, it is computationally intractable to find optimal junction
trees (Arnborg et al., 1987). However, there exists several computationally efficient greedy
heuristics that compute close to optimal junction trees (Kjaerulff, 1990; Berry et al., 2003).
We use such heuristics to find junction trees when implementing our algorithms in practice.

1.2 Advantages of Using Junction Trees

We highlight three main advantages of the junction tree framework for UGMS.

Choosing Regularization Parameters and UGMS Algorithms: UGMS algorithms typically
depend on a regularization parameter that controls the number of estimated edges. This
regularization parameter is usually chosen using model selection algorithms such as cross-
validation or stability selection. Since each subproblem we identify in the region graph
is solved independently, different regularization parameters can be used to learn different
parts of the graph. This has advantages when the true graph G* has different charac-
teristics in different parts of the graph. Further, since the subproblems are independent,
different UGMS algorithms can be used to learn different parts of the graph. Our numerical
simulations clearly show the advantages of this property.

Reduced Sample Complexity: One of the key results of our work is to show that in many
cases, the junction tree framework is capable of consistently estimating a graph under weaker
conditions than required by previously proposed methods. For example, we show that if

1. See Algorithm 1 for details on how to exactly construct the region graph.
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G* consists of two main components that are separated by a relatively small number of
vertices (see Figure 2 for a general example), then, under certain conditions, the number of
observations needed for consistent estimation scales like log(pmin), where ppi, is the number
of vertices in the smaller of the two components. In contrast, existing methods are known
to be consistent if the observations scale like log p, where p is the total number of vertices. If
the smaller component were, for example, exponentially smaller than the larger component,
then the junction tree framework is consistent with about log log p observations. For generic
problems, without structure that can be exploited by the junction tree framework, we
recover the standard conditions for consistency.

Learning Weak FEdges: A direct consequence of choosing different regularization parameters
and the reduced sample complexity is that certain weak edges, not estimated using standard
algorithms, may be estimated when using the junction tree framework. We show this
theoretically and using numerical simulations on both synthetic and real world data.

1.3 Related Work

Several algorithms have been proposed in the literature for learning undirected graph-
ical models. Some examples include References Spirtes and Glymour (1991), Kalisch
and Biihlmann (2007), Banerjee et al. (2008), Friedman et al. (2008), Meinshausen and
Bithlmann (2006), Anandkumar et al. (2012a) and Cai et al. (2011) for learning Gaussian
graphical models, references Liu et al. (2009), Xue and Zou (2012), Liu et al. (2012a), Laf-
ferty et al. (2012) and Liu et al. (2012b) for learning non-Gaussian graphical models, and
references Bresler et al. (2008), Bromberg et al. (2009), Ravikumar et al. (2010), Netrapalli
et al. (2010), Anandkumar et al. (2012b), Jalali et al. (2011), Johnson et al. (2012) and Yang
et al. (2012) for learning discrete graphical models. Although all of the above algorithms
can be modified to take into account prior knowledge about a graph H that contains all the
true edges (see Appendix B for some examples), our junction tree framework is fundamen-
tally different than the standard modification of these algorithms. The main difference is
that the junction tree framework allows for using the global Markov property of undirected
graphical models (see Definition 1) when learning graphs. This allows for improved graph
estimation, as illustrated by both our theoretical and numerical results. We note that all
of the above algorithms can be used in conjunction with the junction tree framework.

Junction trees have been used for performing exact probabilistic inference in graphical
models (Lauritzen and Spiegelhalter, 1988). In particular, given a graphical model, and
its junction tree representation, the computational complexity of exact inference is expo-
nential in the size of the cluster in the junction tree with the most of number of vertices.
This has motivated a line of research for learning thin junction trees so that the maximum
size of the cluster in the estimated junction tree is small so that inference is computa-
tionally tractable (Chow and Liu, 1968; Bach and Jordan, 2001; Karger and Srebro, 2001;
Chechetka and Guestrin, 2007; Kumar and Bach, 2013). We also make note of algorithms
for learning decomposable graphical models where the graph structure is assumed to tri-
angulated (Malvestuto, 1991; Giudici and Green, 1999). In general, the goal in the above
algorithms is to learn a joint probability distribution that approximates a more complex
probability distribution so that computations, such as inference, can be done in a tractable
manner. On the other hand, this paper considers the problem of learning the structure of
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the graph that best represents the conditional dependencies among the random variables
under consideration.

There are two notable algorithms in the literature that use junction trees for learning
graphical models. The first is an algorithm presented in Xie and Geng (2008) that uses
junction trees to find the direction of edges for learning directed graphical models. Unfor-
tunately, this algorithm cannot be used for UGMS. The second is an algorithm presented
in Ma et al. (2008) for learning chain graphs, that are graphs with both directed and undi-
rected edges. The algorithm in Ma et al. (2008) uses a junction tree representation to learn
an undirected graph before orienting some of the edges to learn a chain graph. Our pro-
posed algorithm, and subsequent analysis, differs from the work in Ma et al. (2008) in the
following ways:

(i) Our algorithm identifies an ordering on the edges, which subsequently results in a
lower sample complexity and the possibility of learning weak edges in a graph. The
ordering on the edges is possible because of our novel region graph interpretation for
learning graphical models. For example, when learning the graph in Figure 1(a) using
Figure 1(b), the algorithm in Ma et al. (2008) learns the edge (3,5) by applying a
UGMS algorithm to the vertices {1,2,3,4,5,6}. In contrast, our proposed algorithm
first estimates all edges in the second layer of the region graph in Figure 1(d), re-
estimates the region graph, and then only applies a UGMS algorithm to {3,4,5} to
determine if the edge (3, 4) belongs to the graph. In this way, our algorithm, in general,
requires applying a UGMS algorithm to a smaller number of vertices when learning
edges over separators in a junction tree representation.

(ii) Our algorithm for using junction trees for UGMS is independent of the choice of the
UGMS algorithm, while the algorithm presented in Ma et al. (2008) uses conditional
independence tests for UGMS.

(iii) Our algorithm, as discussed in (i), has the additional advantage of learning certain
weak edges that may not be estimated when using standard UGMS algorithms. We
theoretically quantify this property of our algorithm, while no such theory was pre-
sented in Ma et al. (2008).

Recent work has shown that solutions to the graphical lasso (gLasso) (Friedman et al.,
2008) problem for UGMS over Gaussian graphical models can be computed, under certain
conditions, by decomposing the problem over connected components of the graph computed
by thresholding the empirical covariance matrix (Witten et al., 2011; Mazumder and Hastie,
2012). The methods in Witten et al. (2011) and Mazumder and Hastie (2012) are useful
for computing solutions to gLasso for particular choices of the regularization parameter
and not for accurately estimating graphs. Thus, when using glLasso for UGMS, we can
use the methods in Witten et al. (2011) and Mazumder and Hastie (2012) to solve gLasso
when performing model selection for choosing suitable regularization parameters. Finally,
we note that recent work in Loh and Wainwright (2012) uses properties of junction trees to
learn discrete graphical models. The algorithm in Loh and Wainwright (2012) is designed for
learning discrete graphical models and our methods can be used to improve its performance.
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1.4 Paper Organization

The rest of the paper is organized as follows:

e Section 2 reviews graphical models and formulates the undirected graphical model
selection (UGMS) problem.

e Section 3 shows how junction trees can be represented as region graphs and outlines
an algorithm for constructing a region graph from a junction tree.

e Section 4 shows how the region graphs can be used to apply a UGMS algorithm to
the clusters and separators of a junction tree.

e Section 5 presents our main framework for using junction trees for UGMS. In partic-
ular, we show how the methods in Sections 3-4 can be used iteratively to estimate a
graph.

e Section 6 reviews the PC-Algorithm, which we use to study the theoretical properties
of the junction tree framework.

e Section 7 presents theoretical results on the sample complexity of learning graphical
models using the junction tree framework. We also highlight advantages of using the
junction tree framework as summarized in Section 1.2.

e Section 8 presents numerical simulations to highlight the advantages of using junction
trees for UGMS in practice.

e Section 9 summarizes the paper and outlines some future work.

2. Preliminaries

In this section, we review some necessary background on graphs and graphical models that
we use in this paper. Section 2.1 reviews some graph theoretic concepts. Section 2.2 reviews
undirected graphical models. Section 2.3 formally defines the undirected graphical model
selection (UGMS) problem. Section 2.4 reviews junction trees, which we use use as a tool
for decomposing UGMS into multiple subproblems.

2.1 Graph Theoretic Concepts

A graph is a tuple G = (V, E(G)), where V is a set of vertices and E(G) C V x V are
edges connecting vertices in V. For any graph H, we use the notation F(H) to denote its
edges. We only consider undirected graphs where if (vi,v2) € E(G), then (v2,v1) € E(G)
for v, v2 € V. Some graph theoretic notations that we use in this paper are summarized
as follows:

e Neighbor neg(i): Set of nodes connected to .

e Path {i,s1,...,54,7}: A sequence of nodes such that (,s1), (S4,7), (Sk, Sk+1) € E for
k=1,....d—1.
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e Separator S: A set of nodes such that all paths from ¢ to j contain at least one node
in S. The separator S is minimal if no proper subset of S separates ¢ and j.

e Induced Subgraph G[A] = (A, E(G[A])): A graph over the nodes A such that E(G[A])
contains the edges only involving the nodes in A.

e Complete graph K 4: A graph that contains all possible edges over the nodes A.

For two graphs G1 = (V1, E(G1)) and G2 = (Va, E(G2)), we define the following standard
operations:

e Graph Union: G1 UGe = (V1 U Vo, By U E3).
e Graph Difference: G1\G2 = (V1, E1\E3).

2.2 Undirected Graphical Models

Definition 1 (Undirected Graphical Model, Lauritzen, 1996) An undirected graph-
ical model is a probability distribution Px defined on a graph G* = (V,E(G*)), where
V ={1,...,p} indezes the random vector X = (X1,...,X,) and the edges E(G*) encode
the following Markov property: for a set of nodes A, B, and S, if S separates A and B,
then X4 1 Xp|Xs.

The Markov property outlined above is referred to as the global Markov property. Undirected
graphical models are also referred to as Markov random fields or Markov networks in the
literature. When the joint probability distribution Px is non-degenerate, that is, Px >
0, the Markov property in Definition 1 are equivalent to the pairwise and local Markov
properties:

e Pairwise Markov property: For all (i,7) ¢ E, X; L X;[ Xy -
e Local Markov property: For alli € V', X; L XV\{neg(i)U{i}}|Xneg(z’)'

In this paper, we always assume Px > 0 and say Px is Markov on G to reflect the
Markov properties. Examples of conditional independence relations conveyed by a proba-
bility distribution defined on the graph in Figure 3(d) are X; L Xg|{X2, X4} and X4 L
Xg|{ X2, X5, Xs}.

2.3 Undirected Graphical Model Section (UGMS)

Definition 2 (UGMS) The undirected graphical model selection (UGMS) problem is to
estimate a graph G* such that the joint probability distribution Px is Markov on G*, but
not Markov on any subgraph of G*.

The last statement in Definition 2 is important, since, if Px is Markov on G*, then it is
also Markov on any graph that contains G*. For example, all probability distributions are
Markov on the complete graph. Thus, the UGMS problem is to find the minimal graph
that captures the Markov properties associated with a joint probability distribution. In the
literature, this is also known as finding the minimal I-map.
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Let ¥ be an abstract UGMS algorithm that takes as inputs a set of n i.i.d. observations
X" ={XW, . .. XM} drawn from Px and a regularization parameter \,. The output of ¥
is a graph @n, where A, controls the number of edges estimated in @n Note the dependence
of the regularization parameter on n. We assume WV is consistent, which is formalized in the
following assumption.

Assumption 1 There exists a A, for which P(@n = G*) — 1 as n — oo, where @n =
(X" \y).

We give examples of ¥ in Appendix B. Assumption 1 also takes into account the high-
dimensional case where p depends on n in such a way that p,n — oo.

2.4 Junction Trees

Junction trees (Robertson and Seymour, 1986) are used extensively for efficiently solving
various graph related problems, see Arnborg and Proskurowski (1989) for some examples.
Reference Lauritzen and Spiegelhalter (1988) shows how junction trees can be used for
exact inference (computing marginal distribution given a joint distribution) over graphical
models. We use junction trees as a tool for decomposing the UGMS problem into multiple
subproblems.

Definition 3 (Junction tree) For an undirected graph G = (V, E(Q)), a junction tree
J = (C,E(T)) is a tree-structured graph over clusters of nodes in V such that

(i) Each node in 'V is associated with at least one cluster in C.
(ii) For every edge (i,j) € E(G), there exists a cluster Cy € C such that i,j € C.

(i1i) J satisfies the running intersection property: For all clusters Cy, Cy, and Cy, such
that Cy, separates Cy, and Cy, in the tree defined by E(J), C, N Cy, C Cy.

The first property in Definition 3 says that all nodes must be mapped to at least one
cluster of the junction tree. The second property states that each edge of the original graph
must be contained within a cluster. The third property, known as the running intersection
property, is the most important since it restricts the clusters and the trees that can be be
formed. For example, consider the graph in Figure 3(a). By simply clustering the nodes
over edges, as done in Figure 3(b), we can not get a valid junction tree (Wainwright, 2002).
By making appropriate clusters of size three, we get a valid junction tree in Fig. 3(c). In
other words, the running intersection property says that for two clusters with a common
node, all the clusters on the path between the two clusters must contain that common node.

Proposition 4 (Robertson and Seymour, 1986) Let J = (C, E(J)) be a junction tree
of the graph G. Let Sy, = C,NCy. For each (Cy,Cy) € €, we have the following properties:

1. Sy # 0.

2. Sy separates Cy\Syy and Cy,\Syy.
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Figure 3: (a) An undirected graph, (b) Invalid junction tree since {1,2} separates {1,3}
and {3,4},but 3 ¢ {1,2}. (c) Valid junction tree for the graph in (a). (d) A grid
graph. (e) Junction tree representation of (d).

The set of nodes 5, on the edges are called the separators of the junction tree. Propo-
sition 4 says that all clusters connected by an edge in the junction tree have at least one
common node and the common nodes separate nodes in each cluster. For example, consider
the junction tree in Figure 3(e) of the graph in Figure 3(d). We can infer that 1 and 5 are
separated by 2 and 4. Similarly, we can also infer that 4 and 6 are separated by 2, 5, and 8.
It is clear that if a graphical model is defined on the graph, then the separators can be used
to easily define conditional independence relationships. For example, using Figure 3(e), we
can conclude that X7 I X5 given X5 and X4. As we will see in later Sections, Proposition 4
allow the decomposition of UGMS into multiple subproblems over clusters and subsets of
the separators in a junction tree.

3. Overview of Region Graphs

In this section, we show how junction trees can be represented as region graphs. As we
will see in Section 5, region graphs allow us to easily decompose the UGMS problem into
multiple subproblems. There are many different types of region graphs and we refer the
readers to Yedidia et al. (2005) for a comprehensive discussion about region graphs and how
they are useful for characterizing graphical models. The region graph we present in this
section differs slightly from the standard definition of region graphs. This is mainly because
our goal is to estimate edges, while the standard region graphs defined in the literature are
used for computations over graphical models.

A region is a collection of nodes, which in this paper can be the clusters of the junction
tree, separators of the junction tree, or subsets of the separators. A region graph G =
(R, E (G)) is a directed graph where the vertices are regions and the edges represent directed
edges from one region to another. We use the notation E () to emphasize that region graphs
contain directed edges. A description of region graphs is given as follows:

e The set E(G) contains directed edges so that if (R,S) € E(G), then there exists a
directed edge from region R to region S.

e Whenever R — S, then S C R.

Algorithm 1 outlines an algorithm to construct region graphs given a junction tree
representation of a graph H. We associate a label [ with every region in R and group
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(b) Junction tree (c) Region graph

Figure 4: (a) An example of H. (b) A junction tree representation of H. (c) A region graph
representation of (b) computed using Algorithm 1.

Algorithm 1: Constructing region graphs
Input: A junction tree J = (C, E(J)) of a graph H.
Output: A region graph G = (R, E(g))

1 R' = C, where C are the clusters of the junction tree 7.

2 Let R? be all the separators of J, that is, R? = {Su, = C, N C, : (Cy, Cy) € E(T)}.

3 To construct R?, find all possible pairwise intersections of regions in R?. Add all
intersecting regions with cardinality greater than one to R3.

4 Repeat previous step to construct R4, ..., R% until there are no more intersecting
regions of cardinality greater than one.

5 For R e R! and S € R, add the edge (R, S) to E(G) if S C R.

6 Let R ={R!, ..., R}

regions with the same label to partition R into L groups R',...,R%. In Algorithm 1, we
initialize R! and R? to be the clusters and separators of a junction tree J, respectively,
and then iteratively find R3,..., RY by computing all possible intersections of regions with
the same label. The edges in E(G) are only drawn from a region in R to a region in
R!*L. Figure 4(c) shows an example of a region graph computed using the junction tree in
Figure 4(b).

Remark 5 Note that the construction of the region graph depends on the junction tree.
Using methods in Vats and Moura (2012), we can always construct junction trees such
that the region graph only has two sets of regions, namely the clusters of the junction tree
and the separators of the junction tree. However, in this case, the size of the regions or
clusters may be too large. This may not be desirable since the computational complexity
of applying UGMS algorithms to region graphs, as shown in Section 5, depends on the size
of the regions.

Remark 6 (Region graph vs. Junction tree) For every junction tree, Algorithm 1
outputs a unique region graph. The junction tree only characterizes the relationship between
the clusters in a junction tree. A region graph extends the junction tree representation to
characterize the relationships between the clusters as well as the separators. For example,
in Figure 4(c), the region {5,6} is in the third row and is a subset of two separators of the
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junction tree. Thus, the only difference between the region graph and the junction tree is
the additional set of regions introduced in R3, ..., RE.

Remark 7 From the construction in Algorithm 1, R may have two or more regions that
are the same but have different labels. For example, in Figure 4(c), the region {3,5} is in
both R? and R3. We can avoid this situation by removing {3,5} from R? and adding an
edge from the region {1,3,5} in R! to the region {3,5} in R3. For notational simplicity
and for the purpose of illustration, we allow for duplicate regions. This does not change the
theory or the algorithms that we develop.

4. Applying UGMS to Region Graphs

Before presenting our framework for decomposing UGMS into multiple subproblems, we
first show how UGMS algorithms can be applied to estimate a subset of edges in a region of
a region graph. In particular, for a region graph G = (R,E(g)), we want to identify a set
of edges in the induced subgraph H[R)] that can be estimated by applying a UGMS algorithm
to either R or a set of vertices that contains R. With this goal in mind, define the children
ch(R) of a region R as follows:

Children: ch(R) = {S: (R,S) € 5} . (1)

We say R connects to S if (R,S) € E(G). Thus, the children in (1) consist of all regions
that R connects to. For example, in Figure 4(c),

ch({2,3,4,6}) = {{2,3,6}, {3,4,6}}.

If there exists a direct path from S to R, we say S is an ancestor of R. The set of all
ancestors of R is denoted by an(R). For example, in Figure 4(c),

an({5,6,8,9}) = 0,
an({3,5,6}) = {{3,5,6,8},{2,3,5,6}},and
an({3,6}) = {{3,5,6},{2,3,6},{3,4,6},{2,3,5,6},{2,3,4,6},{3,4,6,7},{3,5,6,8} } }.

The notation R takes the union of all regions in an(R) and R so that

rR= |J s (2)

Se{an(R),R}

Thus, R contains the union of all clusters in the junction tree that contain R. An illustration
of some of the notations defined on region graphs is shown in Figure 5. Using ch(R), define
the subgraph HJ, as?

Hp = H[R\ {Usecnm)Ks} (3)
where H[R] is the induced subgraph that contains all edges in H over the region R and Kg
is the complete graph over S. In words, Hy, is computed by removing all edges from H[R)]
that are contained in another separator. For example, in Figure 4(c), when R = {5,6, 8},
E(Hy) = {(5,8),(6,8)}. The subgraph Hj, is important since it identifies the edges that
can be estimated when applying a UGMS algorithm to the set of vertices R.

2. For graphs G1 and G2, E(G1\G2) = E(G1)\E(G2) and E(G1 U G2) = E(G1) U E(G2).
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Algorithm 2: UGMS over regions in a region graph
1: Input: Region graph G = (R,E(g)), a region R, observations X", and a UGMS
algorithm W.
2: Compute H}, using (3) and R using (2).
3: Apply ¥ to %% to estimate edges in Hj,. See Appendix B for examples.

4: Return the estimated edges ER.

Figure 5: Notations defined on region graphs. The children ch(R) are the set of regions
that R connects to. The ancestors an(R) are all the regions that have a directed
path to the region R. The set R takes the union of all regions in an(R) and R.

Proposition 8 Suppose E(G*) C E(H). All edges in Hy, can be estimated by solving a
UGMS problem over the vertices R.

Proof See Appendix C. |

Proposition 8 says that all edges in H}, can be estimated by applying a UGMS algorithm
to the set of vertices R. The intuition behind the result is that only those edges in the
region R can be estimated whose Markov properties can be deduced using the vertices in
R. Moreover, the edges not estimated in H|[R] share an edge with another region that does
not contain all the vertices in R. Algorithm 2 summarizes the steps involved in estimating
the edges in Hj, using the UGMS algorithm ¥ defined in Section 2.3. Some examples on
how to use Algorithm 2 to estimate some edges of the graph in Figure 4(a) using the region
graph in Figure 4(c) are described as follows.

1. Let R = {1,3,5}. This region only connects to {3,5}. This means that all edges,
except the edge (3,5) in H[R], can be estimated by applying ¥ to R.

2. Let R = {3,5,6}. The children of this region are {3,5}, {5,6}, and {3,6}. This means
that Hj, = (), that is, no edge over H[R] can be estimated by applying ¥ to {3,5,6}.
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Notation Description

G* = (V,E(G*)) | Unknown graph that we want to estimate.

Known graph such that E(G*) C E(H).

= (R,E(G)) Region graph of H constructed using Algorithm 1.

(RY,...,R¥) | Partitioning of the regions in R into L labels.

The set of vertices used when applying ¥ to estimate edges over R.
See (2) for definition.

Edges in H[R] that can be estimated using Algorithm 2.

See (3) for definition.

JRND T
I

=

Table 1: A summary of some notations.

3. Let R = {3,4,6}. This region only connects to {3,6}. Thus, all edges except (3,6)
can be estimated. The regions {2,3,4,6} and {3,4,6,7} connect to R, so ¥ needs to
be applied to R = {2,3,4,6,7}.

5. UGMS Using Junction Trees: A General Framework

In this section, we present the junction tree framework for UGMS using the results from
Sections 3-4. Section 5.1 presents the junction tree framework. Section 5.2 discusses the
computational complexity of the framework. Section 5.3 highlights the advantages of using
junction trees for UGMS using some examples. We refer to Table 1 for a summary of all
the notations that we use in this section.

5.1 Description of Framework

Recall that Algorithm 2 shows that to estimate a subset of edges in H[R], where R is a
region in the region graph G, the UGMS algorithm ¥ in Assumption 1 needs to be applied
to the set R defined in (2). Given this result, a straightforward approach to decomposing
the UGMS problem is to apply Algorithm 2 to each region R and combine all the estimated
edges. This will work since for any R,S € R such that R # S, E(Hp) N E(Hg) = 0.
This means that each application of Algorithm 2 estimates a different set of edges in the
graph. However, for some edges, this may require applying a UGMS algorithm to a large
set of nodes. For example, in Figure 4(c), when applying Algorithm 2 to R = {3,6}, the
UGMS algorithm needs to be applied to R = {2,3,4,5,6,7,8}, which is almost the full set
of vertices. To reduce the problem size of the subproblems, we apply Algorithms 1 and 2
in an iterative manner as outlined in Algorithm 3.

Figure 6 shows a high level description of Algorithm 3. We first find a junction tree and
then a region graph of the graph H using Algorithm 1. We then find the row in the region
graph over which edges can be estimated and apply Algorithm 2 to each region in that row.
We note that when estimating edges over a region, we use model selection algorithms to
choose an appropriate regularization parameter to select the number of edges to estimate.
Next, all estimated edges are added to G and all edges that are estimated are removed from
H. Thus, H now represents all the edges that are left to be estimated and G U H contains
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Find Junction Tree Apply UGMS to a
X" H ——> | and Region Graph |[—————>»| row of region graph
(Algorithm 1) (Algorithm 2)
e /
\
Have all edges Yes

———>» Output graph
been estimated?

Figure 6: A high level overview of the junction tree framework for UGMS in Algorithm 3.

Algorithm 3: Junction Tree Framework for UGMS
See Table 1 for notations.

Step 1. Initialize G so that E(CA?) = () and find the region graph G of H.
Step 2. Find the smallest £ such that there exists a region R € R’ such that E(H}) # 0.
Step 3. Apply Algorithm 2 to each region in RY.

Step 4. Add all estimated edges to G and remove edges from H that have been estimated.
Now H U G contains all the edges in G*.

Step 5. Compute a new junction tree and region graph G using the graph GUH.

Step 6. If E(H) = (), stop the algorithm, else go to Step 2.

all the edges in G*. We repeat the above steps on a new region graph computed using GUH
and stop the algorithm when H is an empty graph.

An example illustrating the junction tree framework is shown in Figure 7. The region
graph in Figure 7(b) is constructed using the graph H in Figure 7(a). The true graph G*
we want to estimate is shown in Figure 1(a). The top and bottom in Figure 7(c) show the
graphs G and H , respectively, after estimating all the edges in R! of Figure 7(b). The edges
in G are represented by double lines to distinguish them from the edges in H. Figure 7(d)
shows the region graph of GUH. Figure 7(e) shows the updated G and H where only the
edges (4,5) and (5,6) are left to be estimated. This is done by applying Algorithm 2 to
the regions in R? of Figure 7(f). Notice that we did not include the region {1,2} in the
last region graph since we know all edges in this region have already been estimated. In
general, if F(H[R]) = () for any region R, we can remove this region and thereby reduce the
computational complexity of constructing region graphs.
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Figure 7: Example to illustrate the junction tree framework in Algorithm 3.

5.2 Computational Complexity

In this section, we discuss the computational complexity of the junction tree framework.
It is difficult to write down a closed form expression since the computational complexity
depends on the structure of the junction tree. Moreover, merging clusters in the junction
tree can easily control the computations. With this in mind, the main aim in this section
is to show that the complexity of the framework is roughly the same as that of applying a
standard UGMS algorithm. Consider the following observations.

1. Computing H: Assuming no prior knowledge about H is given, this graph needs
to be computed from the observations. This can be done using standard screening
algorithms, such as those in Fan and Lv (2008) and Vats (to appear), or by applying a
UGMS algorithm with a regularization parameter that selects a larger number of edges
(than that computed by using a standard UGMS algorithm). Thus, the complexity
of computing H is roughly the same as that of applying a UGMS algorithm to all the
vertices in the graph.

2. Applying UGMS to regions: Recall from Algorithm 2 that we apply a UGMS algorithm
to observations over R to estimate edges over the vertices R, where R is a region in
a region graph representation of H. Since |R| < p, it is clear that the complexity of
Algorithm 2 is less than that of applying a UGMS algorithm to estimate all edges in
the graph.

3. Computing junction trees: For a given graph, there exists several junction tree repre-
sentations. The computational complexity of applying UGMS algorithms to a junction
tree depends on the size of the clusters, the size of the separators, and the degree of the
junction tree. In theory, it is useful to select a junction tree so that the overall com-
putational complexity of the framework is as small as possible. However, this is hard
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since there can be an exponential number of possible junction tree representations.
Alternatively, we can select a junction tree so that the maximum size of the clusters
is as small as possible. Such junction trees are often referred to as optimal junction
trees in the literature. Although finding optimal junction trees is also hard (Arnborg
et al., 1987), there exists several computationally tractable heuristics for finding close
to optimal junction trees (Kjaerulff, 1990; Berry et al., 2003). The complexity of such
algorithms range from O(p?) to O(p?), depending on the degree of approximation.
We note that this time complexity is less than that of standard UGMS algorithms.

It is clear that the complexity of all the intermediate steps in the framework is less than
that of applying a standard UGMS algorithm. The overall complexity of the framework
depends on the number of clusters in the junction tree and the size of the separators in the
junction tree. The size of the separators in a junction tree can be controlled by merging
clusters that share a large separator. This step can be done in linear time. Removing large
separators also reduces the total number of clusters in a junction tree. In the worst case,
if all the separators in H are too large, the junction tree will only have one cluster that
contains all the vertices. In this case, using the junction tree framework will be no different
than using a standard UGMS algorithm.

5.3 Advantages of using Junction Trees and Region Graphs

An alternative approach to estimating G* using H is to modify some current UGMS algo-
rithms (see Appendix B for some concrete examples). For example, neighborhood selection
based algorithms first estimate the neighborhood of each vertex and then combine all the
estimated neighborhoods to construct an estimate G of G* (Meinshausen and Biihlmann,
2006; Bresler et al., 2008; Netrapalli et al., 2010; Ravikumar et al., 2010). Two ways in
which these algorithms can be modified when given H are described as follows:

1. A straightforward approach is to decompose the UGMS problem into p different sub-
problems of estimating the neighborhood of each vertex. The graph H can be used
to restrict the estimated neighbors of each vertex to be subsets of the neighbors in H.
For example, in Figure 7(a), the neighborhood of 1 is estimated from the set {2,3,4,5}
and the neighborhood of 3 is estimated from the set {1,4,5,6}. This approach can be
compared to independently applying Algorithm 2 to each region in the region graph.
For example, when using the region graph, the edge (1,4) can be estimated by apply-
ing a UGMS algorithm to {1,3,4,5}. In comparison, when not using region graphs,
the edge (1,4) is estimated by applying a UGMS algorithm to {1, 2, 3,4,5}. In general,
using region graphs results in smaller subproblems. A good example to illustrate this
is the star graph in Figure 7(g). A junction tree representation of the star graph can
be computed so that all clusters will have size two. Subsequently, the junction tree
framework will only require applying a UGMS algorithm to a pair of nodes. On the
other hand, neighborhood selection needs to be applied to all the nodes to estimate
the neighbors of the central node 1 which is connected to all other nodes.

2. An alternative approach is to estimate the neighbors of each vertex in an iterative
manner. However, it is not clear what ordering should be chosen for the vertices. The
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region graph approach outlined in Section 5.1 leads to a natural choice for choosing
which edges to estimate in the graph so as to reduce the problem size of subsequent
subproblems. Moreover, iteratively applying neighborhood selection may still lead to
large subproblems. For example, suppose the star graph in Figure 7(g) is in fact the
true graph. In this case, using neighborhood selection always leads to applying UGMS
to all the nodes in the graph.

From the above discussion, it is clear that using junction trees for UGMS leads to smaller
subproblems and a natural choice of an ordering for estimating edges in the graph. We will
see in Section 7 that the smaller subproblems lead to weaker conditions on the number of
observations required for consistent graph estimation. Moreover, our numerical simulations
in Section 8 empirically show the advantages of using junction tree over neighborhood
selection based algorithms.

6. PC-Algorithm for UGMS

So far, we have presented the junction tree framework using an abstract undirected graph-
ical model selection (UMGS) algorithm. This shows that our framework can be used in
conjunction with any UGMS algorithm. In this section, we review the PC-Algorithm,
since we use it to analyze the junction tree framework in Section 7. The PC-Algorithm
was originally proposed in the literature for learning directed graphical models (Spirtes and
Glymour, 1991). The first stage of the PC-Algorithm, which we refer to as PC, estimates an
undirected graph using conditional independence tests. The second stage orients the edges
in the undirected graph to estimate a directed graph. We use the first stage of the PC-
Algorithm for UGMS. Algorithm 4 outlines PC. Variants of the PC-Algorithm for learning
undirected graphical models have recently been analyzed in Anandkumar et al. (2012b,a).
The main property used in PC is the global Markov property of undirected graphical models
which states that if a set of vertices S separates ¢ and j, then X; 1L X;|Xg. As seen in
Line 5 of Algorithm 4, PC deletes an edge (¢, ) if it identifies a conditional independence
relationship. Some properties of PC are summarized as follows:

1. Parameter k: PC iteratively searches for separators for an edge (i, j) by searching for
separators of size 0,1, ..., k. This is reflected in Line 2 of Algorithm 4. Theoretically,
the algorithm can automatically stop after searching for all possible separators for
each edge in the graph. However, this may not be computationally tractable, which
is why k needs to be specified.

2. Conditional Independence Test: Line 5 of Algorithm 4 uses a conditional indepen-
dence test to determine if an edge (i, j) is in the true graph. This makes PC extremely
flexible since nonparametric independence tests may be used, see Hoeffding (1948),
Rasch et al. (2012) and Zhang et al. (2012) for some examples. In this paper, for
simplicity, we only consider Gaussian graphical models. In this case, conditional in-
dependence can be tested using the conditional correlation coeflicient defined as

—1
2ij — Yisdg ¢S,

9
v 20152558

Conditional correlation coefficient: Pijls =
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Algorithm 4: PC-Algorithm for UGMS: PC(k, X", H, L)

= I B NV R S

Inputs:

k: An integer that controls the computational complexity of PC.
X™: n ii.d. observations.

H: A graph that contains all the true edges G*.

L: A graph that contains the edges that need to be estimated.

Output: A graph G that contains edges in L that are estimated to be in G*.
G+ L
for each k € {0,1,...,x} do

~

for each (i,7) € E(G) do
S;; < Neighbors of 7 or j in H depending on which one has lower cardinality.
if 35CS;y, |S] =k, st. X; L X;|Xg (computed using X™) then
L Delete edge (i,j) from G and H.

Return G.

where Px ~ N(0,), Y A,B is the covariance matrix of X4 and Xpg, and Ya,B|s I8 the
conditional covariance defined by

—1
YaBs =XaB—Xas¥geXB,s -

Whenever X; I X;|Xg, then p;;g = 0. This motivates the following test for inde-
pendence:

Conditional Independence Test: [p;;is| < A\n = X; L X;[ X5, (4)

where p;;|g is computed using the empirical covariance matrix from the observations

X"™. The regularization parameter A\, controls the number of edges estimated in G.

. The graphs H and L: Recall that H contains all the edges in G*. The graph L contains

edges that need to be estimated since, as seen in Algorithm 2, we apply UGMS to only
certain parts of the graph instead of the whole graph. As an example, to estimate
edges in a region R of a region graph representation of H, we apply Algorithm 4 as
follows:

Gr=PC(n, X", H,Hy}) , (5)
where HY, is defined in (3). Notice that we do not use R in (5). This is because Line 4
of Algorithm 4 automatically finds the set of vertices to apply the PC algorithm to.
Alternatively, we can apply Algorithm 4 using R as follows:

Gr = PC (1, X, Kz, H) | (6)

where K% is the complete graph over R.

. The set S;;: An important step in Algorithm 4 is specifying the set S;; in Line 4 to

restrict the search space for finding separators for an edge (7, j). This step significantly
reduces the computational complexity of PC and differentiates PC from the first stage
of the SGS-Algorithm (Spirtes et al., 1990), which specifies S;; = V\ {4, j}.
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7. Theoretical Analysis of Junction Tree based PC

We use the PC-algorithm to analyze the junction tree based UGMS algorithm. Our main
result, stated in Theorem 9, shows that when using the PC-Algorithm with the junction
tree framework, we can potentially estimate the graph using fewer number of observations
than what is required by the standard PC-Algorithm. As we shall see in Theorem 9, the
particular gain in performance depends on the structure of the graph.

Section 7.1 discusses the assumptions we place on the graphical model. Section 7.2
presents the main theoretical result highlighting the advantages of using junction trees.
Throughout this section, we use standard asymptotic notation so that f(n) = Q(g(n))
implies that there exists an N and a constant ¢ such that for all n > N, f(n) > cg(n). For
f(n) = 0O(g(n)), replace > by <.

7.1 Assumptions

(A1) Gaussian graphical model: We assume X = (Xi,...,X,) ~ Py, where Px is a
multivariate normal distribution with mean zero and covariance . Further, Px is
Markov on G* and not Markov on any subgraph of G*. It is well known that this is
assumption translates into the fact that Zi_jl = 0 if and only if (4, ) ¢ G* (Speed and
Kiiveri, 1986).

(A2) Faithfulness: If X; L X;|Xg, then i and j are separated by® S. This assumption is
important for the PC algorithm to output the correct graph. Further, note that the
Markov assumption is different since it goes the other way: if ¢ and j are separated
by S, then X; I X;|Xg. Thus, when both (A1) and (A2) hold, we have that X; 1L
Xl Xs <= (i,7) &€ G*.

(A3) Separator Size n: For all (i,j) ¢ G*, there exists a subset of nodes S C V\{i,j},
where |S| < 7, such that S is a separator for ¢ and j in G*. This assumption allows
us to use kK = 1 when using PC.

(A4) Conditional Correlation Coefficient pyjis and ¥:  Under (A3), we assume that p;;s
satisfies
sup{loyis| 1ij € V.S CV,|S| <m}} < M <1,

where M is a constant. Further, we assume that max; g )<, 25 < L < oo.

(A5) High-Dimensionality We assume that the number of vertices in the graph p scales
with n so that p — oo as n — oo. Furthermore, both p;; 5 and n are assumed to be
functions of n and p unless mentioned otherwise.

(A6) Structure of G*: Under (A3), we assume that there exists a set of vertices V1, V3,
and T such that T separates Vi and V5 in G* and |T'| < 7. Figure 8(a) shows the
general structure of this assumption.

Assumptions (A1)-(A5) are standard conditions for proving high-dimensional consis-
tency of the PC-Algorithm for Gaussian graphical models. The structural constraints on

3. If S is the empty set, then there is no path between i and j.
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Figure 8: General Structure of the graph we use in showing the advantages of the junction
tree framework.

the graph in Assumption (A6) are required for showing the advantages of the junction tree
framework. We note that although (A6) appears to be a strong assumption, there are
several graph families that satisfy this assumption. For example, the graph in Figure 1(a)
satisfies (A6) with V; = {1,2}, Vo = {1,3,4,5,6,7}, and T = {1}. In general, if there
exists a separator in the graph of size less than 7, then (A6) is clearly satisfied. Further,
we remark that we only assume the existence of the sets Vi, Vo, and T and do not assume
that these sets are known a priori. We refer to Remark 17 for more discussions about (A6)
and some extensions of this assumption.

7.2 Theoretical Result and Analysis

Recall PC in Algorithm 4. Since we assume (A1), the conditional independence test in (4)
can be used in Line 5 of Algorithm 4. To analyze the junction tree framework, consider the
following steps to construct G using PC when given n i.i.d. observations X":

Step 1. Compute H: Apply PC using a regularization parameter A2 such that
H =PC(|T], X", Ky,Ky),

where Ky is the complete graph over the nodes V. In the above equation, we apply
PC to remove all edges for which there exists a separator of size less than or equal
to |T|.

Step 2. Estimate a subset of edges over V43 UT and Vo UT using regularization parameters
AL and A2, respectively, such that

Gy, = PC (0, X", H[V; UT| U Kr, Hi 1) ,for k= 1,2,
where Hy, = H[Vi UT]\Kr as defined in (3).

Step 3. Estimate edges over T using a regularization parameter \.:

~

Gr = PC (n,%”, HIT Uneg, g, (T)) H[T]) .

Step 4. Final estimate is G = évl U éVQ U Gr.
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Step 1 is the screening algorithm used to eliminate some edges from the complete graph.
For the region graph in Figure 8(b), Step 2 corresponds to applying PC to the regions V; UT
and Vo UT. Step 3 corresponds to applying PC to the region 7" and all neighbors of T’
estimated so far. Step 4 merges all the estimated edges. Although the neighbors of T are
sufficient to estimate all the edges in T, in general, depending on the graph, a smaller set
of vertices is required to estimate edges in 1. The main result is stated using the following
terms defined on the graphical model:

p1 =MW1l +[T], p2 = [Va| + [T, pr = |T Unec~(T)|, nr = |T],

po = inf{|pyis| 4,7 s.t. |S| < mr & [pyyis| > 0},

p1 = inf{|p;;s| :i € V1,5 € ViUT s.t. (i,5) € E(G"),S CV1UT,|S] <n},
p2 = inf{|p;;s| 11 € Vo, j € Vo UT s.t. (i,5) € E(G"), S CVaUT,|S| <n},
pr = inf{|p;isl 24,5 € T s.t. (i,5) € E,S CT Uneg~(T),nr < |S| < n},

The term pg is a measure of how hard it is to learn the graph H in Step 1 so that E(G*) C
E(H) and all edges that have a separator of size less than |T'| are deleted in H. The terms p;
and po are measures of how hard it is learn the edges in G*[V; UT|\ K7 and G*[Vo UT|\ K1
(Step 2), respectively, given that E(G*) C E(H). The term pr is a measure of how hard
it is learn the graph over the nodes T' given that we know the edges that connect V; to T’
and V5 to T

Theorem 9 Under Assumptions (A1)-(A6), there exists a conditional independence test
such that if

n = Q (max { py *nrlog(p), p *nlog(p1), p3 *nlog(ps). pr>nlog(pr)}) (7)
then P(G # @) — 0 as n — oc.

Proof See Appendix E. |

We now make several remarks regarding Theorem 9 and its consequences.

Remark 10 (Comparison to Necessary Conditions) Using results from Wang et al.
(2010), it follows that a necessary condition for any algorithm to recover the graph G* that
satisfies Assumptions (A1) and (A6) is that n = Q(max{0;?log(p; — d), 05 >log(p2 — d)},
where d is the maximum degree of the graph and #; and 05 are defined as follows:

. 25|
min — k=1,2.
(4.5)€G*[VkUITN\G*[T] | ’21_1123‘_3'1‘

If n is a constant and p; and pg are chosen so that the corresponding expressions dominate all
other expressions, then (7) reduces to n = Q(max{p; *log(p1), p; > log(p2)}). Furthermore,
for certain classes of Gaussian graphical models, namely walk summable graphical models
(Malioutov et al., 2006), the results in Anandkumar et al. (2012a) show that there exists
conditions under which p; = Q(61) and ps = Q(#2). In this case, (7) is equivalent to
n = Q(max{0;?log(p1), 0 *log(p2)}). Thus, as long as pi,ps > d, there exists a family
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of graphical models for which the sufficient conditions in Theorem 9 nearly match the
necessary conditions for asymptotically reliable estimation of the graph. We note that the
particular family of graphical models is quite broad, and includes forests, scale-free graphs,
and some random graphs. We refer to Anandkumar et al. (2012a) for a characterization of
such graphical models.

Remark 11 (Choice of Regularization Parameters) We use the conditional indepen-
dence test in (4) that thresholds the conditional correlation coefficient. From the proof in
Appendix E, the thresholds, which we refer to as the regularization parameter, are chosen
as follows:

)\?L = O(po) and py = Q2 ( nr log(p)/n) )
)\:2:0(’0]6) and Pk:Q( nlog(m)/n),k:l,%
A= O(pr) and pr = Q ( nlog(pT)/n) :

We clearly see that different regularization parameters are used to estimate different parts
of the graph. Furthermore, just like in the traditional analysis of UGMS algorithms, the
optimal choice of the regularization parameter depends on unknown parameters of the
graphical model. In practice, we use model selection algorithms to select regularization
parameters. We refer to Section 8 for more details.

Remark 12 (Weaker Condition) If we do not use the junction tree based approach
outlined in Steps 1-4, and instead directly apply PC, the sufficient condition on the number
of observations will be n = Q(p, 2 nlog(p)), where

Pmin ‘= 1Df{|ﬂz]\s| : (’57]) € E(G*)7 |S| < 77} :

This result is proved in Appendix D using results from Kalisch and Bithlmann (2007) and
Anandkumar et al. (2012a). Since ppi, < min{po, p1, p2, pr}, it is clear that (7) is a weaker
condition. The main reason for this difference is that the junction tree approach defines an
ordering on the edges to test if an edge belongs to the true graph. This ordering allows for
a reduction in separator search space (see S;; in Algorithm 4) for testing edges over the set
T. Standard analysis of PC assumes that the edges are tested randomly, in which case, the

separator search space is always upper bounded by the full set of nodes.

Remark 13 (Reduced Sample Complexity) Suppose 7, pg, and pp are constants and
p1 < pe2. In this case, (7) reduces to

n = Q (max {log(p), p; *log(p1), p; *log(p2) }) - (8)
If pIQ =Q (max {p52 log(p2)/log(p1), log(p)}), then (8) reduces to
n = Q (p; *log(p1)) -
2

On the other hand, if we do not use junction trees, n = 2 (p;m log(p)), where ppin <
p1. Thus, if py < p, for example p; = log(p), then using the junction tree based PC

168



A JuNcTION TREE FRAMEWORK FOR UNDIRECTED GRAPHICAL MODEL SELECTION

Figure 9: Junction tree representation with clusters Vi,..., Vs and separators denotes by
rectangular boxes. We can cluster vertices in the junction tree to get a two cluster
representation as in Figure 8.

requires lower number of observations for consistent UGMS. Informally, the above condition
says that if the graph structure in (A6) is easy to identify, p; < pa, and the minimal
conditional correlation coefficient over the true edges lies in the smaller cluster (but not
over the separator), the junction tree framework may accurately learn the graph using
significantly less number of observations.

Remark 14 (Learning Weak Edges) We now analyze Theorem 9 to see how the condi-
tional correlation coefficients scale for high-dimensional consistency. Under the assumption
in Remark 13, it is easy to see that the minimal conditional correlation coefficient scales
as Q(y/log(p1)/n) when using junction trees and as Q(y/log(p)/n) when not using junction
trees. This suggests that when p; < p, it may be possible to learn edges with weaker
conditional correlation coefficients when using junction trees. Our numerical simulations in
Section 8 empirically show this property of the junction tree framework.

Remark 15 (Computational complexity) It is easy to see that the worst case compu-
tational complexity of the PC-Algorithm is O(p"*?) since there are O(p?) edges and testing

for each edge requires a search over at most O(p") separators. The worst case computational

7n+2 n+2

complexity of Steps 1-4 is roughly O <p|T|+2 + p717+2 +py " +pp ) Under the conditions

in Remark 8.3 and when p; < p, this complexity is roughly O(p"*?), which is the same as
the standard PC-Algorithm. In practice, especially when the graph is sparse, the compu-
tational complexity is much less than O(p"*2) since the PC-Algorithm restricts the search
space for finding separators.

Remark 16 (Using other UGMS Algorithms) Although our analysis used the
PC-Algorithm to derive sufficient conditions for accurately estimating the graph, we can
easily use other algorithms, such as the graphical Lasso or the neighborhood selection based
Lasso, for analysis. The main difference will be in the assumptions imposed on the graphical
model.

Remark 17 (Extensions) We have analyzed the junction tree framework assuming that

the junction tree of H only has two clusters. One way to generalize our analysis to junction
trees with multiple clusters is to merge clusters so that the resulting junction tree admits
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the structure in Figure 8. For example, suppose the graph G* has a junction tree repre-
sentation as in Figure 9 with five clusters. If |V} N V5| < 7, then we can merge the clusters
Vo, Vs, ..., Vs so that the resulting junction tree admits the two cluster representation in
Figure 8. Furthermore, we can also generalize Theorem 9 to cases when |T'| = . The main
change in the analysis will be in the definition of pg. For example, if the graph is a chain so
that the first p; vertices are associated with “weak edges”, we can get similar results as in
Theorem 9. Finally, we note that a full analysis of the junction tree framework, that also
incorporates the step of updating the junction tree in Algorithm 3, is challenging and will
be addressed in future work.

8. Numerical Simulations

In this section, we present numerical simulations that highlight the advantages of using
the junction tree framework for UGMS. Throughout this section, we assume a Gaussian
graphical model such that Px ~ A(0,071) is Markov on G*. It is well known that this
implies that (i,7j) ¢ G* <= 0;; = 0 (Speed and Kiiveri, 1986). Some algorithmic details
used in the simulations are described as follows.

Computing H: We apply Algorithm 4 with a suitable value of k in such a way that the
separator search space S;; (see Line 4) is restricted to be small. In other words, we do
not test for all possible conditional independence tests so as to restrict the computational
complexity of the screening algorithm. We use the conditional partial correlation to test
for conditional independence and choose a separate threshold to test for each edge in the
graph. The thresholds for the conditional independence test are computed using 5-fold
cross-validation. The computational complexity of this step is roughly O(p?) since there
are O(p?) edges to be tested. Note that this method for computing H is equivalent to Step 1
in Section 7.2 with |T'| = k. Finally, we note that the above method does not guarantee
that all edges in G* will be included in H. This can result in false edges being included
in the junction tree estimated graphs. To avoid this situation, once a graph estimate G
has been computed using the junction tree based UGMS algorithm, we apply conditional
independence tests again to prune the estimated edge set.

Computing the junction tree: We use standard algorithms in the literature for computing
close to optimal junction trees.* Once the junction tree is computed, we merge clusters so
that the maximum size of the separator is at most x + 1, where k is the parameter used
when computing the graph H. For example, in Figure 9, if the separator associated with V5
and V3 has cardinality greater than s + 1, then we merge Vo and V3 and resulting junction
tree is such that Vi, V4, and V5 all connect to the cluster Vo U V3.

UGMS Algorithms: We apply the junction tree framework in conjunction with graphical
Lasso (gL) (Banerjee et al., 2008), neighborhood selection using Lasso (nL) (Meinshausen
and Biihlmann, 2006), and the PC-Algorithm (PC) (Spirtes and Glymour, 1991). See
Appendix B for a review of gL and nL and Algorithm 4 for PC. When using nL, we use the
intersection rule to combine neighborhood estimates. Further, we use the adaptive Lasso
(Zou, 2006) for finding neighbors of a vertex since this is known to give superior results for
variable selection (van de Geer et al., 2011).

4. We use the GreedyFillin heuristic. This is known to give good results with reasonable computational
time (Kjaerulff, 1990).
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Choosing Regularization Parameters: An important step when applying UGMS algorithms
is to choose a suitable regularization parameter. It is now well known that classical methods,
such as cross-validation and information criterion based methods, tend to choose a much
larger number of edges when compared to an oracle estimator for high-dimensional problems
(Meinshausen and Biithlmann, 2010; Liu et al., 2010). Several alternative methods have been
proposed in the literature; see for example stability selection (Meinshausen and Biihlmann,
2010; Liu et al., 2010) and extended Bayesian information (EBIC) criterion (Chen and
Chen, 2008; Foygel and Drton, 2010). In all our simulations, we use EBIC since it is much
faster than stability based methods when the distribution is Gaussian. EBIC selects a
regularization parameter /):n as follows:

An = max {n [log det©, — trace(§®)} + |E(Gy,)|logn + 49| E(G,,)| logp} ,

An>0

where § is the empirical covariance matrix, o A, 1s the estimate of the inverse covariance
matrix and |E(G),)| is the number of edges in the estimated graph. The estimate A,
depends on a parameter « € [0, 1] such that v = 0 results in the BIC estimate and increasing
~ produces sparser graphs. The authors in reference Foygel and Drton (2010) suggest that
v = 0.5 is a reasonable choice for high-dimensional problems. When solving subproblems
using Algorithm 2, the logp term is replaced by log|R], 8) A, is replaced by the inverse
covariance over the vertices R, and |CA¥ A, | 18 replaced by the number of edges estimated from
the graph Hp,.

Small subproblems: Whenever | R| is small (less than 8 in our simulations), we independently
test whether each edge is in G* using hypothesis testing. This shows the application of using
different algorithms to learn different parts of the graph.

8.1 Results on Synthetic Graphs

We assume that ©; = 1 for alli =1,...,p. We refer to all edges connected to the first py
vertices as weak edges and the rest of the edges are referred to as strong edges. The different
types of synthetic graphical models we study are described as follows:

e Chain (CH; and CH3): ©; ;41 =py fori=1,...,p1 — 1 (weak edges) and ©; ;41 = p2
for i = p1,p — 1 (strong edges). For CHi, p; = 0.15 and py = 0.245. For CH,
P1 = 0.075 and P2 = 0.245. Let ®ij == @]Z

e Cycle (CYy and CY3): ©; ;41 = p1 fori =1,...,p1 — 1 (weak edges) and O; ;11 = p2
for i = p1,p — 1 (strong edges). In addition, ©;;43 = p; for i = 1,...,p; — 3 and
;43 = p2 for i = p1,p1 +1,...,p — 3. This introduces multiple cycles in the graph.
For CYq, p1 = 0.15 and po = 0.245. For CY3, p; = 0.075 and p2 = 0.245.

e Hub (HB; and HB;): For the first p; vertices, construct as many star® graphs of size
dy as possible. For the remaining vertices, construct star graphs of size dz (at most
one may be of size less than dy). The hub graph G* is constructed by taking a union
of all star graphs. For (i,7) € G* s.t. 4,5 < p1, let ©; ; = 1/d;. For the remaining
edges, let ©;; = 1/dy. For HBy, di = 8 and dy = 5. For HBy, dy =12 and dp = 5.

5. A star is a tree where one vertex is connected all other vertices.
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e Neighborhood graph (NB; and NB;): Randomly place vertices on the unit square at
coordinates y1,...,y,. Let ©;; = 1/p; with probability (v27)~!exp(—4|ly; — y;][3),
otherwise ©;; = 0 for all 4, j € {1,...,p1} such that i > j. Foralli,j € {p1+1,...,p}
such that ¢ > j, ©;; = pa. For edges over the first p; vertices, delete edges so that each
vertex is connected to at most dy other vertices. For the vertices p1 + 1, ..., p, delete
edges such that the neighborhood of each vertex is at most ds. Finally, randomly add
four edges from a vertex in {1,...,p1} to a vertex in {p1,p1 + 1,...,p} such that for
each such edge, ©;; = p1. We let ps = 0.245, di = 6, and do = 4. For NBy, p; = 0.15
and for NBjy, ps = 0.075.

Notice that the parameters associated with the weak edges are lower than the parameters
associated with the strong edges. Some comments regarding notation and usage of various
algorithms is given as follows.

e The junction tree versions of the UGMS algorithms are denoted by JgL, JPC, and
JnL.

e We use EBIC with v = 0.5 to choose regularization parameters when estimating
graphs using JglL and JPC. To objectively compare JgL (JPC) and gL (PC), we make
sure that the number of edges estimated by gL (PC) is roughly the same as the number
of edges estimated by JgL (JPC).

e The nL and JnL estimates are computed differently since it is difficult to control the
number of edges estimated using both these algorithms.® We apply both nL and JnL
for multiple different values of v (the parameter for EBIC) and choose graphs so that
the number of edges estimated is closest to the number of edges estimated by gL.

e When applying PC and JPC, we choose  as 1, 2, 1, and 3 for Chain, Cycle, Hub, and
Neighborhood graphs, respectively. When computing H, we choose « as 0, 1, 0, and
2 for Chain, Cycle, Hub, and Neighborhood graphs, respectively.

Tables 2-5 summarize the results for the different types of synthetic graphical models.
For an estimate G of G*, we evaluate G using the weak edge discovery rate (WEDR), false
discovery rate (FDR), true positive rate (TPR), and the edit distance (ED).

# weak edges in G

WEDR =
# of weak edges in G*’
FDR — # of edges in G\f} ’
# of edges in G
TPR — # of edges in GNG

# of edges in G*
ED = {# edges in G\G*} + {# edges in G*\G},

6. Recall that both these algorithms use different regularization parameters. Thus, there may exist multiple
different estimates with the same number of edges.
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Model  n Alg  WEDR FDR TPR ED |G
CH; 300 JgL  0.305 (0.005) 0.048 (0.001) 0.767 (0.002) 27.0 (0.176) 79.8
p =100 gl 0.180 (0.004)  0.061 (0.001) 0.757 (0.001) 29.0 (0.153) 79.8
" JPC 0.312(0.004) ~ 0.047 (0.001) "0.775(0.001) ~ 26.0 (0.162) 80.5
PC  0.264 (0.005)  0.047 (0.001) 0.781 (0.001) 25.6 (0.169) 81.2
" Jnl ~ 03306 (0.005) ~ 0.072 (0.001)" 0769 (0.002) ~ 2838 (0.188) ~€2.1
nL  0.271 (0.005)  0.073 (0.001) 0.757 (0.001) 30.0 (0.197) 80.9
CH, 300 JgL  0.052 (0.002) 0.067 (0.001) 0.727 (0.001) 32.2 (0.173) 77.3
p =100 gl 0.009 (0.001)  0.062 (0.001) 0.733 (0.002) 31.3 (0.162) 77.4
" JPC '0.048(0.002) ~ 0.064 (0.001) 0.735 (0.001) ~ 31.2 (0.169) ~77.8
PC  0.0337 (0.002) 0.055 (0.001) 0.748 (0.001) 29.3 (0.144) 78.4
Il ~ 0:0527(0.002) ~ 0.077 (0.001)" 0733 (0.001) ~ 325 (0.186) 787
nL  0.039 (0.002)  0.086 (0.001) 0.723 (0.001) 34.2 (0.216) 78.4
CH; 500 JgL  0.596 (0.006) 0.021 (0.001) 0.916 (0.001) 10.2 (0.133) 92.6
p =100 gl 0.44 (0.005) 0.050 (0.001) 0.889 (0.001) 15.6 (0.132) 92.7
" JPC” 0612 (0.005) ~ 0.022 (0.001)  0.9217(0.001) ~ 9.86 (0.138) ~93.2
PC  0.577 (0.005)  0.032 (0.001) 0.916 (0.001) 11.4 (0.124) 93.7
" JnL ~ '0.623 (0.005)  0.059 (0.001) 0.922 (0.001) ~ 13.5 (0.133) ~97.0
nL  0.596 (0.005)  0.069 (0.001) 0.918 (0.001) 14.9 (0.164) 97.6
CH, 500 JgL  0.077 (0.002) 0.044 (0.001) 0.816 (0.001) 22.0 (0.107) 84.5
p = 100 gl 0.0211 (0.001) 0.053 (0.001) 0.808 (0.000) 23.5 (0.082) 84.6
“ JPC” 0.0737(0.002) ~ 0.042 (0.001)  0.817(0.001) ~ 217 (0.082) €45
PC  0.0516 (0.002) 0.049 (0.001) 0.815 (0.001) 22.5 (0.092) 84.9
“Jnl ~ 0.076 (0.002) ~ 0.070 (0.001) 0.818(0.001) ~ 242 (0.102) ~87.2
nL  0.066 (0.002)  0.077 (0.001) 0.815 (0.001) 25.1 (0.126) 87.5

Table 2: Results for Chain graphs: p = 100 and p; = 20

Recall that the weak edges are over the first p; vertices in the graph. Naturally, we want
WEDR and TPR to be large and FDR and ED to be small. Each entry in the table shows
the mean value and standard error (in brackets) over 50 observations. We now make some
remarks regarding the results.

Remark 18 (Graphical Lasso) Of all the algorithms, graphical Lasso (glL) performs the
worst. On the other hand, junction tree based gL significantly improves the performance
of gL. Moreover, the performance of JgL is comparable, and sometimes even better, when
compared to JPC and JnL. This suggests that when using gL in practice, it is beneficial to
apply a screening algorithm to remove some edges and then use the junction tree framework
in conjunction with gL.

Remark 19 (PC-Algorithm and Neighborhood Selection) Although using junction
trees in conjunction with the PC-Algorithm (PC) and neighborhood selection (nL) does
improve the graph estimation performance, the difference is not as significant as glL. The
reason is because both PC and nL make use of the local Markov property in the graph
H. The junction tree framework further improves the performance of these algorithms by
making use of the global Markov property, in addition to the local Markov property.

Remark 20 (Chain Graph) Although the chain graph does not satisfy the conditions
in (A6), the junction tree estimates still outperforms the non-junction tree estimates. This
suggests the advantages of using junction trees beyond the graphs considered in (A6). We
suspect that correlation decay properties, which have been studied extensively in Anand-
kumar et al. (2012b,a), can be used to weaken the assumption in (A6).
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Model n Alg  WEDR FDR TPR ED |G
CY, 300 JgL  0.314 (0.003) 0.036 (0.001) 0.814 (0.001) 28.5 (0.142) 111
p =100 gl 0.105 (0.003)  0.057 (0.001) 0.798 (0.001) 32.9 (0.16) 112
~JPC” 0326 (0.004) ~ 0.030 (0.001) ~0.819(0.001) ~ 27.27(0.18) ~ T1Z
PC  0.307 (0.004)  0.027 (0.001) 0.826 (0.001) 26 (0.169) 112
“JnL ~ 0342 (0.004) ~ 0.043 (0.001)” ~0.813(0.001) ~ 29.5 (0.175) ~ 112 ~
nL  0.299 (0.004)  0.044 (0.001) 0.793 (0.001) 32.3 (0.192) 110
CY> 300 JgL  0.047 (0.002) 0.045 (0.001) 0.762 (0.001) 36.2 (0.163) 105
p = 100 gl 0.001 (0.001)  0.049 (0.001) 0.759 (0.001) 37.0 (0.172) 105
"~ JPC” 0.043 (0.002) ~ 0.042 (0.001)” ~0.764(0.001) ~ 35.6 (0.174) ~ 105 -
PC  0.027 (0.002)  0.036 (0.001) 0.773 (0.001) 33.7 (0.137) 106
" JnL~ 0.042 (0.002)  0.058 (0.002) 0.754 (0.001) ~ 38.6 (0.210) = 106
nL  0.035 (0.002)  0.057 (0.002) 0.743 (0.001) 39.9 (0.228) 104
CY; 500 JgL  0.532 (0.005) 0.022 (0.001) 0.907 (0.001) 15.1 (0.139) 122
p =100 gl 0278 (0.001)  0.071 (0.001) 0.862 (0.001) 26.9 (0.178) 122
" JPC™ '0.61 (0.004) ~ 0.012 (0.001) 0.925(0.001) ~ 11.9°(0.150) ~ 124 -
PC  0.609 (0.004)  0.020 (0.001) 0.925 (0.001) 12.5 (0.134) 125
" JnL 0.612 (0.005) 0.028 (0.001) 0.924 (0.001)  13.6 (0.151) 125 ~
nL  0.584 (0.005)  0.041 (0.001) 0.919 (0.001) 15.9 (0.171) 126
CY> 500 JgL  0.086 (0.003) 0.039 (0.001) 0.821 (0.001) 28.1 (0.116) 113
p =100 gl 0.004 (0.001)  0.058 (0.001) 0.805 (0.000) 32.3 (0.088) 113
~JPC” 0.087 (0.002) ~ 0.034 (0.001)" ~0.825 (0.001) ~ 27.0(0.099) ~ T13 ~
PC  0.074 (0.002)  0.040 (0.001) 0.823 (0.001) 27.9 (0.010) 113
" JnL~ 0.085 (0.003)  0.045 (0.001) 0.824 (0.001)  28.4 (0.147) ~ 114 ~
nL  0.069 (0.003)  0.053 (0.001) 0.821 (0.001) 29.8 (0.158) 114
Table 3: Results for Cycle graphs, p = 100 and p; = 20
Model  n Alg  WEDR FDR TPR ED el
HB; 300 JgL  0.204 (0.004) 0.039 (0.001) 0.755 (0.002) 22.3 (0.151) 63.7
p =100 gl 0.154 (0.004)  0.038 (0.001) 0.758 (0.002) 22.1 (0.130) 63.8
~JPC” 0.204 (0.004) ~ 0.038 (0.001)  0.753 (0.002) ~ 224 (0.160) 634
PC  0.193 (0.004)  0.038 (0.001) 0.762 (0.002) 21.7 (0.143) 64.2
" JnL ~ 0.245 (0.005) ~ 0.089 (0.001) 0.750 (0.002) ~ 26.2 (0.174) 66.7
nL  0.247 (0.005)  0.098 (0.002) 0.752 (0.002) 26.8 (0.198) 67.6
HB, 300 JgL  0.044 (0.002) 0.047 (0.001) 0.710 (0.001) 26.7 (0.116) 61.2
p =100 gl 0.013 (0.002)  0.043 (0.001) 0.716 (0.001) 26.0 (0.121) 61.4
“JPC” 0.048 (0.002) ~ 0.043 (0.001)  ~0.700 (0.001) ~ 26,5 (0.108) ~60.8 ~
PC  0.029 (0.002)  0.038 (0.001) 0.718 (0.001) 25.5 (0.121) 61.3
“JnL ~ 0.054 (0.003) ~ 0.083 (0.001)  0.704 (0.001) ~ 29.6 (0.146) ~63.0
nL  0.0467 (0.002) 0.096 (0.001) 0.700 (0.001) 30.7 (0.138) 63.5
HB; 500 JgL  0.413 (0.007) 0.026 (0.001) 0.870 (0.002) 12.4 (0.156) 724
p =100 gl 0.364 (0.007)  0.035 (0.001) 0.863 (0.002) 13.7 (0.144) 72.5
" JPC 0.438 (0.007) ~ 0.027 (0.001) 0.878 (0.002) ~ 11.9 (0.148) ~73.1
PC  0.448 (0.007)  0.027 (0.001) 0.882 (0.001) 11.6 (0.141) 73.4
“JnL ~ 0.507 (0.006) ~ 0.076 (0.001)  0.890 (0.001) ~ 149 (0.152) ~78.2
nL  0.52 (0.007) 0.091 (0.001)  0.893 (0.002) 15.9 (0.191)  79.6
HB, 500 JgL  0.086 (0.003) 0.042 (0.001) 0.794 (0.001) 19.8 (0.086) 68.0
p =100 gl 0.050 (0.002)  0.047 (0.001) 0.789 (0.001)  20.6 (0.098) 68.0
“JPC” 0,097 (0.003) ~ 0.040 (0.001) 0.798 (0.001) ~ 19.3 (0.109) 682
PC  0.087 (0.003)  0.044 (0.001) 0.797 (0.001) 19.7 (0.111) 68.4
“Jnl T 0.1237(0.004) ~ 0.081 (0.002) T0.804 (0.001) 222 (0.15) 721"
nL  0.106 (0.003)  0.105 (0.002) 0.801 (0.001) 24.1 (0.143) 73.4
Table 4: Results for Hub graphs:p = 100 and p; = 20
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Model  n Alg  WEDR FDR TPR ED el
NB; 300 JgL  0.251 (0.002) 0.030 (0.000) 0.813 (0.000) 126 (0.329) 498
p = 100 gl 0.102 (0.0015) 0.039 (0.000) 0.806 (0.001) 135 (0.345) 498
“ JPC” 0259 (0.002) ~ 0.031 (0.000) ~0.814 (0.000) ~ 126 (0.260) ~ 499 ~
PC  0.255 (0.002)  0.036 (0.000) 0.813 (0.000) 129 (0.330) 501
" Jnl ~ 0254 (0.002) ~ 0.035 (0.000) ~0.812 (0.001) ~ 129 (0.461) ~ 500 ~
nL  0.226 (0.002)  0.039 (0.000) 0.804 (0.001) 136 (0.458) 497
NB; 300 JgL  0.005 (0.000) 0.043 (0.000) 0.784 (0.001) 149 (0.385) 486
p =100 gl 0.000 (0.000)  0.036 (0.000) 0.790 (0.000) 142 (0.259) 487
* JPC” 0004 (30.000) ~ 0.042 (0.000) ~0.7847(0.001) ~ 148 (0.376) ~ 486
PC  0.003 (0.000)  0.048 (0.000) 0.782 (0.000) 153 (0.239) 488
" JnL ~ 0:005 (0.000) ~ 0.046 (0.000) ~0.783 (0.000) ~ 151 (0.356) ~ 488 ~
nL  0.003 (0.000)  0.050 (0.000) 0.775 (0.000) 158 (0.374) 485
NB; 500 JgL  0.449 (0.001) 0.018 (0.000) 0.921 (0.000) 57.1 (0.199) 557
p =100 gl 0.319 (0.002)  0.035 (0.000) 0.905 (0.000) 75.8 (0.242) 557
* JPC” 0489 (0.002) ~ 0.019 (0.000) ~0.925 (0.000) ~ 52.8 (0.189) ~ 558 ~
PC  0.496 (0.002)  0.023 (0.000)  0.920 (0.000) 60.2 (0.214) 559
" JnL~ 0.508 (0.003) ~ '0.027 (0.000) 0.929 (0.000) = 57.9 (0.348) = 567
nL  0.494 (0.003)  0.033 (0.000) 0.927 (0.000) 62.3 (0.400) 570
NB; 500 JgL  0.008 (0.000) 0.033 (0.000) 0.870 (0.000) 95.0 (0.206) 534
p = 100 gl 0.000 (0.000)  0.034 (0.000) 0.869 (0.000) 96.0 (0.214) 534
" JPC” 0:009 (0.000) ~ 0.032 (0.000) ~0.870 (0.000) ~ 94.27(0.215) ~ 534
PC  0.005 (0.000)  0.040 (0.000) 0.865 (0.000) 102 (0.207) 536
" JnL ~ 0.001 (0.000)  0.038 (0.000) 0.871 (0.000) = 97.3 (0.220) ~ 538 ~
nL  0.005 (0.000)  0.043 (0.000) 0.870 (0.000) 101 (0.234) 540
Table 5: Results for Neighborhood graph, p = 300 and p; = 30

Remark 21 (Hub Graph) For the hub graph HB;, the junction tree estimate does not
result in a significant difference in performance, especially for the PC and nL algorithms.
This is mainly because this graph is extremely sparse with multiple components. For the
number of observations considered, H removes a significant number of edges. However, for
HB;, the junction tree estimate, in general, performs slightly better. This is because the
parameters associated with the weak edges in HB, are smaller than that of HB;.

Remark 22 (General Conclusion) We see that, in general, the WEDR and TPR are
higher, while the FDR and ED are lower, for junction tree based algorithms. This clearly
suggests that using junction trees results in more accurate graph estimation. Moreover, the
higher WEDR suggest that the main differences between the two algorithms are over the
weak edges, that is, junction tree based algorithms are estimating more weak edges when
compared to a non junction tree based algorithm.

8.2 Analysis of Stock Returns Data

We applied our methods to the data set in Choi et al. (2011) of n = 216 monthly stock
returns of p = 85 companies in the S&P 100. We computed H using « = 1. We applied
JgL using EBIC with v = 0.5 and applied gL so that both graphs have the same number
of edges. This allows us to objectively compare the gL and JgL graphs. Figure 10 shows
the two estimated graphs in such a way that the vertices are positioned so that the JgL
graph looks aesthetically pleasing. In Figure 11, the vertices are positioned so that gL looks
aesthetically pleasing. In each graph, we mark the common edges by bold lines and the
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Figure 10: Graph over a subset of companies in the S&P 100. The positioning of the

vertices is chosen so that the junction tree based graph is aesthetically pleasing.

The edges common in (a) and (b) are marked by bold lines and the remaining
edges are marked by dashed lines
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(a) Junction tree based graphical Lasso
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Figure 11: Graph over a subset of companies in the S&P 100. The positioning of the vertices
is chosen so that the graphical Lasso based graph is aesthetically pleasing. The
edges common in (a) and (b) are marked by bold lines and the remaining edges
are marked by dashed lines.
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remaining edges by dashed lines. Some conclusions that we draw from the estimated graphs
are summarized as follows:

e The gL graph in Figure 11(b) seems well structured with multiple different clusters
of nodes with companies that seem to be related to each other. A similar clustering
is seen for the JgL graph in Figure 10(a) with the exception that there are now con-
nections between the clusters. As observed in Choi et al. (2011) and Chandrasekaran
et al. (2012), it has been hypothesized that the “actual” graph over the companies is
dense since there are several unobserved companies that induce conditional dependen-
cies between the observed companies. These induced conditional dependencies can be
considered to be the weak edges of the “actual” graph. Thus, our results suggest that
the junction tree based algorithm is able to detect such weak edges.

e We now focus on some specific edges and nodes in the graphs. The 11 vertices repre-
sented by smaller squares and shaded in green are not connected to any other vertex
in gl. On the other hand, all these 11 vertices are connected to at least one other
vertex in JgL (see Figure 10). Moreover, several of these edges are meaningful. For
example, CBS and CMCSA are in the television industry, TGT and CVS are stores,
AEP and WMB are energy companies, GD and RTN are defense companies, and
MDT and UNH are in the healthcare industry. Finally, the three vertices represented
by larger squares and shaded in pink, are not connected to any vertex in JglL and are
connected to at least one other vertex in gl. Only the edges associated with EXC
seem to be meaningful.

8.3 Analysis of Gene Expression Data

Graphical models have been used extensively for studying gene interactions using gene
expression data (Nevins et al., 2004; Wille et al., 2004). The gene expression data we study
is the Lymph node status data which contains n = 148 expression values from p = 587 genes
(Li and Toh, 2010). Since there is no ground truth available, the main aim in this section is
to highlight the differences between the estimates JgL (junction tree estimate) and gL (non
junction tree estimate). Just like in the stock returns data, we compute the graph H using
x = 1. Both the JgL and gL graphs contain 831 edges. Figure 12 shows the graphs JgL and
gL under different placements of the vertices. We clearly see significant differences between
the estimated graphs. This suggests that using the junction tree framework may lead to
new scientific interpretations when studying biological data.

9. Summary and Future Work

We have outlined a general framework that can be used as a wrapper around any arbi-
trary undirected graphical model selection (UGMS) algorithm for improved graph estima-
tion. Our framework takes as input a graph H that contains all (or most of) the edges
in G*, decomposes the UGMS problem into multiple subproblems using a junction tree
representation of H, and then solves subprolems iteratively to estimate a graph. Our the-
oretical results show that certain weak edges, which cannot be estimated using standard
algorithms, can be estimated when using the junction tree framework. We supported the
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(c¢) Junction tree based graphical Lasso (d) Graphical Lasso

Figure 12: Graph over genes computed using gene expression data. For (a) and (b), the
vertices are chosen so that the junction tree estimate is aesthetically pleasing.
For (c) and (d), the vertices are chosen so that the graphical Lasso estimate
is aesthetically pleasing. Further, in (a) and (c), we only show edges that are
estimated in the junction tree estimate, but not estimated using graphical Lasso.
Similarly, for (b) and (c), we only show edges that are estimated by graphical
Lasso, but not by the junction tree estimate.
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theory with numerical simulations on both synthetic and real world data. All the data and
code used in our numerical simulations can be found at http://www. ima.umn.edu/~dvats/
JunctionTreeUGMS.html.

Our work motivates several interesting future research directions. In our framework,
we used a graph H to decompose the UGMS problem into multiple subproblems. Alter-
natively, we can also focus on directly finding such decompositions. Another interesting
research direction is to use the decompositions to develop parallel algorithms for UGMS
for estimating extremely large graphs. Finally, motivated by the differences in the graphs
obtained using gene expression data, another research problem of interest is to study the sci-
entific consequences of using the junction tree framework on various computational biology
data sets.
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Appendix A. Marginal Graph

Definition 23 The marginal graph G*™[A] of a graph G* over the nodes A is defined as
a graph with the following properties

1. B(G*[A]) C E(G*™[A]).

2. For an edge (i,7) € E(Ka)\E(G*[A)), if all paths from i to j in G* pass through a
subset of the nodes in A, then (i,75) ¢ G*™[A].

3. For an edge (i,j) € E(Ka)\E(G*[4]), if there exists a path from i to j in G* such
that all nodes in the path, except i and j, are in V\A, then (i,j) € G*™[A].

The graph K4 is the complete graph over the vertices A. The first condition in Defi-
nition 23 says that the marginal graph contains all edges in the induced subgraph over A.
The second and third conditions say which edges not in G*[A] are in the marginal graph.
As an example, consider the graph in Figure 13(a) and let A = {1,2,3,4,5}. From the
second condition, the edge (3,4) is not in the marginal graph since all paths from 3 to 4
pass through a subset of the nodes in A. From the third condition, the edge (4,5) is in
the marginal graph since there exists a path {4,8,5} that does not go through any nodes
in A\{4,5}. Similarly, the marginal graph over A = {4,5,6,7,8} can be constructed as in
Figure 13(c). The importance of marginal graphs is highlighted in the following proposition.

Proposition 24 If Px > 0 is Markov on G* = (V, E(G*)) and not Markov on any subgraph

of G*, then for any subset of vertices A C V', Px, is Markov on the marginal graph G*™[A]
and not Markov on any subgraph of G*™[A].
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Figure 13: (a) A graph over eight nodes. (b) The marginal graph over {1,2,3,4,5}. (c)
The marginal graph over {4,5,6,7,8}.

Proof Suppose Px, is Markov on the graph G4 and not Markov on any subgraph of G 4.
We will show that G4 = G™[A].

o If (i,j) € G, then X; [ X;|Xg for every S C V\{i,j}. Thus, G[A] C G 4.

e For any edge (i,7) € K4 \G[A4], suppose that for every path from i to j contains at
least one node from A\{i,j}. Then, there exists a set of nodes S C A\{i, j} such that
Xi A Xj|XS and (Z,]) ¢ GA.

e For any edge (i,7) € K4\G[A], suppose that there exists a path from i to j such
that all nodes in the path, except ¢ and j, are in V\ A. This means we cannot find a
separator for i and j in the set A, so (i,7) € G 4.

From the construction of G'4 and Definition 23, it is clear that G4 = G™[A]. [ |

Using Proposition 24, it is clear that if the UGMS algorithm ¥ in Assumption 1 is
applied to a subset of vertices A, the output will be a consistent estimator of the marginal
graph G*™[A]. Note that from Definition 23, although the marginal graph contains all
edges in G*[4], it may contain additional edges as well. Given only the marginal graph
G*™[A], it is not clear how to identify edges that are in G*[A]. For example, suppose G* is
a graph over four nodes and let the graph be a single cycle. The marginal graph over any
subset of three nodes is always the complete graph. Given the complete graph over three
nodes, computing the induced subgraph over the three nodes is nontrivial.

Appendix B. Examples of UGMS Algorithms

We give examples of standard UGMS algorithms and show how they can be used to im-
plement step 3 in Algorithm 2 when estimating edges in a region of a region graph. For
simplicity, we review algorithms for UGMS when Px is a Gaussian distribution with mean
zero and covariance X*. Such distributions are referred to as Gaussian graphical mod-
els. It is well known (Speed and Kiiveri, 1986) that that the inverse covariance matrix
©* = (¥*)~!, also known as precision matrix, is such that for all i # 7, @;‘j # 0 if and
only if (7,7) € E(G*). In other words, the graph G* can be estimated given an estimate of
the covariance or inverse covariance matrix of X. We review two standard algorithms for
estimating G*: graphical Lasso and neighborhood selection using Lasso (nLasso).

181



VATS AND NOWAK

B.1 Graphical Lasso (gLasso)

Define the empirical covariance matrix S 4 over a set of vertices A C V as follows:
ZX(fﬂ

Recall from Algorithm 2, we apply a UGMS algorithm R to estimate edges in H}, defined in
(3). The graphical Lasso (gLasso) estimates Er by solving the following convex optimization
problem:

~

O = arg max __ ¢ logdet(©) — trace ( > A Z Oij ¢, (9)
©>0,0;;=0V (i,j)¢H™ R (i.4)eHY

E\R:{(Z,j)EH‘AéU%O}

The graph H™[R] is the marginal graph over R (see Appendix A). When R =V, H = Ky,
and H, = Ky, the above equations recover the standard gLasso estimator, which was
first proposed in Banerjee et al. (2008). Equation (9) can be solved using algorithms in
Yuan and Lin (2007), Banerjee et al. (2008), Scheinberg et al. (2010) and Hsieh et al.
(2011). Theoretical properties of the estimates © and Ep have been studied in Ravikumar
et al. (2011). Note that the regularization parameter in (9) controls the sparsity of Eg.
A larger A corresponds to a sparser solution. Further, we only regularize the terms in ©;;
corresponding to the edges that need to be estimated, that is, the edges in Hj. Finally,
Equation (9) also accounts for the edges H by computing the marginal graph over R. In
general, H™ [}—%] can be replaced by any graph that is superset of H™ m]

B.2 Neighborhood Selection (nLasso)

Using the local Markov property of undirected graphical models (see Definition 1), we
know that if Px is Markov on G*, then P (Xi \ XV\Z') = (X | Xneg( )). This motivates
an algorithm for estimating the neighborhood of each node and then combining all these
estimates to estimate G*. For Gaussian graphical models, this can be achieved by solving a
Lasso problem (Tibshirani, 1996) at each node (Meinshausen and Biihlmann, 2006). Recall
that we are interested in estimating all edges in H}, by applying a UGMS algorithm to R.
The neighborhood selection using Lasso (nLasso) algorithm is given as follows:

H// —_ KE\Hm [m ,

ok . n n 9
- - A il 0 s 1
B T8 iene I v X% — X"B||5 + | S8 (10)
ZE”er(k)
et ={i: B £ 0},
Brp=J {0 iem}.
keR
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Notice that in the above algorithm if 7 is estimated to be a neighbor of j, then we include the
edge (i, 7) even if j is not estimated to be a neighbor of ¢. This is called the union rule for
combining neighborhood estimates. In our numerical simulations, we use the intersection
rule to combine neighborhood estimates, that is, (7, ) is estimated only if 7 is estimated to
be a neighbor of j and j is estimated to be a neighbor of i. Theoretical analysis of nLasso
has been carried out in Meinshausen and Biithlmann (2006) and Wainwright (2009). Note
that, when estimating the neighbors of a node k, we only penalize the neighbors in H,.
Further, we use prior knowledge about some of the edges by using the graph H in (10).
References Bresler et al. (2008), Netrapalli et al. (2010) and Ravikumar et al. (2010) extend
the neighborhood selection based method to discrete valued graphical models.

Appendix C. Proof of Proposition 8

We first prove the following result.

Lemma 25 For any (i,j) € Hp, there either exists no non-direct path from i to j in H or
all non-direct paths in H pass through a subset of R.

Proof We first show the result for R € R'. This means that R is one of the clusters in
the junction tree used to construct the region graph and ch(R) is the set of all separators of
cardinality greater than one connected to the cluster R in the junction tree. Subsequently,
R = R. If ch(R) = (), the claim trivially holds. Let ch(R) # () and suppose there exists a
non-direct path from i to j that passes through a set of vertices S not in R. Then, there will
exist a separator S in the junction tree such that S separates {i,5} and S. Thus, all paths
in H from i and j to S pass through S. This implies that either there is no non-direct path
from ¢ to j in H or else we have reached a contradiction about the existence of a non-direct
path from i to j that passes through the set S not in R.

Now, suppose R € R! for I > 1. The set an(R) contains all the clusters in the junction
tree than contain R. From the running intersection property of junction trees, all these
clusters must form a subtree in the original junction tree. Merge R into one cluster and
find a new junction tree J’ by keeping the rest of the clusters the same. It is clear R will
be in the first row of the updated region graph. The arguments used above can be repeated
to prove the claim. |

We now prove Proposition 8.

Case 1: Let (4,7) € Hp and (7,7) ¢ G*. If there exists no non-direct path from i to j in
H, then the edge (i,7) can be estimated by solving a UGMS problem over i and j. By the
definition of R, 4, j € R. Suppose there does exist non-direct paths from ¢ to j in H. From
Lemma 25, all such paths pass through R. Thus, the conditional independence of X; and
X can be determined from XE\{z‘,j}'

Case 2: Let (i,j) € Hp and (4,5) € G*. From Lemma 25 and using the fact that
E(G*) C E(H), we know that all paths from i to j pass through R. This means that if
X I Xj’XR\{i,j}7 then X; £ Xj‘XV\{z',j}-
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Appendix D. Analysis of the PC-Algorithm in Algorithm 4

In this section, we present the analysis of Algorithm 4 using results from Anandkumar
et al. (2012a) and Kalisch and Bithlmann (2007). The analysis presented here is for the
non-junction tree based algorithm. Throughout this section, assume

~

G =PC(n,X",Ky,Ky),

where Ky is the complete graph over the vertices V. Further, let the threshold for the
conditional independence test in (4) be A,. We are interested in finding conditions under
which G = G* with high probability.

Theorem 26 Under Assumptions (A1)-(A5), there exists a conditional independence test
such that if

n = Q(p,5,1108(p)) or pin = U/nlog(p)/n),
thenP(CA}#G)—)O asn — oo.
We now prove Theorem 26. Define the set B, as follows:
By =A{(i,5,9) 4,5 € V.i# 5,5 CV\{i,j}, S| < n}.
The following concentration inequality follows from Anandkumar et al. (2012a).

Lemma 27 Under Assumption (A4), there exists constants ¢1 and ca such that for e < M,

sup P (|lpijis| — 1Pijisl| > €) < crexp (—ea(n—n)€?) ,
(17_]75)637]

where n is the number of vector valued measurements made of X;, X;, and Xg.

Let P, = P(CATY # @), where the probability measure P is with respect to Px. Recall
that we threshold the empirical conditional partial correlation p;;s to test for conditional
independence, that is, ;g < Ay = X; L X;[Xs. An error may occur if there exists

two distinct vertices i and j such that either p;;5 = 0 and [py;is] > An or |pi;5] > 0 and
Pijis| < An. Thus, we have

P. < P(&) + P(&),

PE)=P| |J {3Sst |pyjsl >} |
(102G

P&) =P |J {3Sst piysl <A}
(3,5)€G

We will find conditions under which P(€1) — 0 and P(£2) — 0 which will imply that
P, — 0. The term P(&7), the probability of including an edge in G that does not belong to
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the true graph, can be upper bounded as follows:

PE)<P| |J {3Sst Bysl>A}| <P U {Ipijis| > An} |
(i) ¢G (i) £G,SCV\{i.g}
<p™* sup P (sl > )
(4,4,5)€By,

< c1p"exp (—ea(n —n)A2) = crexp ((n+2)log(p) — ca(n — n)AZ) .

The terms p"*2 comes from the fact that there are at most p? number of edges and the
algorithm searches over at most p” number of separators for each edge. Choosing A, such

that
(n—mn)A2

m ——— P = oo 11
np—oo (14 2) log(p) =

ensures that P(£1) — 0 as n, p — oo. Further, choose \,, such that for c3 < 1
An < C3Pmin - (12)

The term P(&2), the probability of not including an edge in G that does belong to the true
graph, can be upper bounded as follows:

P(&) <P U {38 s.t |pijisl < At ]

(i.5)eG

<P U lpijis| = 1Pigis| > pijisl — An |
(4,5)€G,SCV\{i,5}

<p"™? sup P (‘pij|S| — |Pijisl > |pijis| — /\n) ;
(iyjzs)EB”]

<p"™? sup P (llpigs| — 1Pijisll > pmin — An)
(4,4,9)€By,

< e1p"?exp (—ca(n — 0)(Pmin — An)?) = crexp ((n + 2) log(p) — ca(n — n)piq,mg )
13

To get (13), we use (12) so that (pmin — An) > (1 — ¢3)pmin. For some constant cs > 0,
suppose that for all n > n/ and p > p/,

ca(n —1)prin > (12 + ¢5) log(p) - (14)
Given (14), P(&;) — 0 as n,p — co. In asymptotic notation, we can write (14) as
n = Qpy.0,n108(p))

which proves the Theorem. The conditional independence test is such that A, is chosen
to satisfy (11) and (12). In asymptotic notation, we can show that A\, = O(pmin) and
A2 = Q (nlog(p)/n) satisfies (11) and (12).
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Appendix E. Proof of Theorem 9

To prove the theorem, it is sufficient to establish that

po = ( nr log( p)/n) (15)
p1 =S (vnlog pl)/n) (16)
p2 = ( nlog P2)/”> (17)

(18)

pr = ( nlog(pT)/n)

16

18

Let H be the graph estimated in Step 1. An error occurs if for an edge (i,j) € G*
there exists a subset of vertices S such that |S| < gy and |p;;s| < A Using the proof of
Theorem 26 (see analysis of P(&)), it is easy to see that n = Q(py 07 log(p)) is sufficient
for P(E(G*) ¢ E(H)) — 0 as n — 0. Further, the threshold is chosen such that A2 = O(py)
and (\2)2 = Q (nrlog(p)/n). This proves (15).

In Step 2, we estimate the graphs Gh and Go by applying the PC-Algorithm to the
vertices V1 UT and Vo UT, respectively. For Gl, given that all edges that have a separator
of size nr have been removed, we can again use the analysis in the proof of Theorem 26 to
show that for AL = O(p1) and (A\L)? = Q (nlog(p1)/n), n = Q(py *nlog(p1)) is sufficient for
P(Gy # G*[Vi UT|\\K7)|G* C H) = 0 as n — co. This proves (16). Using similar analysis,
we can prove (17) and (18).

The probability of error can be written as

2
P.<P(G* ¢ H)+ Y _ P(Gy # G [V, UT\K7|G* C H)
k=1
+ P(Gr # G*[T)|G* € H,G = G[Vi UT|*\Kr, G*[Va UT] = G[Va UT|\K7) .

Given (15)-(18), each term on the right goes to 0 as n — oo, so P, — 0 as n — oo.
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