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Aäron van den Oord aaron.vandenoord@ugent.be

Benjamin Schrauwen benjamin.schrauwen@ugent.be

Department of Electronics and Information Systems

Ghent University

Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium

Editor: Ruslan Salakhutdinov

Abstract

Recent results have shown that Gaussian mixture models (GMMs) are remarkably good at
density modeling of natural image patches, especially given their simplicity. In terms of
log likelihood on real-valued data they are comparable with the best performing techniques
published, easily outperforming more advanced ones, such as deep belief networks. They
can be applied to various image processing tasks, such as image denoising, deblurring and
inpainting, where they improve on other generic prior methods, such as sparse coding
and field of experts. Based on this we propose the use of another, even richer mixture
model based image prior: the Student-t mixture model (STM). We demonstrate that it
convincingly surpasses GMMs in terms of log likelihood, achieving performance competitive
with the state of the art in image patch modeling. We apply both the GMM and STM to
the task of lossy and lossless image compression, and propose efficient coding schemes that
can easily be extended to other unsupervised machine learning models. Finally, we show
that the suggested techniques outperform JPEG, with results comparable to or better than
JPEG 2000.

Keywords: image compression, mixture models, GMM, density modeling, unsupervised
learning

1. Introduction

Recently, there has been a growing interest in generative models for unsupervised learning.
Especially latent variable models such as sparse coding, energy-based learning and deep
learning techniques have received a lot of attention (Wright et al., 2010; Bengio, 2009).
The research in this domain was for some time largely stimulated by the success of the
models for discriminative feature extraction and unsupervised pre-training (Erhan et al.,
2010). Although some of these techniques were advertised as better generative models, no
experimental results could support these claims (Theis et al., 2011). Furthermore recent
work (Theis et al., 2011; Tang et al., 2013) showed that many of these models, such as
restricted Boltzmann machines and deep belief networks are outperformed by more basic
models such as the Gaussian Mixture model (GMM) in terms of log likelihood on real-valued
data.

Although arguably not as useful for the extraction of discriminative features, for the
use of unsupervised pre-training, Gaussian mixture models have been shown to be very
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successful in various image processing tasks, such as denoising, deblurring and inpainting
(Zoran and Weiss, 2011; Yu et al., 2012). Good density models are essential for these
tasks, and the log likelihood measure of these models has shown to be a good proxy for
their performance. Apart from being simple and efficient, GMMs are easily interpretable
methods which allow us to learn more about the nature of images (Zoran and Weiss, 2012).

In this paper we suggest the use of a similar, simple model for modeling natural im-
age patches: the Student-t mixture model (STM). The STM uses multivariate Student-t
distributed components instead of normally distributed components. We will show that a
Student-t distribution, although having only one additional variable (the number of degrees
of freedom), is able to model stronger dependencies than solely the linear covariance of the
normal distribution, resulting in a large increase in log likelihood. Although a GMM is a
universal approximator for continuous densities (Titterington et al., 1985), we will see that
the gap in performance between the STM and GMM remains substantial, as the number of
components increases.

Apart from comparing these methods with other published techniques for natural image
modeling in terms of log likelihood, we will also apply them to image compression by
proposing efficient coding schemes based on these models. Like other traditional image
processing applications, it is a challenging task to improve upon the well-established existing
techniques. Especially in data compression, which is one of the older, more advanced
branches of computer science, research has been going on for more than 30 years. Most
modern image compression techniques are therefore largely the result of designing data-
transformation techniques, such as as the discrete cosine transform (DCT) and the discrete
wavelet transform (DWT), and combining them with advanced engineered entropy coding
schemes (Wallace, 1991; Skodras et al., 2001).

We will demonstrate that simple unsupervised machine learning techniques such as
the GMM and STM are able to perform quite well on image compression, compared with
conventional techniques such as JPEG and JPEG 2000. Because we want to measure the
density-modeling capabilities of these models, the amount of domain-specific knowledge
induced in the proposed coding schemes is kept to a minimum. This also makes it relevant
from a machine learning perspective as we can more easily apply the same ideas to other
types of data such as audio, video, medical data, or more specific kinds of images, such as
satellite, 3D and medical images.

In Section 2 we review some work on compression, in which related techniques were
used. In Section 3 we give the necessary background for this paper on the GMM and STM
and the expectation-maximization (EM) steps for training them. We will also elaborate on
their differences and the more theoretical aspects of their ability to model the distribution
of natural image patches. In Section 4 we present the steps for encoding/decoding images
with the use of these mixture models for both lossy and lossless compression. The results
and their discussion follow in Section 5. We conclude in Section 6.

2. Related Work

In this section we will review related work on image compression and density modeling.
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2.1 Image Compression

The coding schemes (see section 4) we use to compare the GMM and STM, can be related
with other published techniques in image compression, in the way they are designed. Al-
though little research has been done on the subject we briefly review work based on vector
quantization, sparse coding and subspace clustering. The lossy coding scheme we describe
in this paper is based on a preliminary version that appeared in our previous work (van den
Oord et al., 2013).

In vector quantization (VQ) literature, GMMs have been proposed for the modeling of
low-dimensional speech signal parameters (Hedelin and Skoglund, 2000). In this setting,
the GMMs’ probability density function is suggested to be used to fit a large codebook
of VQ centroids on (e.g., with a technique similar to k-means), instead of on the original
data set. They were introduced to help against overfitting, which is a common problem
with the design of vector quantizers when the training set is relatively small compared
to the size of the codebook. The same idea has also been suggested for image compres-
sion (Aiyer et al., 2005). In contrast to these approaches we will apply a (learned) data
transformation in combination with simple scalar uniform quantization, which reduces the
complexity considerably given the relatively high dimensionality of image patches. This idea
called transform coding (Goyal, 2001) is widely applied in most common image compression
schemes, which use designed data-transforms such as the DCT and DWT.

By some authors (Hong et al., 2005) image compression has been suggested based on
a subspace clustering model. The main contribution was a piecewise linear transformation
for compression, which was also extended to a multiscale method. This is by some means
similar to our lossy compression scheme as we also apply a piecewise linear transform, but
based on the GMM/STM instead of a subspace clustering technique. They did not suggest
quantization or entropy coding steps, and therefore only evaluated their approach in terms
of energy compaction instead of rate-distortion.

Image compression based on sparse coding has been proposed (Horev et al., 2012) for
images in general (Bryt and Elad, 2008; Zepeda et al., 2011) and for a specific class of facial
images. Aside from being another unsupervised learning technique, sparse coding has been
related with GMM in another way: Some authors (Yu et al., 2012; Zoran and Weiss, 2011)
have suggested the interpretation of a GMM as a structured sparse coding model. This idea
is based on the observation that data can often be represented well by one of the N Gaussian
mixture components, thus when combining all the eigenvectors of their covariance matrices
as an overcomplete dictionary, the sparsity is 1

N . The main results in Horev et al. (2012)
show that sparse coding outperforms JPEG, but it does not reach JPEG 2000 performance
for a general class of images.

2.2 Models of Image Patches

Sparse coding approaches (Olshausen and Field, 1997) have also been successfully applied
as an image prior on various image reconstruction tasks, such as denoising and demosaicing
(Elad and Aharon, 2006; Mairal et al., 2009). These models have recently been shown to
be outperformed by the GMM in both image denoising (Zoran and Weiss, 2011) as density
modeling (Zoran and Weiss, 2012).
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The Fields of Experts (FoE) framework is another approach for learning priors that can
be used for image processing applications (Roth and Black, 2005; Weiss and Freeman, 2007).
In a FoE, the linear filters of a Markov random field (MRF) are trained to maximize the
log-likelihood of whole images in the training set. This optimization is done approximately
with contrastive divergence, as computing the log likelihood itself is intractable. The po-
tential functions that are used in the MRF are represented by a product of experts (PoE)
(Hinton, 2002). The FoE is commonly used for image restoration tasks such as denoising
and inpainting, but was also recently outperformed by GMMs with the expected patch log
likelihood framework (EPLL) (Zoran and Weiss, 2012).

Recently similar models to the GMM have been proposed for image modeling, such as
the Deep mixture of Factor analyzers (Deep MFA) (Tang et al., 2012). This technique is
a deep generalization of the Mixture of Factor Analyzers model, which is similar to the
GMM. The deep MFA has a tree structure in which every node is a factor analyzer, which
inherits the low-dimensional latent factors from its parent.

Another model related to the GMM and STM is the Mixture of Gaussian scale mixtures
(MoGSM) (Theis et al., 2011, 2012). Instead of a Gaussian, every mixture component is a
Gaussian scale mixture distribution. The MoGSM has been used for learning multi-scale
image representations, by modeling each level conditioned on the higher levels.

RNADE, a new deep density estimation technique for real valued data has a very dif-
ferent structure (Uria et al., 2013b,a). RNADE is an extension of the NADE technique
for real-valued data, where the likelihood function is factored into a product of conditional
likelihood functions. Each conditional distribution is fitted with a neural mixture density
network, where one variable is estimated, given the other ones. Recently a new training
method has allowed a factorial number of RNADE’s to be trained at once within one model.
It is currently one of the few deep learning methods with good density estimation results
on real-valued data and is the current state of the art on image patch modeling.

3. Mixture Models as Image Patch Priors

Mixture models are among the most widely accepted methods for clustering and probability
density estimation. Especially GMMs are well known and have widespread applications in
different domains. However depending on the data used, other mixture models might be
more suitable.

In this work we will denote the mixture component distribution as fk and the mixture
distribution as

f (x) =

K∑
k=1

πkfk (x) ,

where πk, k = 1 . . .K are the mixing weights. The two component distributions we study
here are the multivariate normal distribution:

fk (x) = N (x|µk,Σk) = (2π)−
p
2 |Σk|−

1
2 e−

1
2

(x−µk)T Σ−1
k (x−µk),

and the multivariate Student-t distribution, see Equation 1. In these equations, p is the
dimensionality of x. We will train the GMM with the EM-algorithm: an iterative algorithm
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for finding the maximum likelihood estimate of the parameters. For completeness we sum-
marize the expectation and maximization steps for training a GMM with EM.
E-step:

γnk =
πkN (xn|µk,Σk)
K∑
j=1

πjN (xn|µj ,Σj)

.

M-step:

πk =
1

N

N∑
n=1

γnk, µk =

N∑
n=1

γnkxn

N∑
n=1

γnk

,

Σk =

N∑
n=1

γnk (xn − µk) (xn − µk)T

N∑
n=1

γnk

.

One of the important reasons GMMs excel at modeling image patches is that the distri-
bution of image patches has a multimodal landscape. A unimodal distribution such as the
multivariate normal distribution is not able to capture this. When using a mixture however,
each component can represent a different aspect or texture of the whole distribution. We
can observe this by looking at the individual mixture components of a trained GMM model,
see Figure 1.

Next to modeling different textures, the GMM also captures differences in contrast. It
has been shown (Zoran and Weiss, 2012) that multiple components in the GMM describe
a similar structure in the image, but each with a different level of contrast. The STM,
however, can model different ratios of contrast within a single mixture component.

A multivariate Student-t distribution has the following density function (Kotz and
Nadarajah, 2004):

T (x|ν, µ,Σ) =
Γ
(
ν+p

2

)
Γ
(
ν
2

)
ν
p
2 π

p
2 |Σ|1/2

[
1 +

1

ν
(x− µ)

T
Σ−1 (x− µ)

]− ν+p2

. (1)

ν is an additional parameter which represents the number of degrees of freedom. Note that
for ν →∞ the Student-t distribution converges to the normal distribution. It is interesting
to see how this distribution is constructed:
If Y is a multivariate normal random vector with mean 0 and covariance Σ, and if νT is a
chi-squared random variable with degrees of freedom ν, independent of Y, and

X =
Y√
T

+ µ,

then X has a multivariate Student-t distribution with degrees of freedom ν, mean µ, and
covariance matrix Σ. This also means X|T = τ is normally distributed with mean µ and
covariance Σ

τ . In the setting of modeling image patches, T can be interpreted to model the
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The first 64 eigenvectors of the component’s covariance matrix.

Patches generated by sampling from the component distribution.

Examples from the train set that are best represented by this component.

The first 64 eigenvectors of the component’s covariance matrix.

Patches generated by sampling from the component distribution.

Examples from the train set that are best represented by this component.

Figure 1: Six mixture components of the GMM are visualized here (the STM gives similar
texture patterns). We first show the eigenvectors of the covariance matrix of
each component, which show the structure of the image patches that the mixture
component learns. These eigenvectors are sorted by their respective eigenvalues
from large to small (left to right and top to bottom). Only the first 64 of 192
are shown. Next we show some samples that are generated by each component,
and some examples from the train set that are best represented with this com-
ponent (clustered with the GMM). Note that every component has specialized in
a different aspect or texture, and that the samples generated by the component
distributions are very similar to the real image patches. This figure is best viewed
in color on the electronic version.2066
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variety of contrast, for a given texture. The distribution of T is visualized in Figure 2(a),
for different values of ν. If ν is small for a given component (texture), this means that the
texture appears in natural images in a wide range of contrast. For ν →∞ we get a Gaussian
distribution and its contrast is more constrained. To obtain the same capacity with a GMM,
one would need multiple components having scaled versions of the same covariance matrix.

In Figure 2(b) the value of ν is visualized for different components of a trained STM.
This value differs substantially for each component, ranging from almost zero to 15. This
means some component-distributions are very long-tailed (with small ν) and some are more
normally distributed (higher ν). This means that some texture patterns appear in a wider
range of contrast than others. However, in our experiments we saw that the STM does not
learn significantly different structures compared to the GMM. The texture patterns learned
by the STM were also very similar to those shown in Figure 1. This means the STM is
better at generalizing to image patches with different levels of contrast, but might not be
better at generalizing to different unseen texture patterns.
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(a) The distribution of T in Equation 2, for different
values of ν. As ν increases the distribution becomes
more peaked and converges to a Dirac delta at 1.
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(b) The value of νk for each component k of a trained
STM with 128 components, sorted from low to high.

Figure 2: The distribution of T for different ν and the value of ν for different mixture
components.

Given the fact that a GMM is universal approximator for continuous densities, the
question that remains is if a STM still has the advantage over the GMM when the number
of components increases. To this end we have trained a GMM and STM on a set of image
patches for different numbers of mixture components and computed their log likelihood
scores on a validation set, see Figure 3(a). Notice that the performance of a single Student-
t is much better than that of a single Gaussian, and close to that of a GMM with K=4. This
is in agreement with previously reported findings (Zoran and Weiss, 2012), which suggest
that a GMM with a small number of components mainly learns contrast. Next we see that
as N increases the gap in performance between the STM and GMM remains substantial.
The most plausible explanation for this behavior is that the GMM needs more mixture
components than the STM to have the same contrast modeling capabilities. However,
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with more mixture components the risk of overfitting also increases. If one would tie the
parameters of some of these components together, so that they have scaled versions of the
same covariance matrix, the risk of overfitting would decrease. This is exploited in the
mixture of Gaussian scale mixtures (MoGSM) (Theis et al., 2012).

The idea of explicitly sharing covariance parameters between mixture components has
also been applied to mixtures of factor analyzers, with the deep MFA model (Tang et al.,
2012). They proposed a hierarchical structure in which the mixture components partially
inherit the covariance structure of their parent in the hierarchy.

The Student-t has previously been used for modeling image patches in the PoE frame-
work (Welling et al., 2002), where each expert models a differently linearly filtered version
of the input with a univariate Student-t distribution.
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Figure 3: The average patch log likelihood for the Gaussian mixture model (GMM) and
Student-t mixture model (STM) in function of its number of mixture compo-
nents (a) and number of training samples (b). The models were trained on 8x8
normalized gray scale image patches, extracted from the Berkeley data set (see
Section 5.1.1).

We also train the STM with the EM algorithm (Peel and McLachlan, 2000; Dempster
et al., 1977):
E-step:

γnk =
πkT (xn|νk, µk,Σk)
K∑
j=1

πjT (xn|νj , µj ,Σj)

, wnk = νk+p

νk+(xn−µk)T Σ−1
k (xn−µk)

.

M-step:

πk =
1

N

N∑
n=1

γnk, µk =

N∑
n=1

γnkwnkxn

N∑
n=1

γnkwnk

.
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Σk =

N∑
n=1

γnkwnk (xn − µk) (xn − µk)T

N∑
n=1

γnk

.

For the degrees of freedom, there is no closed form update rule. Instead νk gets updated as
the solution of:

− ψ
(νk

2

)
+ log

(νk
2

)
+ 1 +

1

αk

N∑
n=1

γnk (log (wnk)− wnk)

+ ψ

(
ν̃k + p

2

)
− log

(
ν̃k + p

2

)
= 0,

where ν̃k is the value of the current νk, αk =
∑N

n=1 γnk and ψ is the digamma function.
This scalar non-linear equation can be solved quickly with a root finding algorithm, such
as Brent’s method (Brent, 1973).

Note that the expectation and maximization steps are quite similar to those of the
GMM. In our experiments, it did not take substantially longer to train a STM than a
GMM. Typically 100 iterations were enough to train the STM or GMM, even though the
log likelihood does keep improving a little bit after that (even after 500 iterations). For a
big mixture model of 256 components, trained on 500.000 samples of 8x8 gray scale patches,
this took about 20 hours on a standard desktop computer with four cores. For the STM, it
took 21 hours. On this scale, the CPU time is linear in both the number of training samples
and the number of components. Training on image patches proved to be quite stable: no
components needed to be reinitialized during training.

The code for training a Student-t mixture is included in the supplementary material of
this paper.

4. Compression with Mixture Models

Both the lossy and lossless algorithms we propose are patch/block based. This means they
will encode each patch of an image separately. During training we randomly sample a large
set of image patches from the training images. These are used to fit the GMM and STM
models. Once training is finished, these density models can be used to encode the test
images. Each test image is viewed as a grid of non-overlapping patches. The encoder loops
over all patches, which are extracted, flattened and encoded one by one.

To speed up the algorithms, each patch will be encoded using the distribution and
parameters of only one of the mixture components. We choose the mixture component
which represents the given patch with the highest likelihood:

β = arg max
k

fk (xn) .

This will only slightly reduce the performance, because the “overlap” between the individual
mixture components is relatively small. We can easily validate this with a simple intermedi-
ate experiment. In Table 1 we have computed the log likelihood for a trained GMM and STM
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GMM STM

Log likelihood 152.86 154.51

Highest mixture component log likelihood 152.66 154.15

Table 1: Average patch log likelihood compared with the average highest component patch
log likelihood: How well can a sample be represented by using a single mixture
component? (See text)

on a validation set. We have also computed the average log likelihood when only one of the
mixture components is used for each example: 1

N

∑N
n=1 log (maxk (πkfk (xn))). Note that

this is strictly lower than the actual average log likelihood: 1
N

∑N
n=1 log

(∑K
k=1 πkfk (xn)

)
.

But as can be seen from Table 1, the difference is small.

4.1 Arithmetic Coding

Most commonplace image compression schemes follow three main steps: transformation,
quantization and entropy coding (Goyal, 2001). Transformation decorrelates the data, quan-
tization maps the values of the decorrelated continuous variables onto discrete values from a
relatively small set of symbols (such as integers) and entropy coding encodes these discrete
quantized values into a bit sequence. In this paper, transformation and quantization will
only be used for lossy compression and not for lossless compression. However, in both cases
we employ arithmetic coding (AC) for the entropy coding step.

Entropy coding is a family of algorithms that take as input a sequence of discrete values,
and give as output the encoded binary sequence. Based on the statistical properties of the
input, the goal is to minimize the expected length of the bit sequence (e.g., by assigning
more bits to a rare symbol and less bits to a common symbol). The theoretical limit of
the encoding scheme is bounded by the entropy of the input signal, which explains the
name entropy coding. Arithmetic coding is a form of entropy coding, which requires a
list of probabilities αi, i = 1 . . . N that describe the discrete distribution P (sj) = αj of
a symbol sj occurring in an input sequence. Based on these probabilities, the algorithm
will on average spend fewer bits on common symbols, than on rare ones. However, with
AC it is also possible to use different probabilities for each time step t in the sequence:

P
(
s

(t)
j

)
= αjt, and even adapt them during the encoding/decoding based on the values of

the previously encoded symbols. This is also called adaptive arithmetic coding.

4.2 Lossless Compression

In lossless compression, the image should be preserved perfectly so that after decompression
the output image is identical to the input image. Because we have a probabilistic model
for an image patch, the most natural way to approach this task is to use lossless predictive
coding (Pearlman and Said, 2011). The idea is to predict the value (integer) of each sample
within an image patch, using the values of its neighboring samples that are already encoded,
based on the correlations between them. In this case, the prediction will actually consist of
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a discrete probability distribution over the possible values of the current sample, which can
directly be used to perform arithmetic coding.

To carry out arithmetic coding on a patch xi, one needs to compute a list of probabilities
(probability table) for each of its elements xi,j : P (xi,j = l) for l = 0 . . . L. More specifically,
because arithmetic coding can adapt the probability tables to the information of the previous
symbols xi,1 . . . xi,j−1 it is possible to encode every symbol conditionally with respect to the
ones already encoded: P (xi,j = l|xi,1 . . . xi,j−1). As the image patches are modeled by
continuous probability densities, this can computed as follows:

P (xi,j = l|xi,1 . . . xi,j−1) =

∫ l+ 1
2

l− 1
2

f (xi,j |xi,1 . . . xi,j−1) dxi,j . (2)

This scheme for performing lossless image compression can be used in combination with
any density model, provided that we can compute Equation 2. This way arithmetic coding
can be applied to the image using the statistics of the trained model. Algorithm 1 gives a
summary for lossless compression with a mixture model.

As already mentioned, when using an mixture model, it is more efficient to use a single
component for the encoding of a patch than the whole mixture. For both normally and
Student-t distributed variables, the expressions for Equation 2 can be derived from their
conditional distributions.
For the normal distribution this becomes:∫ l+ 1

2

l− 1
2

N (xi,j |xi,1 . . . xi,j−1) dxi,j = Fn

(
l +

1

2
|µ̃j , σ̃j2

)
− Fn

(
l − 1

2
|µ̃j , σ̃j2

)
,

with Fn the cumulative distribution function (CDF) of the univariate normal distribution,
and where

µ̃j = µj + Σj,1:j−1Σ−1
1:j−1,1:j−1 (x1:j−1 − µ1:j−1) ,

σ̃j
2 = Σj,j − Σj,1:j−1Σ−1

1:j−1,1:j−1Σ1:j−1,j .

For the multivariate Student-t distribution the equations are similar:∫ l+ 1
2

l− 1
2

T (xi,j |xi,1 . . . xi,j−1) dxi,j = Ft

(
l +

1

2
|ν̃j , µ̃j , s̃j2

)
− Ft

(
l − 1

2
|ν̃j , µ̃j , s̃j2

)
,

with Fn the CDF of the non-standardized univariate Student-t distribution (which has a
location and scale parameter), and where

ν̃j = νj + j − 1,

µ̃j = µj + Σj,1:j−1Σ−1
1:j−1,1:j−1 (x1:j−1 − µ1:j−1) ,

s̃j
2 =

(
ν + xT1:j−1Σ−1

1:j−1,1:j−1x1:j−1

ν + j − 1

)(
Σj,j − Σj,1:j−1Σ−1

1:j−1,1:j−1Σ1:j−1,j

)
.

When using a form of entropy coding, such as arithmetic coding, the theoretical optimal
code length for a symbol i is dependent on the probability Pi of it occurring: − log (Pi).
Therefore, the lower bound on the expected rate (bits per symbol) is: − 1

N

∑N
i=1 Pi log (Pi).

Because Pi is calculated by a density model (Equation 2), the log likelihood score of this
model is a good indication for how well it performs on lossless compression.
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Algorithm 1: Lossless image compression with a mixture model. [AC] stands for
arithmetic coding.

Encoder:

for each patch xi in image do
β = arg maxk fk(xi)
[AC] Encode symbol β with probability table π (mixing weights)
for each xij , j = 1 . . . p do

Use Equation 2 to compute: αi,j,l = Pβ(xi,j = l|zi,1 . . . xi,j−1)
[AC] Encode symbol xij with probability table αi,j

end

end

Decoder:

while not at end of bit stream do
[AC] Decode symbol β with probability table π (mixing weights)
initialize xi
for j = 1 . . . p do

Use Equation 2 to compute: αi,j,l = Pβ(xi,j = l|zi,1 . . . xi,j−1)
[AC] Decode symbol xij with probability table αi,j

end

end
Reconstruct image from patches xi, i = 1 . . . N .
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4.3 Lossy Compression

For lossy compression, the image reconstruction after decompression does not have to be
identical to the original, but should match it very closely. The strength of compression
should be as high as possible, given a certain tolerable amount of distortion. This freedom
evidently allows stronger compression than with lossless algorithms.

Lossy image compression algorithms typically use quantization to reduce the amount of
information that needs to be entropy coded. Quantization decreases the number of states
of the data variables to a smaller discrete set. As mentioned above we will use simple scalar
quantization as the number of variables in a patch is relatively high and vector quantization
would simply be impractical. Instead of VQ, we will combine scalar quantization with a
data transform step, as is done in most image compression schemes.

The main reason of a data transform step in compression schemes is to decorrelate the
input, so that the different coefficients can be handled more independently afterwards. Es-
pecially when using scalar quantization it is important to use a form of transformation first,
as this reduces the amount of redundancy in the data that has to be encoded. Moreover,
if one would quantize the image in the original pixel domain, the reconstruction artifacts
would be very obtrusive. Because a Gaussian or Student-t mixture component already
models covariance, decorrelation is fairly straightforward. The transform step is as follows:

yi = W T (xi − µ) , (3)

where W is the eigenvector matrix of the covariance matrix Σ of the Gaussian/Student-t
mixture component: WJW T = Σ. J is the diagonal eigenvalue matrix of Σ. Subsequently,
the transformed values are quantized with a uniform quantizer:

zi = round
(yi
λ

)
. (4)

The strength of the quantization only depends on λ. When it is high, the quality of the
encoded image will be low, but the compression ratio will be high.

Once quantization is done, arithmetic coding is carried out in a similar fashion as with
lossless compression: we have to be able to compute Equation 2. Because the data is
transformed (Equation 3), the mean of y becomes 0: µy = 0 and the covariance matrix
reduces to: Σy = J . The equations for calculating the conditional probabilities from before
can now be simplified.
For the normal distribution:

P (zi,j = l|zi,1, . . . , zi,j−1) =

∫ λ(l+ 1
2)

λ(l− 1
2)
N (yi,j |ỹi,1 . . . ỹi,j−1) dyi,j (5)

= Fn

(
λ

(
l +

1

2

)
|0, Jj

)
− Fn

(
λ

(
l − 1

2

)
|0, Jj

)
,

with Fn the cumulative distribution function (CDF) of the univariate normal distribution,
and ỹi,∗ is the reconstruction of yi,∗ (as we will discuss later).

2073



van den Oord and Schrauwen

For the Student-t distribution:

P (zi,j = l|zi,1, . . . , zi,j−1) =

∫ λ(l+ 1
2)

λ(l− 1
2)
T (yi,j |ỹi,1 . . . ỹi,j−1) dyi,j (6)

= Ft

(
λ

(
l +

1

2

)
|ν̃j , 0, s̃j2

)
− Ft

(
λ

(
l − 1

2

)
|ν̃j , 0, s̃j2

)
,

with Ft the CDF of the non-standardized univariate Student-t distribution (which has a
location and scale parameter), and where

ν̃j = νj + j − 1,

s̃j =

νj +
∑j−1

m=1

ỹ2i,m
Jm

νj + j − 1

 Jj .

Because of the two additional steps (Transformation and Quantization) during compres-
sion, the decoder has to dequantize and subsequently detransform the data after arithmetic
coding.
Dequantization:

ỹi = λzi. (7)

Inverse transform:
x̃i = Wỹi + µ. (8)

4.3.1 Uniform Threshold Quantization

It is important to note that Equation 7 might not be the best choice for reconstruction. It
is indeed possible to increase the quality of dequantization by using prior knowledge of the
scalar input distribution. This concept is called uniform threshold quantization (Pearlman
and Said, 2011). Figure 4 shows the difference with regular uniform quantization.

Depending on the assumed distribution of the source it is possible to minimize the
expected distortion: (ỹi,j − yi,j)2 (other measures of distortion can also be used). This
comes down to solving the following optimization problem:

ỹi,j = arg min
y

∫ λ(zi,j+ 1
2)

λ(zi,j− 1
2)
‖y − x‖2 f(x) dx,

which can be simplified to:

ỹi,j =

∫ λ(zi,j+ 1
2)

λ(zi,j− 1
2)
xf(x) dx∫ λ(zi,j+ 1

2)
λ(zi,j− 1

2)
f(x) dx

.

This is actually nothing more than the centroid in that region (see Figure 4). Because we
are using a probabilistic method, this improved reconstruction almost comes for free: The

2074



The STM as a Natural Image Patch Prior

Algorithm 2: Lossy image compression with a mixture model. [AC] stands for arith-
metic coding.

Encoder:

for each patch xi in image do
β = arg maxk fk(xi)
[AC] Encode symbol β with probability table π (mixing weights)
Transform xi with Equation 3 using the β-th component
Quantize xi with Equation 4
for each xij , j = 1 . . . p do

Use Equation 5 or 6 to compute: αi,j,l = Pβ(xi,j = l|xi,1 . . . xi,j−1)
[AC] Encode symbol xij with probability table αi,j

end

end

Decoder:

while not at end of bitstream do
[AC] Decode symbol β with probability table π (mixing weights)
initialize xi
for j = 1 . . . p do

Use Equation 5 or 6 to compute: αi,j,l = Pβ(xi,j = l|xi,1 . . . xi,j−1)
[AC] Decode symbol xij with probability table αi,j

end
Dequantize xi with Equation 7 or 9
Inverse transform xi with Equation 8

end
Reconstruct image from patches xi, i = 1 . . . N .
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λ
(
zi−1

2

)
λ
(
zi +

1
2

)
UQ = λziUTQ

   

f(x)

Figure 4: Uniform quantization versus uniform threshold quantization. During dequantiza-
tion, UQ will reconstruct the input with the centers of the quantization intervals.
UTQ uses the centroids instead.

compression scheme remains the same, only the decompression is improved. For a normally
distributed variable the reconstruction is

ỹi,j =

√
Jj
2π

[
exp

(
−λ2(zi,j− 1

2)
2

2Jj

)
− exp

(
−λ2(zi,j+ 1

2)
2

2Jj

)]
Fn
(
λ
(
zi,j + 1

2

)
|0, Jj

)
− Fn

(
λ
(
zi,j − 1

2

)
|0, Jj

) ,

and for a Student-t distributed variable it is

ỹi,j =

Γ
(
ν̃j+1

2

)
√
πΓ

(
ν̃j
2

) s̃ν̃jj ν̃j
ν̃j
2

ν̃j−1

[(
ν̃j s̃

2
j + λ2

(
zi,j − 1

2

)2) 1−ν̃j
2 −

(
ν̃j s̃

2
j + λ2

(
zi,j + 1

2

)2) 1−ν̃j
2

]
Ft
(
λ
(
zi,j + 1

2

)
|ν̃j , 0, s̃j2

)
− Ft

(
λ
(
zi,j − 1

2

)
|ν̃j , 0, s̃j2

) .

5. Results and Discussion

In this section we will discuss the experimental results of the STM on density modelling
and image compression tasks.

5.1 Data Sets and Methods

We will first introduce the data sets that we used for our experiments and also discuss
the image compression standards (JPEG, JPEG 2000) which will be used to compare the
compression results with.

5.1.1 Berkeley Segmentation Data Set

The Berkeley Segmentation Data set (Martin et al., 2001) consists of 200 training and 100
test JPEG-encoded images, originally intended to be used as a segmentation benchmark.
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Some samples can be seen on Figure 5. This data set has been used by several authors
to measure the unsupervised learning performance of their model on image patches (Zoran
and Weiss, 2011; Tang et al., 2013; Uria et al., 2013a). We adopt the use of this data set for
measuring density modeling performance, but not for image compression, as these images
were already encoded with JPEG and will already contain some quantization noise.

5.1.2 UCID Data Set

Although images are abundant on the world wide web, large data sets containing losslessly
encoded images are rather hard to find. In image processing most authors have grown to rely
on a particular set of standard images, such as Lena, Baboon, Peppers, etc. 1 to measure
their algorithms’ performance. Although each of these images have specific features that
make them interesting to test a new method on, results on this small set likely will not
generalize to a wide range of images. Furthermore, because there is no clear distinction
between a training and test set for these images, there is a high risk of overfitting (even
when engineering a compression scheme). Finally most of these images are relatively old
and noisy, so they are hardly representative for images of modern photography.

On of the few publicly available data sets is UCID (Schaefer and Stich, 2003) (Uncom-
pressed Colour Image Data set). The UCID database consists of 1338 TIFF images on a
variety of topics including natural scenes and man-made objects, both indoors and out-
doors. The camera settings were all set to automatic as this resembles what the average
user would do. All the images have sizes 512x384 or 384x512. The images are in true color
(24-bit RGB, each color channel having 256 possible values per pixel). Some sample UCID
images can be seen on Figure 6.

As the images are not in random order, we have included every 10th image (10, 20, 30,
. . ., 1330) of the data set in our test set, and the others were used for training. This results
in 1205 images for training and 133 images for testing. We randomly sample a large set of
image patches (two million) for training the mixture models. We then encode every test
image with a number of different quantization strengths (only for lossy compression), and
measure their compression performance and the distortion of their reconstruction.

5.1.3 JPEG and JPEG 2000

For comparison we added two image compression standards as benchmark: JPEG (Wallace,
1991) and JPEG 2000 (Skodras et al., 2001).

JPEG is a patch based compression standard which uses the DCT as its transform, with
quantization and entropy coding optimized for this transform. For the JPEG standard, we
employed the widely used libjpeg implementation (ijg.org). Optimization of the JPEG
entropy encoding parameters was enabled for better performance. The quality parameter
was swept from 0 (worst) to 100 (best) in steps of 5.

JPEG 2000 is a wavelet-based compression standard and because of its multiresolution
decomposition structure, it is able to exploit wider spatial correlations than JPEG and
our method (which are patch based). For JPEG 2000, the kakadu implementation was

1. Most of these standard images can be found here: http://sipi.usc.edu/database/database.php?

volume=misc
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used (kakadusoftware.com). To make a fair comparison, command line parameters were
enabled to optimize the PSNR instead of perceptual error measures.

For both methods we did not take the meta information of the header into account when
measuring the performance of compression.

Figure 5: Sample images from the Berkeley Segmentation Data set.

Figure 6: Sample images from the UCID data set (Uncompressed Colour Image Data set).

5.2 Average Patch Log Likelihood Comparison

Two million 8x8 patches were extracted from the training images, and 50,000 were extracted
from the testing images (Berkeley data set). For every sample the mean was subtracted
(DC component). Because the test patches we extracted could differ from those used by
other authors, we report the mean and standard deviation across 10 randomly sampled sets
of 50,000 patches. The results are listed in Table 2. The GMM and STM had 200 mixture
components. As expected our GMM has a comparable result to that reported in literature.
The proposed method STM significantly outperforms other methods.

We also compare our result with the recently proposed RNADE model (Uria et al.,
2013b,a). Because the authors preprocess the gray scale patches differently, the results are
not comparable to the ones reported in Table 2. Before subtracting the sample mean, small
uniform noise (between 0 and 1) is added to the pixel values (between 0 and 255), which
are then normalized by dividing by 256. Afterwards, they remove the last pixel, so that
the number of variables of each datapoint equals 63. For this task we used four million
patches during training and evaluated on one million patches from the test set. The results
are shown in Table 3. The STM outperforms the deep RNADE model of 6 layers, but is on
its turn outperformed by the ensemble of RNADE models (EoRNADE).

5.3 Lossless Compression

Because JPEG does not natively support lossless compression we excluded this benchmark
for this test. For our methods we used patch size 8x8 and 128 mixture components. The
results are listed in Table 4. As explained above (see Section 4.2), there is a connection
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Indp. Pixel ICA GRBM DBN MFA

78.3 135.7 137.8 144.4 166.5

Deep MFA MTA GMM GMM STM

169.3 158.2 167.2 166.97 ± 0.36 172.13 ± 0.42

Table 2: Average log-likelihood (higher is better). Own results are marked in bold. The
results of other methods are taken from Zoran and Weiss (2011); Tang et al. (2013).
ICA: independent component analysis, GRBM: Gaussian restricted Boltzmann
machine, DBN: Deep belief network, MFA: mixture of factor analyzers, MTA:
Mixture of Tensor analyzers.

RNADE:

1hl, 2hl, 3hl 143.2, 149,2, 152.0

4hl, 5hl, 6hl 153.6, 154.7, 155.2

EoRNADE (6hl) 157.0

GMM 153.7

STM 155.3

Table 3: Average log-likelihood comparison with RNADE (Uria et al., 2013a) in function
of the number of hidden layers (hl). Our results are marked in bold. These results
are obtained from differently processed patches than those in Table 2 (see text).
EoRNADE stands for an ensemble of RNADE’s.

between average log likelihood and the expected lossless compression strength. The STM
also outperforms the GMM on this task, and both methods outperform JPEG 2000.

5.4 Lossy Compression

We will first analyze the influence of the patch size on the lossy compression performance.
The results are visualized in Figure 7. All mixture models were trained for 500 iterations
and consist of 128 components. The reconstruction quality of an image is measured in peak
signal-to-noise ratio: PSNR = 10 log10

R2

MSE , with R being the largest possible pixel value
(255 in this case) and MSE being the average mean squared error.

Bigger patch sizes show better results for low bit rates and vice versa. This can be
explained by the fact that when using larger patch sizes, covariance between more pixels

JPEG 2000 GMM STM

12.40 12.07 11.83

Table 4: Lossless compression rate (in bits per pixel - lower is better). Naive encoding
would result in 24 bits per pixel (true color images).
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can be modeled simultaneously. This way the transform has the ability to decorrelate better,
which is important for low bit rates. For higher bit rates, we approach a near-lossless region,
where the log likelihood performance of the model is crucial. When modeling smaller patch
sizes, the algorithm is less prone to overfit, resulting in better performance. We can see that
these high-rate effects are most apparent for the GMM. The STM, which is more robust to
overfitting, is able to model larger patch sizes.

Because the 8x8 patch size has a good performance in general for both methods, our
final experiments are computed with this setting. Note that JPEG also uses 8x8 patches for
its compression scheme. For different compression strengths we have computed the average
PSNR of the reconstructed images. For some images, JPEG or JPEG 2000 was unable to
encode them at a given rate (1, 2 and 10 images for 3, 4 and 5 bpp respectively), so these
images where not taken into account at those rates.

The final results are shown on Figure 8. For all compression rates, JPEG is outperformed
by the other methods. The proposed compression schemes are competitive with JPEG
2000, and relatively to JPEG they score quite similar. In all experiments uniform threshold
quantization improves on standard uniform quantization. The GMM is always outperformed
by the STM, and the difference increases for larger bit rates. JPEG 2000 slightly exceeds
the performance of the GMM in all experiments, but is in turn surpassed by the STM, with
the exception of the lowest bit rate. At low bit rates, correlations on a more global scale
become more important, which is why the multiresolution wavelet transform of JPEG 2000
achieves a better performance than our patch-based approach in this setting. Extending
our approach to a multiscale technique might therefore be a promising direction of future
research.

In Figure 9 we have visualized some reconstructed images after compression with JPEG,
JPEG 2000 and the proposed method (GMM and STM), for varying levels of compression
strength: 1, 2.5 and 5 bits per pixel (bpp). This Figure is best viewed on the electronic
version by zooming in on the different images. Because JPEG and the proposed method
are block based, they have blocking artifacts that JPEG 2000 does not. The latter has
more blurring artifacts. The proposed method seems to have the strongest visual artifacts
in low-frequency regions, but performs well in high-frequency regions such as trees and
leaves. This can be attributed to the fact that the compression method does not take into
account the properties of human visual perception and therefore quantizes both high as
low frequency regions equally strongly. One could improve the visual results by adding
prior knowledge about the perceptual system, using a deblocking filter (or using an image
reconstruction algorithm based on GMM/STMs with the expected patch log likelihood
(EPLL) framework), extending the model so that it works with overlapping blocks (with
the MDCT transform for example) or by making it multi-scale. However, these extensions
are outside the scope of this work.

6. Conclusion and Future Work

The presented work consists of two main contributions: the introduction and analysis of
the Student-t mixture as an image patch modeling technique, and the proposal of lossless
and lossy image compression techniques based on mixture models.
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Figure 7: Average patch Quality (PSNR) - Rate (bpp) curves for different patch-sizes
(GMM left, STM right). This Figure is best viewed in color.
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Figure 8: Results for lossy compression of colored images. Average quality (PSNR) in
function of average rate (bits per pixel). Methods marked with a asterisk (*) use
uniform threshold quantization, and thus have a better reconstruction error.
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In the first part we have proposed the STM as an image patch prior. This method
significantly outperformed the GMM for density modeling of image patches, with results
competitive to the state-of-the-art on this task. This performance could largely be at-
tributed to the fact that a Student-t mixture is able to model contrast in addition to linear
dependencies within a single mixture component. For future work it would also be very
interesting to see how it matches up with other methods on other types of data. Another
possibility would be to study the Student-t mixture model for the use of image reconstruc-
tion applications (denoising, deblurring, inpainting), as was recently proposed with GMMs
(Zoran and Weiss, 2011).

In the second part both the GMM and STM have been examined in this paper for
the task of image compression. Lossless and lossy coding schemes were presented, which
could easily be adapted for other unsupervised learning techniques. For lossy compression,
experimental results demonstrated that the proposed techniques consistently outperform
JPEG, with results similar to those of JPEG 2000. With the exception of the lowest bit
rate, the STM has the advantage over JPEG 2000 in terms of rate-distortion. In lossless
compression both the GMM and STM outperform JPEG 2000, which is mainly due to the
fact that this task is even more connected with density estimation. In future work, even
more advanced techniques will be considered. Moving beyond the 8x8 patch size, with for
example multiscale techniques, is an especially promising direction.

One of the most important conclusions we can draw here is that relatively simple machine
learning techniques can perform quite well on the task of image compression. We saw that
their performance could largely be attributed to their density modeling capabilities. It
would therefore be interesting to apply machine learning to compression of different types
of data, such as audio, video, EEG, etc. and more specific types of data such as facial or
satellite images. We also propose for compression to be used more in machine learning as a
benchmark to compare models. Given the recent progress in unsupervised machine learning
we expect that even better results will follow.
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