
Journal of Machine Learning Research 15 (2014) 1903-1928 Submitted 5/10; Revised 1/14; Published 6/14

Pattern Alternating Maximization Algorithm for Missing
Data in High-Dimensional Problems
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Abstract

We propose a novel and efficient algorithm for maximizing the observed log-likelihood of a
multivariate normal data matrix with missing values. We show that our procedure, based
on iteratively regressing the missing on the observed variables, generalizes the standard EM
algorithm by alternating between different complete data spaces and performing the E-Step
incrementally. In this non-standard setup we prove numerical convergence to a stationary
point of the observed log-likelihood. For high-dimensional data, where the number of
variables may greatly exceed sample size, we perform regularization using a Lasso-type
penalty. This introduces sparsity in the regression coefficients used for imputation, permits
fast computation and warrants competitive performance in terms of estimating the missing
entries. We show on simulated and real data that the new method often improves upon
other modern imputation techniques such as k-nearest neighbors imputation, nuclear norm
minimization or a penalized likelihood approach with an `1-penalty on the concentration
matrix.

Keywords: missing data, observed likelihood, (partial) E- and M-Step, Lasso, penalized
variational free energy

1. Introduction and Motivation

Missing data imputation for large data sets is a significant challenge in many complex data
applications. One well-known example are microarray data sets which contain expression
profiles of p genes from a series of n experiments, where p is typically much larger than
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n (Troyanskaya et al., 2001; Aittokallio, 2010). In this paper, we propose a novel and
computationally efficient imputation algorithm based on missingness pattern alternating
maximization in the high-dimensional multivariate normal model. The Gaussian assump-
tion in our model is used for computation of the likelihood but empirical findings suggest
that the method is applicable to a wide range of problems where continuous data is arranged
in the form of a n× p matrix with p� n.

There is a growing literature on missing values in the high-dimensional context (Allen and
Tibshirani, 2010; Josse et al., 2011; Loh and Wainwright, 2012; Rosenbaum and Tsybakov,
2010). In recent years, a special focus has been given to the so-called matrix completion
problem, where the goal is to recover a low-rank matrix from an incomplete set of entries. It
has been shown in a series of fascinating papers that one can recover the missing data entries
by solving a convex optimization problem, namely, nuclear-norm minimization subject to
data constraints (Candès and Recht, 2009; Candès and Tao, 2010; Keshavan et al., 2010).
Efficient algorithms for the matrix completion problem were proposed by Cai et al. (2010)
and Mazumder et al. (2010). However, many incomplete data problems do not arise from
a near low rank matrix scenario. In these cases there is substantial room to improve upon
the convex matrix completion algorithms. We will empirically demonstrate this point for
some high-throughput biological data.

In this manuscript we assume a multivariate normal model (MVN) with p-dimensional
covariance matrix Σ and address the missing data problem through a likelihood approach
(Little and Rubin, 1987; Schafer, 1997). Recently, in the high-dimensional setup, Städler
and Bühlmann (2012) proposed to maximize the penalized observed log-likelihood with an
`1-penalty on the concentration matrix Σ−1. They called their method MissGLasso, as
an extension of the graphical Lasso (Friedman et al., 2008) for missing data. MissGLasso
induces sparsity in the concentration matrix and uses an EM algorithm for optimization.
Roughly, the algorithm can be summarized as follows: in the E-Step, for each sample, the
regression coefficients of the missing against the observed variables are computed from the
current estimate Σ̂−1; in the following M-Step, the missing values are imputed by linear
regressions and Σ̂−1 is re-estimated by applying the graphical Lasso on completed data.
There are two main drawbacks of this algorithm in a high-dimensional context. First, the
E-Step is rather complex as it involves (for each sample) inversion and multiplication of large
matrices in order to compute the regression coefficients. Secondly, a sparse concentration
matrix does not imply sparse regression coefficients while we believe that in high-dimensions,
sparse regression coefficients would enhance imputations. Our new algorithm, MissPALasso
in this paper, generalizes the E-Step in order to resolve the disadvantages of MissGLasso.
In particular, inversion of a matrix (in order to compute the regression coefficients) will be
replaced by a simple soft-thresholding operator. In addition, the regression coefficients will
be sparse, which leads to a new sparsity concept for missing data estimation.

MissPALasso emerges from the missingness pattern alternating maximization algorithm
(MissPA) which we propose for optimizing the (unpenalized) observed log-likelihood. We
show that this method generalizes the E- and M-Step of the EM algorithm by alternating
between different complete data spaces and performing the E-Step incrementally (Dempster
et al., 1977; Fessler and Hero, 1994; Neal and Hinton, 1998). Such a generalization does not
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fit into any of the existing methodologies which extend the standard EM. We analyse our
procedure using the variational free energy (Jordan et al., 1999) and prove convergence to
a stationary point of the observed log-likelihood.

The further organization of the paper is as follows: Section 2 introduces the setup and the
useful notion of missingness patterns. In Section 3 we present our new methodology based on
(missingness) pattern alternating maximization and develop MissPALasso for imputation
in the high-dimensional scenario. Section 4 compares performance of MissPALasso with
other competitive methods and reports on computational efficiency. Finally, in Section 5,
we present some theory to gain insights into the numerical properties of the procedure.

2. Setup

We assume X = (X1, . . . , Xp) ∼ N (µ,Σ) has a p-variate normal distribution with mean µ
and covariance matrix Σ. In order to simplify the notation we set without loss of generality
µ = 0: for µ 6= 0, some of the formulae involve the parameter µ and an intercept column
of (1, . . . , 1) in the design matrices but conceptually, we can proceed as for the case with
µ = 0. We then write X = (Xobs,Xmis), where X represents an i.i.d. random sample of
size n, Xobs denotes the set of observed values, and Xmis the missing data.

2.1 Missingness Patterns and Different Parametrizations

For our purpose it will be convenient to group rows of the matrix X according to their
missingness patterns (Schafer, 1997). We index the unique missingness patterns that
actually appear in our data by k = 1, . . . , s. Furthermore, with ok ⊂ {1, . . . , p} and
mk = {1, . . . , p}\ok we denote the set of observed variables and the set of missing variables,
respectively. Ik is the index set of the samples (row numbers) which belong to pattern
k, whereas Ick = {1, . . . , n} \ Ik stands for the row numbers which do not belong to that
pattern. By convention, samples with all variables observed do not belong to a missingness
pattern.

Consider a partition X = (Xok , Xmk
) of a single Gaussian random vector. It is well known

that Xmk
|Xok follows a linear regression on Xok with regression coefficients Bmk|ok and

covariance Σmk|ok given by

Bmk|ok = Σmk,okΣ−1
ok
,

Σmk|ok = Σmk
− Σmk,okΣ−1

ok
Σok,mk

. (1)

Consequently, we can write the density function p(x; Σ) of X as

p(x; Σ) = p(xmk
|xok ;Bmk|ok ,Σmk|ok)p(xok ; Σok),

i.e., the density can be characterized by either the parameter Σ or (Σok , Bmk|ok ,Σmk|ok).
The transformation (1) allows us to switch between both parametrizations.
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2.2 Observed Log-Likelihood and Maximum Likelihood Estimation (MLE)

A systematic approach to estimate the parameter of interest Σ from Xobs maximizes the
observed log-likelihood `(Σ; Xobs) given by

`(Σ; Xobs) =
∑

i/∈
⋃

k Ik

log p(xi; Σ) +
s∑

k=1

∑
i∈Ik

log p(xi,ok ; Σok). (2)

Inference for Σ can be based on (2) if the underlying missing data mechanism is ignorable.
The missing data mechanism is said to be ignorable if the probability that an observation is
missing may depend on Xobs but not on Xmis (Missing at Random) and if the parameters
of the data model and the parameters of the missingness mechanism are distinct. For a
precise definition see Little and Rubin (1987).

Explicit maximization of `(Σ; Xobs) is only possible for special missing data patterns. Most
prominent are examples with a so-called monotone missing data pattern (Little and Ru-
bin, 1987; Schafer, 1997), where X1 is more observed than X2, which is more observed
than X3, and so on. In this case, the observed log-likelihood factorizes and explicit max-
imization is achieved by performing several regressions. For a general pattern of missing
data, the standard EM algorithm is often used for optimization of (2). See Schafer (1997)
for a detailed description of the algorithm. In the next section we present an alternative
method for maximizing the observed log-likelihood. We will argue that this new algorithm
is computationally more efficient than the standard EM.

3. Missingness Pattern Alternating Maximization

For each missingness pattern, indexed by k = 1, . . . , s, we introduce some further notation:

Xk = (xi,j) with i ∈ Ik, j = 1, . . . , p

X−k = (xi,j) with i ∈ Ick, j = 1, . . . , p.

Thus, Xk is the |Ik| × p submatrix of X with rows belonging to the kth pattern. Similarly,
X−k is the |Ick| × p matrix with rows not belonging to the kth pattern. In the same way we
define Xk

ok
,Xk

mk
,X−kok and X−kmk

. For example, Xk
ok

is defined as the |Ik| × |ok| matrix with

Xk
ok

= (xi,j) with i ∈ Ik, j ∈ ok.

3.1 MLE for Data with a Single Missingness Pattern

Assume that the data matrix X has only one single missingness pattern, denoted by s. This
is the most simple example of a monotone pattern. The observed log-likelihood factorizes
according to:
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`(Σ; Xobs) =
∑
i∈Is

log p(xi,os ; Σos) +
∑
i∈Ics

log p(xi; Σ)

=

n∑
i=1

log p(xi,os ; Σos) +
∑
i∈Ics

log p(xi,ms |xi,os ;Bms|os ,Σms|os). (3)

The left and right part in Equation (3) can be maximized separately. The first part is
maximized by the sample covariance of the observed variables based on all samples, whereas
the second part is maximized by a regression of the missing against observed variables based
on only the fully observed samples. In formulae:

Σ̂os = tXosXos/n, (4)

and

B̂ms|os = tX−sms
X−sos (tX−sos X−sos )−1,

Σ̂ms|os = t(X−sms
−X−sos

tB̂ms|os)(X
−s
ms
−X−sos

tB̂ms|os)/|I
c
s |. (5)

Having these estimates at hand, it is easy to impute the missing data:

x̂i,ms = B̂ms|os
txi,os for all i ∈ Is, or, in matrix notation, X̂s

ms
= Xs

os
tB̂ms|os .

It is important to note, that, if interested in imputation, only the regression part of the
MLE is needed and the estimate Σ̂os in (4) is superfluous.

3.2 MLE for General Missing Data Pattern

We turn now to the general case, where we have more than one missingness pattern, indexed
by k = 1, . . . , s. The general idea of the new algorithm is as follows. Assume we have some
initial imputations for all missing values. Our goal is to improve on these imputations. For
this purpose, we iterate as follows:

• Keep all imputations except those of the 1st missingness pattern fixed and compute
the single pattern MLE (for the first pattern) as explained in Section 3.1. In particular,
compute the regression coefficients of the missing 1st pattern against all other variables
(treated as “observed”) based on all samples which do not belong to the 1st pattern.

• Use the resulting estimates (regression coefficients) to impute the missing values from
only the 1st pattern.

Next, turn to the 2nd pattern and repeat the above steps. In this way we continue cycling
through the different patterns until convergence.

We now describe the missingness pattern alternating maximization algorithm (MissPA)
which makes the above idea precise. Let T = tXX be the sufficient statistic in the multivari-
ate normal model. Furthermore, we let T k = t(Xk)Xk and T−k = t(X−k)X−k =

∑
l 6=k T

l.
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Let T and T k (k = 1, . . . , s) be some initial guess of T and T k (k = 1, . . . , s), for example,
using zero imputation. Our algorithm proceeds as follows:

Algorithm 1: MissPA

(1) T , T k: initial guess of T and T k (k = 1, . . . , s).
(2) For k = 1, . . . , s do:

M-Step: Compute the MLE B̂mk|ok , and Σ̂mk|ok , based on T −k = T −T k:

B̂mk|ok = T −kmk,ok
(T −kok,ok

)−1,

Σ̂mk|ok =
(
T −kmk,mk

− T −kmk,ok
(T −kok,ok

)−1T −kok,mk

)
/|Ick|.

Partial E-Step:

Set T l = T l for all l 6= k (this takes no time),

Set T k = E[T k|Xk
ok
, B̂mk|ok , Σ̂mk|ok ],

Update T = T −k + T k.

(3) Repeat step (2) until some convergence criterion is met.

(4) Compute the final maximum likelihood estimator Σ̂ via:

Σ̂os = Tos,os/n, Σ̂ms,os = B̂ms|osΣ̂os and Σ̂ms = Σ̂ms|os + B̂ms|osΣ̂os,ms .

Note, that we refer to the maximization step as M-Step and to the imputation step as
partial E-Step. The word partial refers to the fact that the expectation is only performed
with respect to samples belonging to the current pattern. The partial E-Step takes the
following simple form:

T kok,mk
= t(Xk

ok
)X̂k

mk
,

T kmk,mk
= t(X̂k

mk
)X̂k

mk
+ |Ik| Σ̂mk|ok ,

where X̂k
mk

= E[Xk
mk
|Xk

ok
, B̂mk|ok , Σ̂mk|ok ] = Xk

ok
tB̂mk|ok .

Algorithm 1 does not require an evaluation of Σ̂ok in the M-Step, as it is not used in the
following partial E-Step. But, if we are interested in the observed log-likelihood or the
maximum likelihood estimator Σ̂ at convergence, we compute Σ̂os (at convergence), use
it together with B̂ms|os and Σ̂ms|os to get Σ̂ via the transformations (1) as explained in
step (4).

MissPA is computationally more efficient than the standard EM for missing data: one cycle
through all patterns (k = 1, . . . , s) takes about the same time as one iteration of the standard
EM. But our algorithm makes more progress since the information from the partial E-Step
is employed immediately to perform the next M-Step. We will demonstrate empirically the
gain of computational efficiency in Section 4.2. The new MissPA generalizes the standard
EM in two ways. Firstly, MissPA alternates between different complete data spaces in the
sense of Fessler and Hero (1994). Secondly, the E-Step is performed incrementally (Neal
and Hinton, 1998). In Section 5 we will expand on these generalizations and we will provide
an appropriate framework which allows analyzing the convergence properties of MissPA.

1908



Pattern Alternating Maximization Algorithms for Missing Data

Finally, a small modification of MissPA, namely replacing in Algorithm 1 the M-Step by

M-Step2: Compute the MLE B̂mk|ok , and Σ̂mk|ok , based on T :

B̂mk|ok = Tmk,ok(Tok,ok)−1

Σ̂mk|ok =
(
Tmk,mk

− Tmk,ok(Tok,ok)−1Tok,mk

)
/n,

results in an alternative algorithm. We show in Section 5 that Algorithm 1 with M-Step2
is equivalent to an incremental EM in the sense of Neal and Hinton (1998).

3.3 High-Dimensionality and Lasso Penalty

The M-Step of Algorithm 1 is basically a multivariate regression of the missing (Xmk
)

against the observed variables (Xok). In a high-dimensional framework with p � n the
number of observed variables |ok| will be large and therefore some regularization is neces-
sary. The main idea is, in order to regularize, to replace regressions with Lasso analogues
(Tibshirani, 1996). We give now the details.

Estimation of Bmk|ok : The estimation of the multivariate regression coefficients in the
M-Step2 can be expressed as |mk| separate minimization problems of the form

B̂j|ok = arg min
β

−Tj,okβ + tβTok,okβ/2,

where j ∈ mk. Here, B̂j|ok denotes the jth row vector of the (|mk| × |ok|)-matrix B̂mk|ok
and represents the regression of variable j against the variables from ok.

Consider now the objective function

−Tj,okβ + tβTok,okβ/2 + λ‖β‖1, (6)

with an additional Lasso penalty. Instead of minimizing (6) with respect to β (for all
j ∈ mk), it is computationally much more efficient to perform coordinate-wise improvements
from the old parameters (computed in the last cycle through all patterns). For that purpose,

let B
(r)
mk|ok be the regression coefficients for pattern k in cycle r and B

(r)
j|ok its jth row vector.

In cycle r+ 1 we compute B
(r+1)
j|ok by minimizing (6) with respect to each of the components

of β, holding the other components fixed at their current value. Closed-form updates have
the form:

B
(r+1)
j|l =

Soft
(
Tl,lB

(r)
j|l − S

(r)
l , λ

)
Tl,l

, for all l ∈ ok, (7)

where

• B(r+1)
j|l is the lth component of B

(r+1)
j|ok equal to the element (j, l) of matrix B

(r+1)
mk|ok

• S(r)
l , the gradient of −Tj,okβ + tβTok,okβ/2 with respect to βl, which equals

S
(r)
l = −Tj,l +

∑
v<l
v∈ok

Tl,vB
(r+1)
j|v + Tl,lB

(r)
j|l +

∑
v>l
v∈ok

Tl,vB
(r)
j|v (8)
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• Soft(z, λ) =


z − λ if z > λ
z + λ if z < −λ
0 if |z| ≤ λ

, is the standard soft-thresholding operator.

In a sparse setup the soft-thresholding update (7) can be evaluated very quickly as l varies.
Often coefficients which are zero remain zero after thresholding and therefore nothing has
to be changed in (8). See also the naive- or covariance update of Friedman et al. (2010) for
efficient computation of (7) and (8).

Estimation of Σmk|ok : We update the residual covariance matrix as:

Σ
(r+1)
mk|ok =

(
Tmk,mk

− Tmk,ok
tB

(r+1)
mk|ok −B

(r+1)
mk|okTok,mk

+B
(r+1)
mk|okTok,ok

tB
(r+1)
mk|ok

)
/n. (9)

Formula (9) can be viewed as a generalized version of Equation (5), when multiplying out
the matrix product in (5) and taking conditional expectations.

Our regularized algorithm, MissPALasso, is summarized in Algorithm 2. Note, that we
update the sufficient statistic in the partial E-Step according to T = γT + T k where
γ = 1−|Ik|/n. This update, motivated by Nowlan (1991), calculates T as an exponentially
decaying average of recently-visited data points. It prevents MissPALasso from storing T k
for all k = 1, . . . , s which gets problematic for large p. As we are mainly interested in
estimating the missing values, we will output the data matrix with missing values imputed
by the regression coefficients B̂mk|ok (k = 1, . . . , s) as indicated in step (4) of Algorithm 2.

MissPALasso provides not only the imputed data matrix X̂ but also T̂ , the completed
version of the sufficient statistic tXX. The latter can be very useful if MissPALasso is used
as a pre-processing step followed by a learning method which is expressible in terms of
the sufficient statistic. Examples include regularized regression (e.g., Lasso), discriminant
analysis, or estimation of directed acyclic graphs with the PC-algorithm (Spirtes et al.,
2000).

By construction, the regression estimates B̂mk|ok are sparse due to the employed `1-penalty,

and therefore imputation of missing values X̂k
mk

= Xk
ok
tB̂mk|ok is based on sparse regressions.

This is in sharp contrast to the MissGLasso approach (see Section 4.1) which places sparsity
on Σ−1. But this does not imply that regressions of variables in mk on variables in ok
are sparse since the inverse of sub-matrices of a sparse Σ−1 are not sparse in general.
MissPALasso employs another type of sparsity and this seems to be the main reason for its
better statistical performance than MissGLasso.

In practice, we propose to run MissPALasso for a decreasing sequence of values for λ, using
each solution as a warm start for the next problem with smaller λ. This pathwise strategy is
computationally very attractive and our algorithm converges (for each λ) after a few cycles.
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Algorithm 2: MissPALasso

(1) Set r = 0 and start with initial guess for T and B
(0)
mk|ok (k = 1, . . . , s).

(2) In cycle r + 1; for k = 1, . . . , s do:

Penalized M-Step2:

For all j ∈ mk, compute B
(r+1)
j|ok by improving −Tj,okβ + tβTok,okβ/2 + λ‖β‖1

in a coordinate-wise manner from B
(r)
j|ok .

Set Σ
(r+1)
mk|ok =

(
Tmk,mk

− Tmk,ok
tB

(r+1)
mk|ok−B

(r+1)
mk|okTok,mk

+B
(r+1)
mk|okTok,ok

tB
(r+1)
mk|ok

)
/n.

Partial E-Step:

Set T k = E[T k|Xk
ok
, B

(r+1)
mk|ok ,Σ

(r+1)
mk|ok ],

Update T = γT + T k where γ = 1− |Ik|/n.

Increase: r ← r + 1.

(3) Repeat step (2) until some convergence criterion is met.

(4) Output the imputed data matrix X̂, with missing values estimated by:

X̂k
mk

= Xk
ok
tB̂mk|ok , k = 1, . . . , s.

4. Numerical Experiments

In this section we explore the performance of MissPALasso in recovering missing entries
and we report on computational efficiency of the algorithm.

4.1 Performance of MissPALasso

Our new approach is compared with the following imputation methods which are well-suited
for the high-dimensional context:

• KnnImpute. Impute the missing values by the K-nearest neighbors imputation method
introduced by Troyanskaya et al. (2001).

• SoftImpute. The soft imputation algorithm is proposed by Mazumder et al. (2010)
in order to solve the matrix completion problem. They propose to approximate the
incomplete data matrix X by a complete (low-rank) matrix Z minimizing

1

2

∑
(i,j)∈Ω

(zij − xij)2 + λ‖Z‖∗.

Here, Ω denotes the indices of observed entries and ‖ · ‖∗ is the nuclear norm, or the
sum of the singular values. The missing values of X are imputed by the corresponding
values of Z.
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• MissGLasso. Compute Σ̂ by minimizing −`(Σ; Xobs) + λ‖Σ−1‖1, where ‖ · ‖1 is the
entrywise `1-norm. Then, use this estimate to impute the missing values by conditional
mean imputation. MissGLasso is described in Städler and Bühlmann (2012).

• MissPALasso. This is the method introduced in Section 3.3.

To assess the performances of the methods we use the normalized root mean squared error
(Oba et al., 2003) which is defined by

NRMSE =

√√√√mean
(

(Xtrue − X̂)2
)

var (Xtrue)
.

Here, Xtrue is the original data matrix (before deleting values) and X̂ is the imputed matrix.
With mean and var we abbreviate the empirical mean and variance, calculated over only
the missing entries.

All methods involve one tuning parameter. In KnnImpute we have to choose the number
K of nearest neighbors, while SoftImpute, MissGLasso and MissPALasso involve a regular-
ization parameter which is always denoted by λ. In all of our experiments we select the
tuning parameters to obtain optimal prediction of the missing entries in terms of NRMSE.

4.1.1 Simulation Study

We consider both high- and a low-dimensional MVN models with ∼ Np(0,Σ) where

• Model 1: p = 50 and 500;
Σ: block diagonal with p/2 blocks of the form

(
1 0.9

0.9 1

)
.

• Model 2: p = 100 and 1000;
Σ: two blocks B1, B2 each of size p

2 ×
p
2 with B1 = I p

2
and (B2)j,j′ = 0.9|j−j

′|.

• Model 3: p = 55 and 496;
Σ: block diagonal with b = 1, . . . , 10 for p = 55 and b = 1, . . . , 31 for p = 496
(increasing) blocks Bb of the size b× b, with (Bb)j,j′ = 0.9 (j 6= j′) and (Bb)j,j = 1.

• Model 4: p = 100 and 500;
Σj,j′ = 0.9|j−j

′| for j, j′ = 1, . . . , p.

For all four settings we perform 50 independent simulation runs. In each run we generate
n = 50 i.i.d. samples from the model. We then delete randomly 5%, 10% and 15% of the
values in the data matrix, apply an imputation method and compute the NRMSE. The
results of the different imputation methods are reported in Table 1 for the low-dimensional
models and Table 2 for the high-dimensional models. MissPALasso is very competitive in all
setups. SoftImpute works rather poorly, perhaps because the resulting data matrices are not
well approximable by low-rank matrices. KnnImpute works very well in model 1 and model
4. Model 1, where each variable is highly correlated with its neighboring variable, represents
an example which fits well into the KnnImpute framework. However, in model 2 and model
3, KnnImpute performs rather poorly. The reason is that with an inhomogeneous covariance
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matrix, as in model 2 and 3, the optimal number of nearest neighbors is varying among
the different blocks, and a single parameter K is too restrictive. For example in model 2, a
variable from the first block is not correlated to any other variable, whereas a variable from
the second block is correlated to other variables. Except for the low-dimensional model 3
MissGLasso is inferior to MissPALasso. Furthermore, MissPALasso strongly outperforms
MissGLasso with respect to computation time (see Figure 4 in Section 4.2). Interestingly,
all methods exhibit a quite large NRMSE in the high-dimensional model 3. They seem
to have problems coping with the complex covariance structure in higher dimensions. If
we look at the same model but with p = 105 the NRMSE for 5% missing values is: 0.85
for KnnImpute, 0.86 for SoftImpute, 0.77 for MissGLasso and 0.77 for MissPALasso. This
indicates an increase in NRMSE according to the size of p. Arguably, we consider here
only multivariate normal models which are ideal, from a distributional point of view, for
MissGLasso and our MissPALasso. The more interesting case will be with real data (all
from genomics) where model assumptions never hold exactly.

KnnImpute SoftImpute MissGLasso MissPALasso

Model 1 5% 0.4874 (0.0068) 0.7139 (0.0051) 0.5391 (0.0079) 0.5014 (0.0070)
p=50 10% 0.5227 (0.0051) 0.7447 (0.0038) 0.5866 (0.0057) 0.5392 (0.0055)

15% 0.5577 (0.0052) 0.7813 (0.0037) 0.6316 (0.0048) 0.5761 (0.0047)

Model 2 5% 0.8395 (0.0101) 0.8301 (0.0076) 0.7960 (0.0082) 0.7786 (0.0075)
p=100 10% 0.8572 (0.0070) 0.8424 (0.0063) 0.8022 (0.0071) 0.7828 (0.0066)

15% 0.8708 (0.0062) 0.8514 (0.0053) 0.8082 (0.0058) 0.7900 (0.0054)

Model 3 5% 0.4391 (0.0061) 0.4724 (0.0050) 0.3976 (0.0056) 0.4112 (0.0058)
p=55 10% 0.4543 (0.0057) 0.4856 (0.0042) 0.4069 (0.0047) 0.4155 (0.0047)

15% 0.4624 (0.0054) 0.4986 (0.0036) 0.4131 (0.0043) 0.4182 (0.0044)

Model 4 5% 0.3505 (0.0037) 0.5515 (0.0039) 0.3829 (0.0035) 0.3666 (0.0031)
p=100 10% 0.3717 (0.0033) 0.5623 (0.0033) 0.3936 (0.0027) 0.3724 (0.0026)

15% 0.3935 (0.0032) 0.5800 (0.0031) 0.4075 (0.0026) 0.3827 (0.0026)

Table 1: Average (SE) NRMSE of KnnImpute, SoftImpute, MissGLasso and MissPALasso
with different degrees of missingness in the low-dimensional models.

4.1.2 Real Data Examples

We consider the following four publicly available data sets:

• Isoprenoid gene network in Arabidopsis thaliana: The number of genes in the
network is p = 39. The number of observations (gene expression profiles), correspond-
ing to different experimental conditions, is n = 118. More details about the data can
be found in Wille et al. (2004).

• Colon cancer: In this data set, expression levels of 40 tumor and 22 normal colon
tissues (n = 62) for p = 2000 human genes are measured. For more information see
Alon et al. (1999).
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KnnImpute SoftImpute MissGLasso MissPALasso

Model 1 5% 0.4913 (0.0027) 0.9838 (0.0006) 0.6705 (0.0036) 0.5301 (0.0024)
p=500 10% 0.5335 (0.0020) 0.9851 (0.0005) 0.7613 (0.0031) 0.5779 (0.0019)

15% 0.5681 (0.0016) 0.9870 (0.0004) 0.7781 (0.0013) 0.6200 (0.0015)

Model 2 5% 0.8356 (0.0020) 0.9518 (0.0009) 0.8018 (0.0012) 0.7958 (0.0017)
p=1000 10% 0.8376 (0.0016) 0.9537 (0.0007) 0.8061 (0.0002) 0.7990 (0.0013)

15% 0.8405 (0.0014) 0.9562 (0.0006) 0.8494 (0.0080) 0.8035 (0.0011)

Model 3 5% 1.0018 (0.0009) 0.9943 (0.0005) 0.9722 (0.0013) 0.9663 (0.0010)
p=496 10% 1.0028 (0.0007) 0.9948 (0.0004) 0.9776 (0.0010) 0.9680 (0.0007)

15% 1.0036 (0.0006) 0.9948 (0.0003) 0.9834 (0.0010) 0.9691 (0.0007)

Model 4 5% 0.3487 (0.0016) 0.7839 (0.0020) 0.4075 (0.0016) 0.4011 (0.0016)
p=500 10% 0.3721 (0.0014) 0.7929 (0.0015) 0.4211 (0.0012) 0.4139 (0.0013)

15% 0.3960 (0.0011) 0.8045 (0.0014) 0.4369 (0.0012) 0.4292 (0.0014)

Table 2: Average (SE) NRMSE of KnnImpute, SoftImpute, MissGLasso and MissPALasso
with different degrees of missingness in the high-dimensional models.

• Lymphoma: This data set, presented in Alizadeh et al. (2000), contains gene expres-
sion levels of 42 samples of diffuse large B-cell lymphoma, 9 observations of follicular
lymphoma, and 11 cases of chronic lymphocytic leukemia. The total sample size is
n = 62 and p = 1332 complete measured expression profiles are documented.

• Yeast cell-cycle: The data set, described in Spellman et al. (1998), monitors expres-
sions of 6178 genes. The data consists of four parts, which are relevant to alpha factor
(18 samples), elutriation (14 samples), cdc15 (24 samples), and cdc28 (17 samples).
The total sample size is n = 73. We use the p = 573 complete profiles in our study.

For all data sets we standardize the columns (genes) to zero mean and variance one. In
order to compare the performance of the different imputation methods we randomly delete
values to obtain an overall missing rate of 5%, 10% and 15%. Table 3 shows the results for
50 simulation runs, where in each run another random set of values is deleted.

MissPALasso exhibits in all setups the lowest averaged NRMSE. MissGLasso performs
nearly as well as MissPALasso on the Arabidopsis data. However, its R implementation
cannot cope with large values of p. If we were to restrict our analysis to the 100 variables
exhibiting the most variance we would see that MissGLasso performs slightly less well than
MissPALasso (results not included). Compared to KnnImpute, SoftImpute works well for
all data sets. Interestingly, for all data sets, KnnImpute performance was very inferior
compared to MissPALasso. In light of the simulation results of Section 4.1.1, a reason for
the poor performance could be that KnnImpute has difficulties with the inhomogeneous
correlation structure between different genes which plausibly could be present in real data
sets.

To investigate the effect of already missing values on the imputation performance of the
compared methods we use the original lymphoma and yeast cell-cycle data sets which al-
ready have “real” missing values. We only consider the 100 most variable genes in these
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KnnImpute SoftImpute MissGLasso MissPALasso

Arabidopsis 5% 0.7732 (0.0086) 0.7076 (0.0065) 0.7107 (0.0076) 0.7029 (0.0077)
n=118 10% 0.7723 (0.0073) 0.7222 (0.0052) 0.7237 (0.0064) 0.7158 (0.0060)
p=39 15% 0.7918 (0.0050) 0.7369 (0.0041) 0.7415 (0.0053) 0.7337 (0.0050)

Colon cancer 5% 0.4884 (0.0011) 0.4921 (0.0011) - 0.4490 (0.0011)
n=62 10% 0.4948 (0.0008) 0.4973 (0.0006) - 0.4510 (0.0006)
p=2000 15% 0.5015 (0.0007) 0.5067 (0.0006) - 0.4562 (0.0007)

Lymphoma 5% 0.7357 (0.0014) 0.6969 (0.0008) - 0.6247 (0.0012)
n=62 10% 0.7418 (0.0009) 0.7100 (0.0006) - 0.6384 (0.0009)
p=1332 15% 0.7480 (0.0007) 0.7192 (0.0005) - 0.6525 (0.0008)

Yeast cell-cycle 5% 0.8083 (0.0018) 0.6969 (0.0012) - 0.6582 (0.0016)
n=73 10% 0.8156 (0.0011) 0.7265 (0.0010) - 0.7057 (0.0013)
p=573 15% 0.8240 (0.0009) 0.7488 (0.0007) - 0.7499 (0.0011)

Table 3: Average (SE) NRMSE of KnnImpute, SoftImpute, MissGLasso and MissPALasso
for different real data sets from genomics. The R implementation of MissGLasso
is not able to handle real data sets of such high dimensionality.

data sets to be able to compare all four methods with each other. From the left panel of
Figures 1 and 2 we can read off how many values are missing for each of the 100 variables.
In the right panel of Figures 1 and 2 we show how well the different methods are able to
estimate 2%, 4%, 6% . . . , 16% of additionally deleted entries.

4.2 Computational Efficiency

We first compare the computational efficiency of MissPA (Algorithm 1) with the standard
EM for missing values described for example in Schafer (1997). A key attribute of MissPA
is that the computational cost of one cycle through all patterns is the same as the cost of a
single standard EM-iteration. The reason why our algorithm takes less time to converge is
that the latent distribution is updated much more frequently. We emphasize the big contrast
of MissPA to the incremental EM, mostly applied to finite mixtures (Thiesson et al., 2001;
Ng and McLachlan, 2003), where there is a trade-off between the additional computation
time per cycle, or “scan” in the language of Ng and McLachlan (2003), and the fewer number
of “scans” required because of the more frequent updating after each partial E-Step. The
speed of convergence of the standard EM and MissPA for three data sets are shown in
Figure 3, in which the log-likelihood is plotted as a function of the number of iterations
(cycles). The left panel corresponds to the subset of the lymphoma data set when only the
ten genes with highest missing rate are used. This results in a 62 × 10 data matrix with
22.85% missing values. For the middle panel we draw a random sample of size 62× 10 from
N10(0,Σ), Σj,j′ = 0.9|j−j

′|, and delete the same entries which are missing in the reduced
lymphoma data. For the right panel we draw from the multivariate t-model with one degree
of freedom and again with the same values deleted. As can be seen, MissPA converges after
fewer cycles. A very extreme example is obtained with the multivariate t-model where the
standard EM reaches the log-likelihood level of MissPA about 400 iterations later. We note
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Figure 1: Lymphoma data set. Left panel: Barplots which count the number of missing val-
ues for each of the 100 genes. Right panel: NRMSE for KnnImpute, SoftImpute,
MissGLasso and MissPALasso if we introduce additional 2%, 4%, 6%, . . . , 16%
missing values.
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Figure 2: Yeast cell-cycle data set. Left panel: Barplots which count the number of
missing values for each of the 100 genes. Right panel: NRMSE for Kn-
nImpute, SoftImpute, MissGLasso and MissPALasso if we introduce additional
2%, 4%, 6%, . . . , 16% missing values.
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here, that the results shown in the middle and right panels highly depend on the realized
random sample. With other realizations, we get less and more extreme results than the one
shown in Figure 3.
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Figure 3: Log-likelihood as a function of the number of iterations (cycles) for standard EM
and MissPA. Left panel: subset of the lymphoma data (n = 62, p = 10 and 22.85%
missing values). Middle panel: random sample of size 62×10 from the multivariate
normal model with the same missing entries as in the reduced lymphoma data.
Right panel: random sample of the size 62 × 10 from the multivariate t-model
again with the same missing values.

We end this section by illustrating the computational timings of MissPALasso and Miss-
GLasso implemented with the statistical computing language R. We consider two settings.
Firstly, model 4 of Section 4.1.1 with n = 50 and a growing number of variables p ranging
from 10 to 500. Secondly, the colon cancer data set from Section 4.1.2 with n = 62 and
also a growing number of variables where we sorted the variables according to the empirical
variance. For each p we delete 10% of the data, run MissPALasso and MissGLasso ten times
on a decreasing grid (on the log-scale) of λ values with thirty grid points. For a fixed λ we
stop the algorithm if the relative change in imputation satisfies,

‖X̂(r+1) − X̂(r)‖2

‖X̂(r+1)‖2
≤ 10−5.

In Figure 4 the CPU times in seconds are plotted for various values of p in the two
settings. As shown, with MissPALasso we are typically able to solve a problem of size
p = 100 in about 9 seconds and a problem of size p = 500 in about 400 seconds. For
MissGLasso these times are highly increased to 27 and 4300 seconds respectively. Further-
more, we can see that MissPALasso has much smaller variability in runtimes. The com-
putational complexity of MissGLasso is O

(
p3 +

∑s
k=1(max{|mk|, |ok|}|mk|2) + np2

)
: the
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graphical Lasso algorithm costs O(p3), calculating the coefficients needed in the E-Step in-
volves O(

∑s
k=1 max{|mk|, |ok|}|mk|2) operations and updating the sufficient statistic costs

O(np2). In contrast, in a sparse setting, the complexity of MissPALasso is considerably
smaller: MissPALasso costs O

(∑s
k=1

(
max{|mk|, |ok|}

∑
j∈mk

qj
)

+ np2
)

operations where

qj denotes the average number of nonzero elements in B
(r)
j|ok .
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Figure 4: CPU times (filled points, left axis) and NRMSE (hollow points, right axis) vs.
problem size p of MissPALasso (circles) and MissGLasso (triangles) in simulation
model 4 (left panel) and the colon cancer data (right panel). MissPALasso and
MissGLasso are applied on a grid of thirty λ values. The shaded area shows
the full range of CPU times over 10 simulation runs. Measurements of NRMSE
include standard error bars which are due to their small size (∼ 10−3) mostly not
visible except for MissGLasso in the real data example.

5. Theory

A key characteristic of pattern alternating maximization (MissPA, Algorithm 1 in Sec-
tion 3.2) is that the E-Step is only performed on those samples belonging to a single
pattern. We already mentioned the close connection to the incremental EM introduced
by Neal and Hinton (1998). In fact, if the density of Xk, k ∈ {1, . . . , s}, is denoted by
PΣ(Xk) =

∏
i∈Ik p(xi; Σ), then the negative variational free energy (Neal and Hinton, 1998;

Jordan et al., 1999) equals

F [Σ‖Ψ1, . . . ,Ψs] =
s∑

k=1

(
EΨk

[log PΣ(Xk)|Xk
ok

] +Hk[Ψk]
)
. (10)
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Here, Ψk =
(
Bk,mk|ok ,Σk,mk|ok

)
denotes the regression parameter of the latent distribution

PΨk
(Xk

mk
|Xk

ok
) =

∏
i∈Ik

p(xi,mk
|xi,ok ;Bk,mk|ok ,Σk,mk|ok)

and Hk[Ψk] = −EΨk
[log PΨk

(Xk
mk
|Xk

ok
)|Xk

ok
] is the entropy. An iterative procedure alter-

nating between maximization of F with respect to Σ,

Σ̂ = arg max
Σ

F [Σ‖Ψ1, . . . ,Ψs]

=
1

n

s∑
k=1

EΨk
[tXkXk|Xk

ok
] =:

1

n
T ,

and maximizing F with respect to Ψk,

(B̂k,mk|ok , Σ̂k,mk|ok) = arg max
Ψk

F [Σ̂‖Ψ1, . . . ,Ψs]

= arg max
Ψk

EΨk
[log PΣ̂(Xk)|Xk

ok
] +Hk[Ψk]

=

(
Tmk,okT

−1
ok,ok

,
1

n
(Tmk,mk

− Tmk,okT
−1
ok,ok
Tok,mk

)

)
,

is equivalent to Algorithm 1 with T −k replaced by T (see M-Step2 in Section 3.2). Alter-
nating maximization of (10) is a GAM procedure in the sense of Gunawardana and Byrne
(2005) for which convergence to a stationary point of the observed log-likelihood can be
established easily.

Unfortunately, MissPA does not quite fit into the GAM formulation as it extends the stan-
dard EM in an additional manner, namely by using for each pattern a different complete
data space (for each pattern k only those samples are augmented which do not belong to
pattern k). From this point of view MissPA is related to the SAGE procedure (Fessler
and Hero, 1994). To see this, consider Σ in the parameterization θ =

(
Σok , Bmk|ok ,Σmk|ok

)
introduced in Section 2. From

Pθ(Xobs,X
−k) = Pθ(Xobs|X−k)Pθ(X−k)

and observing that Pθ(Xobs|X−k) = PΣok
(Xok) we conclude that X−k is an admissible

hidden-data space with respect to (Bmk|ok ,Σmk|ok) in the sense of Fessler and Hero (1994).
The M-Step of MissPA then maximizes a conditional expectation of the log-likelihood
log Pθ(X

−k) with respect to the parameters (Bmk|ok ,Σmk|ok). Different from SAGE is the
conditional distribution involved in the expectation: after each M-Step, our algorithm up-
dates only the conditional distribution for a single pattern, consequently we do not need to
compute estimates for Σok .

In summary, MissPA has similarities with GAM and SAGE. However, neither of these
frameworks fit our purpose. In the next section we provide theory which justifies alternating
between complete data spaces and incrementally performing the E-Step. In particular, we
prove convergence to a stationary point of the observed log-likelihood.
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5.1 Convergence Analysis of Missingness Pattern Alternating Maximization

In this section we study the numerical properties of MissPA.

5.1.1 Pattern-Depending Lower Bounds

Denote the density of Xk, k ∈ {1, . . . , s}, by PΣ(Xk) =
∏
i∈Ik p(xi; Σ) and define for

k, l ∈ {1, . . . , s}

PΣ(Xl
ok

) =
∏
i∈Il

p(xi,ok ; Σok) and

PΣ(Xl
mk
|Xl

ok
) =

∏
i∈Il

p(xi,mk
|xi,ok ;Bmk|ok ,Σmk|ok).

Set {Σl}l 6=k = (Σ1, . . . ,Σk−1,Σk+1, . . . ,Σs) and consider for k = 1, . . . , s

Fk[Σk||{Σl}l 6=k] = log PΣk
(Xk

ok
) +

∑
l 6=k

(
EΣl

[log PΣk
(Xl)|Xl

ol
] +Hl[Σl]

)
.

Here Hl[Σ̃] = −EΣ̃[log PΣ̃(Xl
ml
|Xl

ol
)|Xl

ol
] denotes the entropy. Note that Fk is defined for

fixed observed data Xobs. The subscript k highlights the dependence on the pattern k.
Furthermore, for fixed Xobs and fixed k, Fk is a function in the parameters (Σ1, . . . ,Σs).
As a further tool we write the Kullback-Leibler divergence in the following form:

Dl[Σ̃||Σ] = EΣ̃[− log
(
PΣ(Xl

ml
|Xl

ol
)/PΣ̃(Xl

ml
|Xl

ol
)
)
|Xl

ol
]. (11)

An important property of the Kullback-Leibler divergence is its non-negativity:

Dl[Σ̃||Σ] ≥ 0, with equality if and only if

PΣ̃(Xl
ml
|Xl

ol
) = PΣ(Xl

ml
|Xl

ol
).

A simple calculation shows that

EΣ̃[log PΣ(Xl)|Xl
ol

] +Hl[Σ̃] = −Dl[Σ̃||Σ] + log PΣ(Xl
ol

) (12)

and that Fk[Σk||{Σl}l 6=k] can be written as

Fk[Σk||{Σl}l 6=k] = `(Σk; Xobs)−
∑
l 6=k
Dl[Σl||Σk]. (13)

In particular, for fixed values of {Σl}l 6=k, Fk[ · ||{Σl}l 6=k] lower bounds the observed log-
likelihood `( · ; Xobs) due to the non-negativity of the Kullback-Leibler divergence.

5.1.2 Optimization Transfer to Pattern-Depending Lower Bounds

We give now an alternative description of the MissPA algorithm. In cycle r+ 1 through all

patterns, generate (Σ
(r+1)
1 , . . . ,Σ

(r+1)
s ) given (Σ

(r)
1 , . . . ,Σ

(r)
s ) according to

Σ
(r+1)
k = arg max

Σ
Fk[Σ||Z

(r+1)
k ], k = 1, . . . , s, (14)
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with Z
(r+1)
k = (Σ

(r+1)
1 , . . . ,Σ

(r+1)
k−1 ,Σ

(r)
k+1, . . . ,Σ

(r)
s ).

We have

Fk[Σ||Z
(r+1)
k ] = log PΣ(Xk

ok
) +

∑
l<k

(
E

Σ
(r+1)
l

[log PΣ(Xl)|Xl
ol

] +Hl[Σ
(r+1)
l ]

)
+
∑
l>k

(
E

Σ
(r)
l

[log PΣ(Xl)|Xl
ol

] +Hl[Σ
(r)
l ]
)
.

The entropy terms do not depend on the optimization parameter Σ, therefore,

Fk[Σ||Z
(r+1)
k ] = const + log PΣ(Xk

ok
) +

∑
l<k

E
Σ

(r+1)
l

[log PΣ(Xl)|Xl
ol

]

+
∑
l>k

E
Σ

(r)
l

[log PΣ(Xl)|Xl
ol

].

Using the factorization log PΣ(Xl) = log P(Xl
ok

; Σok) + log P(Xl
mk
|Xl

ok
;Bmk|ok ,Σmk|ok) (for

all l 6= k), and separate maximization with respect to Σok and (Bmk|ok ,Σmk|ok) we end up
with the expressions from the M-Step of MissPA. Summarizing the above, we have recovered

the M-Step as a maximization of Fk[Σ||Z
(r+1)
k ] which is a lower bound of the observed log-

likelihood. Or in the language of Lange et al. (2000), optimization of `( · ; Xobs) is transferred

to the surrogate objective Fk[ · ||Z
(r+1)
k ].

There is still an important piece missing: In M-Step k of cycle r + 1 we are maximizing

Fk[ · ||Z
(r+1)
k ] whereas in the following M-Step (k + 1) we optimize Fk+1[ · ||Z(r+1)

k+1 ]. In

order for the algorithm to make progress, it is essential that Fk+1[ · ||Z(r+1)
k+1 ] attains higher

values than its predecessor Fk[ · ||Z
(r+1)
k ]. In this sense the following proposition is crucial.

Proposition 1 For r = 0, 1, 2, . . . we have that

Fs[Σ(r)
s ||Z(r)

s ] ≤ F1[Σ(r)
s ||Z

(r+1)
1 ], and

Fk[Σ
(r+1)
k ||Z(r+1)

k ] ≤ Fk+1[Σ
(r+1)
k ||Z(r+1)

k+1 ] for k = 1, . . . , s− 1.

Proof. We have,

Fk[Σ
(r+1)
k ||Z(r+1)

k ] = log P
Σ

(r+1)
k

(Xk
ok

) + E
Σ

(r)
k+1

[log P
Σ

(r+1)
k

(Xk+1)|Xk+1
ok+1

] +Hk+1[Σ
(r)
k+1] + A

and

Fk+1[Σ
(r+1)
k ||Z(r+1)

k+1 ] = log P
Σ

(r+1)
k

(Xk+1
ok+1

) + E
Σ

(r+1)
k

[log P
Σ

(r+1)
k

(Xk)|Xk
ok

] +Hk[Σ
(r+1)
k ] + A

where

A =
∑
l<k

E
Σ

(r+1)
l

[log P
Σ

(r+1)
k

(Xl)|Xl
ol

]+Hl[Σ
(r+1)
l ]+

∑
l>k+1

E
Σ

(r)
l

[log P
Σ

(r+1)
k

(Xl)|Xl
ol

]+Hl[Σ
(r)
l ].

Furthermore, using (12) and noting that Dk[Σ
(r+1)
k ||Σ(r+1)

k ] = 0, we obtain

1921
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Fk[Σ
(r+1)
k ||Z(r+1)

k ]−Fk+1[Σ
(r+1)
k ||Z(r+1)

k+1 ] = Dk[Σ
(r+1)
k ||Σ(r+1)

k ]−Dk+1[Σ
(r)
k+1||Σ

(r+1)
k ]

= −Dk+1[Σ
(r)
k+1||Σ

(r+1)
k ] ≤ 0.

Note that equality holds if and only if P
Σ

(r+1)
k

(Xk+1
mk+1
|Xk+1

ok+1
) = P

Σ
(r)
k+1

(Xk+1
mk+1
|Xk+1

ok+1
). �

In light of Proposition 1 it is clear that (14) generates a monotonically increasing sequence
of the form:

Fs[Σ(0)
s ||Z(0)

s ] ≤ F1[Σ(0)
s ||Z

(1)
1 ] ≤ F1[Σ

(1)
1 ||Z

(1)
1 ] ≤ F2[Σ

(1)
1 ||Z

(1)
2 ] ≤ F2[Σ

(1)
2 ||Z

(1)
2 ] ≤ · · ·

· · · ≤ Fk[Σ
(r+1)
k ||Z(r+1)

k ] ≤ Fk+1[Σ
(r+1)
k ||Z(r+1)

k+1 ] ≤ Fk+1[Σ
(r+1)
k+1 ||Z

(r+1)
k+1 ] ≤ · · ·

For example, we can deduce that {Fs[Σ(r)
s ||Z(r)

s ]}r=0,1,2,... is a monotone increasing sequence
in r.

5.1.3 Convergence to Stationary Points

Ideally we would like to show that a limit point of the sequence generated by MissPA is
a global maximum of `(·; Xobs). Unfortunately, this is too ambitious because for general
missing data patterns the observed log-likelihood is a non-concave function with several
local maxima. Thus, the most we can expect is that our algorithm converges to a stationary
point. This is ensured by the following theorem which we prove in the Appendix.

Theorem 2 Assume that K = {(Σ1, . . . ,Σs) : Fs[Σs||Σ1, . . . ,Σs−1] ≥ Fs[Σ(0)
s ||Z(0)

s ]} is

compact. Then every limit point Σ̄s of {Σ(r)
s }r=0,1,2,... is a stationary point of `( · ; Xobs).

6. Discussion and Extensions

We presented a novel methodology for maximizing the observed log-likelihood for a multi-
variate normal data matrix with missing values. Simplified, our algorithm iteratively cycles
through the different missingness patterns, performs multivariate regressions of the missing
on the observed variables and uses the regression coefficients for partial imputation of the
missing values. We argued theoretically and gave numerical examples showing that our pro-
cedure is computationally more efficient than the standard EM algorithm. Furthermore, we
analyzed the numerical properties using non-standard arguments and proved that solutions
of our algorithm converge to stationary points of the observed log-likelihood.

In a high-dimensional setup regularization is achieved by replacing least squares regressions
with Lasso analogues. Our proposed algorithm, MissPALasso, is built upon coordinate
descent approximation of the corresponding Lasso problem in order to gain speed. On
simulated and four real data sets (all from genomics) we demonstrated that MissPALasso
outperforms other imputation techniques such as k-nearest neighbors imputation, nuclear
norm minimization or a penalized likelihood approach with an `1-penalty on the inverse
covariance matrix.
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MissPALasso is a “heuristic” motivated by the aim of having sparse regression coefficients
for imputation. It is unclear which objective function is optimized by MissPALasso. The
comments of two referees on this point made us think of another way of imposing sparsity
in the regression coefficients: Consider the penalized variational free energy

−F [Σ‖Ψ1, . . . ,Ψs] + Pen(Σ,Ψ1, . . . ,Ψs), (15)

with F [Σ‖Ψ1, . . . ,Ψs] defined in equation (10) and Pen(Σ,Ψ1, . . . ,Ψs) some penalty func-
tion. If we take

Pen(Σ,Ψ1, . . . ,Ψs) = λ

s∑
k=1

‖Bk,mk|ok‖1,

then, alternating minimization of (15) with respect to Σ and Ψk leads to an algorithm
with sparse regression coefficients. This algorithm is different from MissPALasso, in fact,
minimizing (15) with respect to Σk,mk|ok and Bk,mk|ok gives Σk,mk|ok = Σ̂mk|ok and B̂k,mk|ok
satisfies the subgradient equation

0 =
(

Ωmk,mk
B̂k,mk|ok − Ωmk,ok

)
tXk

ok
Xk
ok

+ λΓ(B̂k,mk|ok),

where Ω = Σ−1 and Γ(x) is the subgradient of |x|, applied componentwise to the elements
of a matrix. We do not currently have knowledge of the theoretical or empirical properties
of such an algorithm.

In this manuscript we only considered applications to microarray data sets. Our approach is
not specifically designed for microarrays and is potentially very useful for many other high-
dimensional applications: examples include mass spectrometry-based proteomics, climate
field reconstructions and image analysis in cosmology (Karpievitch et al., 2009; Schneider,
2001; Starck and Bobin, 2010). We note that different imputation methods can be beneficial
depending on the application context. For example estimating missing entries in gene
expression data is a separate problem from dealing with missing values in recommender
systems: the Netflix data set (Bennett and Lanning, 2007) involves “large n and large p”
(480’000 customers, 17’000 movies) with about 98% of the movie ratings missing, in contrast,
microarrays have the typical “large p, small n” form and have a much smaller fraction of the
values missing. We think that the formulation (15) of our pattern alternating maximization
framework is very compelling and can motivate new and efficient algorithms for missing
data imputation with application-specific regularization strategies.
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Appendix A.

In this appendix we prove Theorem 2. First, note that the sequence {(Σ(r)
1 , . . . ,Σ

(r)
s )}r=0,1,2,...

lies in the compact set K. Now, let Σ
(rj)
s be a subsequence converging to Σ̄s as j →∞. By
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invoking compactness, we can assume w.l.o.g (by restricting to a subsequence) that

(Σ
(rj)
1 , . . . ,Σ

(rj)
s )→ (Σ̄1, . . . , Σ̄s).

As a direct consequence of the monotonicity of the sequence {Fs[Σ(r)
s ||Z(r)

s ]}r=0,1,2,... we
obtain

lim
r
Fs[Σ(r)

s ||Z(r)
s ] = Fs[Σ̄s||Σ̄1, . . . , Σ̄s−1] =: F̄ .

From (14) and Proposition 1, for k = 1, . . . , s − 1 and r = 0, 1, 2, . . . , the following
“sandwich”-formulae hold:

Fs[Σ(r)
s ||Z(r)

s ] ≤ F1[Σ(r)
s ||Z

(r+1)
1 ] ≤ F1[Σ

(r+1)
1 ||Z(r+1)

1 ] ≤ Fs[Σ(r+1)
s ||Z(r+1)

s ],

Fs[Σ(r)
s ||Z(r)

s ] ≤ Fk+1[Σ
(r+1)
k ||Z(r+1)

k+1 ] ≤ Fk+1[Σ
(r+1)
k+1 ||Z

(r+1)
k+1 ] ≤ Fs[Σ(r+1)

s ||Z(r+1)
s ].

As a consequence we have for k = 1, . . . , s− 1

lim
r
F1[Σ

(r)
s ||Z(r+1)

1 ] = lim
r
F1[Σ

(r+1)
1 ||Z(r+1)

1 ] = F̄ (16)

and

lim
r
Fk+1[Σ

(r+1)
k ||Z(r+1)

k+1 ] = lim
r
Fk+1[Σ

(r+1)
k+1 ||Z

(r+1)
k+1 ] = F̄ . (17)

Now consider the sequence (Σ
(rj+1)
1 , . . . ,Σ

(rj+1)
s ). By compactness of K this sequence con-

verges w.l.o.g to some (Σ∗1, . . . ,Σ
∗
s). We now show by induction that

Σ̄s = Σ∗1 = . . . = Σ∗s.

From the 1st M-Step of cycle rj + 1 we have

F1[Σ
(rj+1)
1 ||Z(rj+1)

1 ] ≥ F1[Σ||Z(rj+1)
1 ] for all Σ.

Taking the limit j →∞ we get:

F1[Σ∗1||{Σ̄l}l>1] ≥ F1[Σ||{Σ̄l}l>1] for all Σ.

In particular, Σ∗1 is the (unique) maximizer of F1[ · ||{Σ̄l}l>1]. Assuming Σ∗1 6= Σ̄s would
imply

F1[Σ∗1||{Σ̄l}l>1] > F1[Σ̄s||{Σ̄l}l>1].

But this contradicts F1[Σ∗1||{Σ̄l}l>1] = F1[Σ̄s||{Σ̄l}l>1] = F̄ , which holds by (16). Therefore
we obtain Σ∗1 = Σ̄s.

Assume that we have proven Σ∗1 = . . . = Σ∗k = Σ̄s. We will show that Σ∗k+1 = Σ̄s. From the
k+1st M-Step in cycle rj + 1:

Fk+1[Σ
(rj+1)
k+1 ||Z(rj+1)

k+1 ] ≥ Fk+1[Σ||Z(rj+1)
k+1 ] for all Σ.
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Taking the limit for j →∞, we conclude that Σ∗k+1 is the (unique) maximizer of

Fk+1[ · ||{Σ∗l }l<k+1, {Σ̄l}l>k+1].

From (17),

Fk+1[Σ∗k+1||{Σ∗l }l<k+1, {Σ̄l}l>k+1] = Fk+1[Σ∗k||{Σ∗l }l<k+1, {Σ̄l}l>k+1] = F̄ ,

and therefore Σ∗k+1 must be equal to Σ∗k. By induction we have Σ∗k = Σ̄s and we have proven
that Σ∗k+1 = Σ̄s holds.

Finally, we show stationarity of Σ̄s. Invoking (13) we can write

Fs[Σ||Σ̄s, . . . , Σ̄s] = `(Σ; Xobs)−
s−1∑
l=1

Dl[Σ̄s||Σ].

Note that
∂

∂Σ
Dl[Σ̄s||Σ]

∣∣∣∣
Σ̄s

= 0.

Furthermore, as Σ
(rj+1)
s maximizes Fs[Σ||Σ

(rj+1)
1 , . . . ,Σ

(rj+1)
s−1 ], we get in the limit as j →∞

∂

∂Σ
Fs[Σ||Σ̄s, . . . , Σ̄s]

∣∣∣∣
Σ̄s

=
∂

∂Σ
Fs[Σ||Σ∗1, . . . ,Σ∗s−1]

∣∣∣∣
Σ∗s

= 0.

Therefore, we conclude that ∂
∂Σ`(Σ; Xobs)

∣∣∣
Σ̄s

= 0. �
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N. Städler and P. Bühlmann. Missing values: sparse inverse covariance estimation and an
extension to sparse regression. Statistics and Computing, 22(1):219–235, 2012.

J.-L. Starck and J. Bobin. Astronomical data analysis and sparsity: From wavelets to
compressed sensing. Proceedings of the IEEE, 98(6):1021–1030, 2010.

B. Thiesson, C. Meek, and D. Heckerman. Accelerating EM for large databases. Machine
Learning, 45(3):279–299, 2001.

R. Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal
Statistical Society, Series B, 58(1):267–288, 1996.

O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani, D. Botstein,
and R. Altman. Missing value estimation methods for DNA microarrays. Bioinformatics,
17(6):520–525, 2001.

1927
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