
Journal of Machine Learning Research 15 (2014) 2533-2568 Submitted 2/13; Revised 1/14; Published 7/14

Contextual Bandits with Similarity Information

Aleksandrs Slivkins slivkins@microsoft.com

Microsoft Research New York City

641 6th Ave, 7th floor

New York, NY 10011

USA

Editor: Nicolo Cesa-Bianchi

Abstract

In a multi-armed bandit (MAB) problem, an online algorithm makes a sequence of choices.
In each round it chooses from a time-invariant set of alternatives and receives the payoff
associated with this alternative. While the case of small strategy sets is by now well-
understood, a lot of recent work has focused on MAB problems with exponentially or
infinitely large strategy sets, where one needs to assume extra structure in order to make
the problem tractable. In particular, recent literature considered information on similarity
between arms.

We consider similarity information in the setting of contextual bandits, a natural ex-
tension of the basic MAB problem where before each round an algorithm is given the
context—a hint about the payoffs in this round. Contextual bandits are directly motivated
by placing advertisements on web pages, one of the crucial problems in sponsored search. A
particularly simple way to represent similarity information in the contextual bandit setting
is via a similarity distance between the context-arm pairs which bounds from above the
difference between the respective expected payoffs.

Prior work on contextual bandits with similarity uses “uniform” partitions of the sim-
ilarity space, so that each context-arm pair is approximated by the closest pair in the
partition. Algorithms based on “uniform” partitions disregard the structure of the payoffs
and the context arrivals, which is potentially wasteful. We present algorithms that are
based on adaptive partitions, and take advantage of ”benign” payoffs and context arrivals
without sacrificing the worst-case performance. The central idea is to maintain a finer par-
tition in high-payoff regions of the similarity space and in popular regions of the context
space. Our results apply to several other settings, e.g., MAB with constrained temporal
change (Slivkins and Upfal, 2008) and sleeping bandits (Kleinberg et al., 2008a).

Keywords: multi-armed bandits, contextual bandits, regret, Lipschitz-continuity, metric
space

1. Introduction

In a multi-armed bandit problem (henceforth, “multi-armed bandit” will be abbreviated as
MAB), an algorithm is presented with a sequence of trials. In each round, the algorithm
chooses one alternative from a set of alternatives (arms) based on the past history, and
receives the payoff associated with this alternative. The goal is to maximize the total payoff
of the chosen arms. The MAB setting has been introduced in Robbins (1952) and studied
intensively since then in operations research, economics and computer science. This setting
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is a clean model for the exploration-exploitation trade-off, a crucial issue in sequential
decision-making under uncertainty.

One standard way to evaluate the performance of a bandit algorithm is regret, defined as
the difference between the expected payoff of an optimal arm and that of the algorithm. By
now the MAB problem with a small finite set of arms is quite well understood, e.g., see Lai
and Robbins (1985); Auer et al. (2002b,a). However, if the arms set is exponentially or
infinitely large, the problem becomes intractable unless we make further assumptions about
the problem instance. Essentially, a bandit algorithm needs to find a needle in a haystack;
for each algorithm there are inputs on which it performs as badly as random guessing.

Bandit problems with large sets of arms have been an active area of investigation in
the past decade (see Section 2 for a discussion of related literature). A common theme in
these works is to assume a certain structure on payoff functions. Assumptions of this type
are natural in many applications, and often lead to efficient learning algorithms (Kleinberg,
2005). In particular, a line of work started in Agrawal (1995) assumes that some information
on similarity between arms is available.

In this paper, we consider similarity information in the setting of contextual bandits
(Woodroofe, 1979; Auer, 2002; Wang et al., 2005; Pandey et al., 2007; Langford and Zhang,
2007), a natural extension of the basic MAB problem where before each round an algorithm
is given the context—a hint about the payoffs in this round. Contextual bandits are di-
rectly motivated by the problem of placing advertisements on web pages, one of the crucial
problems in sponsored search. One can cast it as a bandit problem so that arms correspond
to the possible ads, and payoffs correspond to the user clicks. Then the context consists of
information about the page, and perhaps the user this page is served to. Furthermore, we
assume that similarity information is available on both the context and the arms. Following
the work in Agrawal (1995); Kleinberg (2004); Auer et al. (2007); Kleinberg et al. (2008b)
on the (non-contextual) bandits, a particularly simple way to represent similarity informa-
tion in the contextual bandit setting is via a similarity distance between the context-arm
pairs, which gives an upper bound on the difference between the corresponding payoffs.

1.1 Our Model: Contextual Bandits with Similarity Information

The contextual bandits framework is defined as follows. Let X be the context set and Y be
the arms set, and let P ⊂ X × Y be the set of feasible context-arms pairs. In each round
t, the following events happen in succession:

1. a context xt ∈ X is revealed to the algorithm,

2. the algorithm chooses an arm yt ∈ Y such that (xt, yt) ∈ P,

3. payoff (reward) πt ∈ [0, 1] is revealed.

The sequence of context arrivals (xt)t∈N is fixed before the first round, and does not depend
on the subsequent choices of the algorithm. With stochastic payoffs, for each pair (x, y) ∈ P
there is a distribution Π(x, y) with expectation µ(x, y), so that πt is an independent sample
from Π(xt, yt). With adversarial payoffs, this distribution can change from round to round.
For simplicity, we present the subsequent definitions for the stochastic setting only, whereas
the adversarial setting is fleshed out later in the paper (Section 8).

2534



Contextual Bandits with Similarity Information

In general, the goal of a bandit algorithm is to maximize the total payoff
∑T

t=1 πt,
where T is the time horizon. In the contextual MAB setting, we benchmark the algorithm’s
performance in terms of the context-specific “best arm”. Specifically, the goal is to minimize
the contextual regret :

R(T ) ,
∑T

t=1 µ(xt, yt)− µ∗(xt), where µ∗(x) , supy∈Y : (x,y)∈P µ(x, y).

The context-specific best arm is a more demanding benchmark than the best arm used
in the “standard” (context-free) definition of regret.

The similarity information is given to an algorithm as a metric space (P,D) which we
call the similarity space, such that the following Lipschitz condition1 holds:

|µ(x, y)− µ(x′, y′)| ≤ D((x, y), (x′, y′)). (1)

Without loss of generality, D ≤ 1. The absence of similarity information is modeled as
D = 1.

An instructive special case is the product similarity space (P,D) = (X × Y,D), where
(X,DX) is a metric space on contexts (context space), and (Y,DY) is a metric space on arms
(arms space), and

D((x, y), (x′, y′)) = min(1, DX(x, x′) +DY(y, y′)). (2)

1.2 Prior Work: Uniform Partitions

Hazan and Megiddo (2007) consider contextual MAB with similarity information on con-
texts. They suggest an algorithm that chooses a “uniform” partition SX of the context
space and approximates xt by the closest point in SX, call it x′t. Specifically, the algorithm
creates an instance A(x) of some bandit algorithm A for each point x ∈ SX, and invokes
A(x′t) in each round t. The granularity of the partition is adjusted to the time horizon, the
context space, and the black-box regret guarantee for A. Furthermore, Kleinberg (2004)
provides a bandit algorithm A for the adversarial MAB problem on a metric space that has
a similar flavor: pick a “uniform” partition SY of the arms space, and run a k-arm bandit
algorithm such as exp3 (Auer et al., 2002b) on the points in SY. Again, the granularity
of the partition is adjusted to the time horizon, the arms space, and the black-box regret
guarantee for exp3.

Applying these two ideas to our setting (with the product similarity space) gives a simple
algorithm which we call the uniform algorithm. Its contextual regret, even for adversarial
payoffs, is

R(T ) ≤ O(T 1−1/(2+dX+dY))(log T ), (3)

where dX is the covering dimension of the context space and dY is that of the arms space.

1. In other words, µ is a Lipschitz-continuous function on (X,P), with Lipschitz constant KLip = 1.
Assuming KLip = 1 is without loss of generality (as long as KLip is known to the algorithm), since we
can re-define D ← KLipD.
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1.3 Our Contributions

Using “uniform” partitions disregards the potentially benign structure of expected payoffs
and context arrivals. The central topic in this paper is adaptive partitions of the similarity
space which are adjusted to frequently occurring contexts and high-paying arms, so that
the algorithms can take advantage of the problem instances in which the expected payoffs
or the context arrivals are “benign” (“low-dimensional”), in a sense that we make precise
later.

We present two main results, one for stochastic payoffs and one for adversarial payoffs.
For stochastic payoffs, we provide an algorithm called contextual zooming which “zooms in”
on the regions of the context space that correspond to frequently occurring contexts, and
the regions of the arms space that correspond to high-paying arms. Unlike the algorithms
in prior work, this algorithm considers the context space and the arms space jointly—it
maintains a partition of the similarity space, rather than one partition for contexts and
another for arms. We develop provable guarantees that capture the “benign-ness” of the
context arrivals and the expected payoffs. In the worst case, we match the guarantee (3) for
the uniform algorithm. We obtain nearly matching lower bounds using the KL-divergence
technique from Auer et al. (2002b); Kleinberg (2004). The lower bound is very general as
it holds for every given (product) similarity space and for every fixed value of the upper
bound.

Our stochastic contextual MAB setting, and specifically the contextual zooming algo-
rithm, can be fruitfully applied beyond the ad placement scenario described above and
beyond MAB with similarity information per se. First, writing xt = t one can incorpo-
rate “temporal constraints” (across time, for each arm), and combine them with “spatial
constraints” (across arms, for each time). The analysis of contextual zooming yields con-
crete, meaningful bounds this scenario. In particular, we recover one of the main results
in Slivkins and Upfal (2008). Second, our setting subsumes the stochastic sleeping bandits
problem (Kleinberg et al., 2008a), where in each round some arms are “asleep”, i.e., not
available in this round. Here contexts correspond to subsets of arms that are “awake”.
Contextual zooming recovers and generalizes the corresponding result in Kleinberg et al.
(2008a). Third, following the publication of a preliminary version of this paper, contextual
zooming has been applied to bandit learning-to-rank in Slivkins et al. (2013).

For the adversarial setting, we provide an algorithm which maintains an adaptive parti-
tion of the context space and thus takes advantage of “benign” context arrivals. We develop
provable guarantees that capture this “benign-ness”. In the worst case, the contextual re-
gret is bounded in terms of the covering dimension of the context space, matching (3). Our
algorithm is in fact a meta-algorithm: given an adversarial bandit algorithm Bandit, we
present a contextual bandit algorithm which calls Bandit as a subroutine. Our setup is
flexible: depending on what additional constraints are known about the adversarial payoffs,
one can plug in a bandit algorithm from the prior work on the corresponding version of
adversarial MAB, so that the regret bound for Bandit plugs into the overall regret bound.

1.4 Discussion

Adaptive partitions (of the arms space) for context-free MAB with similarity information
have been introduced in Kleinberg et al. (2008b); Bubeck et al. (2011a). This paper further
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explores the potential of the zooming technique in Kleinberg et al. (2008b). Specifically,
contextual zooming extends this technique to adaptive partitions of the entire similarity
space, which necessitates a technically different algorithm and a more delicate analysis. We
obtain a clean algorithm for contextual MAB with improved (and nearly optimal) bounds.
Moreover, this algorithm applies to several other, seemingly unrelated problems and unifies
some results from prior work.

One alternative approach is to maintain a partition of the context space, and run a
separate instance of the zooming algorithm from Kleinberg et al. (2008b) on each set in this
partition. Fleshing out this idea leads to the meta-algorithm that we present for adversarial
payoffs (with Bandit being the zooming algorithm). This meta-algorithm is parameterized
(and constrained) by a specific a priori regret bound for Bandit. Unfortunately, any a
priori regret bound for zooming algorithm would be a pessimistic one, which negates its
main strength—the ability to adapt to “benign” expected payoffs.

1.5 Map of the Paper

Section 2 is related work, and Section 3 is Preliminaries. Contextual zooming is presented
in Section 4. Lower bounds are in Section 5. Some applications of contextual zooming are
discussed in Section 6. The adversarial setting is treated in Section 8.

2. Related Work

A proper discussion of the literature on bandit problems is beyond the scope of this paper.
This paper follows the line of work on regret-minimizing bandits; a reader is encouraged to
refer to Cesa-Bianchi and Lugosi (2006); Bubeck and Cesa-Bianchi (2012) for background.
A different (Bayesian) perspective on bandit problems can be found in Gittins et al. (2011).

Most relevant to this paper is the work on bandits with large sets of arms, specifically
bandits with similarity information (Agrawal, 1995; Kleinberg, 2004; Auer et al., 2007;
Pandey et al., 2007; Kocsis and Szepesvari, 2006; Munos and Coquelin, 2007; Kleinberg
et al., 2008b; Bubeck et al., 2011a; Kleinberg and Slivkins, 2010; Maillard and Munos,
2010). Another commonly assumed structure is linear or convex payoffs (e.g., Awerbuch
and Kleinberg, 2008; Flaxman et al., 2005; Dani et al., 2007; Abernethy et al., 2008; Hazan
and Kale, 2009; Bubeck et al., 2012). Linear/convex payoffs is a much stronger assumption
than similarity, essentially because it allows to make strong inferences about far-away arms.
Other assumptions have been considered (e.g., Banks and Sundaram, 1992; Berry et al.,
1997; Wang et al., 2008; Bubeck and Munos, 2010). The distinction between stochastic and
adversarial payoffs is orthogonal to the structural assumption (such as Lipschitz-continuity
or linearity). Papers on MAB with linear/convex payoffs typically allow adversarial pay-
offs, whereas papers on MAB with similarity information focus on stochastic payoffs, with
notable exceptions of Kleinberg (2004) and Maillard and Munos (2010).2

The notion of structured adversarial payoffs in this paper is less restrictive than the
one in Maillard and Munos (2010) (which in turn specializes the notion from linear/convex
payoffs), in the sense that the Lipschitz condition is assumed on the expected payoffs rather
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than on realized payoffs. This is a non-trivial distinction, essentially because our notion
generalizes stochastic payoffs whereas the other one does not.

2.1 Contextual MAB

In Auer (2002) and Chu et al. (2011)2 payoffs are linear in context, which is a feature vector.
Woodroofe (1979); Wang et al. (2005) and Rigollet and Zeevi (2010)2 study contextual MAB
with stochastic payoffs, under the name bandits with covariates: the context is a random
variable correlated with the payoffs; they consider the case of two arms, and make some
additional assumptions. Lazaric and Munos (2009)2 consider an online labeling problem
with stochastic inputs and adversarially chosen labels; inputs and hypotheses (mappings
from inputs to labels) can be thought of as “contexts” and “arms” respectively. Bandits with
experts advice (e.g., Auer 2002) is the special case of contextual MAB where the context
consists of experts’ advice; the advice of a each expert is modeled as a distributions over
arms. All these papers are not directly applicable to the present setting.

Experimental work on contextual MAB includes (Pandey et al., 2007) and (Li et al.,
2010, 2011).2

Lu et al. (2010)2 consider the setting in this paper for a product similarity space and,
essentially, recover the uniform algorithm and a lower bound that matches (3). The same
guarantee (3) can also be obtained as follows. The “uniform partition” described above can
be used to define “experts” for a bandit-with-expert-advice algorithm such as exp4 (Auer
et al., 2002b): for each set of the partition there is an expert whose advise is simply an
arbitrary arm in this set. Then the regret bound for exp4 yields (3). Instead of exp4
one could use an algorithm in McMahan and Streeter (2009)2 which improves over exp4
if the experts are not “too distinct”; however, it is not clear if it translates into concrete
improvements over (3).

If the context xt is time-invariant, our setting reduces to the Lipschitz MAB problem
as defined in Kleinberg et al. (2008b), which in turn reduces to continuum-armed ban-
dits (Agrawal, 1995; Kleinberg, 2004; Auer et al., 2007) if the metric space is a real line,
and to MAB with stochastic payoffs (Auer et al., 2002a) if the similarity information is
absent.

3. Preliminaries

We will use the notation from the Introduction. In particular, xt will denote the t-th
context arrival, i.e., the context that arrives in round t, and yt will denote the arm chosen
by the algorithm in that round. We will use x(1..T ) to denote the sequence of the first T

context arrivals (x1 , . . . , xT ). The badness of a point (x, y) ∈ P is defined as ∆(x, y) ,
µ∗(x)− µ(x, y). The context-specific best arm is

y∗(x) ∈ argmaxy∈Y : (x,y)∈P µ(x, y), (4)

where ties are broken in an arbitrary but fixed way. To ensure that the max in (4) is
attained by some y ∈ Y , we will assume that the similarity space (P,D) is compact.

2. This paper is concurrent and independent work w.r.t. the preliminary publication of this paper on
arxiv.org.
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Metric spaces. Covering dimension and related notions are crucial throughout this paper.
Let P be a set of points in a metric space, and fix r > 0. An r-covering of P is a collection
of subsets of P, each of diameter strictly less than r, that cover P. The minimal number
of subsets in an r-covering is called the r-covering number3 of P and denoted Nr(P). The
covering dimension of P (with multiplier c) is the smallest d such that Nr(P) ≤ c r−d for
each r > 0. In particular, if S is a subset of Euclidean space then its covering dimension is
at most the linear dimension of S, but can be (much) smaller.

Covering is closely related to packing. A subset S ⊂ P is an r-packing of P if the distance
between any two points in S is at least r. The maximal number of points in an r-packing is
called the r-packing number and denotedN

pack
r (P). It is well-known that r-packing numbers

are essentially the same as r-covering numbers, namely N2r(P) ≤ Npack
r (P) ≤ Nr(P).

The doubling constant cdbl(P) of P is the smallest k such that any ball can be covered
by k balls of half the radius. The doubling constant (and doubling dimension log cdbl) was
introduced in Heinonen (2001) and has been a standard notion in theoretical computer
science literature since Gupta et al. (2003). It was used to characterize tractable problem
instances for a variety of problems (e.g., see Talwar, 2004; Kleinberg et al., 2009; Cole and
Gottlieb, 2006). It is known that cdbl(P) ≥ c 2d if d is the covering dimension of P with
multiplier c, and that cdbl(P) ≤ 2d if P is a bounded subset of d-dimensional Euclidean
space. A useful observation is that if distance between any two points in S is > r, then any
ball of radius r contains at most cdbl points of S.

A ball with center x and radius r is denoted B(x, r). Formally, we will treat a ball as
a (center, radius) pair rather than a set of points. A function f : P → R if a Lipschitz
function on a metric space (P,D), with Lipschitz constant KLip, if the Lipschitz condition
holds: |f(x)− f(x′)| ≤ KLipD(x, x′) for each x, x′ ∈ P.

Accessing the similarity space. We assume full and computationally unrestricted access to
the similarity information. While the issues of efficient representation thereof are important
in practice, we believe that a proper treatment of these issues would be specific to the
particular application and the particular similarity metric used, and would obscure the
present paper. One clean formal way to address this issue is to assume oracle access: an
algorithm accesses the similarity space via a few specific types of queries, and invokes an
“oracle” that answers such queries.

Time horizon. We assume that the time horizon is fixed and known in advance. This
assumption is without loss of generality in our setting. This is due to the well-known
doubling trick which converts a bandit algorithm with a fixed time horizon into one that
runs indefinitely and achieves essentially the same regret bound. Suppose for any fixed time
horizon T there is an algorithm ALGT whose regret is at most R(T ). The new algorithm
proceeds in phases i = 1, 2, 3, . . . of duration 2i rounds each, so that in each phase i a fresh
instance of ALG2i is run. This algorithm has regret O(log T )R(T ) for each round T , and
O(R(T )) in the typical case when R(T ) ≥ T γ for some constant γ > 0.

3. The covering number can be defined via radius-r balls rather than diameter-r sets. This alternative
definition lacks the appealing “robustness” property: Nr(P ′) ≤ Nr(P) for any P ′ ⊂ P, but (other than
that) is equivalent for this paper.
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4. The Contextual Zooming Algorithm

In this section we consider the contextual MAB problem with stochastic payoffs. We present
an algorithm for this problem, called contextual zooming, which takes advantage of both
the “benign” context arrivals and the “benign” expected payoffs. The algorithm adaptively
maintains a partition of the similarity space, “zooming in” on both the “popular” regions
on the context space and the high-payoff regions of the arms space.

Contextual zooming extends the (context-free) zooming technique in Kleinberg et al.
(2008b), which necessitates a somewhat more complicated algorithm. In particular, selec-
tion and activation rules are defined differently, there is a new notion of “domains” and the
distinction between “pre-index” and “index”. The analysis is more delicate, both the high-
probability argument in Claim 3 and the subsequent argument that bounds the number of
samples from suboptimal arms. Also, the key step of setting up the regret bounds is very
different, especially for the improved regret bounds in Section 4.4.

4.1 Provable Guarantees

Let us define the notions that express the performance of contextual zooming. These notions
rely on the packing number Nr(·) in the similarity space (P,D), and the more refined
versions thereof that take into account “benign” expected payoffs and “benign” context
arrivals.

Our guarantees have the following form, for some integer numbers {Nr}r∈(0,1):

R(T ) ≤ C0 infr0∈(0,1)

(
r0T +

∑
r=2−i: i∈N, r0≤r≤1

1
r Nr log T

)
. (5)

Here and thereafter, C0 = O(1) unless specified otherwise. In the pessimistic version,
Nr = Nr(P) is the r-packing number4 of P. The main contribution is refined bounds in
which Nr is smaller.

For every guarantee of the form (5), call it Nr-type guarantee, prior work (e.g., Kleinberg
2004; Kleinberg et al. 2008b; Bubeck et al. 2011a) suggests a more tractable dimension-type
guarantee. This guarantee is in terms of the covering-type dimension induced by Nr, defined
as follows:5

dc , inf{d > 0 : Nr ≤ c r−d ∀r ∈ (0, 1)}. (6)

Using (5) with r0 = T−1/(dc+2), we obtain

R(T ) ≤ O(C0) (c T 1−1/(2+dc) log T ) (∀c > 0). (7)

For the pessimistic version (Nr = Nr(P)), the corresponding covering-type dimension dc
is the covering dimension of the similarity space. The resulting guarantee (7) subsumes the
bound (3) from prior work (because the covering dimension of a product similarity space is

4. Then (5) can be simplified to R(T ) ≤ infr∈(0,1)O
(
rT + 1

r
Nr(P) log T

)
, asl Nr(P) is non-increasing in

r.
5. One standard definition of the covering dimension is (6) for Nr = Nr(P) and c = 1. Following Kleinberg

et al. (2008b), we include an explicit dependence on c in (6) to obtain a more efficient regret bound
(which holds for any c).
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dX + dY), and extends this bound from product similarity spaces (2) to arbitrary similarity
spaces.

To account for “benign” expected payoffs, instead of r-packing number of the entire
set P we consider the r-packing number of a subset of P which only includes points with
near-optimal expected payoffs:

Pµ,r , {(x, y) ∈ P : µ∗(x)− µ(x, y) ≤ 12 r}. (8)

We define the r-zooming number as Nr(Pµ,r), the r-packing number of Pµ,r. The corre-
sponding covering-type dimension (6) is called the contextual zooming dimension.

The r-zooming number can be seen as an optimistic version of Nr(P): while equal to
Nr(P) in the worst case, it can be much smaller if the set of near-optimal context-arm pairs
is “small” in terms of the packing number. Likewise, the contextual zooming dimension is
an optimistic version of the covering dimension.

Theorem 1 Consider the contextual MAB problem with stochastic payoffs. There is an
algorithm (namely, Algorithm 1 described below) whose contextual regret R(T ) satisfies (5)
with Nr equal to Nr(Pµ,r), the r-zooming number. Consequently, R(T ) satisfies the dimension-
type guarantee (7), where dc is the contextual zooming dimension.

In Theorem 1, the same algorithm enjoys the bound (7) for each c > 0. This is a useful
trade-off since different values of c may result in drastically different values of the dimension
dc. On the contrary, the “uniform algorithm” from prior work essentially needs to take the
c as input.

Further refinements to take into account “benign” context arrivals are deferred to Sec-
tion 4.4.

4.2 Description of the Algorithm

The algorithm is parameterized by the time horizon T . In each round t, it maintains a finite
collection At of balls in (P,D) (called active balls) which collectively cover the similarity
space. Adding active balls is called activating ; balls stay active once they are activated.
Initially there is only one active ball which has radius 1 and therefore contains the entire
similarity space.

At a high level, each round t proceeds as follows. Context xt arrives. Then the algorithm
selects an active ball B and an arm yt such that (xt, yt) ∈ B, according to the “selection
rule”. Arm yt is played. Then one ball may be activated, according to the “activation rule”.

In order to state the two rules, we need to put forward several definitions. Fix an active
ball B and round t. Let r(B) be the radius of B. The confidence radius of B at time t is

conft(B) , 4

√
log T

1 + nt(B)
, (9)

where nt(B) is the number of times B has been selected by the algorithm before round t.
The domain of ball B in round t is a subset of B that excludes all balls B′ ∈ At of strictly
smaller radius:

dom t(B) , B \
(⋃

B′∈At: r(B′)<r(B) B
′
)
. (10)

2541



Slivkins

Algorithm 1 Contextual zooming algorithm.

1: Input: Similarity space (P,D) of diameter ≤ 1, P ⊂ X × Y . Time horizon T .
2: Data: collection A of “active balls” in (P,D); counters n(B), rew(B) for each B ∈ A.

3: Init: B ← B(p, 1); // center p ∈ P is arbitrary
4: A ← {B}; n(B) = rew(B) = 0
5: Main loop: for each round t // use definitions (9-12)
6: Input context xt.
7: // activation rule
8: relevant← {B ∈ A : (xt, y) ∈ dom (B,A) for some arm y}.
9: B ← argmaxB∈relevant It(B). // ball B is selected

10: y ← any arm y such that (xt, y) ∈ dom (B,A).
11: Play arm y, observe payoff π.
12: Update counters: n(B)← n(B) + 1, rew(B)← rew(B) + π.
13: // selection rule
14: if conf(B) ≤ radius(B) then
15: B′ ← B((xt, y), 1

2 radius(B)) // new ball to be activated
16: A ← A∪ {B′}; n(B′) = rew(B′) = 0.

We will also denote (10) as dom (B,At). Ball B is called relevant in round t if (xt, y) ∈
dom t(B) for some arm y. In each round, the algorithm selects one relevant ball B. This
ball is selected according to a numerical score It(B) called index. (The definition of index
is deferred to the end of this subsection.)

Now we are ready to state the two rules, for every given round t.

• selection rule. Select a relevant ball B with the maximal index (break ties arbitrar-
ily). Select an arbitrary arm y such that (xt, y) ∈ dom t(B).

• activation rule. Suppose the selection rule selects a relevant ball B such that
conft(B) ≤ r(B) after this round. Then, letting y be the arm selected in this round,
a ball with center (xt, y) and radius 1

2 r(B) is activated. (B is then called the parent
of this ball.)

See Algorithm 1 for the pseudocode.
It remains to define the index It(B). Let rewt(B) be the total payoff from all rounds

up to t − 1 in which ball B has been selected by the algorithm. Then the average payoff
from B is νt(B) , rewt(B)

max(1, nt(B)) . The pre-index of B is defined as the average νt(B) plus an
“uncertainty term”:

Ipre
t (B) , νt(B) + r(B) + conft(B). (11)

The “uncertainty term” in (11) reflects both uncertainty due to a location in the metric
space, via r(B), and uncertainty due to an insufficient number of samples, via conft(B).

The index of B is obtained by taking a minimum over all active balls B′:

It(B) , r(B) + min
B′∈At

(
Ipre
t (B′) +D(B,B′)

)
, (12)
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where D(B,B′) is the distance between the centers of the two balls.

Discussion. The meaning of index and pre-index is as follows. Both are upper confidence
bound (UCB, for short) for expected rewards in B. Pre-index is a UCB for µ(B), the
expected payoff from the center of B; essentially, it is the best UCB on µ(B) that can be
obtained from the observations of B alone. The min expression in (12) is an improved UCB
on µ(B), refined using observations from all other active balls. Finally, index is, essentially,
the best available UCB for the expected reward of any pair (x, y) ∈ B.

Relevant balls are defined through the notion of the “domain” to ensure the following
property: in each round when a parent ball is selected, some other ball is activated. This
property allows us to “charge” the regret accumulated in each such round to the corre-
sponding activated ball.

Running time. The running time is dominated by determining which active balls are
relevant. Formally, we assume an oracle that inputs context x and a finite sequence
(B,B1 , . . . , Bn) of balls in the similarity space, and outputs an arm y such that (x, y) ∈
B \∪nj=1Bj if such arm exists, and null otherwise. Then each round t can be implemented
via nt oracle calls with n < nt balls each, where nt is the current number of active balls.
Letting f(n) denote the running time of one oracle call in terms of n, the running time for
each round the algorithm is at most nT f(nT ).

While implementation of the oracle and running time f(·) depend on the specific sim-
ilarity space, we can provide some upper bounds on nT . First, a crude upper bound is
nT ≤ T . Second, letting Fr be the collection of all active balls of radius r, we prove that
|Fr| is at most Nr, the r-zooming number of the problem instance. Third, |Fr| ≤ cdbl Tr2,
where cdbl is the doubling constant of the similarity space. (This is because each active ball
must be played at least r−2 times before it becomes a parent ball, and each parent ball can
have at most cdbl children.) Putting this together, we obtain nT ≤

∑
r min(cdbl Tr

2, Nr),
where the sum is over all r = 2−j , j ∈ N.

4.3 Analysis of the Algorithm: Proof of Theorem 1

We start by observing that the activation rule ensures several important invariants.

Claim 2 The following invariants are maintained:
• (confidence) for all times t and all active balls B,

conft(B) ≤ r(B) if and only if B is a parent ball.

• (covering) in each round t, the domains of active balls cover the similarity space.
• (separation) for any two active balls of radius r, their centers are at distance ≥ r.

Proof The confidence invariant is immediate from the activation rule.
For the covering invariant, note that ∪B∈A dom (B,A) = ∪B∈AB for any finite collection

A of balls in the similarity space. (For each v ∈ ∪B∈AB, consider a smallest radius ball
in A that contains B. Then v ∈ dom (B,A).) The covering invariant then follows since At
contains a ball that covers the entire similarity space.

To show the separation invariant, let B and B′ be two balls of radius r such that B is
activated at time t, with parent Bpar, and B′ is activated before time t. The center of B
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is some point (xt, yt) ∈ dom (Bpar,At). Since r(Bpar) > r(B′), it follows that (xt, yt) 6∈ B′.

Throughout the analysis we will use the following notation. For a ball B with center
(x, y) ∈ P, define the expected payoff of B as µ(B) , µ(x, y). Let Bsel

t be the active ball
selected by the algorithm in round t. Recall that the badness of (x, y) ∈ P is defined as
∆(x, y) , µ∗(x)− µ(x, y).

Claim 3 If ball B is active in round t, then with probability at least 1− T−2 we have that

|νt(B)− µ(B)| ≤ r(B) + conft(B). (13)

Proof Fix ball V with center (x, y). Let S be the set of rounds s ≤ t when ball B
was selected by the algorithm, and let n = |S| be the number of such rounds. Then
νt(B) = 1

n

∑
s∈S πs(xs, ys).

Define Zk =
∑

(πs(xs, ys)− µ(xs, ys)), where the sum is taken over the k smallest el-
ements s ∈ S. Then {Zk∧n}k∈N is a martingale with bounded increments. (Note that n
here is a random variable.) So by the Azuma-Hoeffding inequality with probability at least
1 − T−3 it holds that 1

k |Zk∧n| ≤ conft(B), for each k ≤ T . Taking the Union Bound, it
follows that 1

n |Zn| ≤ conft(B). Note that |µ(xs, ys) − µ(B)| ≤ r(B) for each s ∈ S, so
|νt(B)− µ(B)| ≤ r(B) + 1

n |Zn|, which completes the proof.

Note that (13) implies Ipre(B) ≥ µ(B), so that Ipre(B) is indeed a UCB on µ(B).

Call a run of the algorithm clean if (13) holds for each round. From now on we will
focus on a clean run, and argue deterministically using (13). The heart of the analysis is
the following lemma.

Lemma 4 Consider a clean run of the algorithm. Then ∆(xt, yt) ≤ 14 r(Bsel
t ) in each

round t.

Proof Fix round t. By the covering invariant, (xt, y
∗(xt)) ∈ B for some active ball B.

Recall from (12) that It(B) = r(B)+Ipre(B′)+D(B,B′) for some active ball B′. Therefore

It(B
sel
t ) ≥ It(B) = Ipre(B′) + r(B) +D(B,B′) (selection rule, defn of index (12))

≥ µ(B′) + r(B) +D(B,B′) (“clean run”)

≥ µ(B) + r(B) ≥ µ(xt, y
∗(xt)) = µ∗(xt). (Lipschitz property (1), twice)

(14)

On the other hand, letting Bpar be the parent of Bsel
t and noting that by the activation

rule

max(D(Bsel
t , Bpar), conft(B

par)) ≤ r(Bpar), (15)
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we can upper-bound It(B
sel
t ) as follows:

Ipre(Bpar) = νt(B
par) + r(Bpar) + conft(B

par) (defn of preindex (11))

≤ µ(Bpar) + 2 r(Bpar) + 2 conft(B
par) (“clean run”)

≤ µ(Bpar) + 4 r(Bpar) (“parenthood” (15))

≤ µ(Bsel
t ) + 5 r(Bpar) (Lipschitz property (1)) (16)

It(B
sel
t ) ≤ r(Bsel

t ) + Ipre(Bpar) +D(Bsel
t , Bpar) (defn of index (12))

≤ r(Bsel
t ) + Ipre(Bpar) + r(Bpar) (“parenthood” (15))

≤ r(Bsel
t ) + µ(Bsel

t ) + 6 r(Bpar) (by (16))

≤ µ(Bsel
t ) + 13 r(Bsel

t ) (r(Bpar) = 2 r(Bsel
t ))

≤ µ(xt, yt) + 14 r(Bsel
t ) (Lipschitz property (1)). (17)

Putting the pieces together, µ∗(xt) ≤ It(Bsel
t ) ≤ µ(xt, yt) + 14 r(Bsel

t ).

Corollary 5 In a clean run, if ball B is activated in round t then ∆(xt, yt) ≤ 10 r(B).

Proof By the activation rule, Bsel
t is the parent of B. Thus by Lemma 4 we immediately

have ∆(xt, yt) ≤ 14 r(Bsel
t ) = 28 r(B).

To obtain the constant of 10 that is claimed here, we prove a more efficient special case
of Lemma 4:

if Bsel
t is a parent ball then ∆(xt, yt) ≤ 5 r(Bsel

t ). (18)

To prove (18), we simply replace (17) in the proof of Lemma 4 by similar inequality in
terms of Ipre(Bsel

t ) rather than Ipre(Bpar):

It(B
sel
t ) ≤ r(Bsel

t ) + Ipre(Bsel
t ) (defn of index (12))

= νt(B
sel
t ) + 2 r(Bsel

t ) + conft(B
sel
t ) (defns of pre-index (11))

≤ µ(Bsel
t ) + 3 r(Bsel

t ) + 2 conft(B
sel
t ) (“clean run”)

≤ µ(xt, yt) + 5 r(Bsel
t )

For the last inequality, we use the fact that conft(B
sel
t ) ≤ r(Bsel

t ) whenever Bsel
t is a

parent ball.

Now we are ready for the final regret computation. For a given r = 2−i, i ∈ N, let Fr
be the collection of all balls of radius r that have been activated throughout the execution
of the algorithm. Note that in each round, if a parent ball is selected then some other ball
is activated. Thus, we can partition the rounds among active balls as follows: for each ball
B ∈ Fr, let SB be the set of rounds which consists of the round when B was activated
and all rounds t when B was selected and was not a parent ball.6 It is easy to see that

6. A given ball B can be selected even after it becomes a parent ball, but in such round some other ball B
is activated, so this round is included in SB′ .
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|SB| ≤ O(r−2 log T ). Moreover, by Lemma 4 and Corollary 5 we have ∆(xt, yt) ≤ 15 r in
each round t ∈ SB.

If ball B ∈ Fr is activated in round t, then Corollary 5 asserts that its center (xt, yt)
lies in the set Pµ,r, as defined in (8). By the separation invariant, the centers of balls in Fr
are within distance at least r from one another. It follows that |Fr| ≤ Nr, where Nr is the
r-zooming number.

Fixing some r0 ∈ (0, 1), note that in each rounds t when a ball of radius < r0 was
selected, regret is ∆(xt, yt) ≤ O(r0), so the total regret from all such rounds is at most
O(r0 T ). Therefore, contextual regret can be written as follows:

R(T ) =
∑T

t=1 ∆(xt, yt)

= O(r0 T ) +
∑

r=2−i: r0≤r≤1

∑
B∈Fr

∑
t∈SB

∆(xt, yt)

≤ O(r0 T ) +
∑

r=2−i: r0≤r≤1

∑
B∈Fr

|SB|O(r)

≤ O
(
r0T +

∑
r=2−i: r0≤r≤1

1
r Nr log(T )

)
.

The Nr-type regret guarantee in Theorem 1 follows by taking inf on all r0 ∈ (0, 1).

4.4 Improved Regret Bounds

Let us provide regret bounds that take into account “benign” context arrivals. The main
difficulty here is to develop the corresponding definitions; the analysis then carries over
without much modification. The added value is two-fold: first, we establish the intuition
that benign context arrivals matter, and then the specific regret bound is used in Section 6.2
to match the result in Slivkins and Upfal (2008).

A crucial step in the proof of Theorem 1 is to bound the number of active radius-r balls
by Nr(Pµ,r), which is accomplished by observing that their centers form an r-packing S of
Pµ,r. We make this step more efficient, as follows. An active radius-r ball is called full if
conft(B) ≤ r for some round t. Note that each active ball is either full or a child of some
other ball that is full. The number of children of a given ball is bounded by the doubling
constant of the similarity space. Thus, it suffices to consider the number of active radius-r
balls that are full, which is at most Nr(Pµ,r), and potentially much smaller.

Consider active radius-r active balls that are full. Their centers form an r-packing S
of Pµ,r with an additional property: each point p ∈ S is assigned at least 1/r2 context
arrivals xt so that (xt, y) ∈ B(p, r) for some arm y, and each context arrival is assigned
to at most one point in S.7 A set S ⊂ P with this property is called r-consistent (with

context arrivals). The adjusted r-packing number of a set P ′ ⊂ P, denoted Nadj
r (P ′), is the

maximal size of an r-consistent r-packing of P ′. It can be much smaller than the r-packing
number of P ′ if most context arrivals fall into a small region of the similarity space.

We make one further optimization, tailored to the application in Section 6.2. Infor-
mally, we take advantage of context arrivals xt such that expected payoff µ(xt, y) is ei-
ther optimal or very suboptimal. A point (x, y) ∈ P is called an r-winner if for each
(x′, y′) ∈ B((x, y), 2r) it holds that µ(x′, y′) = µ∗(x′). Let Wµ,r be the set of all r-winners.
It is easy to see that if B is a radius-r ball centered at an r-winner, and B or its child is se-

7. Each point p ∈ S is assigned all contexts xt such that the corresponding ball is chosen in round t.
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lected in a given round, then this round does not contribute to contextual regret. Therefore,
it suffices to consider (r-consistent) r-packings of Pµ,r \Wµ,r.

Our final guarantee is in terms of Nadj(Pµ,r \ Wµ,r), which we term the adjusted r-
zooming number.

Theorem 6 Consider the contextual MAB problem with stochastic payoffs. The contextual
regret R(T ) of the contextual zooming algorithm satisfies (5), where Nr is the adjusted r-
zooming number and C0 is the doubling constant of the similarity space times some absolute
constant. Consequently, R(T ) satisfies the dimension-type guarantee (7), where dc is the
corresponding covering-type dimension.

5. Lower Bounds

We match the upper bound in Theorem 1 up to O(log T ) factors. Our lower bound is
very general: it applies to an arbitrary product similarity space, and moreover for a given
similarity space it matches, up to O(log T ) factors, any fixed value of the upper bound (as
explained below).

We construct a distribution I over problem instances on a given metric space, so that
the lower bound is for a problem instance drawn from this distribution. A single problem
instance would not suffice to establish a lower bound because a trivial algorithm that picks
arm y∗(x) for each context x will achieve regret 0.

The distribution I satisfies the following two properties: the upper bound in Theorem 1
is uniformly bounded from above by some number R, and any algorithm must incur regret
at least Ω(R/ log T ) in expectation over I. Moreover, we constrict such I for every possible
value of the upper bound in Theorem 1 on a given metric space, i.e., not just for problem
instances that are “hard” for this metric space.

To formulate our result, let RUB
µ (T ) denote the upper bound in Theorem 1, i.e., is the

right-hand side of (5) where Nr = Nr(Pµ,r) is the r-zooming number. Let RUB(T ) denote
the pessimistic version of this bound, namely right-hand side of (5) where Nr = Nr(P) is
the packing number of P.

Theorem 7 Consider the contextual MAB problem with stochastic payoffs, Let (P,D) be
a product similarity space. Fix an arbitrary time horizon T and a positive number R ≤
RUB(T ). Then there exists a distribution I over problem instances on (P,D) with the
following two properties:

(a) RUB
µ (T ) ≤ O(R) for each problem instance in support(I).

(b) for any contextual bandit algorithm it holds that EI [R(T )] ≥ Ω(R/ log T ),

To prove this theorem, we build on the lower-bounding technique from Auer et al.
(2002b), and its extension to (context-free) bandits in metric spaces in Kleinberg (2004). In
particular, we use the basic needle-in-the-haystack example from Auer et al. (2002b), where
the “haystack” consists of several arms with expected payoff 1

2 , and the “needle” is an arm
whose expected payoff is slightly higher.
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5.1 The Lower-Bounding Construction

Our construction is parameterized by two numbers: r ∈ (0, 1
2 ] and N ≤ Nr(P), where

Nr(P) is the r-packing number of P. Given these parameters, we construct a collection
I = IN,r of Θ(N) problem instances as follows.

Let NX,r be the r-packing number of X in the context space, and let NY,r be the r-
packing number of Y in the arms space. Note that Nr(P) = NX,r × NY,r. For simplicity,
let us assume that N = nX nY, where 1 ≤ nX ≤ NX,r and 2 ≤ nY ≤ NY,r.

An r-net is the set S of points in a metric space such that any two points in S are at
distance > r from each other, and each point in the metric space is within distance ≤ r
from some point in S. Recall that any r-net on the context space has size at least NX,r. Let
SX be an arbitrary set of nX points from one such r-net. Similarly, let SY be an arbitrary
set of nY points from some r-net on the arms space. The sequence x(1..T ) of context arrivals
is any fixed permutation over the points in SX, repeated indefinitely.

All problem instances in I have 0-1 payoffs. For each x ∈ SX we construct a needle-
in-the-haystack example on the set SY. Namely, we pick one point y∗(x) ∈ SY to be the
“needle”, and define µ(x, y∗(x)) = 1

2 + r
4 , and µ(x, y) = 1

2 + r
8 for each y ∈ SY \ {y∗(x)}.

We smoothen the expected payoffs so that far from SX×SY expected payoffs are 1
2 and the

Lipschitz condition (1) holds:

µ(x, y) , max
(x0, y0)∈SX×SY

max
(

1
2 , µ(x0, y0)−DX(x, x0)−DY(y, y0)

)
. (19)

Note that we obtain a distinct problem instance for each function y∗(·) : SX → SY. This
completes our construction.

5.2 Analysis

The useful properties of the above construction are summarized in the following lemma:

Lemma 8 Fix r ∈ (0, 1
2 ] and N ≤ Nr(P). Let I = IN,r and T0 = N r−2. Then:

(i) for each problem instance in I it holds that RUB
µ (T0) ≤ O(N/r)(log T0).

(ii) any contextual bandit algorithm has regret EI [R(T0)] ≥ Ω(N/r) for a problem
instance chosen uniformly at random from I.

For the lower bound in Lemma 8, the idea is that in T rounds each context in SX

contributes Ω(|SY|/r) to contextual regret, resulting in total contextual regret Ω(N/r).
Before we proceed to prove Lemma 8, let us use it to derive Theorem 7. Fix an arbitrary

time horizon T and a positive number R ≤ RUB(T ). Recall that since Nr(P) is non-
increasing in r, for some constant C > 0 it holds that

RUB(T ) = C × infr∈(0,1)

(
rT + 1

r Nr(P) log T
)
. (20)

Claim 9 Let r = R
2C T (1+log T ) . Then r ≤ 1

2 and Tr2 ≤ Nr(P).

Proof Denote k(r) = Nr(P) and consider function f(r) , k(r)/r2. This function is non-
increasing in r; f(1) = 1 and f(r) → ∞ for r → 0. Therefore there exists r0 ∈ (0, 1) such
that f(r0) ≤ T ≤ f(r0/2). Re-writing this, we obtain

k(r0) ≤ T r2
0 ≤ 4 k(r0/2).

2548



Contextual Bandits with Similarity Information

It follows that

R ≤ RUB(T ) ≤ C(Tr0 + 1
r0
k(r0) log T ) ≤ C Tr0(1 + log T ).

Thus r ≤ r0/2 and finally T r2 ≤ T r2
0/4 ≤ k(r0/2) ≤ k(r) = Nr(P).

So, Lemma 8 with r , R
2C T (1+log T ) and N , T r2. implies Theorem 7.

5.3 Proof of Lemma 8

Claim 10 Collection I consists of valid instances of contextual MAB problem with simi-
larity space (P,D).

Proof We need to prove that each problem instance in P satisfies the Lipschitz condi-
tion (1). Assume the Lipschitz condition (1) is violated for some points (x, y), (x′, y′) ∈
X × Y . For brevity, let p = (x, y), p′ = (x′, y′), and let us write µ(p) , µ(x, y). Then
|µ(p)− µ(p′)| > D(p, p′).

By (19), µ(·) ∈ [1
2 ,

1
2 + r

4 ], so D(p, p′) < r
4 .

Without loss of generality, µ(p) > µ(p′). In particular, µ(p) > 1
2 . Therefore there exists

p0 = (x0, y0) ∈ SX × SY such that D(p, p0) < r
4 . Then D(p′, p0) < r

2 by triangle inequality.
Now, for any other p′0 ∈ SX × SY it holds that D(p0, p

′
0) > r, and thus by triangle

inequality D(p, p′0) > 3r
4 and D(p′, p′0) > r

2 . It follows that (19) can be simplified as follows:{
µ(p) = max(1

2 , µ(p0)−D(p, p0)),

µ(p′) = max(1
2 , µ(p0)−D(p′, p0)).

Therefore

|µ(p)− µ(p′)| = µ(p)− µ(p′)

= (µ(p0)−D(p, p0))−max(1
2 , µ(p0)−D(p′, p0))

≤ (µ(p0)−D(p, p0))− (µ(p0)−D(p′, p0)))

= D(p′, p0)−D(p, p0) ≤ D(p, p′).

So we have obtained a contradiction.

Claim 11 For each instance in P and T0 = N r−2 it holds that RUB
µ (T0) ≤ O(N/r)(log T0).

Proof Recall that RUB
µ (T0) is the right-hand side of (5) with Nr = Nr(Pµ,r), where Pµ,r

is defined by (8).
Fix r′ > 0. It is easy to see that

Pµ, r′ ⊂ ∪p∈SX×SY
B(p, r4).

It follows that Nr′(Pµ,r′) ≤ N whenever r′ ≥ r
4 . Therefore, taking r0 = r

4 in (5), we obtain

RUB
µ (T0) ≤ O(rT0 + N

r log T0) = O(N/r)(log T0).
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Claim 12 Fix a contextual bandit algorithm A. This algorithm has regret EI [R(T0)] ≥
Ω(N/r) for a problem instance chosen uniformly at random from I, where T0 = N r−2.

Proof Let R(x, T ) be the contribution of each context x ∈ SX to contextual regret:

R(x, T ) =
∑
t:xt=x

µ∗(x)− µ(x, yt),

where yt is the arm chosen by the algorithm in round t. Our goal is to show that R(x, T0) ≥
Ω(r nY).

We will consider each context x ∈ SX separately: the rounds when x arrives form an
instance Ix of a context-free bandit problem that lasts for T0/nX = nY r

−2 rounds, where
expected payoffs are given by µ(x, ·) as defined in (19). Let Ix be the family of all such
instances Ix.

A uniform distribution over I can be reformulated as follows: for each x ∈ SX, pick the
“needle” y∗(x) independently and uniformly at random from SY. This induces a uniform
distribution over instances in Ix, for each context x ∈ SX. Informally, knowing full or
partial information about y∗(x) for some x reveals no information whatsoever about y∗(x′)
for any x′ 6= x.

Formally, the contextual bandit algorithm A induces a bandit algorithm Ax for Ix, for
each context x ∈ SX: the Ax simulates the problem instance for A for all contexts x′ 6= x
(starting from the “needles” y∗(x′) chosen independently and uniformly at random from
SY). Then Ax has expected regret Rx(T ) which satisfies E[R(T ) ] = E[R(x, T ) ], where
the expectations on both sides are over the randomness in the respective algorithm and the
random choice of the problem instance (resp., from Ix and from I).

Thus, it remains to handle each Ix separately: i.e., to prove that the expected regret
of any bandit algorithm on an instance drawn uniformly at random from Ix is at least
Ω(r nY). We use the KL-divergence technique that originated in Auer et al. (2002b). If
the set of arms were exactly SY, then the desired lower bound would follow from Auer
et al. (2002b) directly. To handle the problem instances in Ix, we use an extension of the
technique from Auer et al. (2002b), which is implicit in Kleinberg (2004) and encapsulated
as a stand-alone theorem in Kleinberg et al. (2013). We restate this theorem as Theorem 26
in Appendix A.

It is easy to check that the family Ix of problem instances satisfies the preconditions in
Theorem 26. Fix x ∈ SX. For a given choice of the “needle” y∗ = y∗(x) ∈ SY, let µ(x, y | y∗).
be the expected payoff of each arm y, and let νy∗(·) = µ(x, · | y∗) be the corresponding payoff
function for the bandit instance Ix. Then {νy∗}, y∗ ∈ SY is an “(ε, k)-ensemble” for ε = r

8
and k = |SY|.

6. Applications of Contextual Zooming

We describe several applications of contextual zooming: to MAB with slow adversarial
change (Section 6.1), to MAB with stochastically evolving payoffs (Section 6.2), and to
the “sleeping bandits” problem (Section 6.3). In particular, we recover some of the main
results in Slivkins and Upfal (2008) and Kleinberg et al. (2008a). Also, in Section 6.4 we
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discuss a recent application of contextual zooming to bandit learning-to-rank, which has
been published in Slivkins et al. (2013).

6.1 MAB with Slow Adversarial Change

Consider the (context-free) adversarial MAB problem in which expected payoffs of each
arm change over time gradually. Specifically, we assume that expected payoff of each arm
y changes by at most σy in each round, for some a-priori known volatilities σy. The algo-
rithm’s goal here is continuously adapt to the changing environment, rather than converge
to the best fixed mapping from contexts to arms. We call this setting the drifting MAB
problem.

Formally, our benchmark is a fictitious algorithm which in each round selects an arm
that maximizes expected payoff for the current context. The difference in expected payoff
between this benchmark and a given algorithm is called dynamic regret of this algorithm.
It is easy to see that the worst-case dynamic regret of any algorithm cannot be sublinear
in time.8 We are primarily interested in algorithm’s long-term performance, as quantified
by average dynamic regret R̂(T ) , R(T )/T . Our goal is to bound the limit limT→∞ R̂(T )
in terms of the parameters: the number of arms and the volatilities σy. (In general, such
upper bound is non-trivial as long as it is smaller than 1, since all payoffs are at most 1.)

We restate this setting as a contextual MAB problem with stochastic payoffs in which
the t-th context arrival is simply xt = t. Then µ(t, y) is the expected payoff of arm y at
time t, and dynamic regret coincides with contextual regret specialized to the case xt = t.
Each arm y satisfies a “temporal constraint”:

|µ(t, y)− µ(t′, y)| ≤ σy |t− t′| (21)

for some constant σy. To set up the corresponding similarity space (P,D), let P = [T ]×Y ,
and

D((t, y), (t′, y′)) = min(1, σy |t− t′|+ 1{y 6=y′}). (22)

Our solution for the drifting MAB problem is the contextual zooming algorithm parame-
terized by the similarity space (P,D). To obtain guarantees for the long-term performance,
we run contextual zooming with a suitably chosen time horizon T0, and restart it every
T0 rounds; we call this version contextual zooming with period T0. Periodically restarting
the algorithm is a simple way to prevent the change over time from becoming too large; it
suffices to obtain strong provable guarantees.

The general provable guarantees are provided by Theorem 1 and Theorem 6. Below we
work out some specific, tractable corollaries.

Corollary 13 Consider the drifting MAB problem with k arms and volatilities σy ≡ σ.
Contextual zooming with period T0 has average dynamic regret R̂(T ) = O(kσ log T0)1/3,
whenever T ≥ T0 ≥ ( k

σ2 )1/3 log k
σ .

8. For example, consider problem instances with two arms such that the payoff of each arm in each round is
either 1

2
or 1

2
+σ (and can change from round to round). Over this family of problem instances, dynamic

regret in T rounds is at least 1
2
σT .
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Proof It suffices to upper-bound regret in a single period. Indeed, if R(T0) ≤ R for any
problem instance, then R(T ) ≤ R dT/T0e for any T > T0. It follows that R̂(T ) ≤ 2 R̂(T0).
Therefore, from here on we can focus on analyzing contextual zooming itself, rather than
contextual zooming with a period.

The main step is to derive the regret bound (5) with a specific upper bound on Nr. We
will show that

dynamic regret R(·) satisfies (5) with Nr ≤ k dTσr e. (23)

Plugging Nr ≤ k (1 + Tσ
r ) into (5) and taking r0 = (kσ log T )1/3 we obtain9

R(T ) ≤ O(T )(kσ log T )1/3 +O(k
2

σ )1/3(log T ) ∀T ≥ 1.

Therefore, for any T ≥ ( k
σ2 )1/3 log k

σ we have R̂(T ) = O(kσ log T )1/3.

It remains to prove (23). We use a pessimistic version of Theorem 1: (5) with Nr =
Nr(P), the r-packing number of P. Fix r ∈ (0, 1]. For any r-packing S of P and each arm
y, each time interval I of duration ∆r , r/σ provides at most one point for S: there exists
at most one time t ∈ I such that (t, y) ∈ S. Since there are at most dT/∆re such intervals
I, it follows that Nr(P) ≤ k dT/∆re ≤ k (1 + T σ

r ).

The restriction σy ≡ σ is non-essential: it is not hard to obtain the same bound with
σ = 1

k

∑
y σy. Modifying the construction in Section 5 (details omitted from this version)

one can show that Corollary 13 is optimal up to O(log T ) factors.

Drifting MAB with spatial constraints. The temporal version (xt = t) of our contextual
MAB setting with stochastic payoffs subsumes the drifting MAB problem and furthermore
allows to combine the temporal constraints (21) described above (for each arm, across time)
with “spatial constraints” (for each time, across arms). To the best of our knowledge, such
MAB models are quite rare in the literature.10 A clean example is

D((t, y), (t′, y′)) = min(1, σ |t− t′|+DY(y, y′)), (24)

where (Y,DY) is the arms space. For this example, we can obtain an analog of Corollary 13,
where the regret bound depends on the covering dimension of the arms space (Y,DY).

Corollary 14 Consider the drifting MAB problem with spatial constraints (24), where σ
is the volatility. Let d be the covering dimension of the arms space, with multiplier k.

Contextual zooming with period T0 has average dynamic regret R̂(T ) = O(k σ log T0)
1
d+3 ,

whenever T ≥ T0 ≥ k
1
d+3 σ

−d+2
d+3 log k

σ .

Remark. We obtain Corollary 13 as a special case by setting d = 0.

9. This choice of r0 minimizes the inf expression in (5) up to constant factors by equating the two summands.
10. The only other MAB model with this flavor that we are aware of, found in Hazan and Kale (2009),

combines linear payoffs and bounded “total variation” (aggregate temporal change) of the cost functions.
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Proof It suffices to bound R̂(T0) for (non-periodic) contextual zooming. First we bound
the r-covering number of the similarity space (P,D):

Nr(P) = NX
r (X)×NY

r (Y ) ≤ dTσr e k r
−d,

where NX
r (·) is the r-covering number in the context space, and NY

r (·) is that in the arms
space. We worked out the former for Corollary 13. Plugging this into (5) and taking
r0 = (k σ log T )1/(3+d), we obtain

R(T ) ≤ O(T )(kσ log T )
1
d+3 +O

(
k

2
d+3 σ

d+1
d+3 log T

)
∀T ≥ 1.

The desired bound on R̂(T0) follows easily.

6.2 Bandits with Stochastically Evolving Payoffs

We consider a special case of drifting MAB problem in which expected payoffs of each arm
evolve over time according to a stochastic process with a uniform stationary distribution.
We obtain improved regret bounds for contextual zooming, taking advantage of the full
power of our analysis in Section 4.

In particular, we address a version in which the stochastic process is a random walk
with step ±σ. This version has been previously studied in Slivkins and Upfal (2008) under
the name “Dynamic MAB”. For the main case (σi ≡ σ), our regret bound for Dynamic
MAB matches that in Slivkins and Upfal (2008).

To improve the flow of the paper, the proofs are deferred to Appendix 7.

Uniform marginals. First we address the general version that we call drifting MAB with
uniform marginals. Formally, we assume that expected payoffs µ(·, y) of each arm y evolve
over time according to some stochastic process Γy that satisfies (21). We assume that the
processes Γy, y ∈ Y are mutually independent, and moreover that the marginal distributions
µ(t, y) are uniform on [0, 1], for each time t and each arm y.11 We are interested in EΓ[R̂(T )],
average dynamic regret in expectation over the processes Γy.

We obtain a stronger version of (23) via Theorem 6. To use this theorem, we need to
bound the adjusted r-zooming number, call it Nr. We show that

EΓ[Nr] = O(kr)dTσr e and
(
r < σ1/3 ⇒ Nr = 0

)
. (25)

Then we obtain a different bound on dynamic regret, which is stronger than Corollary 13
for k < σ−1/2.

Corollary 15 Consider drifting MAB with uniform marginals, with k arms and volatilities
σy ≡ σ. Contextual zooming with period T0 satisfies EΓ[R̂(T )] = O(k σ2/3 log T0), whenever
T ≥ T0 ≥ σ−2/3 log 1

σ .

11. For example, this assumption is satisfied by any Markov Chain on [0, 1] with stationary initial distribu-
tion.
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The crux of the proof is to show (25). Interestingly, it involves using all three opti-

mizations in Theorem 6: Nr(Pµ,r), Nr(Pµ,r \ Wµ,r) and Nadj
r (·), whereas any two of them

do not seem to suffice. The rest is a straightforward computation similar to the one in
Corollary 13.

Dynamic MAB. Let us consider the Dynamic MAB problem from Slivkins and Upfal (2008).
Here for each arm y the stochastic process Γy is a random walk with step ±σy. To ensure
that the random walk stays within the interval [0, 1], we assume reflecting boundaries.
Formally, we assume that 1/σy ∈ N, and once a boundary is reached, the next step is
deterministically in the opposite direction.12

According to a well-known fact about random walks,13

Pr
[
|µ(t, y)− µ(t′, y)| ≤ O(σy |t− t′|1/2 log T0)

]
≥ 1− T−3

0 if |t− t′| ≤ T0. (26)

We use contextual zooming with period T0, but we parameterize it by a different similarity
space (P,DT0) that we define according to (26). Namely, we set

DT0((t, y), (t′, y′)) = min(1, σy |t− t′|1/2 log T0 + 1{y 6=y′}). (27)

The following corollary is proved using the same technique as Corollary 15:

Corollary 16 Consider the Dynamic MAB problem with k arms and volatilities σy ≡ σ.
Let ALGT0 denote the contextual zooming algorithm with period T0 which is parameterized
by the similarity space (P,DT0). Then ALGT0 satisfies EΓ[R̂(T )] = O(k σ log2 T0), whenever
T ≥ T0 ≥ 1

σ log 1
σ .

6.3 Sleeping Bandits

The sleeping bandits problem Kleinberg et al. (2008a) is an extension of MAB where in each
round some arms can be “asleep”, i.e., not available in this round. One of the main results
in Kleinberg et al. (2008a) is on sleeping bandits with stochastic payoffs. We recover this
result using contextual zooming.

We model sleeping bandits as contextual MAB problem where each context arrival xt
corresponds to the set of arms that are “awake” in this round. More precisely, for every
subset S ⊂ Y of arms there is a distinct context xS , and P = {(xS , y) : y ∈ S ⊂ Y }. is
the set of feasible context-arm pairs. The similarity distance is simply D((x, y), (x′, y′)) =
1{y 6=y′}. Note that the Lipschitz condition (1) is satisfied.

For this setting, contextual zooming essentially reduces to the “highest awake index”
algorithm in Kleinberg et al. (2008a). In fact, we can re-derive the result Kleinberg et al.
(2008a) on sleeping MAB with stochastic payoffs as an easy corollary of Theorem 1.

Corollary 17 Consider the sleeping MAB problem with stochastic payoffs. Order the arms
so that their expected payoffs are µ1 ≤ µ2 ≤ . . . ≤ µn, where n is the number of arms. Let
∆i = µi+1 − µi. Then

R(T ) ≤ inf
r>0

rT +
∑

i: ∆i>r

O(log T )

∆i

 .

12. Slivkins and Upfal (2008) has a slightly more general setup which does not require 1/σy ∈ N.
13. For example, this follows as a simple application of Azuma-Hoeffding inequality.
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Proof The r-zooming number Nr(Pµ,r) is equal to the number of distinct arms in Pµ,r,
i.e., the number of arms i ∈ Y such that ∆(x, i) ≤ 12r for some context x. Note that for a
given arm i, the quantity ∆(x, i) is minimized when the set of awake arms is S = {i, i+ 1}.
Therefore, Nr(Pµ,r) is equal to the number of arms i ∈ Y such that ∆i ≤ 12r. It follows
that

Nr>r0(Pµ,r) =
∑n

i=1 1{∆i≤12r}.∑
r>r0

1
rNr>r0(Pµ,r) =

∑
r>r0

∑n
i=1

1
r 1{∆i≤12r}

=
∑n

i=1

∑
r>r0

1
r 1{∆i≤12r}

=
∑

i: ∆i>r0
O( 1

∆i
).

R(T ) ≤ inf
r0>0

(
r0 T +O(log T )

∑
r>r0

1
rNr(Pµ,r)

)
≤ inf

r0>0

(
r0 T +O(log T )

∑
i: ∆i>r0

O( 1
∆i

)
)
,

as required. (In the above equations,
∑

r>r0
denotes the sum over all r = 2−j > r0 such

that j ∈ N.)

Moreover, the contextual MAB problem extends the sleeping bandits setting by incorpo-
rating similarity information on arms. The contextual zooming algorithm (and its analysis)
applies, and is geared to exploit this additional similarity information.

6.4 Bandit Learning-to-Rank

Following a preliminary publication of this paper on arxiv.org, contextual zooming has
been applied in Slivkins et al. (2013) to bandit learning-to-rank. Interestingly, the “con-
texts” studied in Slivkins et al. (2013) are very different from what we considered so far.

The basic setting, motivated by web search, was introduced in Radlinski et al. (2008).
In each round a new user arrives. The algorithm selects a ranked list of k documents and
presents it to the user who clicks on at most one document, namely on the first document
that (s)he finds relevant. A user is specified by a binary vector over documents. The goal
is to minimize abandonment : the number of rounds with no clicks.

Slivkins et al. (2013) study an extension in which metric similarity information is avail-
able. They consider a version with stochastic payoffs: in each round, the user vector is
an independent sample from a fixed distribution, and assume a Lipschitz-style condition
that connects expected clicks with the metric space. They run a separate bandit algo-
rithm (e.g., contextual zooming) for each of the k “slots” in the ranking. Without loss of
generality, in each round the documents are selected sequentially, in the top-down order.
Since a document in slot i is clicked in a given round only if all higher ranked documents
are not relevant, they treat the set of documents in the higher slots as a context for the
i-th algorithm. The Lipschitz-style condition on expected clicks suffices to guarantee the
corresponding Lipschitz-style condition on contexts.
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7. Bandits with Stochastically Evolving Payoffs: Missing Proofs

We prove Corollary 15 and Corollary 16 which address the performance of contextual zoom-
ing for the stochastically evolving payoffs. In each corollary we bound from above the av-
erage dynamic regret R̂(T ) of contextual zooming with period T0, for any T ≥ T0. Since
R̂(T ) ≤ 2R̂(T0), it suffices to bound R̂(T0), which is the same as R̂(T0) for (non-periodic)
contextual zooming. Therefore, we can focus on analyzing the non-periodic algorithm.

We start with two simple auxiliary claims.

Claim 18 Consider the contextual MAB problem with a product similarity space. Let
∆(x, y) , µ∗(x)− µ(x, y) be the “badness” of point (x, y) in the similarity space. Then

|∆(x, y)−∆(x′, y)| ≤ 2DX(x, x′) ∀x, x′ ∈ X, y ∈ Y. (28)

Proof First we show that the benchmark payoff µ(·) satisfies a Lipschitz condition:

|µ∗(x)− µ∗(x′)| ≤ DX(x, x′) ∀x, x′ ∈ X. (29)

Indeed, it holds that µ∗(x) = µ(x, y) and µ∗(x′) = µ(x, y′) for some arms y, y′ ∈ Y . Then

µ∗(x) = µ(x, y) ≥ µ(x, y′) ≥ µ(x′, y′)−DX(x, x′) = µ∗(x′)−DX(x, x′),

and likewise for the other direction. Now,

|∆(x, y)−∆(x′, y)| ≤ |µ∗(x)− µ∗(x′)|+ |µ(x, y)− µ(x′, y)| ≤ 2DX(x, x′).

Claim 19 Let Z1, . . . , Zk be independent random variables distributed uniformly at random
on [0, 1]. Let Z∗ = maxi Zi. Fix r > 0 and let S = {i : Z∗ > Zi ≥ Z∗ − r}. Then
E[ |S| ] = kr.

This is a textbook result; we provide a proof for the sake of completeness.
Proof Conditional on Z∗, it holds that

E[ |S| ] = E
[∑

i1{Zi∈S}
]

= k Pr[Zi ∈ S]

= k Pr[Zi ∈ S |Zi < Z∗]× Pr[Zi < Z∗]

= k r
Z∗

k−1
k = (k − 1)r/Z∗.

Integrating over Z∗, and letting F (z) , Pr[Z∗ ≤ z] = zk, we obtain that

E[ 1
Z∗ ] =

∫ 1
0

1
z F
′(z)dz = k

k−1

E[ |S| ] = (k − 1)r E[ 1
Z∗ ] = kr.
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Proof of Corollary 15 It suffices to bound R̂(T0) for (non-periodic) contextual zooming.
Let DX(t, t′) , σ|t− t′| be the context distance implicit in the temporal constraint (21).

For each r > 0, pick a number Tr such that DX(t, t′) ≤ r ⇐⇒ |t−t′| ≤ Tr. Clearly, Tr , r
σ .

The crux is to bound the adjusted r-zooming number, call it Nr, namely to show (25).
For the sake of convenience, let us restate it here (and let us use the notation Tr):

EΓ[Nr] = O(kr)d TTr e and
(
Tr < 1/r2 ⇒ Nr = 0

)
. (30)

Recall that Nr = Nadj(Pµ,r\Wµ,r), whereWµ,r is the set of all r-winners (see Section 4.4
for the definition). Fix r ∈ (0, 1] and let S be some r-packing of Pµ,r \ Wµ,r. Partition
the time into d TTr e intervals of duration Tr. Fix one such interval I. Let SI , {(t, y) ∈
S : t ∈ I}, the set of points in S that correspond to times in I. Recall the notation
∆(x, y) , µ∗(x)− µ(x, y) and let

YI , {y ∈ Y : ∆(tI , y) ≤ 14 r}, where tI , min(I). (31)

All quantities in (31) refer to a fixed time tI , which will allow us to use the uniform marginals
property.

Note that YI contains at least one arm, namely the best arm y∗(tI). We claim that

|SI | ≤ 2 |YI \ {y∗(tI)}|. (32)

Fix arm y. First, DX(t, t′) ≤ r for any t, t′ ∈ I, so there exists at most one t ∈ I such that
(t, y) ∈ S. Second, suppose such t exists. Since S ⊂ Pµ,r, it follows that ∆(t, y) ≤ 12 r. By
Claim 18 it holds that

∆(tI , y) ≤ ∆(t, y) + 2DX(t, t′) ≤ 14 r.

So y ∈ YI . It follows that |SI | ≤ |YI |.
To obtain (32), we show that SI = 0 whenever |YI | = 1. Indeed, suppose YI = {y} is

a singleton set, and |SI | > 0. Then SI = {(t, y)} for some t ∈ I. We will show that (t, y)
is an r-winner, contradicting the definition of S. For any arm y′ 6= y and any time t′ such
that DX(t, t′) ≤ 2r it holds that

µ(tI , y) = µ∗(tI) > µ(tI , y
′) + 14r

µ(t′, y) ≥ µ(tI , y)−DX(t′, tI) ≥ µ(tI , y)− 3r

> µ(tI , y
′) + 11r

≥ µ(t′, y′)−DX(t′, tI) + 11r

≥ µ(t′, y′) + 8r.

and so µ(t′, y) = µ∗(t′). Thus, (t, y) is an r-winner as claimed. This completes the proof
of (32).

Now using (32) and Claim 19 we obtain that

EΓ[ |SI | ] ≤ 2EΓ[ |YI \ {y∗(tI)}| ] ≤ O(kr)

EΓ[ |S| ] ≤ d TTr e E[ |SI | ] ≤ O(kr) d TTr e.
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Taking the max over all possible S, we obtain EΓ[Pµ,r \ Wµ,r] ≤ O(kr) d TTr e. To complete

the proof of (30), we note that S cannot be r-consistent unless |I| ≥ 1/r2.
Now that we have (30), the rest is a simple computation. We use Theorem 6, namely

we take (5) with r0 → 0, plug in (30), and recall that Tr ≥ 1/r2 ⇐⇒ r ≥ σ1/3.

R(T ) ≤
∑

r=2i≥σ1/3
1
r Nr O(log T )

EΓ[R(T )] ≤
∑

r=2i≥σ1/3 O(k log T )(Tσr + 1)

≤ O(k log T )(Tσ2/3 + log 1
σ ).

It follows that EΓ[R̂(T )] ≤ O(k σ2/3 log T ) for any T ≥ σ−2/3 log 1
σ .

Proof of Corollary 16 It suffices to bound R̂(T0) for (non-periodic) contextual zooming.
Recall that expected payoffs satisfy the temporal constraint (26). Consider the high-

probability event that

|µ(t, y)− µ(t′, y)| ≤ σ |t− t′|1/2 log T0 ∀t, t′ ∈ [1, T0], y ∈ Y. (33)

Since expected regret due to the failure of (33) is negligible, from here on we will assume
that (33) holds deterministically.

Let DX(t, t′) , σ |t− t′|1/2 log T0 be the distance on contexts implicit in (33). For each
r > 0, define Tr , ( r

σ log T0
)2. Then (30) follows exactly as in the proof of Corollary 15.

We use Theorem 6 similarly: we take (5) with r0 → 0, plug in (30), and note that Tr ≥
1/r2 ⇐⇒ r ≥ (σ log T0)1/2. We obtain

EΓ[R(T0)] ≤
∑

r=2i≥(σ log T0)1/2

O(k log T0)(T0Tr + 1)

≤ O(k log2 T0)(T0 σ + log 1
σ ).

It follows that EΓ[R̂(T )] ≤ O(k σ log2 T0) as long as T0 ≥ 1
σ log 1

σ .

8. Contextual Bandits with Adversarial Payoffs

In this section we consider the adversarial setting. We provide an algorithm which maintains
an adaptive partition of the context space and thus takes advantage of “benign” context
arrivals. It is in fact a meta-algorithm: given a bandit algorithm Bandit, we present a
contextual bandit algorithm, called ContextualBandit, which calls Bandit as a subroutine.

8.1 Our Setting

Recall that in each round t, the context xt ∈ X is revealed, then the algorithm picks an
arm yt ∈ Y and observes the payoff πt ∈ [0, 1]. Here X is the context set, and Y is the arms
set. In this section, all context-arms pairs are feasible: P = X × Y .

Adversarial payoffs are defined as follows. For each round t, there is a payoff function
π̂t : X×Y → [0, 1] such that πt = π̂t(xt, yt). The payoff function π̂t is sampled independently
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from a time-specific distribution Πt over payoff functions. Distributions Πt are fixed by the
adversary in advance, before the first round, and not revealed to the algorithm. Denote
µt(x, y) , E[Πt(x, y)].

Following Hazan and Megiddo (2007), we generalize the notion of regret for context-free
adversarial MAB to contextual MAB. The context-specific best arm is

y∗(x) ∈ argmaxy∈Y
∑T

t=1 µt(x, y), (34)

where the ties are broken in an arbitrary but fixed way. We define adversarial contextual
regret as

R(T ) ,
∑T

t=1 µt(xt, yt)− µ∗t (xt), where µ∗t (x) , µt(x, y
∗(x)). (35)

Similarity information is given to an algorithm as a pair of metric spaces: a metric
space (X,DX) on contexts (the context space) and a metric space (Y,DY) on arms (the
arms space), which form the product similarity space (X × Y,DX +DY). We assume that
for each round t functions µt and µ∗t are Lipschitz on (X × Y,DX + DY) and (X,DX),
respectively, both with Lipschitz constant 1 (see Footnote 1). We assume that the context
space is compact, in order to ensure that the max in (34) is attained by some y ∈ Y .
Without loss of generality, diameter(X,DX) ≤ 1.

Formally, a problem instance consists of metric spaces (X,DX) and (Y,DY), the sequence
of context arrivals (denoted x(1..T )), and a sequence of distributions (Πt)t≤T . Note that for
a fixed distribution Πt = Π, this setting reduces to the stochastic setting, as defined in
Introduction. For the fixed context case (xt = x for all t) this setting reduces to the
(context-free) MAB problem with a randomized oblivious adversary.

8.2 Our Results

Our algorithm is parameterized by a regret guarantee for Bandit for the fixed context case,
namely an upper bound on the convergence time.14 For a more concrete theorem statement
we will assume that the convergence time of Bandit is at most T0(r) , cY r

−(2+dY) log(1
r )

for some constants cY and dY that are known to the algorithm. In particular, an algorithm
in Kleinberg (2004) achieves this guarantee if dY is the c-covering dimension of the arms
space and cY = O(c2+dY).

This is a flexible formulation that can leverage prior work on adversarial bandits. For
instance, if Y ⊂ Rd and for each fixed context x ∈ X distributions Πt randomize over
linear functions π̂t(x, ·) : Y → R, then one could take Bandit from the line of work on
adversarial bandits with linear payoffs. In particular, there exist algorithms with dY = 0
and cY = poly(d) (Dani et al., 2007; Abernethy et al., 2008; Bubeck et al., 2012). Likewise,
for convex payoffs there exist algorithms with dY = 2 and cY = O(d) (Flaxman et al., 2005).
For a bounded number of arms, algorithm exp3 (Auer et al., 2002b) achieves dY = 0 and
cY = O(

√
|Y |).

From here on, the context space (X,DX) will be only metric space considered; balls and
other notions will refer to the context space only.

14. The r-convergence time T0(r) is the smallest T0 such that regret is R(T ) ≤ rT for each T ≥ T0.
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To quantify the “goodness” of context arrivals, our guarantees are in terms of the cover-
ing dimension of x(1..T ) rather than that of the entire context space. (This is the improve-
ment over the guarantee (3) for the uniform algorithm.) In fact, use a more refined notion
which allows to disregard a limited number of “outliers” in x(1..T ).

Definition 20 Given a metric space and a multi-set S, the (r, k)-covering number of S is
the r-covering number of the set {x ∈ S : |B(x, r) ∩ S| ≥ k}.15 Given a constant c and
a function k : (0, 1) → N, the relaxed covering dimension of S with slack k(·) is the
smallest d > 0 such that the (r, k(r))-covering number of S is at most c r−d for all r > 0.

Our result is stated as follows:

Theorem 21 Consider the contextual MAB problem with adversarial payoffs, and let Bandit
be a bandit algorithm. Assume that the problem instance belongs to some class of prob-
lem instances such that for the fixed-context case, convergence time of Bandit is at most
T0(r) , cY r

−(2+dY) log(1
r ) for some constants cY and dY that are known to the algorithm.

Then ContextualBandit achieves adversarial contextual regret R(·) such that for any time
T and any constant cX > 0 it holds that

R(T ) ≤ O(c2
dbl (cX cY)1/(2+dX+dY)) T 1−1/(2+dX+dY)(log T ), (36)

where dX is the relaxed covering dimension of x(1..T ) with multiplier cX and slack T0(·), and
cdbl is the doubling constant of x(1..T ).

Remarks. For a version of (36) that is stated in terms of the “raw” (r, kr)-covering numbers
of x(1..T ), see (38) in the analysis (page 2563).

8.3 Our Algorithm

The contextual bandit algorithm ContextualBandit is parameterized by a (context-free)
bandit algorithm Bandit, which it uses as a subroutine, and a function T0(·) : (0, 1)→ N.

The algorithm maintains a finite collection A of balls, called active balls. Initially there
is one active ball of radius 1. Ball B stays active once it is activated. Then a fresh instance
ALGB of Bandit is created, whose set of “arms” is Y . ALGB can be parameterized by the
time horizon T0(r), where r is the radius of B.

The algorithm proceeds as follows. In each round t the algorithm selects one active ball
B ∈ A such that xt ∈ B, calls ALGB to select an arm y ∈ Y to be played, and reports the
payoff πt back to ALGB. A given ball can be selected at most T0(r) times, after which it is
called full. B is called relevant in round t if it contains xt and is not full. The algorithm
selects a relevant ball (breaking ties arbitrarily) if such ball exists. Otherwise, a new ball
B′ is activated and selected. Specifically, let B be the smallest-radius active ball containing
xt. Then B′ = B(xt,

r
2), where r is the radius of B. B is then called the parent of B′. See

Algorithm 2 for the pseudocode.

15. By abuse of notation, here |B(x, r)∩ S| denotes the number of points x ∈ S, with multiplicities, that lie
in B(x, r).
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Algorithm 2 Algorithm ContextualBandit.

1: Input:
2: Context space (X,DX) of diameter ≤ 1, set Y of arms.
3: Bandit algorithm Bandit and a function T0(·) : (0, 1)→ N.
4: Data structures:
5: A collection A of “active balls” in (X,DX).
6: ∀B ∈ A: counter nB, instance ALGB of Bandit on arms Y .
7: Initialization: B ← B(x, 1); // center x ∈ X is arbitrary
8: A ← {B}; nB ← 0; initiate ALGB.
9: A∗ ← A // active balls that are not full

10: Main loop: for each round t
11: Input context xt.
12: relevant← {B ∈ A∗ : xt ∈ B}.
13: if relevant 6= ∅ then
14: B ← any B ∈ relevant.
15: else // activate a new ball:
16: r ← minB∈A: xt∈B rB.
17: B ← B(xt, r/2). // new ball to be added
18: A ← A∪ {B}; A∗ ← A∗ ∪ {B}; nB ← 0; initiate ALGB.
19: y ← next arm selected by ALGB.
20: Play arm y, observe payoff π, report π to ALGB.
21: nB ← nB + 1.
22: if nB = T0(radius(B)) then A∗ ← A∗ \ {B}. // ball B is full

8.4 Analysis: Proof of Theorem 21

First let us argue that algorithm ContextualBandit is well-defined. Specifically, we need to
show that after the activation rule is called, there exists an active non-full ball containing
xt. Suppose not. Then the ball B′ = B(xt,

r
2) activated by the activation rule must be

full. In particular, B′ must have been active before the activation rule was called, which
contradicts the minimality in the choice of r. Claim proved.

We continue by listing several basic claims about the algorithm.

Claim 22 The algorithm satisfies the following basic properties:
(a) (Correctness) In each round t, exactly one active ball is selected.
(b) Each active ball of radius r is selected at most T0(r) times.
(c) (Separation) For any two active balls B(x, r) and B(x′, r) we have DX(x, x′) > r.
(d) Each active ball has at most c2

dbl children, where cdbl is the doubling constant of
x(1..T ).

Proof Part (a) is immediate from the algorithm’s specification. For (b), simply note that
by the algorithms’ specification a ball is selected only when it is not full.

To prove (c), suppose that DX(x, x′) ≤ r and suppose B(x′, r) is activated in some round
t while B(x, r) is active. Then B(x′, r) was activated as a child of some ball B∗ of radius 2r.
On the other hand, x′ = xt ∈ B(x, r), so B(x, r) must have been full in round t (else no ball
would have been activated), and consequently the radius of B∗ is at most r. Contradiction.
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For (d), consider the children of a given active ball B(x, r). Note that by the activa-
tion rule the centers of these children are points in x(1..T ) ∩ B(x, r), and by the separation
property any two of these points lie within distance > r

2 from one another. By the doubling
property, there can be at most c2

dbl such points.

Let us fix the time horizon T , and letR(T ) denote the contextual regret of ContextualBandit.
Partition R(T ) into the contributions of active balls as follows. Let B be the set of all balls
that are active after round T . For each B ∈ B, let SB be the set of all rounds t when B has
been selected. Then

R(T ) =
∑

B∈B RB(T ), where RB(T ) ,
∑

t∈SB
µ∗t (xt)− µt(xt, yt).

Claim 23 For each ball B = B(x, r) ∈ B, we have RB ≤ 3 r T0(r).

Proof By the Lipschitz conditions on µt and µ∗t , for each round t ∈ SB it is the case that

µ∗t (xt) ≤ r + µ∗t (x) = r + µt(x, y
∗(x)) ≤ 2rn+ µt(xt, y

∗(x)).

The t-round regret of Bandit is at most R0(t) , t T−1
0 (t). Therefore, letting n = |SB| be

the number of times algorithm ALGB has been invoked, we have that

R0(n) +
∑

t∈SB
µt(xt, yt) ≥

∑
t∈SB

µt(xt, y
∗(x)) ≥

∑
t∈SB

µ∗t (xt)− 2rn.

Therefore RB(T ) ≤ R0(n) + 2rn. Recall that by Claim 22(b) we have n ≤ T0(r). Thus,
by definition of convergence time R0(n) ≤ R0(T0(r)) ≤ r T0(r), and therefore RB(T ) ≤
3 r T0(r).

Let Fr be the collection of all full balls of radius r. Let us bound |Fr| in terms the
(r, k)-covering number of x(1..T ) in the context space, which we denote N(r, k).

Claim 24 There are at most N(r, T0(r)) full balls of radius r.

Proof Fix r and let k = T0(r). Let us say that a point x ∈ x(1..T ) is heavy if B(x, r)
contains at least k points of x(1..T ), counting multiplicities. Clearly, B(x, r) is full only
if its center is heavy. By definition of the (r, k)-covering number, there exists a family S
of N(r, k) sets of diameter ≤ r that cover all heavy points in x(1..T ). For each full ball
B = B(x, r), let SB be some set in S that contains x. By Claim 22(c), the sets SB, B ∈ Fr
are all distinct. Thus, |Fr| ≤ |S| ≤ N(r, k).

Let Br be the set of all balls of radius r that are active after round T . By the algorithm’s
specification, each ball in Fr has been selected T0(r) times, so |Fr| ≤ T/T0(r). Then using
Claim 22(b) and Claim 24, we have

|Br/2| ≤ c2
dbl |Fr| ≤ c2

dbl min(T/T0(r), N(r, T0(r)))∑
B∈Br/2RB ≤ O(r)T0(r) |Br/2| ≤ O(c2

dbl) min(rT, r T0(r)N(r, T0(r))). (37)

2562



Contextual Bandits with Similarity Information

Trivially, for any full ball of radius r we have T0(r) ≤ T . Thus, summing (37) over all such
r, we obtain

R(T ) ≤ O(c2
dbl)

∑
r=2−i: i∈N and T0(r)≤T min(rT, r T0(r)N(r, T0(r))). (38)

Note that (38) makes no assumptions on N(r, T0(r)). Now, plugging in T0(r) = cY r
−(2+dY)

and N(r, T0(r)) ≤ cX r
−dX into (38) and optimizing it for r it is easy to derive the desired

bound (36).

9. Conclusions

We consider a general setting for contextual bandit problems where the algorithm is given
information on similarity between the context-arm pairs. The similarity information is
modeled as a metric space with respect to which expected payoffs are Lipschitz-continuous.
Our key contribution is an algorithm which maintains a partition of the metric space and
adaptively refines this partition over time. Due to this “adaptive partition” technique,
one can take advantage of “benign” problem instances without sacrificing the worst-case
performance; here “benign-ness” refers to both expected payoffs and context arrivals. We
essentially resolve the setting where expected payoff from every given context-arm pair either
does not change over time, or changes slowly. In particular, we obtain nearly matching
lower bounds (for time-invariant expected payoffs and for an important special case of slow
change).

We also consider the setting of adversarial payoffs. For this setting, we design a dif-
ferent algorithm that maintains a partition of contexts and adaptively refines it so as to
take advantage of “benign” context arrivals (but not “benign” expected payoffs), without
sacrificing the worst-case performance. Our algorithm can work with, essentially, any given
off-the-shelf algorithm for standard (non-contextual) bandits, the choice of which can then
be tailored to the setting at hand.

The main open questions concern relaxing the requirements on the quality of similarity
information that are needed for the provable guarantees. First, it would be desirable to
obtain similar results under weaker versions of the Lipschitz condition. Prior work (Klein-
berg et al., 2008b; Bubeck et al., 2011a) obtained several such results for the non-contextual
version of the problem, mainly because their main results do not require the full power of
the Lipschitz condition. However, the analysis in this paper appears to make a heavier use
of the Lipschitz condition; it is not clear whether a meaningful relaxation would suffice.
Second, in some settings the available similarity information might not include any numeric
upper bounds on the difference in expected payoffs; e.g., it could be given as a tree-based
taxonomy on context-arm pairs, without any explicit numbers. Yet, one wants to recover
the same provable guarantees as if the numerical information were explicitly given. For the
non-contextual version, this direction has been explored in (Bubeck et al., 2011b; Slivkins,
2011).16

Another open question concerns our results for adversarial payoffs. Here it is desirable
to extend our “adaptive partitions” technique to also take advantage of “benign” expected

16. (Bubeck et al., 2011b; Slivkins, 2011) have been published after the preliminary publication of this paper
on arxiv.org.
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payoffs (in addition to “benign” context arrivals). However, to the best of our knowledge
such results are not even known for the non-contextual version of the problem.
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Appendix A. The KL-divergence Technique, Encapsulated

To analyze the lower-bounding construction in Section 5, we use an extension of the KL-
divergence technique from Auer et al. (2002b), which is implicit in Kleinberg (2004) and
encapsulated as a stand-alone theorem in Kleinberg et al. (2013). To make the paper
self-contained, we state the theorem from Kleinberg et al. (2013), along with the relevant
definitions. The remainder of this section is copied from Kleinberg et al. (2013), with minor
modifications.

Consider a very general MAB setting where the algorithm is given a strategy set X and
a collection F of feasible payoff functions; we call it the feasible MAB problem on (X,F).
For example, F can consist of all functions µ : X → [0, 1] that are Lipschitz with respect
to a given metric space. The lower bound relies on the existence of a collection of subsets
of F with certain properties, as defined below. These subsets correspond to children of a
given tree node in the ball-tree

Definition 25 Let X be the strategy set and F be the set of all feasible payoff functions.
An (ε, k)-ensemble is a collection of subsets F1 , . . . ,Fk ⊂ F such that there exist mutually
disjoint subsets S1 , . . . , Sk ⊂ X and a number µ0 ∈ [1

3 ,
2
3 ] which satisfy the following. Let

S = ∪ki=1Si. Then

• on X \ S, any two functions in ∪iFi coincide, and are bounded from above by µ0.
• for each i and each function µ ∈ Fi it holds that µ = µ0 on S \ Si and sup(µi, Si) =
µ0 + ε.

Assume the payoff function µ lies in ∪iFi. The idea is that an algorithm needs to play
arms in Si for at least Ω(ε−2) rounds in order to determine whether µ ∈ Fi, and each such
step incurs ε regret if µ 6∈ Fi. In our application, subsets S1 , . . . , Sk correspond to children
u1 , . . . , uk of a given tree node in the ball-tree, and each Fi consists of payoff functions
induced by the ends in the subtree rooted at ui.

Theorem 26 (Theorem 5.6 in Kleinberg et al. (2013)) Consider the feasible MAB
problem with 0-1 payoffs. Let F1, . . . ,Fk be an (ε, k)-ensemble, where k ≥ 2 and ε ∈ (0, 1

12).
Then for any t ≤ 1

32 k ε
−2 and any bandit algorithm there exist at least k/2 distinct i’s such

that the regret of this algorithm on any payoff function from Fi is at least 1
60 εt.
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In Auer et al. (2002b), the authors analyzed a special case of an (ε, k)-ensemble in
which there are k arms u1 , . . . , uk, and each Fi consists of a single payoff function that
assigns expected payoff 1

2 + ε to arm ui, and 1
2 to all other arms.

References

Jacob Abernethy, Elad Hazan, and Alexander Rakhlin. Competing in the dark: An efficient
algorithm for bandit linear optimization. In 21th Conf. on Learning Theory (COLT),
pages 263–274, 2008.

Rajeev Agrawal. The continuum-armed bandit problem. SIAM J. Control and Optimization,
33(6):1926–1951, 1995.

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. J. of Machine
Learning Research (JMLR), 3:397–422, 2002. Preliminary version in 41st IEEE FOCS,
2000.
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Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic
multiarmed bandit problem. SIAM J. Comput., 32(1):48–77, 2002b. Preliminary version
in 36th IEEE FOCS, 1995.

Peter Auer, Ronald Ortner, and Csaba Szepesvári. Improved rates for the stochastic
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