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Abstract

Trace-norm regularization is a widely-used and successful approach for collaborative fil-
tering and matrix completion. However, previous learning guarantees require strong as-
sumptions, such as a uniform distribution over the matrix entries. In this paper, we bridge
this gap by providing such guarantees, under much milder assumptions which correspond
to matrix completion as performed in practice. In fact, we claim that previous difficulties
partially stemmed from a mismatch between the standard learning-theoretic modeling of
matrix completion, and its practical application. Our results also shed some light on the
issue of matrix completion with bounded models, which enforce predictions to lie within a
certain range. In particular, we provide experimental and theoretical evidence that such
models lead to a modest yet significant improvement.

Keywords: collaborative filtering, matrix completion, trace-norm regularization, trans-
ductive learning, sample complexity

1. Introduction

We consider the problem of matrix completion, where the goal is to predict entries of an
unknown matrix based on a subset of its observed entries. A popular approach to achieve
this is via trace-norm regularization, where one seeks a matrix that agrees well with the
observed entries, while constraining its complexity in terms of the trace-norm. The trace-
norm is well-known to be a convex surrogate to the matrix rank, and has repeatedly shown
good performance in practice (Srebro et al., 2004; Salakhutdinov and Mnih, 2007; Bach,
2008; Candès and Tao, 2009).

However, in terms of distribution-free guarantees, previous results on trace-norm reg-
ularization have been surprisingly weak. Most non-trivial guarantees (e.g., Srebro and
Shraibman, 2005; Candès and Tao, 2009; Candès and Recht, 2009) assume that the ob-
served entries are sampled uniformly at random. In most matrix completion tasks, this is
an extremely unrealistic assumption. For example, in the Netflix challenge data set, where
the matrix contains the ratings of users (rows) for movies (columns), the number and distri-
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bution of ratings differ drastically between users. Modeling such data as a uniform sample
is not a reasonable assumption. Another paper (Negahban and Wainwright, 2010) studied
the problem of matrix completion under a non-uniform distribution. However, the analy-
sis is still not distribution-free, and requires strong assumptions on the underlying matrix.
Moreover, the results do not apply to standard trace-norm regularization, but rather to a
carefully re-weighted version of trace-norm regularization.

In practice, we know that standard trace-norm regularization works quite well even
for data which is very non-uniform. Moreover, we know that in other learning problems,
one is able to derive distribution-free guarantees, and there is no a-priori reason why this
should not be possible here. Nevertheless, obtaining a non-trivial guarantee for trace-
norm regularization has remained elusive. This partially motivated work on alternative
complexity measures for matrix completion, such as the max-norm and weighted variants
of the trace-norm (see further discussion below).

In this paper, we bridge this gap between our theoretical understanding and practical
performance of trace-norm regularization. We show that by adding very mild assumptions,
which correspond to matrix completion as performed in practice, it is possible to learn
in a distribution-free manner by observing O(n3/2) entries from an m × n matrix (where
m ≤ n, and for a reasonable trace-norm regime). Moreover, this bound is tight. When
m = Θ(n), this corresponds to viewing a vanishingly small portion of the entries, hence we
get a non-trivial learning guarantee. In fact, we claim that the difficulties in providing such
guarantees partially stemmed from a mismatch between the standard theoretical modeling
of matrix completion, and its practical application. We emphasize that our bounds are
weaker than previous bounds in the literature, which required observing as few as Õ(n)
entries (up to log factors). However, these bounds hold only under restrictive distributional
assumptions, whereas our bounds hold under any distribution, and are provably tight in
such a distribution-free setting.

First, we show that one can obtain such guarantees, if one takes into account that the
values to be predicted are bounded. For example, in predicting movie ratings, it is known
in advance that the ratings are on a scale of (say) 1 to 5, and practitioners usually clip their
predictions to be inside this range. While this seems like an almost trivial operation, we
show that taking it into account has far-reaching implications in terms of the theoretical
guarantees. The proof relies on a decomposition technique which might also be useful for
regularizers other than the trace-norm.

Second, we argue that the standard inductive model of learning, where the training data
is assumed to be sampled i.i.d. from some distribution, may not be the best way to analyze
matrix completion. Instead, we look at the transductive model, where sampling of the data
is done without replacement. In the context of matrix completion, we show this makes a
large difference in terms of the attainable guarantees.

Our results show that a transductive model, and boundedness assumptions, play an im-
portant role in obtaining distribution-free guarantees. This relates to a line of recent works,
which suggest to incorporate prior knowledge on the range of predicted values into the
learning process, by explicitly bounding the predictions. We provide an empirical study,
which indicates that this indeed provides a modest, yet significant, improvement in per-
formance, and corroborates our theoretical findings. Finally, we discuss how recent work,
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which appeared since the preliminary version of this paper was published, relate to and
strengthen our observations.

The paper is structured as follows. We begin by describing the setting and the notation
we use in Section 2, and introduce the sample complexity issues of matrix completion with
the trace norm in Section 3. In Section 4, we show how we can non-trivially learn with the
trace-norm in an inductive i.i.d. setting, under boundedness assumptions. In Section 5, we
show how similar performance can be ensured if we switch from an inductive setting to a
transductive setting, where each entry appears only once in the data. We provide matching
lower bounds in Section 6. In Section 7, we experimentally investigate how boundedness
assumptions affect practical performance. Section 8 contains a discussion of how some
recent works relate to our paper, and Section 9 contains full proofs of our results. We end
with a discussion and some open issues in Section 10.

2. Setting

Our goal is to predict entries of an unknown m × n matrix X, based on a random subset
of observed entries of X. A common way to achieve this, following standard learning
approaches, is to find an m × n matrix W from a constrained class of matrices W, which
minimizes the discrepancy from X on the observed entries. More precisely, if we let S =
{iα, jα} denote the set of (row,column) observed entries, and ` is a loss function measuring
the discrepancy between the predicted and actual value, then we solve the optimization
problem

min
W∈W

1

|S|

|S|∑
α=1

`(Wiα,jα , Xiα,jα), (1)

An important and widely used class of matrices W are those with bounded trace-norm
(sometimes also denoted as the nuclear norm or the Ky-Fan n norm). Given a matrix W ,
its trace-norm ‖W‖tr is defined as the sum of the singular values. The class of matrices with
bounded trace-norm has several useful properties, such as it being a convex approximation
of class of rank-bounded matrices (e.g., Srebro and Shraibman, 2005). Thus, we can often
optimize Equation (1) in a computationally tractable manner, learning predictors which
are competitive with low-rank matrices. The trace-norm of any m × n matrix W is at
least ‖W‖F and at most Rank(W )‖W‖F , where ‖W‖F is the Frobenius norm (Horn and
Johnson, 1985), and therefore the trace-norm of constant-rank m×n matrices with bounded
entries is Θ(

√
mn). Therefore, we wish to attain learning guarantees which are non-trivial

when the trace norm is at least on the order of t = Θ(
√
mn). However, our theorems will

hold for any t.

For now, we will consider the inductive model of learning, which parallels the standard
agnostic-PAC learnability framework. The model is defined as follows: We assume there
exists an unknown distribution D over {1, . . . ,m} × {1, . . . , n}. Each instantiation (i, j)
provides the value Xi,j of an entry at a randomly picked row i and column j. An i.i.d.
sample S = {iα, jα} of indices is chosen, and the corresponding entries {Xiα,jα} are re-
vealed. Our goal is to find a matrix W ∈ W such that its risk (or generalization error),
E(i,j)∼D [`(Wi,j , Xi,j)], is as close as possible to the smallest possible risk over all W ∈ W.
It is well-known that this can be achieved by solving the optimization problem in Equa-
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tion (1), if we can provide a non-trivial uniform sample complexity bound, namely a bound
on

sup
W∈W

Ei,j [`(Wi,j , Xi,j)]−
1

|S|

|S|∑
α=1

`(Wiα,jα , Xiα,jα)

 . (2)

A major focus of this paper is studying the difficulties and possibilities of obtaining such
bounds.

3. Sample Complexity Bounds for the Trace-Norm

Consider the class of trace-norm constrained matrices, W = {W : ‖W‖tr ≤ t}. Although
learning with respect to this class is widely used in matrix completion, understanding its
generalization and sample-complexity properties has proven quite elusive. Sample complex-
ity bounds of the form O(

√
(m+ n)/|S|) (when t = Θ(

√
mn), and ignoring logarithmic

factors) were obtained under the strong assumption of a uniform distribution over the ma-
trix entries (Srebro and Shraibman, 2005). However, this assumption does not correspond
to real-world matrix completion data sets, where the distribution of the revealed entries
appears to be highly non-uniform. Other works, which focused on exact matrix completion
(e.g., Candès and Tao, 2009; Candès and Recht, 2009), also assume a uniform sampling
distribution.

The bounds in Srebro and Shraibman (2005) are based on the Rademacher complexity of
the class W, and will be utilized in our analysis as well. Formally, we define the (empirical)
Rademacher complexity of a hypothesis class W combined with a loss function `, with
respect to a sample S, as

RS(` ◦W) = Eσ

 sup
W∈W

1

|S|

|S|∑
α=1

σα`(Wiα,jα , Xiα,jα)

 , (3)

where σ1, . . . , σ|S| are i.i.d. random variables taking the values −1 and +1 with equal
probability.

Rademacher complexities play a key role in obtaining sample complexity bounds, ei-
ther in expectation or in high probability. The following is a typical example (based on
Boucheron and Lugosi, 2005, Theorem 3.2):

Theorem 1 The expected value of Equation (2) is at most 2RS(`◦W). Moreover, if there is
a constant b` such that supi,j,W∈W |`(Wi,j , Xi,j)| ≤ b`, then for any δ ∈ (0, 1), Equation (2)

is bounded with probability at least 1− δ by 2RS(` ◦W) + b`
√

2 log(2/δ)/|S|.

In general, the dominant term in the bound above is the Rademacher complexity RS(`◦W).
Thus, if we can upper-bound the Rademacher complexity by a quantity much smaller than 1,
we get a non-trivial upper bound on Equation (2). Such a bound implies that the empirical
risk (or average loss over the training set) is close to the true risk uniformly for all W ∈ W,
and therefore that solving Equation (1) will lead to a predictor with near-optimal risk.

Unfortunately, for the class W = {W : ‖W‖tr ≤ t} and general distributions over the
matrix entries, the Rademacher complexity can be large, leading to vacuous bounds. To see
why, suppose that the loss function ` is 1-Lipschitz in its first argument. Then the standard
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way to analyze Equation (3) (see Bartlett and Mendelson, 2003) is to use the contraction
principle to upper bound it by

Eσ

 sup
W∈W

1

|S|

|S|∑
α=1

σαWiα,jα

 ,
and then using Hölder’s inequality to upper bound it by

Eσ

[
sup
W∈W

1

|S|
‖Γ‖sp‖W‖tr

]
= t

1

|S|
E[‖Γ‖sp],

where Γ is a matrix whose (i, j)-th entry is defined as
∑

α:iα=i,jα=j σα, and ‖ · ‖sp is the
spectral norm (i.e., the largest singular value), which is well-known to be dual to the trace-
norm (Fazel et al., 2001). However, if for instance all σα are on the same entry i, j, then
E[‖Γ‖sp] equals E[|

∑
α σα|] = Θ(

√
|S|), leading to a bound of the form O(t/

√
|S|). As

discussed earlier, t is typically at least on the order of
√
mn, in which case we get a bound

on the Rademacher complexity which is O(
√
mn/|S|) — smaller than 1 only when the

sample size |S| is larger than the total number mn of matrix entries. It is a trivial bound,
since the entire goal of matrix completion is prediction based on observing just a small
subset of the matrix entries.

Unfortunately, this bound appears impossible to improve in general (see section 6.2.2 in
Srebro, 2004). Srebro and Shraibman (2005) circumvent this by imposing a strong uniform
distribution assumption, under which a tighter bound is attainable. The main drive of our
paper is that by modifying the setting in some very simple ways, which often correspond
to matrix completion as done in practice, one can obtain non-trivial learning guarantees
without any distributional assumptions.

4. Results for the Inductive Model

In this section, we show that by introducing boundedness conditions into the learning prob-
lem, one can obtain non-trivial bounds on the Rademacher complexity, and hence on the
sample complexity of learning with trace-norm constraints.

We will start with the case where we actually learn with respect to the hypothesis class
of trace-norm-constrained matrices, W = {W : ‖W‖tr ≤ t}, and the only boundedness is in
terms of the loss function:

Theorem 2 Consider the hypothesis class W = {W : ‖W‖tr ≤ t}. Suppose that for
all i, j the loss function `(·, Xi,j) is both b`-bounded and l`-Lipschitz in its first argument:

Namely, that `(Wi,j , Xi,j) ≤ b` for any W, i, j, and that
|`(Wi,j ,Xi,j)−`(W ′

i,j ,Xi,j)|
|Wi,j−W ′

i,j |
≤ l` for any

W,W ′, i, j. Then

RS(` ◦W) ≤

√
9Cl`b`

t(
√
m+

√
n)

|S|
,

where C is the universal constant appearing in Theorem 8.
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When t = Θ(
√
mn), the theorem implies that a sample of size O(n

√
m+m

√
n) is suffi-

cient to obtain good generalization performance. We note that the boundedness assumption
is non-trivial, since the trace-norm constraint does not imply entries of constant magnitude
(the entries can be as large as t for a matrix whose trace norm is t). On the other hand, as
discussed earlier, the obtainable bound on the Rademacher complexity without a bound-
edness assumption is no better than O((m + n)/

√
|S|), which leads to a trivial required

sample size of O((m+n)2). Moreover, we emphasize that the result makes no assumptions
on the underlying distribution from which the data was sampled. The proof is presented in
Subsection 9.1. We note that it relies on a decomposition technique which might also be
useful for regularizers other than the trace-norm.

An alternative way to introduce boundedness, and get a non-trivial guarantee, is by
composing the entries of a matrix W with a bounded transfer function. In particular,
rather than just learning a matrix W with bounded trace-norm, we can learn a model
φ ◦W , where W has bounded trace-norm, and φ : R 7→ I is a fixed mapping of each entry
of W into some bounded interval I ⊆ R. This model is used in practice, and is useful in the
common situation where the entries of X are known to be in a certain bounded interval. In
Section 7, we return to this model in greater depth. In terms of the theoretical guarantee,
one can provide a result similar to Theorem 2, without assuming boundedness of the loss
function.

Theorem 3 Consider the hypothesis classW = {φ◦W : ‖W‖tr ≤ t}. Let φ : R 7→ [−bφ, bφ]
be a bounded lφ-Lipschitz function, and suppose that for all i, j, `(·, Xi,j) is l`-Lipschitz on
the domain [−bφ, bφ]. Then

RS(` ◦W) ≤ l`

√
9Clφbφ

t(
√
m+

√
n)

|S|
,

where C is the universal constant appearing in Theorem 8.

The bound in this theorem scales similarly to Theorem 2, in terms of its dependence on
m,n. Another possible variant is directly learning a matrix W with both a constraint on
the trace-norm, as well as an ∞-norm constraint (i.e., maxi,j |Wi,j | ≤ c for some constant
c) which forces the matrix entries to be constant. This model has some potential benefits
which shall be further discussed in Section 10.

Theorem 4 Consider the hypothesis class W = {W : ‖W‖tr ≤ t, ‖W‖∞ ≤ b}, where
‖W‖∞ = maxi,j |Wi,j |. Suppose that for all i, j, `(·, Xi,j) is l`-Lipschitz on the domain
[−b, b]. Then

RS(` ◦W) ≤ l`

√
9Cb

t(
√
n+
√
m)

|S|
,

where C is the universal constant appearing in Theorem 8.

Assuming b is a constant (which is the reasonable assumption here), we get a similar
bound as before.

So, we see that by inserting mild boundedness assumptions on the loss function or the
matrix entries, it is possible to derive non-trivial guarantees for learning with trace norm
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constraints. These were all obtained under the standard inductive model, where we assume
that our data is an i.i.d. sample from an underlying distribution. In the next section, we
will discuss a different learning model, which we argue to more closely resemble matrix
completion as done in practice, and leads to better bounds on the Rademacher complexity,
without making boundedness assumptions.

5. Improved Results for the Transductive Model

In the inductive model we have considered so far, the goal is to predict well with respect to
an unknown distribution over matrix entries, given an i.i.d. sample from that distribution.
The transductive learning model (see for instance Vapnik, 1998) is different, in that our
goal is to predict well with respect to a specific subset of entries, whose location is known in
advance. More formally, we fix an arbitrary subset of S entries, and then split it uniformly
at random into two subsets Strain ∪ Stest. We are then given the values of the entries in
Strain, and our goal is to predict the values of the entries in Stest. For simplicity, we will
assume that |Strain| = |Stest| = |S|/2, but our results can be easily generalized to more
general partitions.

We note that this procedure is exactly the one often performed in experiments reported
in the literature: Given a data set of entries, one randomly splits it into a training set and
a test set, learns a matrix on the training set, and measures its performance on the test
set (e.g., Toh and Yun, 2009; Jaggi and Sulovský, 2010). Even for other train-test split
methods, such as holding out a certain portion of entries from each row, the transductive
model seems closer to reality than the inductive model. Moreover, the transductive model
captures another important feature of real-world matrix completion: the fact that no entry
is repeated in the training set. In contrast, in the inductive model the training set is collected
i.i.d., so the same entry might be sampled several time over. In fact, this is virtually certain
to happen whenever the sample size is at least on the order of

√
mn, due to the birthday

paradox. This does not appear to be a mere technicality, since the proofs of our theorems
in the inductive model have to rely on a careful separation of the entries according to the
number of times they were sampled. However, in reality each entry appears in the data set
only once, matching the transductive learning setting.

To analyze the transductive model, we require analogues of the tools we have for the
inductive model, such as the Rademacher complexity. Fortunately, such analogues were al-
ready obtained in the literature (El-Yaniv and Pechyoni, 2009), and we will rely on their re-
sults. In particular, based on Theorem 1 in that paper, we can use our notion of Rademacher
complexity, as defined in Equation (3), to provide sample complexity bounds in the trans-
ductive model:1

Theorem 5 Fix a hypothesis class W, and suppose that supi,j,W∈W |`(Wi,j , Xi,j)| ≤ b`. Let
a set S of ≥ 2 distinct indices be fixed, and suppose it is uniformly and randomly split to
two equal subsets Strain, Stest. Then with probability at least 1− δ over the random split, it

1. In El-Yaniv and Pechyoni (2009), a more general notion of transductive Rademacher complexity was
defined, where the σα random variables could also take 0 values. However, when |Strain| = |Stest|, that
complexity can always be upper bounded by the standard definition of Rademacher complexity — see
Lemma 1 in their paper.
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holds for any W ∈ W that

1

|Stest|
∑

(i,j)∈Stest

`(Wi,j , Xi,j)−
1

|Strain|
∑

(i,j)∈Strain

`(Wi,j , Xi,j)

≤ 4RS(` ◦W) +
b`

(
11 + 4

√
log(1/δ)

)
√
|Strain|

.

This theorem implies that if RS(` ◦ W) is effectively bounded, then the average loss over
Strain is close to the average loss over Stest, uniformly for any W , and therefore minimizing
the average loss over Strain will result in a predictor with near-optimal average loss over
Stest.

We now present our main result for the transductive model, which implies non-trivial
bounds on the Rademacher complexity of matrices with constrained trace-norm. Unlike the
inductive model, here we make no additional boundedness assumptions, yet the bound is
superior. The proof appears in Subsection 9.4.

Theorem 6 Consider the hypothesis classW = {W : ‖W‖tr ≤ t}. Then in the transductive
model, it holds that

RS(` ◦W) ≤ Cl`
3t (
√
m+

√
n)

2|S|
,

where C is the universal constant appearing in Theorem 8. Alternatively, letting N =
maxi |{j : (i, j) ∈ S}| and M = maxj |{i : (i, j) ∈ S}|, then

RS(` ◦W) ≤ Cl`
t max

{√
M,
√
N
}

|S|
4
√

log(min{m,n}),

where C is the universal constant appearing in Theorem 9.

We note that the second bound, while containing an additional logarithmic term, de-
pends on the distribution of the entries, and can be considerably tighter than the worst-
case. To see this, suppose (for simplicity) a rectangular matrix, so that m = n, and
that t = Θ(

√
mn) = Θ(n). Then in the worst-case, the bound becomes meaningful when

|S| = Ω(n3/2). However, if the entries in S are (approximately) uniformly distributed
throughout the matrix, then the maximal number of entries in each row and column is
O(|S|/n). In that case, plugging |S|/n instead of M and N , as well as t = Θ(n), we obtain
the bound

RS(` ◦W) ≤ Õ
(√

n

|S|

)
(ignoring logarithmic factors), which is already meaningful when |S| = Ω̃(n). Interestingly,
this bound is similar (up to logarithmic factors) to previous bounds in the inductive setting
(e.g., Srebro and Shraibman, 2005)), which relied on a uniform distribution assumption.
However, our Rademacher complexity bound in Theorem 6 also applies to non-uniform
distributions, and is meaningful for any distribution.

Compared to the results in Section 4, the result here is also superior in that the
Rademacher complexity does not depend on the loss magnitude bound b`. Although this
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factor does appear in a different term in the cited overall sample complexity bound (The-
orem 5), we conjecture that its true effect is modest at best. This is in light of recent
work, which imply that using particular online matrix completion algorithms, one can learn
comparatively well in a transductive setting, without explicit boundedness assumptions (see
Section 8).

Another interesting feature of Theorem 6 is that the Rademacher complexity falls off
at the rate of O(1/|S|) rather than O(1/

√
|S|). While such a “fast rate” is unusual in

the inductive setting, here it is a natural outcome of the different modeling of the training
data. This does not lead to a O(1/|S|) sample complexity bound, because the bound in
Theorem 5 contains an additional low rate term O(1/

√
|S|). However, it still leads to a

better bound because the low rate term is not explicitly multiplied by functions of m,n or
t.

6. Lower Bounds

The previous results showed that for m × n matrices (where m ≤ n), O(t
√
n) samples are

sufficient for learning. In this section, we show that such a sample size is also necessary, in
both the inductive and transductive settings, hence establishing the tightness of our bounds.
We remark that this lower bound applies in the distribution-free case (where any distribution
over the matrix entries is allowed), and hence does not contradict tighter upper-bounds,
which hold under distributional assumptions, such as in Negahban and Wainwright (2010);
Candès and Tao (2009); Srebro and Shraibman (2005). Also, this lower bound result is not
really new, and a different version of it appears in Hazan et al. (2012) for the inductive
setting. However, we reproduce it here due to its relevance, and since it resolved an open
problem posed in a preliminary version of our paper (Shamir and Shalev-Shwartz, 2011).
For simplicity, we will consider n× n matrices.

The lower bound is based on the following theorem:

Theorem 7 Fix a parameter t ∈
[
n, n3/2

]
, and consider the class of n × n matrices W =

{W : ‖W‖tr ≤ t}. Let W ′ be the set of all matrices whose entries are {−1,+1} on the first
bt
√
nc rows, and 0 everywhere else. Then W ′ ⊂ W.

Proof We need to show that any matrix W ∈ W ′ has trace-norm at most t. To see why,
note that W is non-zero on only bt/

√
nc, hence its rank is at most bt/

√
nc. Letting ‖ · ‖F

denote the Frobenius norm and using the inequality ‖A‖tr ≤
√

rank(A)‖A‖F , we have

‖W‖tr ≤
√

rank(W )‖W‖F ≤

√
t√
n

√
n ∗ t√

n
= t.

We now argue, based on this theorem, that learning is impossible unless the sample size
|S| is at least Ω(t

√
n), matching our previous upper bounds (which were smaller than 1 only

when |S| > Ω(t
√
n)). To see why, assume w.l.o.g. that S lies in the first

⌊
t

2
√
n

⌋
rows, and

let us consider first the inductive setting. Suppose we are asked to predict the values of a
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matrix X, with respect to a uniform distribution over its entries in the first bt/
√
nc rows,

and where the value of each of these entries was independently chosen from {−1,+1}. If we
are given a sample of size |S| ≤ bt

√
n/2c from this matrix, it means that most of the relevant

binary entries remain unobserved. Moreover, they were chosen uniformly at random, hence
we have no way to predict their value. For any reasonable loss function, this would imply
an expected error which is at least constant. In contrast, by the theorem above, there exists
some W ∈ W which predicts perfectly all of these entries, and its expected error would be
zero. In other words, for any algorithm returning a (possibly randomized) predicted matrix
W ,

EW
[
Ei,j [`(Wi,j , Xi,j)]− inf

W∈W
Ei,j [`(Wi,j , Xi,j)]

]
≥ c,

for some constant c > 0, and hence we are unable to learn with such a sample size. A
similar result holds in the transductive setting: If S is supported on those first bt/

√
nc

rows, and is randomly split to Strain and Stest, we have no way to predict the entries of
Stest given Stest, and would achieve constant expected error. Moreover, using standard VC
dimension techniques, even for larger sample sizes |S| the attainable error cannot be better
than Ω(

√
t
√
n/|S|).

7. Should Boundedness be Enforced?

As mentioned earlier in the paper, we often know the range of entries to be predicted
(e.g., 1 to 5 for movie rating prediction). The results of Section 4 suggest that in the
inductive model, some sort of boundedness seems essential to get non-trivial results. In
the transductive model, boundedness also plays a smaller role, by appearing in the final
sample-complexity bound (Theorem 5), although not in the Rademacher complexity bound
(Theorem 6). These results suggest the natural idea of incorporating into the learning al-
gorithm the prior knowledge we have on the range of entries. Indeed, several recent papers
have considered the possibility of directly learning a model φ ◦W , where φ is usually a sig-
moid function (Salakhutdinov and Mnih, 2007; Ma et al., 2008; Piotte and Chabbert, 2009;
Kozma et al., 2009). Another common practice (not just with trace-norm regularization)
is to clip the learned matrix entries to the known range. Our theoretical results are not
sufficiently refined to understand the precise effect of boundedness, so it is of interest to
understand experimentally how much clipping or enforcing boundedness helps the learning
process. We note that while bounded models have been tested experimentally, we could not
find in prior literature a clear empirical study of their effect, in the context of trace-norm
regularization.

We conducted experiments on two standard matrix completion data sets,2 movielens100K
and movielens1M. movielens100K contains 105 ratings of 943 users for 1770 movies, while
movielens1M contains 106 ratings of 6040 users for 3706 movies. All ratings are in the range
[1, 5]. For each data set, we performed a random 80%−20% of the data to obtain a training
set and a test set. We considered two hypothesis classes: trace-norm constrained matrices
{W : ‖W‖tr ≤ t}, and bounded trace-norm constrained matrices {φ ◦W : ‖W‖tr ≤ t},
where φ is a sigmoid function interpolating between 1 and 5. For each hypothesis class, we

2. These data sets are taken from www.grouplens.org/node/73
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trained a trace-norm regularized algorithm using the squared loss. Specifically, we used the
common approach of stochastic gradient descent on a factorized representation W = U>V :
First, we note that for any t, minimizing

∑
(i,j)∈S (Xi,j −Wi,j)

2 over all W : ‖W‖tr ≤ t is
equivalent to minimizing ∑

(i,j)∈S

(Xi,j −Wi,j)
2 + λ‖W‖tr (4)

over all matrices W , where λ is some suitable soft-regularization parameter. Second, we use
the fact that the trace norm can also be written as ‖W‖tr = minW=U>V

1
2

(
‖U‖2F + ‖V ‖2F

)
,

so minimizing Equation (4) over W is equivalent to minimizing∑
(i,j)∈S

(
Xi,j − U>i Vj

)2
+
λ

2

(
‖U‖2F + ‖V ‖2F

)
(5)

over U, V . Similarly, for learning bounded models, we can find U, V which minimize∑
(i,j)∈S

(
Xi,j − φ(U>i Vj)

)2
+
λ

2

(
‖U‖2F + ‖V ‖2F

)
. (6)

We note that both problems are non-convex, although for the formulation in Equation (5),
it is possibly to show there are any local minimum is also a global one.

Tuning of λ was performed with a validation set. Note that in practice, for computational
reasons, one often constrains U and V to have a bounded number of rows. However, this
forces W to have low rank, which is an additional complexity control. Since our goal is to
study the performance of trace-norm constrained matrices, and not matrices which are also
low-rank, we did not constrain U, V in this manner. The downside of this is that we were
unable to perform experiments on very large-scale data sets, such as Netflix, and that is
why we focused on the more modest-sized movielens100K and movielens1M data sets.

To estimate the performance of the learned matrix W on the test set, we used two
measures which are standard in the literature: the root-mean-squared-error (RMSE),√√√√ ∑

(i,j)∈Stest

(Wi,j −Xi,j)2

|Stest|
,

and the normalized-mean-absolute-error (NMAE),∑
i,j∈Stest

|Wi,j −Xi,j |
r|Stest|

,

where r is the range of possible values in X (5− 1 = 4 for our data sets).
The experiments were repeated 5 times over random train-test splits of the data, and

the results are summarized in Table 1. From the table, we see that in almost all cases,
clipping and bounding lead to a statistically significant improvement. However, note that
in absolute terms, the improvement is rather modest, especially with the NMAE measure
which is less sensitive to large mispredictions. This accords with our theoretical results:
boundedness seems to be an important and useful property, but in the transductive model
(corresponding to our experiments) it plays only a modest role.
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100K (NMAE) 100K (RMSE) 1M (NMAE) 1M (RMSE)

unclipped 0.1882± 0.0005 0.9543± 0.0019 0.1709± 0.0003 0.8670± 0.0016
clipped 0.1874± 0.0005 0.9486± 0.0018 0.1706± 0.0002 0.8666± 0.0016

bounded 0.1871± 0.0004 0.9434± 0.0023 0.1698± 0.0002 0.8618± 0.0017

∆ Clipping (∗10−3) 0.77± 0.07 5.7± 0.6 0.33± 0.01 0.48± 0.04
∆ Bounding (∗10−3) 0.3± 0.4 5.2± 1.5 0.79± 0.02 4.8± 0.1

Table 1: Error on test set (mean and standard deviation over 5 repeats of the experiment).
The columns refer to the data set (movielens100K or movielens1M) and the per-
formance measure used (NMAE or RMSE). The first two rows refer to the results
using the ‘unbounded’ model as in Equation (5), with the output used as-is or
clipped to the range [1−5]. The third row refers to the results using the ‘bounded’
model as in Equation (6). The fourth row is the improvement in test error by clip-
ping the predictions after learning (i.e., the difference between the first and second
row). The fifth row is the additional improvement achieved by using a bounded
model (i.e., the difference between the second and third row).

Empirically, one would have expected the use of bounded models to help a lot (in abso-
lute terms), if learning just trace-norm constrained matrices (without clipping/bounding)
leads to many predictions being outside the interval [1, 5], in which we know the ratings lie.
But indeed, this does not seem to be the case. Table 2 shows the prediction with largest
magnitude, over all entries in the test set, as well as the percentage of predictions which
fall outside the [1, 5] interval. It is clearly evident that such out-of-interval predictions
are relatively rare, and this explains why the bounding and clipping only leads to modest
improvements.

100K 1M

largest value 5.95± 0.35 6.13± 0.16

% outside interval 0.69± 0.05 0.79± 0.01

Table 2: Out-of-Interval Values

We emphasize that our results should only be interpreted in the context of pure trace-
norm regularization. There are many other approaches to matrix completion, and it is
quite possible that using bounded models has more or less impact in the context of other
approaches or for other application domains.

8. Follow-Up Work

Since the preliminary version of this paper appeared (Shamir and Shalev-Shwartz, 2011),
several related works have been published. In this section, we survey these results, and
discuss how they relate to the current work and the insights it provides.
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While this work focuses on a stochastic setting, a closely related problem has been
matrix completion in an online setting. In online learning (Cesa-Bianchi and Lugosi, 2006;
Shalev-Shwartz, 2012), rather than having examples sampled from a stochastic process, the
examples arrive in an online fashion and are arbitrary, possibly provided by an all-powerful
adversary. The goal in this setting is to minimize regret, namely the difference between
the learner’s loss and that of the best single hypothesis from some hypothesis class. In the
context of matrix completion, this can be modeled as a sequential game where at each round
a matrix entry is arbitrarily chosen, and the learner needs to predict its value. The actual
entry value is then revealed, and the learner suffers some loss (such as the absolute difference
between the prediction and actual value). In our case, the regret can be measured with
respect to the class of matrices with bounded trace-norm. Note that this setting is generally
harder than our stochastic setting, since the entry are chosen arbitrarily rather than in a
stochastic manner, and it is known that in general, any online learning algorithm can be
converted to a learning algorithm in a stochastic setting, with similar guarantees. Despite
the difference between the settings, regret guarantees in the online learning setting are often
strikingly similar to sample complexity guarantees in the stochastic learning setting.

The problem of online matrix completion with trace-norm bounded matrix has been
dealt with in several recent works. Interestingly, the same insights provided in our work —
the importance of entry boundedness or a transductive model — were crucial for attaining
online learning algorithms. Considering n×m matrices with bounded trace-norm t as well as
bounded entries, Hazan et al. (2012) showed that one can efficiently obtain vanishing regret
after O(t

√
n) rounds (assuming m ≤ n). Note that this parallels our sample complexity

guarantees in a stochastic setting (assuming bounded entries), which imply learnability for
sample size O(t

√
n). Alternatively, if one considers a transductive online setting (where

each entry can be chosen only once), Cesa-Bianchi and Shamir (2011) showed that one can
also efficiently obtain vanishing regret after O(t

√
n) rounds. In Rakhlin et al. (2012) this

was shown to be possible for Lipschitz-continuous losses, even if the entries are not explicitly
bounded — the transductive setting alone suffices to achieve results of this order.

Another recent related work is Shalev-Shwartz et al. (2011), which deals with a sup-
posedly different problem: Approximately solving convex optimization problems over the
(non-convex) domain of low-rank matrices. However, one of their results provides an alter-
native justification of our O(t

√
n) sample complexity guarantee, for the case of bounded

trace-norm matrices whose entries are clipped to a bounded range (Theorem 3). To sketch
the argument, Shalev-Shwartz et al. (2011, Section 4) show that if we have |S| observed
entries in our matrix, then for every matrix W with bounded trace-norm ‖W‖tr, there exists
a low-rank matrix W̄ , with rank O(‖W‖2tr/|S|), which approximates W arbitrarily well in
terms of average loss over the observed entries. Since a matrix of rank r is parameterized by
O(rn) parameters, it follows that the generalization error of clipped r-rank matrices is ar-
bitrarily small when |S| ≥ Ω̃(rn). This indirectly provides a generalization error bound for
our original matrix W . Plugging in r = ‖W‖2tr/|S|, and noting that in our case ‖W‖tr = n,
we get that learnability is possible for a sample of size |S| ≥ Ω̃(n3/2) = Ω̃(t

√
n).

Finally, we note that several recent works explored the possibility of replacing the stan-
dard trace-norm constraint by other matrix norms. These include the max-norm (Srebro
et al., 2004; Lee et al., 2010); weighted trace-norm (Salakhutdinov and Srebro, 2010) and
smoothed/empirical variants (Foygel et al., 2011); and ‘local’ max-norms (Foygel et al.,
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2012). An important motivation of these works is that they allow us to learn non-trivial
classes of matrices, with a sample complexity of O(n) — smaller than earlier trivial re-
sults for the trace-norm and the O(n3/2) results we obtain here (when the trace-norm is
Θ(n)). Essentially, this is achieved by using classes of matrices which are less rich than
trace-norm-bounded one, hence are statistically easier to learn.

9. Proofs of Upper Bounds

In our proofs, we use ‖ · ‖sp to denote the spectral norm of matrices, which is well-known
to be the dual of the trace-norm (see for instance Fazel et al., 2001).

Our proofs utilize the following two theorems, which bounds the expected spectral norm
‖ · ‖sp of random matrices.

Theorem 8 (Lata la, 2005) Let Z be a matrix composed of independent zero-mean en-
tries. Then for some fixed constant C, E[‖Z‖sp] is at most

C

max
i

√∑
j

E[Z2
i,j ] + max

j

√∑
i

E[Z2
i,j ] + 4

√∑
i,j

E[Z4
i,j ]

 .

Theorem 9 (Seginer, 2000) Let A be an arbitrary m × n matrix, such that m,n > 1.
Let Z denote a matrix composed of independent zero-mean entries, such that Zi,j = Ai,j
with probability 1/2 and Zi,j = −Ai,j with probability 1/2. Then for some fixed constant C,
E[‖A‖sp] is at most

C 4
√

log(min{m,n}) max

max
i

√∑
j

A2
i,j ,max

j

√∑
i

A2
i,j


9.1 Proof of Theorem 2

We write RS(` ◦W) as

1

|S|
Eσ

 sup
W∈W

∑
i,j

Γi,j`(Wi,j , Xi,j)

 , (7)

where Γ is a matrix whose (i, j)-th entry is defined as
∑

α:iα=i,jα=j σα. As discussed in
Section 3, a standard analysis will proceed to reduce this to

1

|S|
Eσ

 sup
W∈W

∑
i,j

Γi,jWi,j

 , (8)

but this leads to a trivial bound. However, examining the analysis in Section 3, we see
that the problem is when a single entry is “hit” many times in the sample. This will cause
the magnitude of that entry to be very large (as much as Θ(

√
|S|)), and as a result make

Equation (8) as large as Θ(t/
√
|S|). However, recall that our original goal is to bound

Equation (7), not Equation (8), and in Equation (7) we have the loss operator, which is
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bounded by a constant b`. Therefore, even if some Γi,j has a large value, it can only be
multiplied by a factor as large as b`, and not the trace-norm bound t. This observation is
the key for our analysis.

Intuitively, instead of going directly from Equation (7) to Equation (8), we first de-
compose Γ into two matrices Y and Z, where Y contains the “heavily-hit” entries, and
Z the “lightly-hit” entries, where the two types of entries are differentiated according to
some threshold p. We perform a different type analysis for each matrix, and then tune p
appropriately to get the desired result.

More formally, given i, j, let hi,j be the number of times the sample S hits entry i, j,
or more precisely hi,j = |{α : iα = i, jα = j}|. Let p > 0 be an arbitrary parameter to be
specified later, and define

Yi,j =

{
Γi,j hi,j > p

0 hi,j ≤ p
Zi,j =

{
0 hi,j > p

Γi,j hi,j ≤ p.
(9)

Clearly, we have Γ = Y +Z. Thus, we can upper bound the Rademacher complexity by

1

|S|
Eσ

 sup
W∈W

∑
i,j

Yi,j`(Wi,j , Xi,j)

 +
1

|S|
Eσ

 sup
W∈W

∑
i,j

Zi,j`(Wi,j , Xi,j)

 . (10)

Since |`(Wi,j , Xi,j)| ≤ b`, the first term can be upper bounded by

1

|S|
Eσ

b`∑
i,j

|Yi,j |

 =
b`
|S|

Eσ[‖Y ‖1]. (11)

Using the Rademacher contraction principle,3 the second term in Equation (10) can be
upper bounded by

l`
|S|

Eσ

 sup
W∈W

∑
i,j

Zi,jWi,j

 .
Applying Hölder’s inequality, and using the fact that the spectral norm ‖ · ‖sp is the dual
to the trace norm ‖ · ‖tr, we can upper bound the above by

l`
|S|

Eσ sup
W∈W

[‖Z‖sp‖W‖tr] =
l`t

|S|
Eσ [‖Z‖sp] . (12)

Combining this with Equation (11) and substituting into Equation (10), we get an upper
bound of the form

b`
|S|

Eσ [‖Y ‖1] +
l`t

|S|
Eσ [‖Z‖sp] .

Using Lemma 10 and Lemma 11, which are given below, we can upper bound this by

b`√
p

+
2.2Cl`t

√
p(
√
m+

√
n)

|S|
,

3. Strictly speaking, we use a slight generalization of it, where the loss function is allowed to differ w.r.t.
every Wi,j — see Meir and Zhang (2003, Lemma 5).
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where p is the parameter used to define Y and Z in Equation (9). Choosing p = |S|b`
2.2Cl`t(

√
m+
√
n)

,

we get the bound in the theorem.

Lemma 10 Let Y be a random matrix defined as in Equation (9). Then

E[‖Y ‖1] ≤ E

 ∑
i,j:hi,j>p

√
hi,j

 ≤ |S|√
p

Proof E[‖Y ‖1] equals

E

 ∑
i,j:hi,j>p

|Γi,j |

 = E

E
 ∑
i,j:hi,j>p

∣∣∣∣∣∣
∑

α:(iα,jα)=(i,j)

σα

∣∣∣∣∣∣
 ∣∣∣{hi,j}


The expression inside the absolute value is the sum of hi,j i.i.d. random variables, and it
is easily seen that its expected absolute value is at most

√
hi,j . Therefore, we can upper

bound the above by E[
∑

i,j:hi,j>p

√
hi,j ]. We can further upper bound it, in a manner which

does not depend on the values of hi,j , by

max
c∈{1,...,mn}

max
h1,...,hc∈R:∀i hi>p,

∑c
i=1 hi=|S|

c∑
i=1

√
hi.

Note that the constraints imply that

|S| =
c∑
i=1

hi ≥
√
p

c∑
i=1

√
hi,

so
∑c

i=1

√
hi can be at most |S|/√p as required.

Lemma 11 Let Z be a random matrix defined as in Equation (9). Then the expected
spectral norm Eσ[‖Z‖sp] is at most

C

max
i

√ ∑
j:hi,j≤p

hi,j + max
j

√ ∑
i:hi,j≤p

hi,j + 4

√
3
∑

i,j:hi,j≤p
h2
i,j

 ,

where C is the universal constant which appears in the main theorem of Lata la (2005).
Moreover, this quantity can be upper bounded by 2.2C

√
p (
√
m+

√
n)

Proof With hi,j held fixed, Z is a random matrix composed of independent entries. By
using Theorem 8, we only need to analyze E[Z2

i,j ] and E[Z4
i,j ]. For any i, j, if hi,j ≤ p then

Zi,j is a sum of hi,j i.i.d. variables taking values in {−1,+1}. Therefore, E[Z2
i,j ] = hi,j and

E[Z4
i,j ] ≤ 3h2

i,j . Plugging into Theorem 8 yields the first part of the lemma. To get the
second part, we can upper bound the right-hand side of the first part by

C
√
p
(√

m+
√
n+

4
√

3mn
)
≤ C√p

(√
m+

√
n+ 4

√
3/2(
√
m+

√
n)
)

≤ 2.2C
√
p
(√
m+

√
n
)
.
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9.2 Proof of Theorem 3

We can rewrite the definition of RS(` ◦W) (see Equation 3) as

1

|S|
Eσ

 sup
W∈W

∑
i,j

Γi,j`(Wi,j , Xi,j)

 ,
where Γ is a matrix defined as Γi,j =

∑
α:iα=i,jα=j σα. Using the Rademacher contraction

principle (as in Meir and Zhang, 2003, Lemma 5), this is at most

l`
|S|

Eσ

 sup
W∈W

∑
i,j

Γi,jWi,j

 . (13)

Decomposing Γ = Y + Z as in Equation (9) according to a parameter p, we can upper
bound the Rademacher complexity by

l`
|S|

Eσ

 sup
W∈W

∑
i,j

Yi,jWi,j

+
l`
|S|

Eσ

 sup
W∈W

∑
i,j

Zi,jWi,j

 . (14)

By definition of W, |Wi,j | ≤ bφ, so the first term can be upper bounded by

l`
|S|

Eσ

bφ∑
i,j

|Yi,j |

 =
l`bφ
|S|

Eσ[‖Y ‖1]. (15)

The second term in Equation (14) equals

l`
|S|

Eσ

 sup
W :‖W‖tr≤t

∑
i,j

Zi,jφ(Wi,j)

 ≤ l`lφ
|S|

Eσ

 sup
W :‖W‖tr≤t

∑
i,j

Zi,jWi,j

 ,
again by the Rademacher contraction principle. Applying Hölder’s inequality, and using
the fact that the spectral norm ‖ · ‖sp is the dual to the trace norm ‖ · ‖tr, we can upper
bound the above by

l`lφ
|S|

Eσ

[
sup

W :‖W‖tr≤t
‖Z‖sp‖W‖tr

]
=
l`lφt

|S|
Eσ [‖Z‖sp] .

Combining this with Equation (15) and substituting into Equation (14), we get an upper
bound of the form

l`bφ
|S|

Eσ [‖Y ‖1] +
l`lφt

|S|
Eσ [‖Z‖sp] .

Using Lemma 10 and Lemma 11, we can upper bound this by

l`bφ√
p

+
2.2Cl`lφt

√
p(
√
m+

√
n)

|S|
,

where p is the parameter used to define Y and Z in Equation (9). Choosing p =
|S|bφ

2.2Clφt(
√
m+
√
n)

,

we get the bound in the theorem.
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9.3 Proof of Theorem 4

Before we begin, we will need the following technical result:

Lemma 12 The dual of the norm ‖W‖ = max{‖W‖tr/t, ‖W‖∞/b} equals

‖Γ‖∗ = min
Y+Z=Γ

b‖Y ‖1 + t‖Z‖sp,

where ‖Y ‖1 =
∑

i,j |Yi,j | and ‖Z‖sp is the spectral norm of Z.

It is possible to prove the lemma directly using duality of infimal convolution. However, for
the sake of completeness we give below a self-contained proof.
Proof By definition of a dual norm, we have

‖Γ‖∗ = sup
W :‖W‖≤1

〈Γ,W 〉,

and our goal is to show that

sup
W :‖W‖≤1

〈Γ,W 〉 = min
Y+Z=Γ

b‖Y ‖1 + t‖Z‖sp.

First, we recall that the dual norm of ‖W‖tr is the spectral norm ‖W‖sp, and the dual of
‖W‖∞ is the 1-norm ‖W‖1 =

∑
i,j |Wi,j |. Now, for any Y,Z such that Y +Z = Γ, we have

by Hölder’s inequality that

sup
W :‖W‖≤1

〈Γ,W 〉 = sup
W :‖W‖≤1

〈Y,W 〉+ 〈Z,W 〉

≤ sup
W :‖W‖≤1

‖Y ‖1‖W‖∞ + ‖Z‖sp‖W‖tr

≤ b‖Y ‖1 + t‖Z‖sp.

This holds for any Y, Z, and in particular

sup
W :‖W‖≤1

〈Γ,W 〉 ≤ min
Y+Z=Γ

b‖Y ‖1 + t‖Z‖sp. (16)

It remains to show the opposite direction, namely

sup
W :‖W‖≤1

〈Γ,W 〉 ≥ min
Y+Z=Γ

b‖Y ‖1 + t‖Z‖sp.

To show this, let W ∗ be the matrix which maximizes the inner product above. We know
that ‖W ∗‖ ≤ 1, which means that either ‖W ∗‖∞ ≤ b, or ‖W ∗‖tr ≤ t. If ‖W ∗‖∞ ≤ b, it
follows that

sup
W :‖W‖≤1

〈Γ,W 〉 = sup
W :‖W‖∞≤b

〈Γ,W 〉 = b‖Γ‖1 ≥ min
Y+Z=Γ

b‖Y ‖1 + t‖Z‖sp.

In the other case, if ‖W ∗‖tr ≤ t, it follows that

sup
W :‖W‖≤1

〈Γ,W 〉 = sup
W :‖W‖tr≤t

〈Γ,W 〉 = t‖Γ‖sp ≥ min
Y+Z=Γ

b‖Y ‖1 + t‖Z‖sp.
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So in either case,

sup
W :‖W‖≤1

〈Γ,W 〉 ≥ min
Y+Z=Γ

b‖Y ‖1 + t‖Z‖sp.

Combining this with Equation (16), the result follows.

We now turn to the proof of Theorem 4 itself. Since `(Wi,j , Xi,j) is assumed to be
l`-Lipschitz, we can use the Rademacher contraction principle to upper bound RS(` ◦ W)
by

l`Eσ

 sup
W∈W

1

|S|

|S|∑
α=1

σαWiα,jα

 =
l`
|S|

Eσ

 sup
W∈W

∑
i,j

Γi,jWi,j

 ,
where Γ is a matrix defined as Γi,j =

∑
α:iα=i,jα=j σα.

Thinking of Γ,W as vectors, the equation above is the expected supremum of an inner
product between Γ and W . By Hölder’s inequality, we can upper bound this by

l`
|S|

Eσ

[
sup
W∈W

‖Γ‖∗‖W‖
]

(17)

for any norm ‖ · ‖ and its dual norm ‖ · ‖∗. In particular, we will choose the norm ‖W‖ =
max{‖W‖tr/t, ‖W‖∞/b}. Note that by definition of W , supW∈W ‖W‖ ≤ 1. Also, by
Lemma 12,

‖Γ‖∗ = min
Y+Z=Γ

b‖Y ‖1 + t‖Z‖sp,

where ‖Y ‖1 =
∑

i,j |Yi,j |, and ‖Z‖sp is the spectral norm of Z . Thus, we can upper bound
Equation (17) by

l`
|S|

EΓ

[
min

Y+Z=Γ
b‖Y ‖1 + t‖Z‖sp

]
. (18)

Recall that Γ is random matrix, where each entry is the sum of Rademacher variables. Let
hi,j denote the number of variables ’hitting’ entry (i, j) — formally, hi,j = |{α : (iα = i, jα =
j}|. We can upper bound Equation (18) by replacing the optimal decomposition of Γ into
Y,Z by any fixed decomposition rule. In particular, for an arbitrary parameter p, we can
decompose Γ into Y, Z as in Equation (9), and get an upper bound on Equation (18) of the
form

l`
|S|

(bEΓ[‖Y ‖1] + tEΓ[‖Z‖sp]) . (19)

Bounds for the two expectations are provided in Lemma 10 and Lemma 11. Plugging them
in, we get

bl`√
p

+
2.2l`Ct

√
p (
√
m+

√
n)

|S|
.

Choosing p = b|S|
2.2Ct(

√
m+
√
n)

and simplifying, we get the bound in the theorem.
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9.4 Proof of Theorem 6

We write RS(` ◦W) as

1

|S|
Eσ

 sup
W∈W

∑
i,j

Γi,j`(Wi,j , Xi,j)

 ,
where Γ is a matrix with σi,j in its (i,j)-th entry, if (i, j) ∈ S, and 0 otherwise. By the
Rademacher contraction property,4 we can upper bound this by

l`
|S|

Eσ

 sup
W∈W

∑
i,j

Γi,jWi,j

 .
By Hölder’s inequality, this is at most

l`
|S|

Eσ

[
sup
W∈W

‖Γ‖sp‖W‖tr
]

=
l`t

|S|
Eσ [‖Γ‖sp] . (20)

The setting so far is rather similar to the one we had in the inductive setting (see the proof
of any of the theorems in Section 4). But now, we need to bound just the expected spectral
norm of Γ, which is guaranteed to have only a single Rademacher variable in each entry.
By applying Theorem 8 on Equation (20), we get

RS(` ◦W) ≤ Cl`
t
(√

M +
√
N + 4

√
|S|
)

|S|
.

Since S can contain at most m and n indices for any single row and column respectively, and
4
√
|S| ≤ 4

√
mn ≤ 1

2 (
√
m+

√
n), we can upper bound the above by 3Cl`t (

√
m+

√
n) /(2|S|).

To get the other bound in the theorem, we apply Theorem 9 instead of Theorem 8 on
Equation (20).

10. Discussion

In this paper, we analyzed the sample complexity of matrix completion with trace-norm
regularization, obtaining the first non-trivial, distribution-free guarantees. Our results were
based on either mild boundedness assumptions, or a switch from the standard inductive
learning model to the transductive learning model. Moreover, we argue that such a trans-
ductive model may be a better way to model matrix completion as performed in practice,
as it seems more natural and leads to a substantial difference in terms of obtainable results.
We also discussed the issue of learning with bounded models, and provided an empirical
study which indicates that these lead to a modest improvement in performance, in line with
our theoretical findings. We also show that our results are essentially tight, and discuss
some recent work which relates to the results and insights provided here.

One interesting open question arises from our experiments in Section 7. In all our exper-
iments, minimizing the squared loss over the training data (with trace-norm regularization)

4. As in the inductive case, we use in fact a slight generalization where the loss function is allowed to differ
w.r.t. every Wi,j , as in Meir and Zhang (2003, Lemma 5).
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resulted in matrices whose entries have reasonably small values, even when boundedness was
not enforced. This is probably an important factor in explaining why explicitly enforcing
boundedness resulted in only a modest performance improvement. However, if boundedness
is not enforced, there is no a-priori reason why the resulting matrix shouldn’t have some
very large values (up to the trace-norm constraint) in some of the test set entries. Thus,
we may raise the following conjecture: If we minimize training loss over data, consisting of
bounded entries, over trace-norm constrained matrices, then the resulting matrix will have
bounded entries as well. If this conjecture holds, it means that enforcing boundedness will
always lead to only a modest performance improvement.
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