
Journal of Machine Learning Research 15 (2014) 3187-3220 Submitted 2/14; Revised 5/14; Published 10/14

Robust Online Gesture Recognition with Crowdsourced
Annotations

Long-Van Nguyen-Dinh longvan@ife.ee.ethz.ch

Alberto Calatroni alberto.calatroni@ife.ee.ethz.ch

Gerhard Tröster troester@ife.ee.ethz.ch

Wearable Computing Lab

ETH Zürich

ETZ H 95, Gloriastrasse 35, Zürich 8092, Switzerland

Editor: Isabelle Guyon, Vassilis Athitsos and Sergio Escalera

Abstract

Crowdsourcing is a promising way to reduce the effort of collecting annotations for training
gesture recognition systems. Crowdsourced annotations suffer from ”noise” such as mis-
labeling, or inaccurate identification of start and end time of gesture instances. In this
paper we present SegmentedLCSS and WarpingLCSS, two template-matching methods of-
fering robustness when trained with noisy crowdsourced annotations to spot gestures from
wearable motion sensors. The methods quantize signals into strings of characters and then
apply variations of the longest common subsequence algorithm (LCSS) to spot gestures.
We compare the noise robustness of our methods against baselines which use dynamic time
warping (DTW) and support vector machines (SVM). The experiments are performed on
data sets with various gesture classes (10-17 classes) recorded from accelerometers on arms,
with both real and synthetic crowdsourced annotations. WarpingLCSS has similar or better
performance than baselines in absence of noisy annotations. In presence of 60% mislabeled
instances, WarpingLCSS outperformed SVM by 22% F1-score and outperformed DTW-
based methods by 36% F1-score on average. SegmentedLCSS yields similar performance as
WarpingLCSS, however it performs one order of magnitude slower. Additionally, we show
to use our methods to filter out the noise in the crowdsourced annotation before training
a traditional classifier. The filtering increases the performance of SVM by 20% F1-score
and of DTW-based methods by 8% F1-score on average in the noisy real crowdsourced
annotations.

Keywords: gesture spotting, crowdsourced annotation, longest common subsequence,
template matching methods, accelerometer sensors

1. Introduction

Wearable computing is gaining momentum through the availability of an increasing choice
of devices, like smart watches, glasses and sensor-equipped garments. A core component
to allow these devices to understand our context is online gesture recognition (spotting) in
which types of gestures and their temporal boundaries must be recognized in the incoming
streaming sensor data. This is carried out using machine learning approaches on different
sensing modalities, like acceleration (Bao and Intille, 2004) and video (Elmezain et al., 2009;
Yoon et al., 2001).

c©2014 Long-Van Nguyen-Dinh, Alberto Calatroni and Gerhard Tröster.

Nguyen-Dinh, Calatroni and Tröster

Training a gesture recognition system requires an annotated training data set that is
used to perform supervised learning (Bao and Intille, 2004; Ravi et al., 2005; Aggarwal
and Ryoo, 2011; Chen et al., 2012). Specifically, the annotations comprise the start and
end times (i.e., temporal boundaries) of gestures of interest and their corresponding labels.
Reference data sets are usually annotated by a small number of experts to be as accurate
as possible. However, the labeling process is extremely time-consuming: it may take up to
7-10 hours to annotate gestures in a 30-min video (Roggen et al., 2010). Moreover, it is
also costly to hire experts to annotate data corpora.

Crowdsourcing has been emerged recently to address these issues (Howe, 2006; Doan
et al., 2011). Crowdsourcing is defined as a model that outsources tasks which are tradition-
ally performed by experts to a crowd of ordinary people. Thus, crowdsourcing is promising
to reduce the cost and time of labeling. Recently, crowdsourcing has been exploited to get
labeling for training data sets for gesture recognition (Nguyen-Dinh et al., 2013c). However,
labels obtained from crowdsourcing are provided by low-commitment anonymous workers,
thus they are commonly unreliable and noisy (Sheng et al., 2008). In gesture annotation
from crowdsourcing, the challenge is to obtain labels matching ground truth, attaining both
correct labels and correct temporal boundaries.

Using multiple annotators for the same annotation task by watching videos or audios is a
popular strategy to get a good annotation from crowdsourcing (Yuen et al., 2011; Nguyen-
Dinh et al., 2013c). However, multiple annotators may not be applicable in some cases,
either due to the higher cost or because of some privacy concerns. This latter case occurs
when the annotation involves some personal context information, including for example
location or other sensitive data. Hence, the annotation is often provided and relied on the
crowdsourced user for his recorded data. Moreover, it is very difficult to ask the anonymous
low-commitment user to clean his annotation because it is time consuming and he may
not remember exactly what he has done. In these cases, the large presence of noise in the
training data annotation can degrade significantly the performance.

While other research is focusing on how to improve the quality of crowdsourced annota-
tions, we here point out the need for algorithms that can cope with the kinds of annotation
errors that will anyway remain. In this work, we show that our proposed template matching
methods (TMMs) based on the longest common subsequence algorithm (known as LCSS or
LCS in the literature) are suitable for online gesture recognition in a setting where training
data are affected significantly by labeling noise. Additionally, the work targets the recogni-
tion of gestures based on acceleration data recorded from only one accelerometer mounted
on the user’s arm. The reason to just use one sensor is that this setting will be the most
common one with smart watches in the close future. Recognizing gestures with just motion
data from one sensor is challenging due to the ambiguities in the sensor data, especially
with high percentage of null class (no gesture of interest).

1.1 Contributions

In this paper, we make the following contributions:

1. We discuss how gesture recognition systems can leverage crowdsourcing to collect
annotated data. We address the challenges that arise and then propose a taxonomy

3188

Gesture Recognition with Crowdsourced Annotations

of annotation noise which occur in a crowdsourcing setting. We also give analysis on
annotation noise in the real crowdsourced annotated data set.

2. We propose SegmentedLCSS and WarpingLCSS as TMMs for online gesture recogni-
tion. These methods were first presented in our previous work (Nguyen-Dinh et al.,
2012) and have been shown to perform well in clean annotated gesture data sets both
in terms of computational complexity and accuracy. In this work, we show their
robustness to the labeling noise from crowdsourcing.

3. We compare the robustness of our gesture recognition methods against three base-
lines using two variations of dynamic time warping and support vector machines. The
algorithms are tested with annotations collected in real crowdsourcing scenarios as
well as the synthetic crowdsourced annotations in three data sets recorded from ac-
celerometers on arms. We also investigate the impact of different kinds of noises in
crowdsourced annotation on the performance of the gesture recognition methods.

4. We investigate the property of LCSS of being able to select clean templates, which
makes it suitable also as a filtering component to select good training examples despite
noisy annotations. This filter can be used in combination with other classifiers. We
show how inserting this filtering step improves the performance of SVMs and TMMs
based on dynamic time warping.

The rest of the paper is organized as follows. In Section 2, we first review existing work
in online gesture recognition and crowdsourcing. In Section 3, we discuss crowdsourcing
in gesture recognition and propose a taxonomy of annotation noise in gesture labeling by
crowdsourcing. Then, in Section 4, we present our proposed SegmentedLCSS and Warp-
ingLCSS methods. The experiments are described in Section 5. We present quantitative
results evaluating the robustness of our proposed methods against the baselines in Section
6. Finally, Section 7 concludes our work and gives some potential research directions.

2. Related Work

In this section we discuss related work in the fields of gesture recognition and crowdsourcing,
pointing out the lack of an analysis of how noise present in typical crowdsourced annotations
impacts gesture recognition algorithms.

2.1 Annotation Techniques

Supervised learning techniques require a set of annotated training samples to build gesture
models. Therefore, many annotation techniques have been proposed to collect annotated
data. There are offline annotation techniques which rely on video and audio recordings
(Roggen et al., 2010), subject self-report of activities at the end of the day (Van Laerhoven
et al., 2008). Online annotation (i.e., real-time) techniques perform the annotation during
execution of the activities, like experience sampling (Froehlich et al., 2007) which prompts
periodically to a user to ask information about his current activities, or direct annotation
in which users responsibly provide a label before an activity begins and indicate when the
activity ends (Rossi et al., 2012). There is a trade-off between accuracy of an annotation

3189

Nguyen-Dinh, Calatroni and Tröster

technique and the amount of time required for annotation (Stikic et al., 2011). For example,
offline annotation on video recordings by experts can provide accurate annotations, however
it is extremely time consuming (Roggen et al., 2010), and non-scalable to large number of
users. In contrast, the self-report of the subject may require less time but the accuracy
depends on the subject’s ability to recall activities. Therefore, most of the existing works
require video annotation by experts to obtain clean and correct annotated data sets (Roggen
et al., 2010) or provide a course to teach subjects carefully how they should record and
annotate their data correctly (Bao and Intille, 2004).

2.2 Crowdsourcing

Crowdsourcing services, like Amazon Mechanical Turk (AMT)1 and Crowdflower2, have
emerged recently as a new cheap labor pool to distribute annotation tasks to a large number
of workers (Yuen et al., 2011). Crowdsourcing tasks are performed by low-commitment
anonymous workers, thus acquired data is commonly unreliable and noisy (Sheng et al.,
2008). Therefore, the same task is often redundantly performed by multiple workers and
majority voting is a popular decision making method used to identify the correct answers
(Yuen et al., 2011). Moreover, in crowdsourcing, malicious workers often take advantage of
the verification difficulty (the ground truth is unknown) and submit low-quality answers.

Due to the error-prone nature of crowdsourcing, several strategies were proposed to
estimate the quality of workers, in order to reject low-performing and malicious workers.
Verifiable questions or pilot tasks for which the requester knows the correct answers is
a common empirical strategy to screen workers from crowdsourcing (Kittur et al., 2008;
Yuen et al., 2011). Another way to ensure quality is to check the agreement in annotations
among workers to detect non-serious workers (Nguyen-Dinh et al., 2013c). Dawid and
Skene (1979) proposed a theoretical model that used the redundancy in acquiring answers
(i.e., the same task is completed by multiple workers) to measure the labeling quality of
the workers. Recently, Raykar et al. (2010) proposed Bayesian versions of worker quality
inference. Ipeirotis et al. (2010) improved the method by separating spammers who provide
low-quality answers intentionally from biased workers who are careful but biased.

Recently, crowdsourcing has been exploited also in the field of activity recognition to
collect annotated training data sets (Rossi et al., 2012; Nguyen-Dinh et al., 2013a,b,c;
Lasecki et al., 2013). These works showed that crowdsourced data is erroneous, therefore,
filtering strategies such as multiple labelers and outlier removal should be used to reduce
labeling noise.

Although many strategies are used to reduce noise in crowdsourced data annotation,
there is no guarantee to have a perfect annotation, especially when using multiple labelers
can not be applied. Until now, the impact of the noisy annotations in crowdsourcing on
the training of gesture recognition methods was not investigated. Furthermore, the nature
of the noise that affects the annotations in a crowdsourcing scenario for gesture recognition
has not been analyzed yet. These two latter topics are subject of the present paper.

1. The home page for AMT is http://www.mturk.com.
2. The home page for Crowdflower is http://crowdflower.com.

3190

http://www.mturk.com
http://crowdflower.com

Gesture Recognition with Crowdsourced Annotations

2.3 Online Gesture Recognition Methods

Signals from body-worn sensors belong to the category of time series data. Suitable machine
learning and pattern recognition techniques for online gesture recognition include Hidden
Markov Models (HMM) (Lee and Kim, 1999; Deng and Tsui, 2000; Junker et al., 2008;
Schlömer et al., 2008), template matching methods (TMM) using mostly dynamic time
warping—in short DTW (Ko et al., 2005; Stiefmeier et al., 2008; Hartmann and Link, 2010)
and support vector machines (Ravi et al., 2005; He et al., 2008; Wu et al., 2009).

HMMs are not appealing since a large amount of training data is required to get results
comparable to other TMMs and SVM. In Vogler and Metaxas (1999) for example, about
1300 instances for 22 classes (i.e., about 60 instances per class) are used to train the HMM,
whereas TMMs can work with as little as one training instance per class. The issue of
the amount of training data is mentioned also in Cooper et al. (2012), where the authors
state, referring to HMMs: “While they have been employed for sign recognition, they
have issues due to the large training requirements”. In Alon et al. (2009), a variation of
HMMs is selected but the parameters could not be learnt because of the scarcity of training
data: “We fix the transition probabilities to simplify the learning task, because we do not
have sufficient training data to learn more parameters”. HMMs remain nevertheless an
interesting approach for cases where a large data corpus is available, which is often the case
in the field of video-based gesture or sign language recognition, see for example Wilson and
Bobick (1999); Lee and Kim (1999); Keskin et al. (2011).

Segmented DTW (Ko et al., 2005; Hartmann and Link, 2010) performs online gesture
recognition by first buffering the streaming signals into an observation window. A test
segment is a sequence that is examined to classify whether it is an instance of a gesture
class. The start and end boundaries of a test segment can vary inside the window. A DTW
distance is computed between all templates which represents gesture classes and the test
segment, and the class of the closest template is eventually selected as label for the test
segment if the distance falls below a certain rejection threshold. As the sensor delivers a
new reading, the window is shifted by one sample and the process is repeated. Segmented
DTW is time consuming since DTW is recomputed to find the best boundaries for the test
segment inside the window and it is also recomputed every time the window shifts by one
sample. A nonsegmented DTW variation was proposed by Stiefmeier et al. (2008) to reuse
the computation of previous readings, recognize gestures and determine their boundaries
without segmenting the stream.

Along with DTW, the other commonly used similarity measure for matching two time
series is LCSS (Fu, 2011). In previous work (Nguyen-Dinh et al., 2012), we introduced two
variations of LCSS-based template matching for online gesture spotting and recognition.
We applied the methods to accelerometer data. These LCSS-based classifiers (Segment-
edLCSS and WarpingLCSS) proved to outperform DTW-based TMMs, both in terms of
computational complexity and accuracy (especially for data sets containing high variability
in gesture execution as shown in Nguyen-Dinh et al., 2012). Furthermore, our methods
were designed with the goal of being robust in case of noisy annotations. The validation of
this aspect is the main topic of the present article. The impact of the various kinds of noise
occurring in crowdsourced annotations on TMMs has not been investigated in previous
literature, to the best of our knowledge.

3191

Nguyen-Dinh, Calatroni and Tröster

In sign language recognition literature, we find two other works proposing the use of
LCSS as a classifier, applied to video data (Frolova et al., 2013; Stern et al., 2013). In
both cases, the methods use a sliding window to set temporal boundaries of a gesture inside
the window, similarly to our SegmentedLCSS. With our WarpingLCSS, this need of using
a window is removed, reducing the computational complexity. It is interesting to note
how Stern et al. (2013) states that “It can then be said that the MDSLCS algorithm can
outperform the HMM classifier for both pre-cut and streaming gestures”, which supports
the idea of using TMMs instead of HMMs to make best use of the available training data.
TMMs are competitive with HMMs also with respect to null-class rejection, meaning the
ability to spot a gesture within a continuous stream.

Some algorithms present in the literature rely on k-means or spatio-temporal clustering
to transform the raw signals into so-called “fenemes”, or subunits (Bauer and Karl-Friedrich,
2002; Fang et al., 2004), which allows to reduce the amount of training data, due to the fact
that more gestures can contain the same feneme, so that a critical mass can be achieved in
terms of amount of training data. We use a similar approach based on k-means clustering
to find a quantization of the signals which gives good results.

A large body of literature focuses on a recognition performed on video data, for example
for the recognition of sign language (see for example Wilson and Bobick, 1999; Bowden et al.,
2004; Alon et al., 2009; Keskin et al., 2011). However, gesture recognition from wearable
sensors, e.g., one accelerometer at the wrist, would allow to scale up the recognition system
to many users immediately because the system can be deployed easily wherever a user goes
with the motion sensor mounted on hand. It does not need any other infrastructure like
cameras, which do not follow us everywhere in practice. Of the video-based approaches,
the one of Hao and Shibata (2009) captures the videos directly by a moving camera, which
could be easily wearable. However, from the practical point of view, such an option has
some limitations: first, such a device would be quite costly; second, processing signals from
a camera is more computationally intensive than processing those from a motion sensor;
third, capturing video data is much more intrusive due to privacy concerns.

2.4 Robustness against Annotation Noise

The impact of noise in annotations on the performance of classifiers has been investigated
in the literature (Angluin and Laird, 1988; Amini and Gallinari, 2005; Gayar et al., 2006;
Lawrence and Schölkopf, 2001; Stikic et al., 2011). The above cited studies do not concern
template matching methods. Moreover, they conducted experiments on synthetic noisy
data. Additionally, under “annotation noise”, or “class noise”, only the case of having
wrong labels (i.e., labels are substituted as other classes) was considered. Noise in gestures
annotation can nevertheless also mean having labelings with temporal boundaries differing
from the ground truth, e.g., a gesture marked as starting earlier and ending later than the
ground truth. These other kinds of noise were neglected until now, and they are investigated
in this paper in both synthetic and real crowdsourced annotated data.

3. Crowdsourcing in Gesture Recognition

In this section we discuss how gesture recognition systems can leverage crowdsourcing. We
outline the challenges that arise and provide a taxonomy of the annotation noises, i.e., the

3192

Gesture Recognition with Crowdsourced Annotations

mistakes that affect crowdsourced annotations. We then measure these annotation noises
in a real crowdsourced data set.

Gesture recognition systems can take advantages of crowdsourcing in three ways:

1. Crowdsourcing can be used to acquire annotations for an existing gesture data set
by asking crowdsourced workers to watch video footage synchronized with the sensor
data (Nguyen-Dinh et al., 2013c; Lasecki et al., 2013).

2. Berchtold et al. (2010) proposed a system that asks users to both record and anno-
tate activities. This system can be deployed in a crowdsourcing manner. Users can
sporadically select gestures they want to perform and record them with a device (e.g,
smart watch, smart phone, etc.). This way, multiple annotated gestures provided by
a large user base could contribute to a central repository which grows in time. The
data set would capture the variability in gesture execution due to the different people
contributing.

3. A more obtrusive crowdsourcing task would ask users to record and annotate as many
activities and gestures as possible over a long time span (e.g., weeks). This type of
crowdsourced data collection would be useful to gather data for long-term health care
monitoring systems.

In any of the previous scenarios, the outcome would be an annotated training data set,
with which algorithms can be trained. The benefit of the crowdsourcing setting is that a
large data set can be collected quickly, if the crowdsourced user base is large enough.

3.1 Taxonomy of Sources of Annotation Noises

The major challenge in any of the settings outlined above is the quality of the labels ob-
tained, which are unreliable for many reasons. We define the following taxonomy of anno-
tation noises along with examples:

• Some gestures or activities can be understood differently with respect to when they
actually start and end. The temporal boundaries of the gesture drink can be set from
the time when the user picks up a glass to when he or she puts it back to the table.
Another variation is that the gesture is annotated only when the person is actually
drinking. Both annotations are valid, but this uncertainty of temporal boundaries has
an impact on the algorithms that will be trained with the collected annotated data.
However, even when we assume the definition of gesture boundary is given, the errors
in gesture boundary still happen due to the carelessness of crowdsourced labelers. We
call this form of noise boundary jitter. We define boundary jitter as the presence of a
shift in the annotation boundaries, while the label matches the actual gesture (ground
truth).

• Some instances of gestures can be wrongly annotated or missed altogether. This can
occur for example if the video footage does not have enough resolution to spot subtle
manipulative gestures, or more simply if the labeler does not annotate all gestures
that are occurring. We use the term label noise to denote instances where gestures
are associated to wrong labels or to no label at all.

3193

Nguyen-Dinh, Calatroni and Tröster

We further categorize boundary jitter into four error types, namely extend, shrink, shift
left and shift right according to how the temporal boundary of a gesture is shifted compared
to the ground truth. Figure 1a illustrates the subclasses of boundary jitter.

Drink

Drink

Drink

Drink

Drink

Correct start Correct end

GT

Extend

Shrink

Shift left

Shift right

N

Drink

Null

Open Door

Drink

GT

Delete

Substitute

Insert

Null

esioN lebaL)brettiJ yradnuoB)a

∆s ∆e

Figure 1: Illustrations of boundary jitter and label noise in crowdsourcing annotation. GT
stands for ground truth. The blue dash-dotted lines indicate the correct boundary
of a gesture.

• Extend : The starting boundary is set earlier and the ending boundary is set later. The
information of the gesture instance is preserved, but noise is attached to the gesture
instance in the form of samples which belong actually to another gesture class or to
no class of interest at all (i.e., null class).

• Shrink : The starting boundary is set later and the ending boundary is set earlier. In
this case, some information of the gesture instance is missed.

• Shift left : Both starting and ending boundaries are set earlier. In this case, some
information of the gesture instance is missed and noise is added at the end of the
gesture.

• Shift right : Both starting and ending boundaries are set later. In this case, some
information of the gesture instance is missed and noise is added at the beginning of
the gesture.

We also categorize label noise into three error types, namely delete, substitute and insert.

• Delete: A gesture instance is not annotated. It is automatically marked as null class.

3194

Gesture Recognition with Crowdsourced Annotations

• Substitute: A gesture instance is labeled as another gesture class.

• Insert : A gesture instance is labeled where no gesture of interest actually occurs.

Figure 1b illustrates the subclasses of label noise. The subclasses of label noise are similar
to the definition of classification errors evaluated in performance metrics proposed by Ward
et al. (2011). However, in this work, we consider those errors existing in annotations of
training data set.

3.2 Annotation Noise Parameters

Along with the taxonomy provided in the previous section, we here list the parameters that
quantify the amount of noise in the annotation. Given a gesture instance, let start and
end be the start time and end time of the crowdsourced annotation. Let GT start and
GT end be the corresponding ground truth boundaries. Let N denote the time length of
the gesture (N = |GT end−GT start|). We define ∆s as the time difference between the
crowdsourced start time and the correct start time (∆s = |start−GT start|). Similarly,
we define ∆e as the time difference between the crowdsourced end time and the correct
end time (∆e = |end−GT end|). ∆s and ∆e are illustrated in Figure 1a for the different
boundary jitter noises.

For boundary jitter and for the corresponding subclasses, we define a jitter level to
quantify the proportion of time that is wrongly annotated in a gesture due to the jitter.
The jitter level also indicates how much the boundaries stray from the correct annotation.
These jitter parameters are calculated as follows:

extend level = proportion of time noisy samples added

= ∆s+∆e
N .

shrink level = proportion of time good samples missed

= ∆s+∆e
N .

shift-left level = proportion of time noisy samples added and good samples missed / 2

= ∆s+∆e
2∗N .

shift-right level = proportion of time noisy samples added and good samples missed / 2

= ∆s+∆e
2∗N .

3.3 Annotation Noise Statistics from A Real Crowdsourcing Experiment

To give a flavor of typical values encountered for the annotation noise levels, we report
these levels measured in a real crowdsourcing experiment that we conducted in a previous
study (Nguyen-Dinh et al., 2013c). In the crowdsourcing experiment we used video footage
belonging to the Opportunity data set (Roggen et al., 2010), which contains gestures of
normal daily routines (e.g., drink, open or close doors). We showed each short video to
ten workers in Amazon Mechanical Turk (AMT), described the task and collected their

3195

Nguyen-Dinh, Calatroni and Tröster

annotations. The AMT labelers must annotate the start, end boundaries and the label of
all occurrences of gestures of interest in the videos. We applied two strategies to detect and
filter non-serious labelers and erroneous labeling (Nguyen-Dinh et al., 2013c). Individual
filtering checks the correctness in the answers of each labeler for qualification questions
whose answers are known in advance. Collaborative filtering checks the agreement in anno-
tations among workers to detect non-serious labelers. Specifically, the labeler X who has a
disagreement score d(X) = Annotation times of X disagree with majority

Total annotation times of X > threshold is a spammer.
We chose a threshold = 0.3, it means if the disagreement score d ≥ 0.3 (i.e., less than
70% of annotation of a labeler agrees with the majority), the labeler is a spammer and
his annotations are removed. The collaborative filtering is illustrated in Figure 2. After
filtering, the majority voting among qualified annotations is performed to generate a final
crowdsourced gesture annotation. A more detail on the crowdsourcing experiment is given
in Nguyen-Dinh et al. (2013c).

Drink (D)

Drink

Drink

Eat (E)

Close Door (CD)

D D D E EMajority Voting

0%

Disagreement Score d

5%

1%

100%

90%

Eat

Eat

Drink

D E D DE

snoitatonnAsrelebaL

Time

Figure 2: An illustration of the collaborative filtering technique to calculate the disagree-
ment score of each labeler against the majority. The last two labelers are spam-
mers and then their annotations will be removed.

Each video footage of the Opportunity data set was already examined and annotated
carefully by one expert (Roggen et al., 2010) and the expert’s annotations are used as a
ground truth to evaluate our crowdsourced annotation. Here we report the sample-based
accuracy (i.e., fraction of correctly labeled samples compared to expert’s annotation) for
a one-labeler annotation scenario where only one crowdsourced labeler is selected, and for
a multiple-labeler scenario where the filterings and majority voting are applied for the ten
workers. For a one-labeler annotation, the sample-based accuracy gets as low as 55%. In
the multiple-labeler annotation, the accuracy reaches 80%. A breakdown of the types of
annotation mistakes, according to the taxonomy introduced in Section 3.1, is shown in
Figure 3a. The values for label noise and for the boundary jitter are shown for one and

3196

Gesture Recognition with Crowdsourced Annotations

for multiple labelers. In the scenario of only one labeler, about 52% of the instances are
affected by label noises, comprising mostly substitute and delete errors. In the multiple-
labeler scenario, label noise decreases to 18%. In Figure 3b, we give the average, the min
and the max values of jitter level of boundary jitters for one and for multiple labelers. On
average, jitter levels ranges from 27% to 60%. However, there are good annotated instances
with very low jitter levels (only 2%).

One Labeler Multiple Labelers
0

10

20

30

40

50

60

70

80

90

100

110

1.3

28.6

16.1

2.3

29.7

21.6

0.3

13.6

22.9

34.4

10.5

1.8

15.4

1.3

In
st

a
n

c
e

−
b

a
se

d
 P

e
rc

e
n

ta
g

e
 (

%
)

Noise Distribution in Annotation from AMT

Extend

Shrink

Shift Left

Shift Right

Substitute

Delete

Insert

One Labler Multiple Labelers
0

50

100

150

Ji
tt

e
r

L
e

v
e

l
(%

)

Average Jitter Level of Boundary Jitters from AMT

Extend

Shrink

Shift Left

Shift Right

a) b)

Figure 3: Analysis of crowdsourcing annotation from AMT. Blue lines in the figure a sep-
arate boundary jitter part and label noise part. Black lines in the figure b show
the minimum and maximum level of jitter in each type of noise.

It can be seen that requesting multiple labelers for an annotation task can reduce labeling
errors. However, the result from a one-labeler annotation represents for the scenarios where
multiple labelers cannot be applied. Our experiment belongs to the first crowdsourcing
category described at the beginning of the present section, i.e., crowdsourcing labeling of
data which were previously recorded. The amount and distribution of annotation noises
will change depending on the crowdsourcing scenario and on the kind of gesture data, but
there is no reason to think that some scenarios will achieve much lower noise levels. On the
contrary, in real-time annotation (i.e., providing labels while recording data) , it is more
likely that the level of noise increases: more gestures could be forgotten and others would be
labeled only after they really occurred, leading to imprecise time boundaries. We therefore
argue that annotation noise is a fact that cannot be completely removed and that calls the
attention of robust methods when designing gesture recognition systems which use noisy
crowdsourced annotations.

3197

Nguyen-Dinh, Calatroni and Tröster

In the next sections we present our SegmentedLCSS and WarpingLCSS TMMs which
are designed with the aim of being robust to annotation noise for gesture recognition.

4. SegmentedLCSS and WarpingLCSS Gesture Recognition Methods

In this section, we describe in details our proposed methods, Segmented LCSS and Warp-
ingLCSS for online gesture recognition using signals obtained from body-worn sensors.

The methods proposed to recognize gestures are based on template matching (TM). The
training phase uses a set of labeled signals to train the gesture recognition algorithm. In the
training phase, the sensor signals are quantized and converted into sequences of symbols
(strings); furthermore, one template is created for each gesture of interest. When deploying
the recognition algorithm, the quantization scheme is again applied to the streaming signals.
The strings obtained are then compared with the learned templates by either using the
longest common subsequence (LCSS) algorithm in segmented windows (SegmentedLCSS)
or using our faster variant of LCSS (namely WarpingLCSS). Figure 4 shows the data flow
through different processing components in the training phase and the recognition phase of
our proposed system.

The rationale using LCSS is that it gives a measure of similarity between templates
and signals to be recognized. Moreover, LCSS is robust to the high variability in gesture
execution as shown in our previous work (Nguyen-Dinh et al., 2012) because LCSS can
ignore the dissimilarity and accumulate the similarity between two gesture instances.

In the following, we first briefly review LCSS, then we describe the different processing
components of the recognition system in Figure 4.

4.1 The Longest Common Subsequence Algorithm (LCSS)

Let sA and sB be two strings comprising lA and lB symbols respectively. Let s(i) denote
the i-th symbol within a string s. For each pair of positions 0 ≤ i ≤ lA and 0 ≤ j ≤ lB
within the strings, we call LCSS(A,B)(i, j) the length of the longest symbol subsequence
in common between the first i symbols of sA and the first j symbols of sB. The LCSS
between the complete strings is then denoted as L(A,B) or, when the strings are clear from
the context, just with L.

L(A,B)(i, j) =



0 , if i = 0 or j = 0

L(A,B)(i− 1, j − 1) + 1 , if sA(i) = sB(j)

max

{
L(A,B)(i− 1, j)

L(A,B)(i, j − 1)
, otherwise.

(1)

Let ΩA and ΩB be the sets of indices corresponding to the longest subsequences of sA and

sB that are matching. The sets ΩA = ω
(0)
A . . . ω

(L−1)
A and ΩB = ω

(0)
B . . . ω

(L−1)
B contain then

L(A,B) indices. L(A,B) and the corresponding matching subsequences, hence the sets ΩA

and ΩB, can be found using dynamic programming (see Cormen et al., 2001).

3198

Gesture Recognition with Crowdsourced Annotations

3D Acceleration Data

Quantization
- Template Construction (LCSS)

- Rejection Threshold

Training

Quantization

Drink template

Online Recognition

Warping

LCSS

Segmented

LCSS

Recognition (TMM) Decision Making

(DM)

Output: Gesture

Figure 4: Data processing flow of the proposed LCSS-based template matching methods
for gesture recognition.

4.2 Training Phase: Quantization Step

Let n denote the number of signal channels provided by the body-worn sensors (e.g., n = 3
for one triaxial accelerometer). Let N be the number of available samples. Let xi be
the time series corresponding to the i-th signal channel, with 1 ≤ i ≤ n and xi(t) be
the value of the time series xi at time t, with 1 ≤ t ≤ N . Let the n-dimensional vector
x(t) = [x1(t) . . . xn(t)] denote one sample from all channels at time t.

The quantization step converts the vectors x(t) into a sequence of symbols (string) s(t).
This is done by performing k-means clustering on the set of n-dimensional vectors x(t),
∀t, 1 ≤ t ≤ N . The choice of k is performed through cross-validation or empirically. For the
gesture data sets used in this paper, k = 20 provided a good tradeoff between complexity (k-
means’ complexity scales linearly with k) and performance. The output of k-means is a set
of k n-dimensional cluster centers, ζ0 . . . ζk−1, to which k symbols α0 . . . αk−1 are assigned.
The quantization procedure then operates on each sample x(t) to obtain the symbols s(t)
as follows:

s(t) = αi|i = argmin
i
||x(t)− ζi||2 .

Let us denote with d(αl, αm) the distance between two symbols, given by the corre-
spondent distance between their assigned cluster centers, normalized to fall in the interval
[0, 1].

3199

Nguyen-Dinh, Calatroni and Tröster

d(αi, αj) =
||ζi − ζj||2

maxi,j ||ζi − ζj||2
. (2)

4.3 Training Phase: Template Construction

For each labeled gesture in the training data set, a corresponding string is derived used the

quantization described in Section 4.2. Denote with s
(c)
i the i-th string belonging to class c.

The template s̄(c) that represents a gesture class c is then chosen as the string that has the
highest average LCSS to all other strings of the same class.

s̄(c) = argmax
s
(c)
i

∑
j 6=i

L
(s

(c)
i ,s

(c)
j)

.

4.4 Training Phase: Calculation of Rejection Thresholds

In order to be able to reject signals not belonging to a gesture class upon deployment, a
threshold needs to be calculated in the training phase. We define one rejection threshold εc
for each class c. Let µ(c) and and σ(c) be the mean and the standard deviation, respectively,
of LCSS values between the template of a class c and any string belonging to the same class.
We calculate the rejection threshold to be below µ(c) by some standard deviations.

εc = µ(c) − h ∗ σ(c),

with h = 0,1,2,...
The rationale is that the good instances belonging to a class should have the similarity

with the template around the mean value. εc is also chosen to be robust with the existence
of noisy training instances in gesture class. In our experiments, h = 1 provided a good
performance.

4.5 Recognition Phase: Quantization Step

In the online recognition, streaming data from a body-worn sensor are quantized to the k-
means centroids (i.e., symbols) identified during training, then come to template matching
module (TM) which uses either Segmented LCSS or WarpingLCSS to recognize gestures.

4.6 Recognition Phase: SegmentedLCSS

In the SegmentedLCSS approach, the sensor readings x(t) are first quantized into a string s
through the quantization step described in Section 4.5. For each gesture class c, the string s
is then segmented into a sliding observation window OWc. The length of OWc is chosen as
the length of the template s̄(c). A substring of s in OWc is denoted as scOW . Each substring
is compared to the template s̄(c) for class c.

The LCSS algorithm is used to calculate L(scOW ,s̄(c)) and the set Ωs of reference indices
of the symbols of scOW in the string s matching with symbols in the template. Because
the LCSS algorithm can find matching points, the boundaries of the detected gesture can

be decided easily. Specifically, if L(scOW ,s̄(c)) ≥ εc, the symbols ranging from s(ω
(0)
s) and

sc(ω
(L−1)
s) are marked as belonging to class c.

3200

Gesture Recognition with Crowdsourced Annotations

In order to reduce the computational complexity, the next observation window is started

at the index ω
(0)
s of the first matching symbol of the previous observation window. In case

the set Ωs is empty, the next observation window is shifted quickly by the window length.
Figure 5 illustrates the SegmentedLCSS.

Template

Motion
Sequence

BCAABBD

...CADBCDDDABDDD...

LCSS = 4

BCAABBD

...CADBCDDDABDDD...

LCSS = 5

OWFirst
Match

New OW, starting at first match

(a) (b)

Figure 5: The SegmentedLCSS recognition process. The shaded part represents the obser-
vation window OWc. For each class c, the LCSS is computed between the gesture
template s̄(c) and the quantized signal in the window. If the LCSS exceeds the
rejection threshold, the samples between the first and the last matching sym-
bols are assigned to class c. The next observation window will start at the first
matched point of the previous calculation as illustrated in Figure b.

4.6.1 Computational Complexity of SegmentedLCSS

Let Tc denote the length of a gesture template of class c (|OWc| = Tc). The worst case
computational complexity of SegmentedLCSS occurs when new observation windows are
shifted by just one sample compared to the preceding ones. In this case, for each class
c, the time complexity of SegmentedLCSS is O(T 2

c). The overall time complexity is then

O(C ∗ T 2
), where C is the number of classes and T stands for the average template length

across the classes. The memory usage in SegmentedLCSS is at most O(T 2), where T is the
length of the longest template.

4.7 Recognition Phase: WarpingLCSS

In the SegmentedLCSS, the LCSS must be recomputed every time the observation window
shifts, in order to find the beginning and end of each gesture. WarpingLCSS is our variant
of LCSS that can find the gesture boundaries without the need of sliding windows, thereby
reducing the computational complexity.

In WarpingLCSS, after each new sample of x(t) is available, the string s is updated by
appending the symbol obtained through the quantization of the sample and the LCSS value
is recomputed accordingly, relying on the previous values.

Given the gesture template for class c, s̄(c), the WarpingLCSS scoreW(s̄(c),s)(i, j) between

the first i symbols of the template s̄(c) and the first j symbols of the string s is obtained
through a modified version of Equation 1 as follows.

3201

Nguyen-Dinh, Calatroni and Tröster

W(s̄(c),s)(i, j) =



0 , if i = 0 or j = 0

W(s̄(c),s)(i− 1, j − 1) + 1 , if s̄(c)(i) = s(j)

max


W(s̄(c),s)(i− 1, j − 1)− p ∗ d(s̄(c)(i), s(j))

W(s̄(c),s)(i− 1, j)− p ∗ d(s̄(c)(i), s̄(c)(i− 1))

W(s̄(c),s)(i, j − 1)− p ∗ d(s(j), s(j − 1))

, otherwise,

(3)

where p is a penalty parameter of the dissimilarity and d(·, ·) is the distance between two
symbols as defined in Equation 2. The rationale of the WarpingLCSS is the following: if
the WarpingLCSS algorithm encounters the same symbol in a template and in the current
string, W is increased by a reward of 1. Otherwise, W is decreased by a penalty which
depends on the parameter p and on the distance between the symbols. Furthermore, if the
string s is “warped”, that is, it contains contiguous repetitions of a symbol due to a slower
execution of a gesture, the penalty is counted only once.

The algorithm starts with an empty string s and W (0, 0) = 0. As new symbols are
appended, W is updated according to Equation 3. If a gesture of a class is performed, it
symbols matching the corresponding template are found and W grows, until reaching a local
maximum and eventually decreasing again, as soon as the gesture is over. A gesture of class
c is recognized for each local maximum of W that also exceeds the rejection threshold εc.
The end point of the gesture is set to the local maximum itself. The start point is found by
tracing back the matching path. The LCSS between the template and the matched gesture
is accumulated during the trace-back process if necessary (i.e., when a gesture is spotted as
belonging to multiple classes) to make a decision (discussed in next section).

When gestures differ from those encoded by the stored templates, W drops significantly
due to the penalty terms. The value of the penalty parameter p depends on the application
and can be chosen by cross-validation to maximize the recognition accuracy.

Figure 6 illustrates an example of behavior of W . Figure 7 shows a close-up of W where
a gesture was matched to a template. It also shows how the WarpingLCSS detects the
temporal boundaries of matched gestures.

4.7.1 Computational Complexity of WarpingLCSS

WarpingLCSS only needs to update the value of W for each new sample. Thus, the time
complexity of WarpingLCSS is O(T). WarpingLCSS has a linear complexity in T compared
to SegmentedLCSS, whose complexity grows quadratically in T . The WarpingLCSS main-
tains at most O(T 2) memory for the need to trace back the starting boundary of detected
gestures.

4.8 Decision Making and Solving Conflicts

The incoming streaming string is concurrently ”compared” with templates of all concerned
gesture classes in TM module. If a gesture is spotted as belonging to multiple classes (i.e.,
boundaries of spotted instances are overlapping), the decision making module (DM) will

3202

Gesture Recognition with Crowdsourced Annotations

S
im

il
a

ri
ty

 (
W

)

Time (Samples)

Figure 6: WarpingLCSS between a template of the gesture “open door” (OD) and a stream-
ing string s, p = 3. The value W is updated for each new sample. The line on the
top shows the ground truth. The small circles show gesture detection at spotting
time.

S
im

il
a

ri
ty

 (
W

)

Time (Samples)

Figure 7: Close-up of the first detected “open door” gesture (OD) in the string s (see Figure
6). The local maximum (LM) marks the end of the gesture, while the start is
traced back through the matching symbols.

resolve conflicts (as discussed below) by deciding which class is the best match. If a gesture
is classified into only one gesture class, the DM will output the class. Otherwise, if no
gesture class is spotted, the DM will output null.
Resolving spotting conflicts: We define the normalized similarity between two strings A and

3203

Nguyen-Dinh, Calatroni and Tröster

B as NormSim(A,B) = LCSS(A,B)/max(‖A‖, ‖B‖), with ‖A‖ and ‖B‖ are the lengths of
the strings A and B, respectively. The NormSim between the template and the matched
gesture is output to the decision making module (DM). The class with highest NormSim is
chosen as the best match. This process is the same for both SegmentedLCSS and Warp-
ingLCSS.

5. Experiments

To analyze the effect of annotation noise in terms of performance of gesture recognition
algorithms, we compare our SegmentedLCSS and WarpingLCSS TMMs against state-of-
the-art recognition methods to assess their robustness. We first present three gesture data
sets used to evaluate the recognition systems. We then describe how synthetic crowdsourced
annotations are obtained. Finally, we discuss baseline methods and evaluation metrics.

5.1 Description of Data Sets

We used three data sets including various gestures which have been labeled manually by
experts. The experts’ annotation is the ground truth of the data sets. The data sets used
also include null class, data which do not correspond to any of the gestures of interest.
The list of gestures of these data sets are shown in Table 1. In each data set, we use a 3D
accelerometer at a subject’ dominant (right) lower arm for the evaluations (30Hz sampling
rate). Following, we describe briefly each data set3.

HCI Gestures

Circle Triangle Square Infinity Slider

Their Speculars Null

Opportunity Gestures

Null clean Table open Drawer 1-2-3

close Drawer 1-2-3 open Door 1-2 close Door 1-2

open Fridge close Fridge open Dishwasher

close Dishwasher drink Cup toggle Switch

Skoda Gestures

write on notepad check gaps on the front door open hood close hood

open left front door close left front door close both left door check trunk gaps

check steering wheel open and close trunk Null

Table 1: Gestures in Opportunity, Skoda, and HCI data sets.

5.1.1 Skoda

The Skoda data set (Zappi et al., 2008) contains 10 manipulative gestures performed in a
car maintenance scenario by one subject. The null class takes 23%. Each gesture class has
about 70 instances. This data set is characterized as low variant in execution because the
subject performed carefully each manipulative gesture in the same manner.

3. Skoda and Opportunity data sets can be downloaded from http://www.wearable.ethz.ch/resources/

Dataset.

3204

http://www.wearable.ethz.ch/resources/Dataset
http://www.wearable.ethz.ch/resources/Dataset

Gesture Recognition with Crowdsourced Annotations

5.1.2 HCI

The HCI data set (Banos et al., 2012) contains 10 gestures executed by a single person.
The gestures are geometric shapes executed with the arm in the vertical plane. This data
set has a low variability in the execution of gestures and well-defined labeling. The null
class takes 57% and each gesture class has about 50 instances.

5.1.3 Opportunity

The Opportunity data set (Roggen et al., 2010) is a rich multi-modal data set collected in a
naturalistic environment akin to an apartment, where users execute 16 daily gestures. The
data set is characterized by a predominance of null class (37%) and a large variability in
the execution of the daily activities. Each gesture class has 20 instances excepts ”Drink
Cup” and ”Toggle Switch” each having 40 instances. Note that in Opportunity data set,
there are three drawers at different heights which makes the recognition more challenging.

5.2 Experiments on Synthesized Crowdsourced Annotation

To analyze how much noise in annotation the gesture recognition methods can tolerate, we
conduct experiments with synthesized annotations. We modify clean annotations from the
three data sets described above by emulating label noise and boundary jitter as discussed in
the taxonomy in Section 3.1. In order to evaluate the effect of the different types of noise,
we run simulations for each type of noise separately.

5.2.1 Label Noise Simulation

In the label noise simulation, we assume the label boundaries are perfect. Let α be the label
noise percentage in each class. This means that α percent of the instances are selected and
their labels are randomly flipped to other classes (including null class). Consequently, each
gesture class will have (1− α) percent of clean instances.

5.2.2 Boundary Jitter Simulation

We run different simulations for different error types in boundary jitter. We assume that
all gesture instances get affected from boundary jitter. Let β be the jitter level defined in
Section 3.2. In the extend simulation, each gesture instance will have an extend level of
β, with boundaries extended at both ends equally (β/2 per side). Similarly, in the shrink
simulation, each gesture instance will be shrunk at both ends equally by β/2. In the shift
left and shift right simulations, each gesture instance is shifted to the left or to the right
respectively by β compared to the correct starting point.

We assume that all gesture instances have the same jitter level β. This assumption is
not realistic however it can show how much jitter level in the training data set the spotting
methods can tolerate given the same style of annotation (for example, a labeler always
extends all his annotation 20% level). For a more realistic scenario where jitter levels vary
from one instance to another instance, the experiment on the real crowdsourced annotation
is presented in Section 6.2.

3205

Nguyen-Dinh, Calatroni and Tröster

5.3 Evaluation with Baseline Methods

To investigate the effect of noisy crowdsourced data sets on gesture recognition, we compare
the performance of recognition methods trained with ground truth annotations against
those trained with crowdsourced annotations. With crowdsourcing-based experiments, the
recognition system is trained on crowdsourced annotations and tested on clean data (i.e.,
annotated by experts). For each data set, we perform a 5-fold cross-validation.

We compare our proposed LCSS-based TMMs with three baselines approaches: the Seg-
mented DTW (Ko et al., 2005; Hartmann and Link, 2010), Nonsegmented DTW (Stiefmeier
et al., 2008) and support vector machines (SVM). For all TMM methods, we use the same
strategy to select templates, i.e., the maximum similarity average for our LCSS-based meth-
ods and the minimum distance average for DTW-based ones. They all have the same quan-
tization preprocessing step as presented in Section 4.2. The rejection thresholds are selected
as discussed in Section 4.4. For SegmentedLCSS and Segmented DTW, the window length
is chosen as the template length.

For SVM, the signals are passed through a sliding window, with 50% overlap. For each
window, mean and variance of the signals are calculated and the obtained feature vectors
are fed into a SVM classifier. We use RBF kernels and the two RBF parameters are selected
by using cross-validation. In this work, we use the LIBSVM library (Chang and Lin, 2011)
for training SVM.

5.3.1 Complexity of Baseline Methods

Segmented DTW belongs, like Segmented LCSS, to the category of sliding window based
template matching algorithms. Therefore, roughly, they have the same computational cost.
However, unlike SegmentedLCSS, in SegmentedDTW the boundaries of the gestures must
be swept exhaustively in the observation window and DTW must be recomputed for each
choice to find the best match (Ko et al., 2005; Hartmann and Link, 2010). Therefore, when
one new sample arrives, the complexity of the SegmentedDTW is O(T 3) in the worst case.
Meanwhile, in SegmentedLCSS the boundary of gesture inside the window can be found
easily via matching points and the observation window is shifted to the first matched point
in the previous recognition process instead of being shifted forward by only one sample.
Thus, SegmentedLCSS has one order of magnitude lower than SegmentedDTW.

Nonsegmented DTW and WarpingLCSS determine gesture occurrences without seg-
menting the stream. Therefore, they achieve the same computational cost and they are
faster than SegmentedLCSS by one order of magnitude.

In the recognition phase, the running time of SVM grows linearly with the length of
the window. Hence, SVM has roughly the same computation cost as WarpingLCSS in the
recognition phase.

5.4 Evaluation Metrics

The distribution of the gesture classes may be highly unbalanced in real-life data sets.
Especially, in our data sets, null class is predominant. Therefore, we assess the performance
of gesture recognition with the weighted average F1 score. The weighted average F1 score is
the sum of the F1 scores of all classes, each weighted according to the proportion of samples

3206

Gesture Recognition with Crowdsourced Annotations

of that particular class. Specifically,

F1score =
∑
c

2 ∗ wc
precisionc ∗ recallc
precisionc + recallc

,

where c is the class index and wc is the proportion of samples of class c; precisionc is the
proportion of samples of class c predicted correctly over the total samples predicted as class
c; recallc is the proportion of samples of class c predicted correctly over the total samples
of class c.

We present two ways of computing the F1 score, either including (F1-Null) or excluding
the null class (F1-NoNull). F1-NoNull does not consider the null class, but still takes into
account false predictions of gesture samples or instances misclassified as null class. The
recognition system that has high values of both F1-Null and F1-NoNull predicts well both
gesture classes and null class.

6. Results and Discussion

In this section we present and discuss the results of the experiments conducted with syn-
thesized and real crowdsourced annotations.

6.1 Results on Synthesized Crowdsourced Annotations

We first present the results with synthesized crowdsourced annotations, sweeping the noise
levels as described in Section 5. The results show that F1-Null and F1-NoNull have a similar
trend of performance as the noise levels increase, therefore we report F1-Null score only.

6.1.1 Label Noise Simulation

Figure 8 shows the results of label noise simulations on the three data sets. WarpingLCSS
and SegmentedLCSS are more robust against label noise compared to SVM and DTW-
based methods. The performance of LCSS-based methods is stable until a label noise
percentage (α) in each class exceeding 70% in Opportunity and HCI data sets and 50%
in the Skoda data set. On average, WarpingLCSS outperforms SVM by 22% F1-Null and
outperforms DTW-based methods by 36% F1-Null in presence of 60% mislabeled instances.
SegmentedLCSS yields similar performance as WarpingLCSS.

SVM performs worse than our LCSS-based methods when α increases. As more label
substitutions are added to each class, SVM gets more confused and its performance decreases
quickly. The degradation of SVM in performance is expected, since each instance contributes
equally to the model building. Hence, wrongly labeled instances can induce the model to
choose incorrect support vectors, which severely degrades the performance. Moreover, since
the SVM method models null class explicitly, it is very sensitive to delete noise. Meanwhile,
TMMs examine patterns of gesture classes and ignore null class in the training phase, thus,
TMMs are not influenced with the delete noise at all.

The reason why LCSS-based TMMs outperform the ones based on DTW lies in the
distance metrics used when selecting the template for each class. Each template is chosen
as the one with the highest average similarity to the other instances belonging to the same
class. This translates into choosing respectively highest average LCSS and lowest average

3207

Nguyen-Dinh, Calatroni and Tröster

DTW distance. While LCSS values between a template and an instance of the same class
are bounded between 0 and the length of the template, DTW can grow indefinitely. For
this reason, when calculating average DTW distances, mislabeled instances bias the average
towards high values, regardless whether correctly labeled instances have a low DTW dis-
tance. Consequently, DTW-based TMMs are more likely to pick wrong templates, leading
to poor performance when α increases.

The difference between LCSS and DTW in choosing templates can be illustrated with a
toy-example. Consider three instances A1, A2 and B which are all labeled as belonging to
class cA but let B be mislabeled, that is, B actually belongs to class cB. To simplify matters,
let us assume LCSS(A1, A2) = 1, LCSS(A1, B) = 0 and LCSS(A2, B) = 0. Similarly, let
us assume DTW (A1, A2) = 0, DTW (A1, B) =∞ and DTW (A2, B) =∞. With LCSS, A1

would have an average similarity of .5 to A2 and B; A2 would have an average similarity of
.5 to A1 and B; B would have an average similarity of 0 to A1 and A2. Thus, LCSS would
pick either A1 or A2 as template for the class cA: both choices would be reasonable. With
DTW, A1 would have an average distance of ∞ to A2 and B; A2 would have an average
distance of ∞ to A1 and B; B would have an average distance of ∞ to A1 and A2. In
this case, the algorithm would not prefer A1 or A2 over B, which can lead to choosing as
template the mislabeled instance B to represent class cA. Of course in practice the values
of the DTW distance are not infinity, in fact the degradation of DTW-based approaches is
not occurring already for a small amount of label noise.

The illustration explains the capability of our LCSS-based methods to pick a good
template among noisy instances for a gesture class as long as the number of good instances
in a gesture class is still predominant.

0 1 5 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
1
_
N
u
ll

 (%)

Opportunity

0 1 5 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

F
1
_
N
u
ll

HCI

0 1 5 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

F
1
_
N
u
ll

Skoda

5 10 20 30 40 50 60 70 80 90100
Extend level(%)

0 1 5 10 20 30 40 50 60 70 80 90100
Extend level(%)

0 1 5

SVM Warping LCSS Segmented LCSS Nonsegmented DTW Segmented DTW

0 1 5 10 20 30 40 50 60 70 80 90
α (%)

0 1 5 10 20 30 40 50 60 70 80 90
α (%)

0 1 5 10 20 30 40 50 60 70 80 90
α (%)

Figure 8: Performance of label noise simulation for the three data sets.

By analyzing the starting points of the curves of Figure 8, obtained with α = 0 (no
noise), we can conclude that our LCSS-based methods have a similar or better performance
compared to the baselines also for the case of clean training data sets.

6.1.2 Extend Jitter Simulation

When temporal boundaries are extended, data belonging to the null class (before and after
the gesture) are labeled as belonging to the gesture class. This impacts SVM and TMMs

3208

Gesture Recognition with Crowdsourced Annotations

differently. In the case of SVM, the null class is modeled explicitly. The noisy feature
vectors extracted from extended parts are added into the feature space of each gesture
class. Besides that, the data really belonging to the gesture are preserved, thus the models
of gesture classes maintain good feature spaces correctly. Therefore, the performance of
SVM depends on how much the noisy feature vectors added into the model of each gesture
class. Accordingly, it relies on the levels of variability of the signals belonging to the null
class. If the variability of the signals belong to the null class is low, even when the extend
level is large, the noisy feature vectors in each gesture class does not grow, leading to the
stable of SVM performance. In the converse case, the noisy feature vectors in each gesture
class will explode as the extend level increases, causing the decrease in the performance of
SVM.

For TMMs instead the null class is recognized in the test data by means of the rejection
threshold εc and no template is built for it. Thus, if symbols belonging to the null class are
present in a test sequence, these will be matched to the symbols present in the extended
gesture instances, inducing the TMMs to recognize gestures instead of null class.

This is confirmed by an analysis of the results, as shown in Figure 9. TMMs can tolerate
up to about 40% extend level in the Opportunity and HCI data sets and about 10% extend
level in the Skoda data set. As the extend level is high, the performance of SVM is stable
in HCI and Skoda data sets, but degrades quickly in Opportunity data set. As explained
above, the reason of the differences among data sets lie in the different levels of variability
of the signals belonging to the null class in the different data sets.

0 1 5 10 20 30 40 50 60 70 80 90100

0.35

0.4

0.45

0.5

0.55

0.6

0.65

F
1
_
N
u
ll

Extend level β (%)

Opportunity

0 1 5 10 20 30 40 50 60 70 80 90100
0.4

0.5

0.6

0.7

0.8

0.9

F
1
_
N
u
ll

Extend level β (%)

HCI

0 1 5 10 20 30 40 50 60 70 80 90100

0.4

0.5

0.6

0.7

0.8

0.9

1

F
1
_
N
u
ll

Extend level β (%)

Skoda

5 10 20 30 40 50 60 70 80 90100
Extend level(%)

0 1 5 10 20 30 40 50 60 70 80 90100
Extend level(%)

0 1 5

SVM Warping LCSS Segmented LCSS Nonsegmented DTW Segmented DTW

Figure 9: Performance of extend jitter simulation.

6.1.3 Shrink Jitter Simulation

When having a shrink jitter noise, the effect is that the methods lose information about the
gesture data, since only parts of the gestures are labeled. This has a stronger effect in SVM,
since the model is corrupted. For TMMs, subsequences are matched, with the effect that
shrunk instances still contain information in form of shorter subsequences that can still be
matched to the test data. This is confirmed by the results, shown in Figure 10.

Our proposed LCSS-based methods achieve the best performance in the three data sets.
All methods can tolerate about 30% shrink level before a degradation compared to training

3209

Nguyen-Dinh, Calatroni and Tröster

0 1 5 10 20 30 40 50 60 70 80 90
0.1

0.2

0.3

0.4

0.5

0.6
F
1
_
N
u
ll

Shrink level β (%)

Opportunity

0 1 5 10 20 30 40 50 60 70 80 90

0.4

0.5

0.6

0.7

0.8

0.9

1

F
1
_
N
u
ll

Shrink level β (%)

HCI

0 1 5 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

F
1
_
N
u
ll

Shrink level β (%)

Skoda

5 10 20 30 40 50 60 70 80 90100
Extend level(%)

0 1 5 10 20 30 40 50 60 70 80 90100
Extend level(%)

0 1 5

SVM Warping LCSS Segmented LCSS Nonsegmented DTW Segmented DTW

Figure 10: Performance of shrink jitter simulation.

with clean data occurs. The Segmented DTW has a similar results as LCSS-based methods
in low-variability data sets (HCI and Skoda). However, Segmented DTW takes a higher
computational cost. Moreover, in our experiments, all gesture instances have the same
shrink level, i.e., after shrinking, instances of a gesture class are still aligned well and DTW
can still achieve a reasonable performance. In a real crowdsourcing annotation setting,
different instances may have different shrink levels (see Figure 3b). In that case, DTW
will accumulate higher distances due to data misalignment at the beginning and the end of
instances (see Nguyen-Dinh et al., 2012 for a more thorough discussion of the weakness of
DTW with misalignment in temporal boundaries).

6.1.4 Shift-Left and Shift-Right Jitter Simulation

When annotations are shifted, a mixture of the effects described in Sections 6.1.2 and 6.1.3
are present. Some samples belonging to gestures are lost and some null class samples are
labeled as belonging to a gesture. Figure 11 shows the results of shift-right jitter simulations
(the shift-left simulations yield similar results). All methods can sustain about 20% shift
level before the performance degrades compared to a clean training data set. LCSS-based
methods perform often better, or as good as DTW-based methods on the data sets that we
examined. TMMs outperform SVM with up to 30% shift level.

6.2 Results on Real Crowdsourced Annotation

To further validate the outcome of the previous experiments, we use the real crowdsourced
annotations discussed in Section 3.3. The annotations were performed by AMT workers on
the Opportunity data set. We use both the annotations obtained in the one-labeler and in
the multiple-labeler scenarios. In these annotations, mixtures of all kinds of the errors listed
in the taxonomy (Section 3.1) are present and jitter levels are varied from one instance to
another instance (see Figure 3).

Figure 12 reports the performance of the different recognition methods on our real
crowdsourced annotation. In the clean annotated Opportunity data set, the performance
of SVM is slightly lower than that of LCSS-based TMMs (only lower by 3% for F1-Null

3210

Gesture Recognition with Crowdsourced Annotations

0 1 5 10 20 30 40 50 60 70 80 90
0.1

0.2

0.3

0.4

0.5

0.6
F
1
_
N
u
ll

Shift−right level β (%)

Opportunity

0 1 5 10 20 30 40 50 60 70 80 90
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
1
_
N
u
ll

Shift−right level β (%)

HCI

0 1 5 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

F
1
_
N
u
ll

Shift−right level β (%)

Skoda

5 10 20 30 40 50 60 70 80 90100
Extend level(%)

0 1 5 10 20 30 40 50 60 70 80 90100
Extend level(%)

0 1 5

SVM Warping LCSS Segmented LCSS Nonsegmented DTW Segmented DTW

Figure 11: Performance of shift-right jitter simulation.

and by 7% for F1-NoNull). Two DTW approaches underperform the others. The reason
is that DTW is very sensitive to high variation in gesture execution (Nguyen-Dinh et al.,
2012) and the Opportunity data set contains large variability in the executions of the daily
activities.

In the multiple-labeler annotation, labels of 80% of the data samples match the ground
truth. Moreover, only 18% of gesture instances are labeled incorrectly and the remainder
are correctly labeled with a jitter level of at least 2% (see Figure 3). The results show
that the performances of all recognition methods are slightly decreased by up to 4% for
F1-Null and 6% for F1-NoNull compared to the training with clean training sets. Our
LCSS-based TMMs yield the best performance. As stated also in Section 6.1.1, the reason
for the robustness of LCSS-based methods lies in their ability to select clean templates also
in presence of annotation noise.

In the AMT one-labeler annotation, only 55% samples are annotated correctly. Addi-
tionally, about 50% of gesture instances are affected by label noise, with many deletions
and substitutions. In each gesture class, instances which are labeled correctly are still the
majority. The result shows that our LCSS-based TMMs still achieve the best performance.
The F1-Null measure decreases by 10% and the F1-NoNull by 16% compared to training
with clean annotations.

In the one-labeler annotation, there is a significant difference in performance between
TMMs and SVM. The performance of SVM decreases dramatically, down to a F1-NoNull
of 5%, which is less than random guessing (which would be around 6% in a 16-class data
set like Opportunity). This result confirms what was already measured with the synthetic
annotations and discussed in Section 6.1.1.

Additionally, we conduct a 2-sided hypothesis test at the 0.01 level of significance as
in Guyon et al. (1998) among the performance of the methods in the three scenarios. The
tests showed that the performance differences among the methods are statistically significant
except the comparison of the F1-Null between SVM and WarpingLCSS and the compari-
son of the F1-NoNull between WarpingLCSS and SegmentedLCSS in the multiple-labeler
annotation.

3211

Nguyen-Dinh, Calatroni and Tröster

The results on the real crowdsourcing annotation confirm that our proposed Warp-
ingLCSS and SegmentedLCSS are robust to noise and yield better performance on crowd-
sourcing data set. WarpingLCSS is preferable in online recognition, since it has a lower
computational cost.

SVM WarpingLCSS LCSS DTW Segmented DTW
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
1

−
N

u
ll

SVM WarpingLCSS LCSS DTW Segmented DTW
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
1

−
N

o
N

u
ll

 Clean Annotation

AMT Multiple−Labeler Annotation

AMT One−Labeler Annotation

SegmentedSVM WarpingLCSS Segmented

LCSS

Nonseg-

mented DTW

Segmented

 DTW

SVM WarpingLCSS Segmented

LCSS

Nonseg-

mented DTW

Segmented

DTW

0

Figure 12: Performance of real crowdsourcing annotation on Opportunity data set.

6.3 A LCSS-based Filtering Component

The results have shown that SVM is very sensitive to the high label noise in the training
data set. Therefore, a preprocessing component to clean the noisy annotation would be
beneficial before using SVM. Given the robustness of our LCSS approaches in selecting
templates among noisy instances, as well as in spotting, we further propose a LCSS-based
filtering component to filter out noise in crowdsourced annotations before training a SVM.
We call this approach FSVM. For each gesture class, the LCSS-based filtering component
first computes a LCSS similarity matrix among all pairs of instances in the class. It then
keeps only the instances that have an average similarity to other instances of the same
class exceeding the average of all the average similarities of all instances in the class. To
clean noise inside the null instances (e.g., delete noise), the filtering component runs the
WarpingLCSS on the data annotated as null and discards any parts which get classified as
any gestures of interest.

For DTW-based TMMs, the performance degrades quickly when the label noise per-
centage in the training data set increases (see Figure 8) because DTW cannot pick a good
template among noisy instances. It is interesting to know how templates selected by LCSS
perform in the DTW spotting methods. Therefore, we conduct experiments for Segmented
DTW and Nonsegmented DTW with templates trained by LCSS. We call these approaches
LCSS-SegDTW and LCSS-NonSegDTW respectively. Note that the algorithm running time
when the system is deployed remains unchanged: only the training phase is affected.

3212

Gesture Recognition with Crowdsourced Annotations

The performances of FSVM, LCSS-SegDTW and LCSS-NonSegDTW are shown in Fig-
ure 13 for the real crowdsourced annotation and in Figure 14 for the synthetic label noise
simulation. We present again the performances of the other methods that we discuss above
for the sake of comparison.

In the real crowdsourced annotation, the filtering increases the performance of SVM by
20% F1-score and of DTW-based methods by 8% F1-score on average in the one-labeler
annotation scenario where high label noise exists (see Figure 3). In the clean annotation and
multiple-labeler annotation, FSVM performs just slightly worse than SVM (only 2%). This
slight decrease can be explained with the fact that the FSVM method decreases the amount
training data compared to pure SVM, because the LCSS-based filtering component in the
FSVM removes some part of training data, considered noisy. Our proposed LCSS-based
methods still outperform FSVM.

The LCSS-NonSegDTW outperforms Nonsegmented DTW in all three scenarios (ex-
pert’s annotation, AMT multiple-labeler annotation and AMT one-labeler annotation).
Similarly, LCSS-SegDTW outperforms SegmentedDTW. The result clarifies that LCSS is
capable of picking a better template among noisy instances, compared to DTW. However,
LCSS-NonSegDTW and LCSS-SegDTW still underperform compared to our LCSS-based
TMMs. The rationale is the same as discussed before. LCSS is more robust to high vari-
ation in daily gesture execution, therefore LCSS-based spotting approaches have a better
performance than DTW-based ones even with the same templates.

SVM FSVM Warping

LCSS

Seg-

LCSS

NSeg-

DTW

LCSS-

NSegDTW

SegDTW LCSS-

SegDTW

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
1

−
N

u
ll

SVM FSVM Warping

LCSS

Seg-

LCSS

NSeg-

DTW

LCSS-

NSegDTW

SegDTW LCSS-

SegDTW

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
1

−
N

u
ll

SVM FSVM Warping

LCSS

SegLCSS NonSeg-

DTW

LCSS-Non

SegDTW

 SegDTW LCSS-

SegDTW

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
1

−
N

u
ll

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
1

−
N

o
N

u
ll

SVM FSVM Warping

LCSS

SegLCSS NonSeg-

DTW

LCSS-Non

SegDTW

 SegDTW LCSS-

SegDTW

0

Clean Annotation

AMT Multiple−Labeler Annotation

AMT One−Labeler Annotation

Figure 13: Performance of real crowdsourcing annotation on Opportunity data set for the
methods with and without filtering. SegLCSS, NonSegDTW, and SegDTW
stand for Segmented LCSS, Nonsegmented DTW and Segmented DTW respec-
tively.

In the synthetic label noise simulation, the FSVM, LCSS-NonSegDTW and LCSS-
SegDTW methods outperform SVM, Nonsegmented DTW and Segmented DTW respec-

3213

Nguyen-Dinh, Calatroni and Tröster

tively and keep the performance stable much longer when α increases. Our proposed LCSS-
based TMMs have similar or better performance than the other methods. Interestingly,
with the same templates picked by LCSS, LCSS-SegDTW and LCSS-NonSegDTW have
a performance which is similar to our LCSS-based methods in the HCI and Skoda data
sets. In the Opportunity data set, the LCSS-NonSegDTW still performs worse than our
SegmentedLCSS and WarpingLCSS methods because LCSS is more robust than DTW to
high variability in daily gestures (Nguyen-Dinh et al., 2012).

The results show that our LCSS approaches can be used in a preprocessing step for
cleaning noisy annotation in the training data for SVM or for selecting templates for DTW-
based TMMs.

0 1 5 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
1
_
N
u
ll

α (%)

Opportunity

0 1 5 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1
F
1
_
N
u
ll

α (%)

HCI

Opportunity
0.9

HCI

1

SkodaSVM FSVM Warping LCSS SegLCSS NonSegDTW LCSS−NonSegDTW SegDTW LCSS−SegDTW

0 1 5 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

F
1
_
N
u
ll

α (%)

Skoda

Figure 14: Performance of label noise simulation for the methods with and without filtering.

6.4 Wrapping up

Our LCSS-based TMMs are robust to labeling noise in crowdsourced gesture data sets.
Moreover, the LCSS-based TMMs also offer other advantages. (1) They are easy to de-
ploy in online gesture recognition system due to low time complexity. (2) In our systems,
signals are converted into symbols, thus SegmentedLCSS lends itself even to embedded
implementations. Specifically, string matching in the deployment phase does not involve
floating-point operations, thus it can be deployed easily in cheap entry-level microcontroller
units. (3) The deployed TMM-based systems are scalable to new gesture classes of interest.
After collecting a training data set for a new class, the training phase only works with this
class to find a template and the rejection threshold for the class. The template is then
integrated directly into the deployed system. Thus, the whole process works smoothly with
the new class without interfering with other existing gesture classes.

Our LCSS-based TMMs have been investigated in online gesture recognition with ac-
celerometer data only. Their ability to work with other sensor modalities (e.g., gyroscopes,
sound) has been investigated and it has shown promising preliminary results in Nguyen-
Dinh et al. (2014).

3214

Gesture Recognition with Crowdsourced Annotations

7. Conclusion and Future Work

In this paper, we investigated the robustness of our proposed LCSS-based TMMs for online
gesture recognition on crowdsourced annotated data sets. The results show that Segment-
edLCSS and WarpingLCSS are robust to crowdsourced annotation noise and yield better
performance than DTW-based methods and SVM. We also introduced a taxonomy of an-
notation noise in crowdsourcing settings and analyzed the distribution of that noise in real
crowdsourced scenarios. Our LCSS-based methods are very robust to label noise because
they are capable of selecting a good template among noisy instances for a class. In presence
of 60% mislabeled instances, LCSS-based methods outperform SVM by 22% F1-score and
outperform DTW-based methods by 36% F1-score on average.

With boundary jitter, the performance of the proposed approaches is comparable to
that on clean data sets if annotations can keep most of the information indicating gestures
(at most 30%-40% jitter level). In extreme cases when jitter levels go beyond that limit,
our LCSS-based TMMS and the other machine learning techniques fail to recognize the
complete segment of gestures. This can be the case for example in real-time labeling, where
labelers tend to indicate quickly when a gesture occurs with only one time point, without
providing the start and end time of the gesture (e.g., the boundary shrinks to a point).
Other techniques (e.g., active learning) are necessary to acquire more labels and improve
label quality in such cases.

We showed that our LCSS-based methods can be also used as a preprocessing filtering
component to clean crowdsourced training data set with severe label noise before feeding
the training sets into other learning techniques such as SVM or select templates for DTW.
The filtering increases the performance of SVM by 20% F1-score and DTW-based methods
by 8% F1-score on average in the noisy real crowdsourced annotations.

In future work, we plan to deploy the system that crowdsources annotated data to a
large number of users who record and contribute gestures. Our methods will then be tested
on such real large crowdsourced data sets, with the ultimate goal of having a collaborative
database of gestures and associated models with direct applications with wearable sensors.

Acknowledgments

The authors would like to thank Dr. Daniel Roggen (University of Sussex) for his useful
comments. This work has been supported by the Swiss Hasler Foundation project Smart-
DAYS.

References

J. Aggarwal and M. Ryoo. Human activity analysis: A review. ACM Computing Surveys,
43(3):16:1–16:43, April 2011.

J. Alon, V. Athitsos, Q. Yuan, and S. Sclaroff. A unified framework for gesture recognition
and spatiotemporal gesture segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 31(9):1685–1699, Sept 2009.

3215

Nguyen-Dinh, Calatroni and Tröster

R. Amini and P. Gallinari. Semi-supervised learning with an imperfect supervisor. Knowl-
edge and Information Systems, 8:385–413, November 2005.

D. Angluin and P. Laird. Learning from noisy examples. Machine Learning, 2:343–370,
April 1988.

O. Banos, A. Calatroni, M. Damas, H. Pomares, I. Rojas, H. Sagha, J. del R. Millán,
G. Tröster, R. Chavarriaga, and D. Roggen. Kinect=imu? learning mimo signal map-
pings to automatically translate activity recognition systems across sensor modalities. In
Proceedings of the 2012 16th International Symposium on Wearable Computers (ISWC),
pages 92–99, 2012.

L. Bao and S. S. Intille. Activity recognition from user-annotated acceleration data. In
Proceedings of the 2nd International Conference on Pervasive Computing, 2004.

B. Bauer and K. Karl-Friedrich. Towards an automatic sign language recognition system
using subunits. In International Gesture Workshop on Gesture and Sign Languages in
Human-Computer Interaction, pages 64–75. 2002.

M. Berchtold, M. Budde, D. Gordon, H. Schmidtke, and M. Beigl. Actiserv: Activity
recognition service for mobile phones. In Proceedings of the 2010 14th International
Symposium on Wearable Computers (ISWC), pages 1–8, Oct 2010.

R. Bowden, D. Windridge, T. Kadir, A. Zisserman, and M. Brady. A linguistic feature
vector for the visual interpretation of sign language. In European Conference on Computer
Vision, ECCV ’04. 2004.

C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM Trans-
actions on Intelligent Systems and Technology, 2:27:1–27:27, 2011.

L. Chen, J. Hoey, C. D. Nugent, D. J. Cook, and Z. Yu. Sensor-based activity recognition.
In IEEE Transactions on Systems, Man and Cybernetics, 2012.

H. Cooper, E.-J. Ong, N. Pugeault, and R. Bowden. Sign language recognition using sub-
units. Journal of Machine Learning Research, 13(1):2205–2231, July 2012.

T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algorithms. 2nd
edition, 2001. ISBN 0070131511.

A. P. Dawid and A. M. Skene. Maximum likelihood estimation of observer error-rates using
the EM algorithm. Applied Statistics, 28(1):20–28, 1979.

J. Deng and H. Tsui. An HMM-based approach for gesture segmentation and recognition.
In Proceedings of the International Conference on Pattern Recognition, ICPR ’00, 2000.

A. Doan, R. Ramakrishnan, and A. Y. Halevy. Crowdsourcing systems on the world-wide
web. Communications of the ACM, 54(4):86–96, April 2011.

M. Elmezain, A. Al-Hamadi, and B. Michaelis. Improving hand gesture recognition using
3D combined features. In Proceedings of the 2nd International Conference on Machine
Vision, ICMV ’09, pages 128–132, Dec 2009.

3216

Gesture Recognition with Crowdsourced Annotations

G. Fang, X. Gao, W. Gao, and Y. Chen. A novel approach to automatically extracting basic
units from chinese sign language. In Proceedings of the 17th International Conference on
Pattern Recognition, volume 4, pages 454–457, Aug 2004.

J. Froehlich, M. Y. Chen, S. Consolvo, B. Harrison, and J. A. Landay. Myexperience: A
system for in situ tracing and capturing of user feedback on mobile phones. In Proceed-
ings of the 5th International Conference on Mobile Systems, Applications and Services,
MobiSys ’07, 2007.

D. Frolova, H. Stern, and S. Berman. Most probable longest common subsequence for
recognition of gesture character input. IEEE Transactions on Cybernetics, 43(3):871–
880, June 2013.

T.-C. Fu. A review on time series data mining. Engineering Applications of Artificial
Intelligence, 24(1):164–181, February 2011.

N. Gayar, F. Schwenker, and G. Palm. A study of the robustness of KNN classifiers trained
using soft labels. In Artificial Neural Networks in Pattern Recognition, volume 4087.
2006.

I. Guyon, J. Makhoul, R. Schwartz, and V. Vapnik. What size test set gives good error
rate estimates? IEEE Transactions on Pattern Analysis and Machine Intelligence, 20
(1):52–64, Jan 1998.

J. Hao and T. Shibata. Digit-writing hand gesture recognition by hand-held camera motion
analysis. In Proceedings of the 3rd International Conference on Signal Processing and
Communication Systems, ICSPCS ’09, pages 1–5, Sept 2009.

B. Hartmann and N. Link. Gesture recognition with inertial sensors and optimized DTW
prototypes. In Proceedings of the 2010 IEEE International Conference on Systems Man
and Cybernetics (SMC), 2010.

Z. He, L. Jin, L. Zhen, and J. Huang. Gesture recognition based on 3D accelerometer
for cell phones interaction. In IEEE Asia Pacific Conference on Circuits and Systems
(APCCAS), pages 217–220, Nov 2008.

J. Howe. The Rise of Crowdsourcing. (accessed July 20, 2010), jun 2006. URL http:

//www.wired.com/wired/archive/14.06/crowds.html.

P. G. Ipeirotis, F. Provost, and J. Wang. Quality management on Amazon Mechanical
Turk. In Proceedings of the ACM SIGKDD Workshop on Human Computation, HCOMP
’10, pages 64–67, 2010.

H. Junker, O. Amft, P. Lukowicz, and G. Tröster. Gesture spotting with body-worn inertial
sensors to detect user activities. Pattern Recognition, 41(6), 2008.

C. Keskin, A. Cemgil, and L. Akarun. DTW based clustering to improve hand gesture
recognition. In Proceedings of the 2nd International Conference on Human Behavior
Unterstanding, HBU’11, pages 72–81. 2011.

3217

http://www.wired.com/wired/archive/14.06/crowds.html
http://www.wired.com/wired/archive/14.06/crowds.html

Nguyen-Dinh, Calatroni and Tröster

A. Kittur, E. H. Chi, and B. Suh. Crowdsourcing user studies with mechanical turk. In
Proceedings of the Twenty-sixth SIGCHI Conference on Human Factors in Computing
Systems, CHI ’08, pages 453–456, 2008.

M. H. Ko, G. West, S. Venkatesh, and M. Kumar. Online context recognition in multisensor
systems using dynamic time warping. In Proceedings of the Intelligent Sensors, Sensor
Networks and Information Processing Conference, 2005.

W. S. Lasecki, Y. C. Song, H. Kautz, and J. P. Bigham. Real-time crowd labeling for
deployable activity recognition. In Proceedings of the 2013 Conference on Computer
Supported Cooperative Work, CSCW ’13, pages 1203–1212, 2013.

N. D. Lawrence and B. Schölkopf. Estimating a kernel fisher discriminant in the presence
of label noise. In Proceedings of the Eighteenth International Conference on Machine
Learning, ICML ’01, pages 306–313, 2001.

H.-K. Lee and J. H. Kim. An hmm-based threshold model approach for gesture recogni-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(10):961–973,
October 1999.

L.-V. Nguyen-Dinh, D. Roggen, A. Calatroni, and G. Tröster. Improving online gesture
recognition with template matching methods in accelerometer data. In Proceedings of the
12th International Conference on Intelligent Systems Design and Applications (ISDA),
2012.

L.-V. Nguyen-Dinh, U. Blanke, and G. Tröster. Towards scalable activity recognition:
Adapting zero-effort crowdsourced acoustic models. In Proceedings of the 12th Interna-
tional Conference on Mobile and Ubiquitous Multimedia, MUM ’13, 2013a.

L.-V. Nguyen-Dinh, M. Rossi, U. Blanke, and G. Tröster. Combining crowd-generated media
and personal data: Semi-supervised learning for context recognition. In Proceedings of
the 1st ACM International Workshop on Personal Data Meets Distributed Multimedia,
PDM ’13, 2013b.

L.-V. Nguyen-Dinh, C. Waldburger, D. Roggen, and G. Tröster. Tagging human activities
in video by crowdsourcing. In Proceedings of the ACM International Conference on
Multimedia Retrieval, ICMR ’13, 2013c.

L.-V. Nguyen-Dinh, A. Calatroni, and G. Tröster. Towards a unified system for multimodal
activity spotting: Challenges and a proposal. In Proceedings of the ACM Conference on
Pervasive and Ubiquitous Computing Adjunct Publication, UbiComp ’14 Adjunct, 2014.

N. Ravi, N. D, P. Mysore, and M. L. Littman. Activity recognition from accelerometer data.
In Proceedings of the Seventeenth Conference on Innovative Applications of Artificial
Intelligence(IAAI), pages 1541–1546. AAAI Press, 2005.

V. C. Raykar, S. Yu, L. H. Zhao, G. H. Valadez, C. Florin, L. Bogoni, and L. Moy. Learning
from crowds. Journal of Machine Learning Research, 11, 2010.

3218

Gesture Recognition with Crowdsourced Annotations

D. Roggen, A. Calatroni, M. Rossi, T. Holleczek, K. Forster, G. Troster, and et al. Collecting
complex activity data sets in highly rich networked sensor environments. In Proceedings
of the 7th International Conference on Networked Sensing Systems. IEEE Press, 2010.

M. Rossi, O. Amft, and G. Tröster. Recognizing daily life context using web-collected audio
data. In Proceedings of the 16th IEEE International Symposium on Wearable Computers
(ISWC), June 2012.

T. Schlömer, B. Poppinga, N. Henze, and S. Boll. Gesture recognition with a Wii controller.
In Proceedings of the 2nd International Conference on Tangible and Embedded Interaction,
2008.

V. S. Sheng, F. Provost, and P. G. Ipeirotis. Get another label? improving data quality
and data mining using multiple, noisy labelers. In Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’08, 2008.

H. Stern, M. Shmueli, and S. Berman. Most discriminating segment - longest common subse-
quence (MDSLCS) algorithm for dynamic hand gesture classification. Pattern Recognition
Letters, 34(15):1980–1989, 2013.

T. Stiefmeier, D. Roggen, G. Ogris, P. Lukowicz, and G. Tröster. Wearable activity tracking
in car manufacturing. IEEE Pervasive Computing Magazine, 7(2), 2008.

M. Stikic, D. Larlus, S. Ebert, and B. Schiele. Weakly supervised recognition of daily life
activities with wearable sensors. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 33(12):2521–2537, December 2011.

K. Van Laerhoven, D. Kilian, and B. Schiele. Using rhythm awareness in long-term activity
recognition. In Proceedings of the IEEE International Symposium on Wearable Computers
(ISWC), October 2008.

C. Vogler and D. N. Metaxas. Toward scalability in ASL recognition: Breaking down
signs into phonemes. In Gesture-Based Communication in Human-Computer Interaction,
Lecture Notes in Computer Science, pages 211–224, 1999.

J. A. Ward, P. Lukowicz, and H. W. Gellersen. Performance metrics for activity recognition.
ACM Transactions on Intelligent Systems and Technology, 2(1), January 2011.

A. Wilson and A. Bobick. Parametric hidden markov models for gesture recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 21, 1999.

J. Wu, G. Pan, D. Zhang, G. Qi, and S. Li. Gesture recognition with a 3-D accelerom-
eter. In Proceedings of the 6th International Conference on Ubiquitous Intelligence and
Computing, UIC ’09, pages 25–38, 2009.

H.-S. Yoon, J. Soh, Y. J. Bae, and H. S. Yang. Hand gesture recognition using combined
features of location, angle and velocity. Pattern Recognition, 34, 2001.

M.-C. Yuen, I. King, and K.-S. Leung. A survey of crowdsourcing systems. In Social-
Com/PASSAT, pages 766–773, 2011.

3219

Nguyen-Dinh, Calatroni and Tröster

P. Zappi, C. Lombriser, T. Stiefmeier, E. Farella, D. Roggen, L. Benini, and G. Tröster.
Activity recognition from on-body sensors: Accuracy-power trade-off by dynamic sensor
selection. In Proceedings of the 5th European Conference on Wireless Sensor Networks,
EWSN’08, pages 17–33, 2008.

3220

	Introduction
	Contributions

	Related Work
	Annotation Techniques
	Crowdsourcing
	Online Gesture Recognition Methods
	Robustness against Annotation Noise

	Crowdsourcing in Gesture Recognition
	Taxonomy of Sources of Annotation Noises
	Annotation Noise Parameters
	Annotation Noise Statistics from A Real Crowdsourcing Experiment

	SegmentedLCSS and WarpingLCSS Gesture Recognition Methods
	The Longest Common Subsequence Algorithm (LCSS)
	Training Phase: Quantization Step
	Training Phase: Template Construction
	Training Phase: Calculation of Rejection Thresholds
	Recognition Phase: Quantization Step
	Recognition Phase: SegmentedLCSS
	Computational Complexity of SegmentedLCSS

	Recognition Phase: WarpingLCSS
	Computational Complexity of WarpingLCSS

	Decision Making and Solving Conflicts

	Experiments
	Description of Data Sets
	Skoda
	HCI
	Opportunity

	Experiments on Synthesized Crowdsourced Annotation
	Label Noise Simulation
	Boundary Jitter Simulation

	Evaluation with Baseline Methods
	Complexity of Baseline Methods

	Evaluation Metrics

	Results and Discussion
	Results on Synthesized Crowdsourced Annotations
	Label Noise Simulation
	Extend Jitter Simulation
	Shrink Jitter Simulation
	Shift-Left and Shift-Right Jitter Simulation

	Results on Real Crowdsourced Annotation
	A LCSS-based Filtering Component
	Wrapping up

	Conclusion and Future Work

