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Abstract

Clinical research has demonstrated the efficacy of closed-loop control of anesthesia using
the bispectral index of the electroencephalogram as the controlled variable. These con-
trollers have evolved to yield patient-specific anesthesia, which is associated with improved
patient outcomes. Despite progress, the problem of patient-specific anesthesia remains
unsolved. A variety of factors confound good control, including variations in human physi-
ology, imperfect measures of drug effect, and delayed, hysteretic response to drug delivery.
Reinforcement learning (RL) appears to be uniquely equipped to overcome these challenges;
however, the literature offers no precedent for RL in anesthesia. To begin exploring the
role RL might play in improving anesthetic care, we investigated the method’s application
in the delivery of patient-specific, propofol-induced hypnosis in human volunteers. When
compared to performance metrics reported in the anesthesia literature, RL demonstrated
patient-specific control marked by improved accuracy and stability. Furthermore, these
results suggest that RL may be considered a viable alternative for solving other difficult
closed-loop control problems in medicine. More rigorous clinical study, beyond the confines
of controlled human volunteer studies, is needed to substantiate these findings.

Keywords: reinforcement learning, bispectral index, propofol, anesthesia, hypnosis,
closed-loop control

1. Introduction

When compared to standard population-based dosing, patient-specific drug administration
is generally preferred in the clinical practice of anesthesia. Computer-controlled drug deliv-
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ery systems have been investigated as a means of achieving patient-specific anesthesia(Liu
et al., 2013, 2012; Hahn et al., 2011; Hemmerling et al., 2010), and their application is associ-
ated with a number of favorable patient outcomes, including decreased intraoperative drug
consumption and shortened postoperative recovery times (Liu et al., 2006; Servin, 1998;
Theil et al., 1993). Historically, the application of conventional control techniques, such
as proportional-integral-derivative (PID) control, in closed-loop anesthesia has shown mod-
erate success (Absalom and Kenny, 2003). However, these historical successes have been
constrained by the PID method’s inherent limitations, as well as the complexity of human
physiology (Wood, 1989). To improve control performance, clinical study has broadened
to include techniques commonly associated with intelligent systems, most notably Bayesian
filtering and fuzzy control(Ching et al., 2013; Shanechi et al., 2013; De Smet et al., 2008;
Esmaeili et al., 2008; Carregal et al., 2000; Schaublin et al., 1996).

Reinforcement learning (RL), one of many intelligent system techniques, has demon-
strated proficiency in difficult robotic control tasks (Gullapalli, 1993). However, RL has
no reported application to clinical control problems, with the exception of work leading to
this study (Moore et al., 2011a,b, 2004). Nonetheless, RL has a presence in medicine, and
reported applications include ultrasound image segmentation (Sahba et al., 2008) and plan-
ning tasks, such as scheduling of HIV therapy (Ernst et al., 2006), optimizing deep-brain
stimulation in epilepsy treatment (Guez et al., 2008), dosing strategies for anemia manage-
ment in patients with chronic renal failure (Mart́ın-Guerrero et al., 2009; Gaweda et al.,
2006), and clinical trial design (Zhao et al., 2009). These applications support the assertion
that reinforcement learning can serve as a “medical decision aid” (Mart́ın-Guerrero et al.,
2009). However, RL’s aptitude for specialized clinical application remains incompletely ex-
plored since these applications were non-clinical. In the examples cited, RL was applied to
data collected from patients, but no RL algorithm contributed directly to patient care.

This lack of direct application does not imply that RL is unsuited for computer-controlled
drug delivery since the method has been successfully applied to critical real-time industrial
control tasks (Ernst et al., 2009). Furthermore, the basic principles of reinforcement learn-
ing (dynamic programming and value function optimization) have been studied in depth-
of-anesthesia control with favorable results (Hu et al., 1994). Thus, the two-fold objectives
of this study were to a) investigate the clinical suitability of reinforcement learning for
closed-loop control of intravenous propofol anesthesia in healthy human volunteers, and
b) compare the performance of RL control against published clinical metrics. To accom-
plish these objectives, an RL agent was developed, tested in silico, and then evaluated in
healthy volunteers under an IRB-approved study protocol in the Stanford University School
of Medicine Department of Anesthesiology, Perioperative, and Pain Medicine.

2. Background

To begin answering the question “why should reinforcement learning be applied in anes-
thesia,” this section establishes the problem with an introduction to the motivation and
challenges of closed-loop control of intraoperative hypnosis. Discussion continues by sum-
marizing the manner in which RL can address deficiencies in some contemporary approaches.

656



Reinforcement Learning for Closed-Loop Propofol Anesthesia

2.1 Propofol-Induced Hypnosis

Propofol is a short-acting sedative agent administered intravenously to achieve induction
and maintenance of general anesthesia in the operating room and other critical care arenas.
Propofol suppresses higher brain function to produce hypnosis, a suppression of conscious-
ness.1 Propofol, like other hypnotic agents, achieves unconsciousness “by altering neuro-
transmission at multiple sites in the cerebral cortex, brain stem, and thalamus.” (Brown
et al., 2010, p. 2641). For a thorough treatment of propofol’s mechanism of action, see
Brown et al.

The anesthesia community has studied automated delivery of propofol-induced hypnosis,
in part, because the drug and its pharmacodynamic effects satisfy basic requirements for
closed-loop control. To accomplish such feedback control, a controller must first be equipped
to a) influence the desired control parameter, and b) observe the affects of its actions on
that control parameter. The short-acting nature of propofol, characterized by rapid onset
and recovery, readily satisfies the first requirement (Vanlersberghe and Camu, 2008). The
complexities of the human central nervous system and its interaction with propofol make
objective, quantitative measurement of hypnosis (control effect) challenging, but—as the
following sections show—measurement of propofol effect is feasible.

2.2 Depth of Hypnosis Measurement

This section introduces the use of the electroencephalogram and its derivatives in the as-
sessment of hypnotic depth. Some of the challenges associated with these methods are also
discussed.

2.2.1 Electroencephalogram (EEG)

In closed-loop regulation of hypnosis, the controlled variable is the patient’s level of con-
sciousness, or awareness. Cerebral electrical activity is correlated with consciousness (Brown
et al., 2010), and hypnosis (suppression of awareness) displays as change in cortical electrical
activity. Electroencephalography, the measurement of cerebral electrical activity, produces
the electroencephalogram (EEG). The EEG is often obtained with an non-invasive array
of scalp sensors. Normal, waking cortical electrical activity is marked by periodic signals
in five narrow frequency bands, α, β, γ, δ, and θ. When an EEG is obtained transcuta-
neously, signals within these bands range in the tens of millivolts. Accurate capture of this
low-power signal is complicated by non-cortical biologic artifacts: eye motion and blinking,
facial muscle movement, and cardiac pulse (Fitzgibbon et al., 2007).2 Other factors, like
changes in skin conductance, can impact the fidelity of signal acquisition. The EEG is also
susceptible to contamination from electrical sources found in the intraoperative environ-
ment: power lines, overhead lighting, electrocautery, and other medical devices. For these
reasons, isolation and removal of non-cortical artifacts remains a challenging problem for
EEG analysis and interpretation.

1. Hypnosis is just one member of a collection of clinical endpoints that comprise “general anesthesia”;
others include akinesia (immobility), amnesia, analgesia, and autonomic system stability.

2. Electrooculography (EOG), electromyography (EMG) and electrocardiography (ECG) are the practices
of measuring these “unwanted” signals.
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Research has shown that when Fourier analysis (or another time-frequency analysis
method) is applied to the EEG, the energy content within the five spectral bands can
provide insight into depth of hypnosis since the spectral features of the EEG signal are
modulated with level of consciousness. Studies demonstrate that the hypnotic component
of general anesthesia “produces distinct patterns on the electroencephalogram (EEG), the
most common of which is the progressive increase in low-frequency, high-amplitude activity
as the level of general anesthesia deepens.” (Brown et al., 2010, p. 2638).

2.2.2 Bispectral Analysis of the EEG

The practiced anesthetist can discern and interpret changes in EEG power spectra asso-
ciated with hypnosis induction, maintenance, and emergence; however, the relationship of
these spectral components (and their changes) to depth of hypnosis is not obvious. Thus,
processed EEG variables have been studied with the aim of developing a “simplified inter-
pretation of the EEG” for objective, broadly-applicable measures of anesthetic depth (Sigl
and Chamoun, 1994, p.392). One such indicator, the bispectral index (Covidien, Mansfield,
MA), is well-reported in the anesthesia literature. BIS, as it is known, differs from conven-
tional quantitative EEG parameters in that it augments traditional power spectral (Fourier)
methods with bispectral analysis, a means of measuring phase coupling between pairs of fre-
quency components. This added dimension of bicoherence can improve identification of
EEG patterns associated with varying levels of cortical activity.

2.2.3 The Bispectral Index of the EEG (BIS)

Sigl and Chamoun define the bispectral index of the EEG as “a multivariate measure incor-
porating bispectral and time-domain parameters derived from the EEG,” (1994, p. 402).
This proprietary index was developed by statistically linking the EEG’s time- and frequency-
domain features to a database of hand-selected “behavioral assessments of sedation and
hypnosis,” (Rampil, 1997, p. 998). The result, BIS, is a weighted sum of processed EEG
features tied to the clinical endpoints of hypnosis that is “insensitive to the specific anes-
thetic or sedative agent,” (Rampil, 1997, p. 1000). This bispectral index lies in the range [0,
100] (Sigl and Chamoun, 1994; Rampil, 1997). A measure of 100 is associated with normal
wakefulness; a value of 0 correlates to an iso-electric brain state.3

Research has shown that evidence of propofol’s pharmacodynamic effect may be ob-
served in the bispectral index of the EEG: “The BIS both correlated well with the level
of responsiveness and provided an excellent prediction of the loss of consciousness. These
results imply that BIS may be a valuable monitor of the level of sedation and loss of con-
sciousness for propofol, midazolam, and isoflurane.” (Glass et al., 1997). This finding
is consistent with expectation: BIS was developed to be a statistical correlation between
EEG patterns and clinical attributes of hypnosis: loss of consciousness, progressive loss of
reflexes, return of consciousness, etc.

However, BIS has been observed to be an imperfect indicator of hypnotic condition.
Some of the challenges stem from noise contamination in the underlying EEG signal. For
example, EMG signals, such as those resulting from eye or facial motion, may overlap the

3. Thorough treatments of bispectral analysis of the EEG may be found in Sigl and Chamoun (1994) and
Rampil (1997).
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EEG’s higher frequency β and γ bands. This sort of EEG signal contamination has been
associated with elevated BIS values in surgical patients (Renna et al., 2002). To attenuate
the influence of electrical noise, the A-2000 BIS monitor, like the one used in this study,
applies selective band-pass and low-pass digital filters in its process of computing BIS.

Research also indicates that contamination of the BIS signal extends beyond external
electrical noise; normal physiologic processes can play a role. BIS and EMG variability,
characterized by relatively high-frequency fluctuation, has been observed to predict somatic
responses to noxious stimulus (Bloom et al., 2008; Greenwald and Rosow, 2006). In more
recent work, measures of BIS and EMG variability were computed as standard deviations
over a 3-min window of samples. The resulting sBIS and sEMG indicators predicted somatic
response to painful stimuli (Mathews et al., 2012). The implication is meaningful to closed-
loop control of hypnosis: BIS variability seems positively correlated to lack of analgesia,
rather than hypnosis. Since propofol is not an analgesic agent, it’s reasonable to conclude
that high-frequency changes in BIS should not contribute to propofol delivery decisions. In
acknowledgment of these issues, the A-2000 BIS monitor provides a user-selectable option
that applies either a 15-sec or 30-sec smoothing window to its BIS measurements. The
manual advises the user to select the smoothing windows according to a desire for “decreased
delay” or “decreased variability.”

Other research highlights additional sources of “noise” that may influence the BIS signal.
Dahaba provides an excellent survey of clinical and physiological conditions that perturb
BIS measurement (2005). In light of these factors, it’s reasonable to consider BIS as a
probabilistic indicator of hypnotic depth, not an absolute one. As such, probabilistic control
methods, like RL, become increasingly relevant.

2.3 Motivation for Good Control of Hypnosis

BIS has been recently studied as a mitigation for risk of unintended intraoperative aware-
ness, defined as conscious behavior (motion, vocalization, etc.) during surgery or post-
operative recall of intraoperative events. Unintentional intraoperative awareness can chal-
lenge the anesthetist because doses ensuring adequate hypnosis may lead to hemodynamic
and/or respiratory instabilities in sensitive patients (i.e., trauma, critically-ill, and elderly).
While the incidence of intraoperative awareness is estimated to be low, 0.13% (Sebel et al.,
2004), it can be severely traumatic for the patient. BIS monitoring has been recommended
as a preventative measure (Sandin et al., 2000) and has been reported to reduce the in-
cidence of unintended intraoperative awareness (Myles et al., 2000). This finding remains
controversial since this evidence comes from observational clinical trials (Avidan et al.,
2008), and the execution of a convincing prospective clinical trial is logistically difficult.

At first glance, the risk of unintended intraoperative awareness implies that “deeper is
better.” However, higher doses of propofol are correlated with respiratory and hemodynamic
depression. Emerging research substantiates a balance in hypnosis with reports of a possible
causal link between deep anesthesia (BIS < 45) and postoperative morbidity (Lindholm
et al., 2009). Again, this conclusion requires further substantiation before wide-spread
acceptance.

These opposing concerns, awareness versus toxicity, as well as the favorable outcomes
cited previously, link good control of intraoperative anesthesia to good patient care. Conse-
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quently, closed-loop control of propofol-induced hypnosis is well-represented in the literature
(Liu et al., 2013, 2012; Hahn et al., 2011; Hemmerling et al., 2010; Struys et al., 2007, 2004;
Absalom and Kenny, 2003; Leslie et al., 2002; Absalom et al., 2002; Sakai et al., 2000;
Struys et al., 2001), yet accurate and stable control of intraoperative hypnosis remains an
incompletely solved problem.

2.4 Challenges to Optimal Control of Hypnosis

Optimal control of propofol-induced hypnosis is a difficult problem for several reasons.
Properties of the patient, the drug, and the intraoperative environment all contribute con-
founding influences. The patient’s age, gender, and ethnicity, as well as disease and surgical
intervention (Schnider et al., 1998; Barvais et al., 1996), are known to affect response to
propofol infusion. Additionally, “intra-subject heterogeneity”, or tendency for change in an
individual (Rigby-Jones and Sneyd, 2012), assures that any accurate characterization of a
patient’s propofol response has a limited lifetime. For these reasons, commercially available
target-controlled infusion (TCI) systems rely on general, population models of drug effect,
leaving them unequipped for patient-specific drug delivery.

Additionally, a system regulating a patient’s propofol concentration is limited to an
asymmetric influence that further hinders good control. Propofol concentrations can be
readily increased via intravenous infusion; however, the system lacks a direct means of
decreasing concentration. Instead, the controller must wait for the patient to decrease
propofol concentration through metabolism or redistribution. As a consequence, the con-
troller possesses a direct means of increasing hypnosis, but an indirect means of decreasing
hypnosis.

Other aspects of propofol infusion are problematic. The delay between action (infusion)
and effect (hypnosis) can exceed two minutes. This delay (transport delay in control liter-
ature) is variable, hysteretic, and demonstrates flow rate dependence (Struys et al., 2007;
Pilge et al., 2006). In addition, propofol’s effect on consciousness is nonlinear, meaning
that a fixed dose of propofol can impact BIS differently, depending on the patient’s level of
hypnosis at the time of infusion. As a result, the controller cannot always assume that a
chosen dose will always have the same effect.

Finally, hypnosis is a balance of stimulus and drug effect. In the absence of stimulus,
a relatively low concentration of propofol can yield the desired BIS. The onset of a routine
surgical event (incision, manipulation, etc.) can disturb this equilibrium, rendering the
patient’s previously adequate concentration insufficient and leading to an undesired increase
in consciousness. Thus, a clinically relevant hypnosis control system should be prepared to
compensate for those external influences that can negatively impact control (Röpcke et al.,
2001b; Ausems et al., 1986).

2.5 Conventional Control

Much of the initial progress in closed-loop anesthesia has been accomplished using con-
ventional control techniques, like Proportional-Integral-Derivative (PID) control (Absalom
et al., 2002; Struys et al., 2001; Sakai et al., 2000; Kenny and Mantzaridis, 1999; Mortier
et al., 1998). These classical control methods enjoy widespread industrial application due
to their simplicity of design and implementation, as well as their success in many control
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problems. Furthermore, a measure of the PID technique’s popularity is due to its founda-
tion in classical control theory, its lack of dependence upon an accurate process model, and
its ease in implementation.

Given the clinical interest in well-controlled hypnosis, it is no surprise that PID (along
with its PI and PD variants) has been applied to hypnosis control. Kenny and Mantzaridis
used a basic proportional-integral controller to regulate hypnosis in surgical patients (1999).
This automated system delivered satisfactory anesthesia in a population of 100 patients and
demonstrated that the hypnotic process, although noisy and uncertain, may be regulated
using conventional techniques. Further research has demonstrated similar results: Absalom
et al. coupled the bispectral index with a PID controller and observed largely satisfactory
results in the administration of general anesthesia in ten patients (2002).

Despite instances of successful PID control in general anesthesia, the technique should
not be applied universally with an expectation of similar results. Constant-coefficient PID
methods, like those historically applied in hypnosis control, are not equipped to satisfac-
torily control processes with variable time delays, variable plant parameters, significant
nonlinearities, and non-negligible process noise. Olkkola summarizes the use of PID in
closed-loop control of anesthesia: “PID controllers are in general not universally applicable
to nonlinear concentration-response curves. . . ” (Olkkola et al., 1991, 420). Our simulation
work supports this assertion (Moore, 2003). In general, a PID controller may be tuned to
perform well for an arbitrary patient at a fixed level of hypnosis. However, the same con-
troller would perform poorly when patient characteristics or hypnosis target varied. More
convincingly, clinical observations support Olkkola’s claim, as well. Absalom et al. observed
oscillation around the BIS setpoint in the operating room (2002), and Leslie et al. observed
similar oscillations in a conscious sedation experiment (2002).

Given the known limitations of the constant-coefficient PID controller, as well as the
reported instances of sub-optimal control, it can be reasonably concluded that constant-
coefficient PID is not the ideal solution (Struys et al., 2001). Current anesthesia literature
suggests the ideal solution is a model-based, adaptive system(Ching et al., 2013; Shanechi
et al., 2013). These systems do not exclude the PID class of controllers since neural networks,
among other methods, have been used to establish relationships between system inputs and
variable PID coefficients (Omatu et al., 1996). However, it should be noted that adding
a model increases the complexity of the PID controller, thereby eroding its advantage of
simplicity.

2.6 Reinforcement Learning

Reinforcement learning (RL) is an intelligent control method that provides a structured,
mathematically robust mechanism for goal-directed decision making in which long-term gain
is maximized (Sutton and Barto, 1998; Kaelbling et al., 1996). Unlike supervised learning
methods, no examples of desired behavior are provided during training; instead, favorable
action choices are encouraged through positive and/or negative reinforcements. Under this
framework, knowledge is gained through experimentation: actions are chosen, effects are
observed, and rewards are gained.
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3. Methods

To begin assessing the suitability of reinforcement learning for closed-loop control of hypno-
sis, an RL agent was developed in the Texas Tech University Computer Science Department
under the supervision of the study’s principal technical investigator, Dr. Pyeatt. In coop-
eration with the Stanford University School of Medicine Department of Anesthesiology,
Perioperative and Pain Medicine, intraoperative patient models were developed for agent
training and in silico evaluation under the supervision of the study’s principal clinical in-
vestigator, Dr. Doufas. Section 3.1 summarizes evolution of the RL agent; however, more
thorough treatment of the design, development, and in silico testing of the RL agent may
be found in our previously reported work (Moore et al., 2011a,b). After the agent was
validated in simulation and the clinical study protocol gained Institutional Review Board
approval, fifteen healthy volunteers underwent RL-controlled propofol hypnosis in surgical
facilities of the Stanford University School of Medicine.

3.1 The Clinical-Grade RL Agent

This section addresses the development and application of the clinical-grade RL agent.
As such, the architecture, training, and in-silico evaluation are covered. The section then
presents the application of Reagent, a data collection and control system using the RL agent
to administer propofol hypnosis in a population of healthy human volunteers.

3.1.1 Agent Architecture

The RL agent was implemented as a Markov Decision Process (MDP), a mathematical
framework for optimal decision-making in stochastic systems. A principal feature of the
MDP is the Markov Property, a characteristic in which the conditional probability of state
transition depends solely on the action chosen in the current state—as opposed to some
longer historical sequence of state visitation and action selection (Russel and Norvig, 2002;
Sutton and Barto, 1998). Littman (1994) formally defines the general MDP as a system
consisting of:

• the set of states S = {s0, s1, s2, . . . , s|S|−1},

• the transition probabilities Pr(s′|s, a)∀s, s′ ∈ S, a ∈ A(s),

• the set of actions A = {a0, a1, a2, . . . , a|A|−1},

• the set of actions A(s) ⊆ A for each state s ∈ S that can be executed in s,

• and the immediate rewards ra(s) ∀a ∈ A(s), s ∈ S that are available after taking any
legal action from any state.

For the purposes of this research, the sets S and A were discrete. Of these components, only
the transition probabilities Pr(s′|s, a) were initially unknown. (Agent training is tantamount
to the discovery of these transition probabilities. Were they initially known, an optimal
control policy could be determined using dynamic programming.) With the nature of an
RL agent formally defined, discussion continues with the application of the MDP in the
context of the hypnosis control task.
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3.1.2 Agent Percepts

To achieve and maintain a desired level of hypnosis (BIStarget), the agent first observed the
patient’s bispectral index (BISmeasured) on five-second intervals as reported by an A-2000
BIS monitor (Covidien, Mansfield, MA). The monitor’s BIS smoothing window was set to
15 seconds, the minimum, to grant the agent flexibility in managing BIS measurement noise
(see Section 2.2.3).

To reduce the effect of measurement noise on the agent’s estimate of patient condition,
BISmeasured was smoothed using a low-pass filter. From the resulting BISsmoothed signal,
two control inputs were then computed: BISerror and ∆BISerror. BISerror was defined as
(BISsmoothed − BIStarget), and ∆BISerror was defined as the change in BISerror over 15 s,
or (BISerror(t)− BISerror(t− 2)). These control signals allowed the agent to observe the
magnitude of control error, as well its direction of change. This observation of BISerror and
∆BISerror served as the agent’s estimation of the patient’s state of hypnosis. Table 1 presents
a high-level summary of patient states that may be distinguished using these control signals.

BISerror ∆BISerror Interpretation

< 0 < 0 Good Below target, improving
< 0 ≈ 0 Neutral Below target, steady
< 0 > 0 Poor Below target, worsening

≈ 0 < 0 Good At target, improving
≈ 0 ≈ 0 Good At target, steady
≈ 0 > 0 Poor At target, worsening

> 0 < 0 Good Above target, improving
> 0 ≈ 0 Neutral Above target, steady
> 0 > 0 Poor Above target, worsening

Table 1: Interpreting the agent’s control signals

In pilot studies of human volunteers, the combined effects of BIS measurement noise,
filtering, and transport delay resulted in oscillatory control behavior. These confounding
influences were successfully mitigated by conditioning BISerror and ∆BISerror with sets of
fuzzy membership functions (Zadeh, 1965). The fuzzy set memberships for BISerror and
∆BISerror were assessed using two sets of triangular membership functions, µN (x), µZ(x),
and µP (x) (Figure 1). The resulting six-dimensional feature vector served as the agent’s
perceptual input:

f = [µN (E), µZ(E), µP (E), µN (∆E), µZ(∆E), µP (∆E)]

(where E represents BISerror and ∆E indicates ∆BISerror for brevity). Since fuzzy set
membership is expressed as a real number in the range [0, 1], the continuous feature vector
f required transformation before the discrete RL algorithms used in this study could be
applied. Section 3.2.2 provides greater detail in the methods used to map the feature vector
f to the set of discrete states S employed in this study.
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Figure 1: The system input variables, BISerror and ∆BISerror, were conditioned with sets of
fuzzy membership functions. A set of three membership functions operated on
BISerror (x = 20), and a second set of functions operated on ∆BISerror (x = 10).
The resulting membership values formed a six-dimensional feature vector that
served as the agent’s patient state descriptor.

3.1.3 Agent Actions

The agent delivered propofol to the volunteer via a catheter placed in the antecubital (elbow)
vein using a precision syringe pump (Pump 33, Harvard Apparatus, Holliston, MA). During
control, the agent selected an infusion rate from A, a discrete set of 15 flowrates ranging
from 0.0 – 6.0 ml/min:

A = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0}ml/min.

Once a rate was selected, the chosen action remained in effect for five seconds. A concen-
tration of 1% propofol was assumed for all members of A.

3.1.4 Reinforcements

Although reinforcement learning is unsupervised in the sense that no explicit training exem-
plars are provided during training, the method assumes the existence of a critic that grades
behavior as the agent learns. During learning, the critic’s role is to dispense reinforcements
in order to guide the agent’s action selection. In RL, this critic is implemented as the
application-specific reward function. In the hypnosis control task, the agent’s objective was
to achieve and maintain the selected BIS target. Expressed alternatively, the agent’s goal
was to minimize control error for the duration of the control interval. The reward function
below presents one system of reinforcement for guiding action selection toward this goal

r(t+ 1) = −|BISerror(t)|. (1)

This negative-bounded reward function provided instantaneous rewards proportional to the
observed control error. Under this scheme, the agent’s sole means of minimizing negative
reinforcement was to select actions yielding minimal control error. This reward function
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highlights an important characteristic of the hypnosis control task, namely the lack of an
explicit goal state. Because the task lacked a definitive persistent terminal state, it was
classified as a continuing, non-episodic control task.

3.2 Agent Training

During learning, the naive, uninformed agent was expected to make arbitrarily poor propo-
fol dosing decisions; thus, a simulated intraoperative patient was developed to facilitate
agent training in a safe, off-line manner. Consequently, the principal role of this virtual
patient was to model the time-dependent effects of propofol infusion, collectively known as
the pharmacokinetic and pharmacodynamic (PK/PD) responses. A drug’s pharmacokinetic
properties describe its distribution within the body; pharmacodynamic attributes charac-
terize the dose effect. Through experimentation with this virtual patient, the agent was
expected to learn the general characteristics of propofol-induced hypnosis with respect to
bispectral index: BIS is linked to propofol infusion in an inverse, time-delayed, and non-
linear manner. It should also be noted that this in silico patient presented an advantage
in its rapid simulation of hypnotic episodes. Reinforcement learning is inherently a process
of statistical estimation, and a large number of training episodes were needed to learn the
control policy and achieve clinical readiness.

3.2.1 Modeling Propofol Effect

Propofol pharmacokinetics were simulated using a three-compartment model (Schnider
et al., 1998), a system which uses central, rapid, and slow compartments to estimate the
time-dependent distribution of propofol within the human body. In this model, propofol is
introduced into the central compartment via intravenous infusion; the drug is then free to
interact with the rapid and slow compartments through first-order, gradient-driven trans-
port. These compartments, which represent collections of tissues with high and low propofol
transport coefficients, were derived from empirical observations and sometimes lack direct,
obvious mapping to actual physiological systems.

Figure 2 illustrates the Schnider model and its transport coefficients, which vary with
patient height, weight, gender, and age. As shown, the coefficients are subscripted to
indicate direction of flow (from, to) since the coefficients may differ directionally, that is, the
central-to-slow coefficient (kcs) differs from the slow-to-central coefficient (ksc). Metabolic
losses of propofol are represented in kc0, establishing the only means of absolutely reducing
propofol concentration. This limitation presented a substantial challenge, the agent was
required to learn that inaction (realized as a zero propofol infusion rate) was the only
means of decreasing hypnosis and increasing BIS.

In prior clinical study, an infusion of propofol averaged a 2.7-minute time-to-peak effect
in BIS (Schnider et al., 1998). Accordingly, our PK model was augmented with a fourth
effect site compartment. The resulting transport coefficient, ke0 = 0.17, accounted for the
delay between infusion and BIS effect, which included physiological delay (mixing, circula-
tory, etc.) and BIS measurement delay (Doufas et al., 2004). The effect-site compartment
was assumed to possess negligible volume when modeling propofol distribution.

To model the hypnotic effect of propofol, a nonlinear pharmacodynamic model was
developed using previously obtained data (Doufas et al., 2004). A three-layer perceptron
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Figure 2: Schnider’s pharmacokinetic model of propofol is based on the three-compartment
mammalian model of pharmacokinetic action. Propofol is infused into the cen-
tral volume through intravenous infusion. Concentration gradients then drive
transport to the rapid and slow compartments, so named for their relative uptake
rates. The site of propofol effect is modeled as an additional “virtual compart-
ment” of infinitesimal volume in order to model observed delays between infusion
and hypnotic effect.
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Figure 3: Doufas et al. observed the propofol/BIS response in eighteen young, healthy
volunteers (2004). To model propofol pharmacodynamic effect for this study,
a neural network function approximator was used to fit the median dose curve
(highlighted here).

network was trained to associate arterial concentrations of propofol with observed BIS,
thereby allowing the model to generally predict propofol effect from estimated effect site
concentration. Figure 3 illustrates the observations of BIS and propofol concentration, as
well as the median fit approximated by the neural network. The nonlinear relationship of
propofol effect-site concentration to BIS is evident.
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3.2.2 Knowledge Representation

During control, the RL agent is expected to observe the patient’s state and then select the
appropriate propofol dose using its control policy. To learn that optimal control policy,
the agent accumulated its experience in value functions, mathematical descriptions of state
utility commonly denoted as V (s)∀s ∈ S. Knowledge of V alone is not sufficient for
optimal decision-making since this function only expresses the utility of an observed state.
For control, it is also necessary to identify an action choice that can move the patient to
more favorable conditions (or preserve existing favorable ones). In RL, the state-action
value function, Q (s, a) ∀s ∈ S, ∀a ∈ A, provides the necessary information for rational
action selection. With Q, an RL agent can assess the utility of a patient state and then
identify the proper infusion rate to achieve optimality for that state.

Initially, Q is unknown. The discovery of Q (learning) is accomplished through iterative
function approximation. Consequently, Q must be represented in a form suitable for compu-
tational inspection and adjustment. Tables, decision trees, neural networks, and weighted
polynomials have been used for this purpose in the literature. Of these, the uniformly dis-
cretized table is favored for its ease of implementation and mathematical robustness (Boyan
and Moore, 1995; Baird, 1995).

In this study, state value (Q) functions were represented in a six-dimensional table. The
agent’s percepts, represented by the feature vector f , were mapped to a finite set of states
S through uniform discretization. Recall that f consisted of six fuzzy state membership
values (real numbers in the range [0, 1]). To obtain a state observation Si for a feature fi,
each dimension of the feature vector was partitioned into ten uniformly distributed bins,
yielding a value function approximator with 106 entries. To permit identification of the
optimal propofol infusion rate for all possible patient states, one such tabular function
approximator was associated with each of the agent’s actions.

3.2.3 Learning Algorithm

Watkins’ Q-learning algorithm, a temporal-differencing learning method characterized by
model-free, off-policy learning, was used to train the agent (Watkins, 1989). Q-learning is
mathematically robust (Tsitsiklas and Van Roy, 1996; Dayan, 1992), and this robustness
has contributed to the method’s popularity in applied reinforcement learning. To acceler-
ate learning, an improved form of Q-learning, called Q(λ), was applied in this study. This
algorithm assimilates experience more quickly through extended temporal credit assign-
ment. Whereas the one-step version considers only the previous action step when updating
Q (st, at), the improved version credits an historical chain of action selections. The “length”
of this chain is governed by λ, which was set to the recommended value of 0.8 (Sutton and
Barto, 1998).

3.2.4 Control Policy Identification

Watkins’ Q-learning does not directly yield an optimal control policy. The algorithm only
develops an approximation of the state-action value function, Q. However, the optimal
control policy is trivial to determine once Q has been discovered. For each patient state s,

667



Moore, Kulkarni, Panousis, Padrez, Pyeatt and Doufas

the optimal action choice a?(s) may be expressed as:

a?(s) = argmax
a

Q (s, a) ∀a ∈ S.

As a result, a state’s optimal action may be represented as an integer number that indexes
the ordered set of actions A. Since the control policy identifies the best action choice for all
patient states, the complete control policy may be represented as a six-dimensional table of
these indices.

3.2.5 Training

Agent training consisted of a sequence of simulated hypnosis episodes using a standardized
intraoperative patient prototype (male, 21 yr, 170 cm, 75 kg). To aid in learning a general
association of propofol infusion and patient response, the patient’s ke0 was randomly selected
[0.17 ± 25%] at the beginning of each episode. This perturbation, of which the agent
remained unaware, influenced the timing and magnitude of peak BIS effect.

To ensure sufficient exploration of the state-action space, each episode began with an
exploring start in which a BIS target was randomly selected, and random propofol quantities
were assigned to the three major PK compartments (Section 3.2.1). The agent was then
permitted to interact with the patient and accumulate reinforcements for 1,000 consecutive
action choices (5,000 simulated seconds). At the conclusion of an episode, a new one began
with a newly randomized patient state.

Training began with a step-size parameter α= 0.2, horizon parameter γ= 0.69, and an
exploration parameter ε = 0.01.4 To assess the progress of learning, the sum of squared
difference (SSD) was computed between intermediate control polices. When the SSD met-
ric fell below a small threshold θ, α was halved, and learning resumed. This procedure
continued until α measured 10−5 or less. In total, training required 5×107 episodes over
approximately one week of CPU time on a contemporary desktop computer.

3.3 In silico Control Policy Evaluation

Prior to clinical application, the agent was evaluated in simulation to assess the fitness of
the agent and its control policy. Although the agent was trained using an ideal simulated
patient (fixed demographic parameters and near-ideal PK/PD characteristics), an actual
surgical patient was not expected to present so favorably. Because intraoperative patients
vary in height, weight, age, and gender (and other attributes), their PK/PD responses to
propofol cannot be so neatly characterized.

To challenge the agent in a more realistic manner, the patient model illustrated in
Figure 4 was modified to express patient-specific variation. The first point of individual
variability was found in simple demographics. Schnider reported lean body mass, age, and
gender to be significant covariates in propofol pharmacokinetic response (Schnider et al.,
1998). Accordingly, the RL agent was tested on simulated patients with a range of demo-
graphic parameters. Since the Schnider model considers these parameters in its estimation
of propofol distribution, demographic variation was not judged sufficient challenge for the
agent.

4. For a more thorough discussion of these parameters and their import, see Moore et al. (2011b).
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For additional challenge, the ideal PK and PD models were perturbed in ways mimicking
the variation routinely observed in the operating room. A few quantitative (Röpcke et al.,
2001b; Schnider et al., 1999, 1998; Bailey et al., 1996) and qualitative (Kearse Jr. et al.,
1994; Ausems et al., 1986) descriptions of intraoperative patient variability may be found
in the anesthesia literature. Taken collectively, evidence suggests that individual patient
variation may be expressed as deviation in propofol pharmacokinetics (Gentilini et al., 2000;
Schwilden et al., 1987) or pharmacodynamics (Struys et al., 2004, 2001).

In this study, individualized response in the simulated intraoperative patient was achieved
with a Patient Variability Model (PVM), a mechanism for perturbing the patient’s PK/PD
in a manner removed from the agent’s direct observation (illustrated in Figure 7). The PVM
was implemented as two distinct components: one which affected the ideal pharmacokinetics
(PKPVM), and one which perturbed ideal pharmacodynamics (PDPVM).

3.3.1 Pharmacokinetic Variation

The anesthesia literature provides evidence that patients commonly exhibit pharmacoki-
netic variation. Gepts observed: “When individuals are given identical doses per kg of
body weight, large differences in pharmacological response may be seen” (Gepts, 1998, 10)
and “Pharmacokinetic variability is much greater in sick compared with healthy people. . . ”
(Gepts, 1998, 11). The findings of Doufas et al. support those observations of variability.
In a propofol pharmacokinetic study of 18 healthy volunteers, ke0 was determined to be
0.17 min−1 (range [0.08, 0.25] min−1) (Doufas et al., 2004). To model this source of patient
variation, the PKPVM block varied ke0 in conjunction with variation in patient demograph-
ics.

Figure 5 illustrates the effect of ke0 variation in simulated patients. A bolus of propofol
was applied at t = 0 min and allowed to distribute under the Schnider pharmacokinetic
model at the selected ke0 values. As shown, larger ke0 coefficients represented more “tightly
coupled” systems in which propofol was transported to the effect site more readily, resulting
in deeper hypnosis for a given dose. For emphasis, Figure 5 highlights the minimum hypnotic
levels, as well as the times of their occurrence. While the time of peak effect varied by
approximately 25 seconds, the range in peak effect varied by more than 20 points, a range
that can span the clinically meaningful endpoints of light to deep hypnosis (as measured by
BIS).

3.3.2 Pharmacodynamic Variation

Other sources of patient variation were better modeled as perturbations in propofol phar-
macodynamics (i.e., effect, rather than distribution). For example, propofol sensitivity or
tolerance may be modeled intuitively as a respective heightened or attenuated pharmacody-
namic response to a given concentration of propofol. Exogenous factors, such as measure-
ment noise and surgical stimuli, can not be reasonably expected to alter the pharmacokinetic
distribution of propofol within the patient; however, these influences may directly alter the
hypnotic action of the drug.

The role of the PDPVM block was to model those factors best expressed as change in phar-
macodynamics. The PDPVM block accomplished this by decomposing pharmacodynamic
variability into three classes: propofol sensitivity, intraoperative stimuli, and measurement
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Figure 4: This figure illustrates the agent and its relationship to the simulated intraopera-
tive patient used for training. The agent observed two external inputs, BIStarget

and BISmeasured, to compute the control error (BISerror) and the change in con-
trol error over time (∆BISerror). The intraoperative patient was modeled with
near-ideal propofol PK/PD parameters.
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Figure 5: To demonstrate the variation associated with changes in ke0, a bolus of propofol
was delivered to a simulated patient, and distribution of propofol was modeled
over time. For comparison, ke0 was selected at values of 0.17, 0.1275 (0.17-25%),
and 0.2125 (0.17+25%). The points of peak BIS effect and their associated times
are highlighted.

noise. The simulated patient’s ideal BIS was then perturbed with a sum of time-dependent
and independent combinations of these factors.
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Modeling changes in propofol sensitivity begins as a straightforward process. In the
tolerant patient, a given concentration of propofol may produce higher-than-expected BIS
levels (more conscious than predicted). Conversely, lower-than-expected BIS levels may
be observed in the patient with increased propofol sensitivity (less aware than predicted).
In the evaluation of the RL agent, these differences were considered as a constant bias
in pharmacodynamic effect. This time-independent parameter, denoted as ∆BISi

static, was
implemented as an additive factor, ≥ 0 in the resistant patient and ≤ 0 in the sensitive
patient.

A credible model of propofol sensitivity should also consider exogenous sources of vari-
ation, one of which is noxious surgical stimuli. When studying patient variation, it is
reasonable to conclude that some surgical procedures are more painful than others. For
example, in a common heart procedure, such as the coronary artery bypass graft (CABG),
the patient’s chest is opened with an approximate six-inch incision, and the sternum is sepa-
rated for access to the heart. Compare this procedure to the arthroscopic repair of a rotator
cuff injury and its small 1-cm incisions. Intuitively, the degree of noxious stimulation in the
CABG procedure is expected to exceed that of rotator cuff repair. Ausems et al. support
this expectation in a report that found upper abdominal procedures required more analge-
sia than other smaller procedures (Ausems et al., 1986). Likewise, intraoperative stimuli
were correlated to increased analgesic requirements in patients undergoing lower abdom-
inal gynecologic, upper abdominal, and breast surgery. From these observations, as well
others (Barvais et al., 1996), it is reasonable to conclude that some surgical procedures are
inherently more noxious than others. Accordingly, the time-independent positive constant
∆BISs

static was used to denote this persistent noxious surgical stimulus.

Noxious stimulus may also be presented in a time-dependent manner. Absalom observes,
“It is not always possible to predict when a surgeon will suddenly inflict a noxious stimulus
on the patient. . . ” (Absalom et al., 2002, 73). Ausems et al. reported that different intra-
operative stimuli, including tracheal intubation, skin incision, and closure, required different
levels of analgesia to maintain satisfactory anesthesia (Ausems et al., 1986). More recently,
decreases in hypnotic level have been associated with surgical stimulation (Röpcke et al.,
2001b), while increases in bispectral index have been correlated with skin incision (Kearse
Jr. et al., 1994). Ausems et al. also observed that “single short-duration” stimuli, such as
skin incision, required higher concentrations of opioid analgesic to ensure adequate anes-
thesia (Ausems et al., 1986). Given these observations, the short-duration surgical stimulus
can reasonably be considered a transient perturbation in propofol pharmacodynamics that
presents as a temporary decrease in hypnosis.

The effects of intraoperative stimuli are not limited to arousal events, those that decrease
hypnotic effect. Röpcke found that concomitant administration of propofol and remifentanil
(an opioid analgesic) resulted in lower than expected measurements of bispectral index in
the intraoperative patient (Röpcke et al., 2001a). Whereas the noxious stimulus could
be viewed as transient propofol tolerance, this synergistic drug interaction may present as
temporarily heightened propofol sensitivity. These depressive events pose a unique challenge
for hypnosis control since the agent cannot directly intervene and reduce the patient’s
propofol concentration.

During in silicon verification of the RL agent, irregular transient stimuli were presented
to the agent to evaluate its ability to handle the dynamic conditions commonly found in the
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intraoperative patient. To challenge the agent in an unpredictable manner, the duration,
timing, and intensity of the short-duration stimuli were randomly chosen. In addition, the
“direction” of challenge was randomized. A positive magnitude, which simulated an arous-
ing event, was chosen with probability 0.8. Depressive events were chosen with probability
0.2. For this study, the time-dependent affect on patient pharmacodynamics was denoted
as ∆BISdynamic(t), where t indicated time dependence.

Finally, BIS is intrinsically noisy since the underlying EEG is a low-power signal re-
quiring amplification for adequate measurement (as discussed previously). Prior study has
modeled this noise as a stationary, normally-distributed signal (µ = 0, σ = 3) (Struys et al.,
2004). We modeled BIS measurement noise in accordance with this precedent.

In summary, the PVM modeled individual patient variability with changes in propofol
pharmacokinetics and pharmacodynamics that remained hidden from agent observation.
The PKPVM component modeled changes in ke0, while the PDPVM block modeled changes
in propofol sensitivity (∆BISPVM) as a sum of time-dependent and time-independent pa-
rameters (Moore et al., 2009). The cumulative PVM influence can thus be summarized
as:

∆BISstatic = ∆BISi
static + ∆BISs

static,

∆BISPVM (t) = ∆BISstatic + ∆BISdynamic(t) +N (0, 3),

BISmeasured(t) = BISideal(t) + ∆BISPVM (t).

3.4 Assessment of Agent Performance

The clinical study protocol included performance analysis of RL control under steady-
state (maintenance of hypnosis) and non-steady-state conditions (induction of hypnosis
and change in BIStarget). In the clinical practice of anesthesia, precise control has less
value during non-steady-state periods. Conditions that a control engineer might consider
unfavorable, like target overshoot, are expected during a manual induction as the clinician
seeks to quickly achieve the desired target. Because the agent’s principal goal of fine control
is less relevant during induction, performance analysis of this interval has been omitted from
this discussion.

3.4.1 Evaluation Population

To evaluate the agent’s ability to provide well-controlled propofol hypnosis in a diverse pop-
ulation, a set of 1,000 individualized patients was generated in silico. Control performance
was assessed over one episode of hypnosis for each of these individualized patients. In each
episode, the agent was first presented a fully conscious patient and then tasked with achiev-
ing and maintaining propofol-induced hypnosis for 240 minutes, an interval that the clinical
team considered representative. During the episode, BIS targets were randomly selected
(without replacement) from the set {40,50,60}. Once selected, a target remained in effect
for 80 minutes.

3.4.2 Maintenance Interval Identification

Although the induction interval is not addressed in this discussion, induction, along with
BIS target change events, delimit the maintenance control intervals. The first maintenance
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interval began with the completion of anesthetic induction. The induction period began
when RL control was engaged to induce anesthesia in the conscious simulated patient (BIS
≈ 95). Induction continued until steady-state conditions, as defined by O’Hara et al.,
were observed at the selected target (1992). (The O’Hara metrics include Tsp = Time to
Setpoint,Tpeak = Time of Peak BIS, Tsp = Time to Steady State, and BISpeak =BISmeasured

at Tpeak.) This steady-state point, identified as Tss in Figure 6, marked the beginning of
the first maintenance control interval. The maintenance interval continued until the time
of BIS target change, denoted as Tss + 80 min, or ∆BIStarget.

The beginning of the next maintenance period was delineated similarly since the con-
ditions at target transition resembled those at induction. After a step change in BIStarget,
the agent acted to reestablish control and achieve steady-state conditions at the new tar-
get. Accurate identification of the new steady state was slightly complicated. High-to-low
target changes (i.e., BIStarget=60 to BIStarget=40) directly compared to induction, while
low-to-high changes (i.e., BIStarget=40 to BIStarget=50) resembled induction in an inverted
sense. Once the new Tss was achieved, the second maintenance control interval continued
until the second target change.

The beginning of the third maintenance period was handled just as the second mainte-
nance period. However, this control period was terminated by the end of automated control.
Propofol infusion was discontinued, and the virtual patient was allowed to recover normal
consciousness.

3.4.3 Performance Metrics

The steady-state control performance was evaluated using the four metrics of Varvel et al.
(1992), which comprise the standard performance measures in closed-loop infusion control.
These metrics build upon the instantaneous performance error (PE):

PE =
BISsmoothed −BIStarget

BIStarget
· 100. (2)

The first metric, the median performance error (MDPE), indicates the control bias observed
in a single patient and is computed as

MDPEi = median (PEij) j = 1 . . . N, (3)

where i identifies a subject, and j iterates over the set of PE measurements for a subject.
Median absolute performance (MDAPE) error reflects the accuracy of the controller in a
subject:

MDAPEi = median (|PEij |) j = 1 . . . N. (4)

Wobble measures the intra-subject variability in performance error:

Wobblei = median (|PEij −MDPEi|) j = 1 . . . N. (5)

Divergence is defined as the slope of the regression line computed through the observed
MDAPE measurements. Positive values indicate an increasing difference in measured and
target values; a negative divergence indicates more stable control.
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Figure 6: During analysis of control performance, the dynamic performance parameters
Tsp,Tss, Tpeak, and BISpeak first reported by O’Hara et al. (1992) were program-
matically identified to precisely delineate the maintenance control periods.

In addition to the Varvel metrics, contemporary studies of closed-loop anesthesia report
the Controlled metric, the percentage of measurements in which the measured BIS was
observed to be within ± 10 BIS (Struys et al., 2004) or ± 5 BIS (De Smet et al., 2008) of
target. As an additional performance comparator, this study also reports the root-mean-
square error (RMSE) computed for each maintenance control interval.

3.4.4 Acceptance Criteria

The anesthesia literature does not provide a definitive guideline for clinically suitable control
of propofol-induced hypnosis, but a survey of three contemporary studies (De Smet et al.,
2008; Struys et al., 2004; Absalom and Kenny, 2003) provides some reasonable performance
goals (Table 2). These performance objectives should be interpreted carefully since specific
values of these measures have not been correlated to favorable clinical outcomes. In other
words, no study strongly indicates that an MDPE of 5% is x times better than an MDPE of
10%. In the absence of such data, we aimed for performances levels that surpassed reported
values by reasonable margins.

3.4.5 Simulation Results

As indicated by comparison of observed performance and respective targets (Tables 2 and 3),
the median values for all observed steady state parameters met their respective acceptance
criteria. MDPE, MDAPE, Wobble, Divergence, and RMSE all presented values below the
respective requirements. (Note the change in units in the Divergence measure.) Likewise,
the Controlled metric was above its minimum threshold. These results suggested that the
RL agent was suitable for evaluation in healthy volunteers. However, no definitive conclusion
could be drawn since the accuracy of the Patient Variability Model was not verified prior
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Figure 7: This figure illustrates the agent and its relationship to the simulated intraoper-
ative patient used for evaluation. Like the training system, the agent relied on
BIStarget and BISmeasured to compute control error, as well as change in control
error. Unlike the training system, the intraoperative patient presented variable
propofol PK/PD responses.

Time (min)

T0 Tss1

Nominal
Control

Nominal
Control

Tss1+15

Challenge

Tss2

∆BIStarget

Nominal
Control

Tss2+15

Challenge

Nominal
Control
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Figure 8: Induction (T0) marked the beginning of the first BIS target evaluation period.
Nominal control periods, as well as the surgical challenge, were scheduled in
relation to Tss1 (the time at which steady-state control was observed). Control
continued to the maintenance interval’s end at (Tss1 + 30) min. At that time, a
new BIStarget was selected (labeled ∆BIStarget here) and a second, similar event
schedule was observed. Recovery began at (Tss2 + 30) min after automated
control was discontinued.

to this study. After review of the simulation protocol and results, the principal clinical
investigator granted approval for human study.
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Parameter Criterion

MDPE‡ ± 5.0
MDAPE‡ 7.5
Wobble‡ 5.0
Divergence? ± 0.001
Controlled‡� 80
RMSE§ 5.0

‡(%), ?(%/hr), §(BIS)
� Percentage of time within ±5 BIS of target.

Table 2: Steady state performance acceptance criteria

Parameter Observation

MDPE‡ -0.17 (-0.50, 0.25)
MDAPE‡ 3.33 (3.17, 3.50)
Wobble‡ 3.30 (3.13, 3.50)
Divergence? 0.001 (-0.001, 0.003)
RMSE§ 2.79 (2.58, 3.07)
Controlled‡� 82.4 (80.6, 84.0)

median (IQR) ‡(%), ?(%/hr), §(BIS)
� Percentage of time within ±5 BIS of target.

Table 3: Simulated steady-state performance metrics

3.4.6 Clinical Application of RL Control

After IRB approval in the Stanford University School of Medicine, we recruited fifteen
healthy (BMI ≤ 25 kg/m2, 18–45 yr) volunteers. The clinical study was conducted in an
operating room in the Stanford University Medical Center under informed consent. To
facilitate clinical study, a custom data collection and control system, dubbed Reagent , was
developed. The hypnosis control hardware consisted of a standard desktop computer, an
A-2000 BIS monitor (Covidien, Mansfield, MA), and a Harvard Pump 33 dual syringe pump
(Harvard Apparatus, Holliston, MA). The software consisted of a graphical user interface
for clinician use, an embedded RL agent for propofol dosing, and various other modules for
BIS monitor and syringe pump communication.

Volunteers fasted for at least six hours prior to the study and their vital signs were
monitored according to the standards of the American Society of Anesthesiologists (ASA).
After placement of the monitors, an intravenous catheter was inserted at the elbow for
agent-directed propofol infusion. The study began when the anesthesiologist engaged RL
control to achieve a randomly selected initial target (40 or 60). Once BIStarget was achieved,
the agent was permitted to regulate the level of hypnosis undisturbed for 15 minutes. A
tetanic stimulus was then administered to the volunteer’s thigh to simulate a noxious,
destabilizing surgical event. Control was allowed to continue for an additional 15 minutes
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(see Figure 8). At that time, the agent was directed to achieve the second BIStarget. Once
the volunteer had stabilized at the second target, a similar procedure of maintenance and
stimulus followed. Finally, automated hypnosis control was disengaged, and the volunteer
was allowed to recover normal consciousness.

3.4.7 Performance Analysis

The agent’s steady state control performance was assessed using the same procedures ap-
plied in the in silico evaluation. Automated tools identified induction, maintenance, and
target change intervals. Maintenance intervals were then scored using the methods applied
in the in silico performance analysis (Equations 2–5). The BIStarget =40 and BIStarget =60
control periods were evaluated independently and then in aggregate form.

The expected infrequency of BIS target change and relatively short duration between
targets place the importance of transition control performance below maintenance perfor-
mance; however, well-controlled behavior during BIS target change remains valued since the
patient’s need for hypnosis may vary over the course of the surgical procedure. In response,
the dynamic O’Hara metrics are also presented in order to more thoroughly characterize
the agent’s control abilities. As discussed previously, these metrics were programmatically
determined to identify maintenance intervals and were readily available.

4. Results

This section tabulates the study’s observations. Results were grouped into three primary
sets for analysis: Target 40 Maintenance, Target 60 Maintenance, and Aggregate Mainte-
nance. The subordinate transition control metrics are reported, as well.

4.1 Volunteers

Fifteen healthy volunteers (11 males and 4 females) were recruited for the study of agent-
guided propofol hypnosis. Table 4 presents the observed demographic parameters, and
Table 5 summarizes those parameters. As the tables show, the volunteer population ap-
peared to be young, healthy (ASA I), and predominantly male—characteristics reflecting
the student population with ready access to study recruitment postings.

4.2 Target 40 Maintenance Control Metrics

Figure 9 graphically illustrates the BISmeasured and BISpredicted values observed in each of
target 40 episodes. The X-axes have been standardized to a 30-minute window. Note
that the duration of an episode did not always equal 30 minutes due to timing differences
between events hand-marked during the study and the more rigorous, post-study automated
segmentation. The Y-axes have been standardized to a 60-BIS interval.

Some immediate observations can be made from Figure 9. The vertical black line in-
dicates the time at which the tetanic stimulus was applied. Volunteers 5, 6, 7, 14, and 15
showed clearly distinguished arousal responses to noxious stimuli. The figure also highlights
notable behavior in the predicted BIS. In most Target 40 episodes, BISpredicted demonstrated
marked deviation from the observed BIS (BISmeasured). The degree of mis-prediction var-
ied with volunteer, and prediction error appeared to vary within individual volunteers in a
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ID Gender Age Weight Height BMI
(yr) (kg) (cm) (kg/m2)

01 Male 21 84.0 183 25.1
02 Male 18 63.6 173 21.2
03 Male 20 69.0 178 21.8
04 Male 20 77.0 185 22.5
05 Male 18 61.4 175 20.1
06 Female 19 50.0 152 21.5
07 Male 22 77.3 178 24.4
08 Female 26 56.8 163 21.4
09 Female 19 61.4 163 23.1
10 Male 21 75.0 188 21.2
11 Male 19 70.5 180 21.7
12 Male 25 82.0 183 24.5
13 Male 20 61.4 175 20.0
14 Male 24 60.0 173 20.1
15 Female 19 59.1 168 20.9

Table 4: Human subject demographics

Age Weight Height BMI
(yr) (kg) (cm) (kg/m2)

20.7± 2.5 72.2± 10.0 174.5± 9.6 22.0± 1.6

Mean ± SD n = 15 (nmale = 11, nfemale = 4)

Table 5: Human subject demographic summary

time-dependent manner. No obvious systematic bias is evident; the model over-predicted
in some volunteers but under-predicted in others.

Table 6 presents the observed Target 40 control metrics for each volunteer. The metrics
are generally indicative of good control; however, two notable exceptions appear in the
table. First, Volunteer 2’s control metrics stand out as outliers. In this case, the volunteer
exhibited strong bouts of coughing at Target 40. Although signs of illness were not obvious
prior to study, the volunteer admitted to “having a cold” in a post-study interview. Likewise,
Volunteer 11’s study duration is anomalous; this Target 40 interval was abbreviated due to
mis-configuration of the syringe pump after a fresh syringe was loaded.

4.3 Target 60 Maintenance Control Metrics

Figure 10 follows the format of Figure 9 in illustrating the BIS values observed in the
Target 60 episodes. As before, the vertical black line indicates the point of tetanic stimulus.
Volunteers 4, 5, 6, 7, 8, 13, 14, and 15 show responsive arousal behavior. Not unexpectedly,
more volunteers exhibited obvious stimulus responses at this lighter hypnosis level. Table 7
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ID Target Duration MDPE MDAPE Wobble Divergence RMSE Controlled
Order (min) (%) (%) (%) (%/hr) (BIS) (%)

01 2 39.5 -3.5 11.0 10.5 -0.0002 6.5 56.8
02 1 26.1 17.2 17.2 7.2 0.0002 9.4 27.7
03 2 25.4 -0.1 11.2 11.1 0.0002 5.9 59.5
04 1 28.2 2.0 9.8 9.9 -0.0002 5.6 60.9
05 2 30.3 5.5 15.0 15.5 0.0004 8.4 42.2
06 1 36.3 1.8 6.8 7.0 -0.0001 4.9 77.6
07 2 30.2 -4.8 7.0 6.6 0.0004 5.1 69.8
08 1 30.2 -2.0 6.5 6.0 0.0002 3.9 81.3
09 2 30.8 2.0 10.2 10.5 0.0002 6.0 59.6
10 1 35.4 5.1 10.5 10.4 -0.0006 7.6 59.2
11 2 17.2 0.5 6.5 6.2 0.0004 4.5 72.0
12 1 29.6 -1.2 5.7 5.5 0.0001 3.6 84.3
13 1 32.9 2.2 8.8 7.8 -0.0005 5.4 67.2
14 1 30.6 -0.3 8.0 8.1 -0.0003 5.0 69.8
15 2 30.5 -6.0 8.8 7.0 0.0001 5.1 67.6

Table 6: Observed performance at BIStarget=40

ID Target Duration MDPE MDAPE Wobble Divergence RMSE Controlled
Order (min) (%) (%) (%) (%/hr) (BIS) (%)

01 1 27.7 -1.0 1.4 1.5 0.0003 3.5 89.8
02 2 29.2 1.3 2.8 2.5 0.0001 3.1 90.3
03 1 24.6 0.7 3.2 3.2 0.0000 2.7 94.9
04 2 30.7 0.7 2.5 2.2 0.0000 2.2 97.8
05 1 30.6 -1.8 4.2 3.8 0.0003 4.6 77.4
06 2 32.2 0.6 4.0 3.8 0.0001 4.5 79.6
07 1 29.0 -0.7 2.8 2.7 0.0001 2.8 91.1
08 2 33.4 -0.7 4.5 4.7 0.0001 5.2 71.4
09 1 27.7 2.8 4.3 3.0 0.0000 4.0 80.8
10 2 30.0 0.2 3.5 3.5 0.0000 3.7 82.5
11 1 35.0 0.2 1.8 2.0 -0.0002 3.8 89.1
12 2 31.0 1.7 3.3 2.7 -0.0001 3.1 89.5
13 2 30.6 0.8 2.3 2.2 -0.0001 2.6 92.1
14 2 29.5 -2.3 6.7 5.7 0.0000 5.8 59.7
15 1 30.4 0.2 4.0 3.8 0.0001 4.2 79.5

Table 7: Observed performance at BIStarget=60
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?Volunteer 11’s episode was interrupted due to misconfiguration of the syringe pump.

Figure 9: The figure presents the observed BIS measurements at BIStarget=40. The X-
axis represents a 30-minute window of time, and the Y-axis represents a 60-BIS
interval. Each plot is labeled with the respective volunteer ID, and the vertical
black line identifies the time of noxious stimulus. As shown, Volunteers 5, 6, 7,
14, and 15 demonstrated clear arousal responses to noxious stimulus.

presents the observed Target 60 control metrics for each volunteer. All of these metrics
indicative of good hypnosis control. It should also be noted that these results are similar to
those reported in the simulation (Table 3). Like the Target 40 observations, the Target 60
cases displayed varying degrees of PK/PD model mis-prediction. No systematic bias was
detected.

4.4 Aggregate Maintenance Control Metrics

Table 8 presents each volunteer’s aggregate control results. These metrics were computed
by pooling the Target 40 and Target 60 observations to produce a set of global control
measures. Table 9 summarizes the control metrics of the three groups (Target 40, Target
60, and Aggregate) with basic descriptive statistics. As shown, the mean aggregate control
metrics exceed the desired performance levels presented in Table 2. The individual results
were mixed: performance at BIStarget=60 met the desired goals by comfortable margins,
while performance at BIStarget=40 narrowly missed desired levels in the Controlled and
Wobble metrics.

4.5 Target Transition Metrics

Table 10 presents the observations obtained at changes from BIS Target 60 to Target 40.
This high-to-low target change presented the most direct transition, and these observations
were consistent with those observed in simulation. Table 11 presents the observations
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ID Duration MDPE MDAPE Wobble Divergence RMSE Controlled
(min) (%) (%) (%) (%/hr) (BIS) (%)

01 67.2 -2.5 7.0 6.8 0.0000 5.3 70.5
02 55.3 8.8 9.6 4.7 0.0001 6.1 60.8
03 50.0 0.3 7.3 7.2 0.0001 4.3 76.9
04 59.0 1.3 6.0 5.9 -0.0001 3.8 80.1
05 60.9 1.8 9.6 9.6 0.0004 6.5 59.9
06 68.6 1.2 5.5 5.5 -0.0000 4.8 78.5
07 59.2 -2.8 5.0 4.7 0.0003 4.0 80.2
08 63.6 -1.3 5.4 5.3 0.0002 4.6 76.1
09 58.6 2.4 7.4 6.9 0.0001 5.1 69.6
10 65.4 2.9 7.3 7.2 -0.0003 5.8 69.9
11 52.2 0.3 3.4 3.4 -0.0000 4.0 83.4
12 60.6 0.2 4.5 4.1 0.0000 3.3 87.0
13 63.5 1.6 5.7 5.1 -0.0003 4.1 79.2
14 60.1 -1.3 7.3 6.9 -0.0002 5.4 64.9
15 60.9 -2.9 6.4 5.4 0.0001 4.6 73.5

Table 8: Observed aggregate maintenance performance

BIStarget BIStarget Aggregate
40 60

Duration† 30.2± 5.2 30.1± 2.5 60.3± 5.1
MDPE‡ 1.0± 5.6 −0.2± 1.2 0.4± 3.0
MDAPE‡ 7.4± 3.5 2.8± 1.2 5.1± 1.7
Wobble‡ 6.2± 2.6 2.6± 1.2 4.5± 1.5
Divergence? < 0.001 < 0.001 < 0.001
RMSE§ 4.5± 1.7 2.9± 1.1 3.7± 0.9

Controlled‡ 79.0 92.8 85.5
(70.9, 89.0) (83.3, 100.0) (72.9, 88.5)

Mean ± SD n=15 †(min), ‡(%), ?(%/hr), §(BIS)

Median (IQR)

Table 9: Summary of observed maintenance performance
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Figure 10: The figure presents the observed BIS measurements at BIStarget=60. The X-
axis represents a 30-minute window of time, and the Y-axis represents a 60-BIS
interval. Each plot is labeled with the respective volunteer ID, and the vertical
black line identifies the time of noxious stimulus. As shown, Volunteers 3, 5, 6,
7, 8, 13, 14, and 15 demonstrated clear arousal responses to noxious stimulus.

Vol Tsp Tpeak Tss BISpeak

(min) (min) (min) (BIS)

1 2.04 4.62 7.62 11.13
3 2.46 4.21 4.79 6.49
5 1.47 2.30 3.13 14.87
7 2.84 4.42 5.92 5.13
9 2.61 3.61 4.44 10.88
11 3.24 3.74 4.24 3.14
15 2.67 4.76 6.34 6.12

2.47± 0.57 3.95± 0.84 5.21± 1.51 8.25± 4.13

Mean ± SD n=7

Table 10: Observed transition performance: Target 60 to 40

associated with changes from BIS Target 40 to Target 60. All three time measurements
exceed those high-to-low transition observations by notable margins. These observations
may be initially interpreted as evidence of the previously-discussed asymmetrical control
influence.
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Vol Tsp Tpeak Tss BISpeak

(min) (min) (min) (BIS)

2 7.13 8.13 8.13 1.29
4 11.25 12.09 14.25 14.22
6 11.19 11.94 16.61 13.06
8 11.39 12.36 14.86 15.91
10 10.79 12.54 14.20 13.66
12 10.84 12.17 14.26 10.36
13 6.58 7.58 7.58 2.10
14 8.59 8.92 9.59 0.38

9.72± 1.99 10.71± 2.11 12.43± 3.45 8.87± 6.51

Mean ± SD n=8

Table 11: Observed transition performance: Target 40 to 60

5. Discussion

This section presents additional discussion highlighting the promising aspects of RL in
closed-loop anesthesia control. The section also identifies some limitations of the clinical
study and presents some opportunities for future research.

5.1 Clinically-acceptable Performance

The RL agent delivered propofol hypnosis in a manner consistent with well-controlled anes-
thesia, and control performance met or exceeded most performance targets. Control was
considered accurate, as measured by MDPE, RMSE, and Controlled Percentage. The negli-
gible Divergence values indicated that control was stable. The MDAPE and Wobble metrics
were generally good, although an undesirable degree of oscillation was observed in some vol-
unteers.

Furthermore, the agent demonstrated resistance to the disrupting tetanic stimulus. In
cases where clear arousal response was observed, the agent reasserted control after the nox-
ious event (Figures 9 and 10). Testing the boundaries of agent’s capabilities in this manner
is enlightening, but may be overly aggressive because propofol does not provide analgesia
and cannot effectively manage pain as well as other anesthetics. In the intraoperative set-
ting, propofol is commonly administered alongside an opioid analgesic, drugs that tend to
suppress pain-induced arousal events, like those observed in this study.

5.2 Patient-specific Hypnosis

Figure 11 illustrates one favorable aspect of RL control: patient-specific hypnosis. During
each study, the data collection system computed the predicted bispectral index as the agent
controlled the volunteer’s level of hypnosis. Using the volunteer’s demographic data, the
agent’s action history, and the Schnider-Doufas PK/PD model, an estimate of propofol
effect was computed on five-second intervals. By comparing predicted and observed BIS
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Figure 11: Although the RL agent was trained using a standardized patient prototype, the
agent demonstrated good control in subjects deviating from the training model.
In (a), the volunteer’s observed BIS consistently measured below the predicted
value, indicating the drug had greater effect than expected. In (b), the predicted
BIS was consistently lower than measured, indicating the propofol dose yielded
a higher BIS than anticipated.

values (Figure 11), the RL agent’s ability to compensate for model mis-specification is high-
lighted. In the figure, Volunteer A demonstrated an apparent sensitivity to propofol. The
observed hypnosis level consistently measured below the predicted value for most of the
30-minute period. Likewise, the RL agent compensated for an apparent propofol tolerance
in Volunteer B. In this 30-minute period, the observed BIS consistently measured above
the predicted value, indicating that the volunteer required more propofol than the popula-
tion PK/PD models predicted. These observations suggest that the reinforcement learning
process yielded a patient-specific control policy that may be applied to a general, variable
population of volunteers with favorable results.
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It should be noted that this RL implementation did not provide patient adaptive hyp-
nosis, that is, no model parameters were adjusted during the control process. Rather,
the agent exhaustively explored the discretized, bounded space of all possible BISerror and
∆BISerror combinations during the exploring-start driven training. As a result, the agent
formulated a control plan for all observable patient states, obviating a need for “on-the-fly”
changes in its control policy. (Note that this style of exploration is limited to relatively
small, discrete state spaces.) Adaptive closed-loop controllers in which model parameters
are adjusted online have been studied in similar clinical control tasks (Ching et al., 2013;
Shanechi et al., 2013; De Smet et al., 2008). Indeed, online reinforcement learning, a fixture
in the intelligent systems literature, was a viable candidate for this application. However,
a fixed-policy solution was preferred when seeking IRB approval for human study; likewise,
the regulatory demands for any subsequent commercialization activities are lower when
compared to an adaptive system. A convincing case is more easily made for a “safe and
efficacious” system when the agent’s control policy does not vary.

5.3 Limitations

The principal limitation of this study lies in its controlled nature. The human volunteers
were healthy and mirrored those populations from which the PK/PD models were derived.
Although the agent was challenged with credible intra-subject and inter-subject variation,
it did not experience the full rigor of the intraoperative environment. In several instances
of volunteer hypnosis, this limitation was realized with episodes of unanticipated natural
sleep.

Because the bispectral index is an indirect measure of cortical activity, BIS is known
to be affected by natural sleep (Nieuwenhuijs et al., 2002; Sleigh et al., 1999), as well
as other conditions (including head trauma and hypothermia). In our study, conditions
indicative of unanticipated natural sleep were observed after ∆BIStarget in some volunteers
first receiving anesthesia at BIStarget=40. Figure 12 illustrates one instance in which the
clinician directed a target change from 40 to 60 at t ≈ 64 min. Since the desired target
was higher than the subject’s observed BIS, the agent correctly halted propofol infusion
and waited for the volunteer to “recover” and awaken. Over the following ten minutes,
the volunteer’s predicted BIS rose as expected, but the volunteer’s BISmeasured remained
near 40. BISmeasured and BISpredicted increasingly diverged and the volunteer ultimately
presented a predicted BIS near waking levels.

Given the ten-minute absence of propofol infusion and paradoxically low BIS measure-
ments, the clinical team suspected the volunteer had transitioned from propofol-induced
hypnosis to natural sleep. To continue the study and re-establish agent control, the clini-
cian intervened with voice commands (“wake up”, etc.) and a brief shoulder shake at t≈74
min. The volunteer’s subsequent arousal was marked by a rapid convergence of BISmeasured

and BISpredicted. As the volunteer awakened, the agent responded with propofol to reassert
control at the new target of 60.

In summary, the volunteer shown in Figure 12 fell asleep shortly after the propofol
infusion was interrupted—instead of waking as expected. In retrospect, this behavior was
reasonable since our volunteer study lacked the usual surgical stimuli that would normally
prevent natural sleep in the OR. Our volunteers were not subjected to persistent noxious
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Figure 12: Our volunteer study modeled intraoperative hypnosis in a limited sense. Here,
the agent stopped propofol infusion at the upward target change (t≈ 64 min).
In response, the predicted BIS rose as the estimated effect-site concentration
of propofol fell; however, BISmeasured showed no corresponding increase. After
ten minutes of no infusion, the subject failed to achieve a BIS > 40, although
the predicted BIS approached waking levels. To continue study, the clinician
intervened with rousing events (shoulder shake, voice commands, etc.). The
volunteer responded immediately, and control resumed. This behavior was seen
in several volunteers experiencing a low-to-high target change and was attributed
to an unplanned transition to natural sleep after the target change.

stimulus, nor did they experience the usual bustling, noisy conditions of the operating suite.
The ease in which the anesthetist roused the supposedly sedated volunteer, as well as the
rate in which the measured BIS converged to the predicted, support the premise of natural
sleep.

During the course of this study, the clinical team observed presumed natural sleep in 5 of
8 volunteers experiencing low-to-high target transition. (No sleep-like behavior was observed
in volunteers undergoing high-to-low transitions.) Closer inspection of the low-to-high tran-
sition data (Table 11) reveals an apparent bimodal distribution in the corresponding time
metrics. These observations appear to be naturally clustered in two well-differentiated
groups: a fast transitioning group (non-sleepers) and a slow transitioning group (sleepers)
that required an additional 3.5 min to emerge from Target 40 (Table 12). Exploratory
parametric and non-parametric statistical tests suggest that two distinct groups do exist,
but the small sample counts do not permit strong inferencing. The argument for sleep clas-
sification was bolstered when we confirmed post-hoc that all volunteers in the slow group
required clinician intervention in order to complete the low-to-high transition. No fast
group volunteers showed similar need. These findings suggest that presumed natural sleep
occurred frequently in upward transitioning volunteers, thereby revealing a limitation of
this study. Accordingly, our favorable results should be extrapolated to surgical patients in
an appropriately limited fashion.
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Fast Cluster

Vol Tsp Tpeak Tss

(min) (min) (min)

2 7.13 8.13 8.13
13 6.58 7.58 7.58
14 8.59 8.92 9.59

Mean ± SD 7.43 ± 1.04 8.21 ± 0.67 8.43 ± 1.04
Median (IQR) 7.13 (1.01) 8.13 (0.67) 8.13 (1.01)

Slow Cluster

Vol Tsp Tpeak Tss

(min) (min) (min)

4 11.25 12.09 14.25
6 11.19 11.94 16.61
8 11.39 12.36 14.86
10 10.79 12.54 14.2
12 10.84 12.17 14.26

Mean ± SD 11.09 ± 0.26 12.22 ± 0.23 14.84 ± 1.03
Median (IQR) 11.19 (0.41) 12.17 (0.27) 14.26 (0.61)

Table 12: Cluster Analysis of Target 40 to 60 Timed Metrics

5.4 Future Directions

Given the favorable performance in both simulation and healthy human volunteers, it seems
reasonable to evaluate the agent in a study of actual surgical patients to more completely
assess the clinical utility of RL control. Evaluation under the full rigor of the intraoperative
environment, along with varying conditions of patient health, should provide further insight
into RL’s applicability. It is important to note that the studied RL agent does not directly
represent a closed-loop drug delivery system suitable for general clinical use. For example,
the current iteration of the agent is not equipped to reliably manage a prolonged open-loop
condition due to BIS input failure. As such, it is more appropriate to consider the agent to
be one player in a greater, more robust system.

The agent’s aptitude for managing propofol response deviating from the training model
(i.e., unexpected volunteer tolerance or sensitivity to propofol) is also cause for additional
study. Like other PK/PD models, the Schnider PK model and the Doufas PD models
characterize propofol response in a narrow, idealized population. Some poorly modeled
populations, such as the critically-ill or morbidly obese, gain the most from patient-specific
drug administration.

Finally, it should be noted that the application of reinforcement learning to medicine
is not limited to depth-of-anesthesia management. Other potential applications exist, such
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as neuromuscular blockade, mechanical ventilation, and management of cardiovascular pa-
rameters, including heart rate, blood pressure, and cardiac output.

5.5 Improvements

This study demonstrates the feasibility of RL hypnosis control, but it cannot yet be po-
sitioned as the optimal solution to the problem. Some areas of improvement are readily
identifiable. For example, most of the metrics indicate that the agent controlled hypnosis
more proficiently at BIStarget = 60. The authors theorize that the performance difference
can be attributed to the apparent “mass” of a heavily-dosed patient. Patients at deeper
levels of hypnosis accumulate higher concentrations of propofol, and the sigmoidal BIS re-
sponse approaches saturation at levels near 4 µg/ml (Figure 3). Thus, an ever-increasing
amount of propofol is required to meaningfully change the observed BIS in this region of
the dose response curve. Likewise, the propofol-saturated patient responds to the zero in-
fusion rate more slowly as peripheral tissue reservoirs continue to dump propofol into the
patient’s bloodstream well after the agent has discontinued infusion. These factors muddle
the agent’s interpretation of its actions, impairing its ability to regulate the patient’s BIS
level. In the following discussion, we suggest a few possible approaches to improve control.

We anticipate that the non-linearity illustrated in Figure 3 can be handled more effec-
tively if the agent considers the current BIS measurement as an input. This additional
percept provides a cue to handle the gross slope changes occurring in the ranges [0,1] µg,
[1,4] µg, and [4,15] µg and should improve control at deeper levels of hypnosis.

An improvement may also be realized if the agent’s goals can be modified to better reflect
clinical practice. In general, control engineers are rightly concerned with achieving target
setpoints with limited adverse behaviors, such as overshoot and ringing. Few anesthetists
are control engineers, and few surgeons would appreciate the agent’s observed 1̃2.5-min
induction of anesthesia. The agent’s current reward strategy (Equation 1) discourages
overshoot and promotes a “soft landing” on target; however, the clinician takes a different
approach. A bolus of propofol is given, the patient is quickly rendered unconscious, and then
the anesthetist manages any overshoot as needed. In other words, the goal of anesthetic
induction differs fundamentally from the goal of anesthetic maintenance. Indeed, the goals
oppose one another in time and control accuracy. A more effective solution might involve
two independent, cooperative agents in which one agent is used for induction, and the other
for maintenance.

The RL agent might also be implemented more effectively. In pilot studies, undesirable
oscillation in the volunteer’s BIS was occasionally observed. The authors theorized that the
software filters used to attenuate BIS measurement noise compounded the 2.5-min lag in
propofol effect, causing the agent to “chase” the target in an oscillatory fashion. To counter
this noise without exacerbating lag, fuzzy state classifiers replaced aggressive smoothing
so that the agent might better classify the volunteer’s hypnotic state. The fuzzy classifiers
reduced the significance of transient fluctuation in the BISerror and ∆BISerror signals, thereby
improving control performance so that human study could proceed as planned. Note that
the fuzzy classifiers were selected without a comprehensive survey of filtering techniques.
Clinical trials are expensive, challenging affairs not amenable to interruption once begun.
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Fortunately, state generalization methods, like fuzzy classifiers, are well-represented in
the RL literature,5 Sparse coding (Sutton, 1996) and neural networks (Tesauro, 1992) are
recognized methods for state aggregation in RL. Perhaps more fittingly, state generaliza-
tion can be “rolled into” the Q-learning algorithm; fuzzy Q-learning, like that reported by
Bonarini et al. (2009), Glorennec and Jouffe (1997) and Berenji and Kehdkar (1992), as
well as delayed Q-learning (Chapman and Kaelbling, 1991), appear to be logical next steps
in the evolution of this research.

It should also be noted that the agent was implemented as a discounted, infinite-horizon
task (γ < 1). As mentioned previously, the closed-loop hypnosis task lacked an explicit goal
state since the agent was expected to minimize control error for an undetermined duration.
Alternatives exist for reinforcement learning in such infinite-horizon problems. Techniques
that maximize returns over a window of time, like R-learning (Mahadevan, 1996), may be
viable candidates for improving control performance.

Finally, when RL has been applied to real-world control tasks, the problem is usually
modeled as an Markov Decision Process (MDP). This approach assumes complete observ-
ability of system states and influences that govern transitions among those states. In reality,
full observability can be reasonably expected only in toy problems. Fortunately, hidden in-
fluences may be ignored without great consequence in many applications, leaving unadorned
MDPs sufficient for the control task. However, closed-loop control of propofol hypnosis is a
textbook example of a partially observable control process (Russel and Norvig, 2002). The
task relies on an imperfect measurement (the bispectral index of the EEG) of a poorly-
defined quantity (patient consciousness). Therefore, we believe that techniques used to
solve Partially Observable Markov Decision Processes (POMDPs) (Kaelbling et al., 1998)
are relevant in future studies.

6. Conclusion

The RL agent demonstrated clinically-suitable performance in the closed-loop control of
propofol-induced hypnosis in healthy human volunteers. In doing so, the agent provided
generalizing control that compensated for varying degrees of intra-subject and inter-subject
variation in propofol effect, suggesting that RL control can improve propofol delivery in
the general surgical population, as well as populations lacking good PK/PD models. Fur-
thermore, RL’s success in this clinical control task establishes precedence and positions
the method as a viable candidate for solving other challenging clinical problems. Yet, as
promising as these results appear, no strong conclusions regarding RL’s place in closed-
loop anesthesia can be made until similar results are observed under actual intraoperative
conditions.
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H Röpcke, B Rehberg, M Koenen-Bergmann, T Bouillon, J Bruhn, and A Hoeft. Surgical
stimulation shifts EEG concentration-response relationship of desflurane. Anesthesiology,
94(3):255–113, Mar 2001b.

S Russel and P Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 2nd
edition, 2002.

F Sahba, H R Tizhoosh, and M M A Salama. Application of reinforcement learning for
segmentation of transrectal ultrasound images. BMC Med Imaging, 8(8), 2008.

T Sakai, A Matsuki, P F White, and A H Giesecke. Use of an EEG-bispectral closed-loop
delivery system for administering propofol. Acta Anesth Scand, 44:1007–1010, 2000.

694



Reinforcement Learning for Closed-Loop Propofol Anesthesia

R H Sandin, G Enlund, P Samuelsson, and C Lennmarken. Awareness during anaesthesia:
A prospective case study. Lancet, 355(9205):707–711, 2000.

J Schaublin, M Derighetti, P Feigenwinter, S Petersen-Felix, and A M Zbinden. Fuzzy logic
control of mechanical ventilation during anaesthesia. Brit J Anaesth, 77(5):636–41, Nov
1996.

T Schnider, C F Minto, P L Gambus, C Andresen, D B Goodale, S L Shafer, and E J Youngs.
The influence of method of administration and covariates on the pharmacokinetics of
propofol in adult volunteers. Anesthesiology, 88(5):1170–1182, May 1998.

T W Schnider, C F Minto, S L Shafer, P L Gambus, C Andresen, D B Goodale, and E J
Youngs. The influence of age on propofol pharmacodynamics. Anesthesiology, 90(6):
1502–16, Jun 1999.
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