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Abstract

We present a numerical algorithm for nonnegative matrix factorization (NMF) problems
under noisy separability. An NMF problem under separability can be stated as one of
finding all vertices of the convex hull of data points. The research interest of this paper is
to find the vectors as close to the vertices as possible in a situation in which noise is added
to the data points. Our algorithm is designed to capture the shape of the convex hull of
data points by using its enclosing ellipsoid. We show that the algorithm has correctness and
robustness properties from theoretical and practical perspectives; correctness here means
that if the data points do not contain any noise, the algorithm can find the vertices of their
convex hull; robustness means that if the data points contain noise, the algorithm can find
the near-vertices. Finally, we apply the algorithm to document clustering, and report the
experimental results.

Keywords: nonnegative matrix factorization, separability, robustness to noise, enclosing
ellipsoid, document clustering

1. Introduction

This paper presents a numerical algorithm for nonnegative matrix factorization (NMF)
problems under noisy separability. The problem can be regarded as a special case of an
NMF problem. Let Rd×m+ be the set of d-by-m nonnegative matrices, and N be the set of
nonnegative integer numbers. A nonnegative matrix is a real matrix whose elements are
all nonnegative. For a given A ∈ Rd×m+ and r ∈ N, the nonnegative matrix factorization

(NMF) problem is to find F ∈ Rd×r+ and W ∈ Rr×m+ such that the product FW is as close
to A as possible. The nonnegative matrices F and W give a factorization of A of the form,

A = FW + N ,

where N is a d-by-m matrix. This factorization is referred to as the NMF of A.

Recent studies have shown that NMFs are useful for tackling various problems such
as facial image analysis (Lee and Seung, 1999), topic modeling (Arora et al., 2012b, 2013;
Ding et al., 2013), document clustering (Xu et al., 2003; Shahnaz et al., 2006), hyperspectral
unmixing (Nascimento and Dias, 2005; Miao and Qi, 2007; Gillis and Vavasis, 2014), and
blind source separation (Cichocki et al., 2009). Many algorithms have been developed in
the context of solving such practical applications. However, there are some drawbacks in
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the use of NMFs for such applications. One of them is in the hardness of solving an NMF
problem. In fact, the problem has been shown to be NP-hard by Vavasis (2009).

As a remedy for the hardness of the problem, Arora et al. (2012a) proposed to exploit
the notion of separability, which was originally introduced by Donoho and Stodden (2003)
for the uniqueness of NMF. An NMF problem under separability becomes a tractable one.
Separability assumes that A ∈ Rd×m+ can be represented as

A = FW for F ∈ Rd×r+ and W = (I,K)Π ∈ Rr×m+ , (1)

where I is an r-by-r identity matrix, K is an r-by-(m − r) nonnegative matrix, and Π is
an m-by-m permutation matrix. This means that each column of F corresponds to that
of A up to a scaling factor. A matrix A is said to be a separable matrix if it can be
represented in the form (1). In this paper, we call F the basis matrix of a separable matrix,
and W , as well as its submatrix K, the weight matrix. Noisy separability assumes that
a separable matrix A contains a noise matrix N such that Ã = A + N , where N is a
d-by-m matrix. Arora et al. showed that there exists an algorithm for finding the near-basis
matrix of a noisy separable one if the noise is small in magnitude. Although a separability
assumption restricts the fields of application for NMFs, it is known to be reasonable at
least, in the contexts of document clustering (Kumar et al., 2013), topic modeling (Arora
et al., 2012a,b, 2013), and hyperspectral unmixing (Gillis and Vavasis, 2014). In particular,
this assumption is widely used as a pure-pixel assumption in hyperspectral unmixing (see,
for instance, Nascimento and Dias, 2005; Miao and Qi, 2007; Gillis and Vavasis, 2014).

An NMF problem under noisy separability is to seek for the basis matrix of a noisy
separable one. The problem is formally described as follows:

Problem 1 Let a data matrix M be a noisy separable matrix of size d-by-m. Find an
index set I with cardinality r on {1, . . . ,m} such that M(I) is as close to the basis matrix
F as possible.

Here, M(I) denotes a submatrix of M that consists of every column vector with an index
in I. We call the column vector of M a data point and that of the basis matrix F a
basis vector. An ideal algorithm for the problem should have correctness and robustness
properties; correctness here means that, if the data matrix M is just a separable one, the
algorithm can find the basis matrix; robustness means that, if the data matrix M is a noisy
separable one, the algorithm can find the near-basis matrix. A formal description of the
properties is given in Section 2.1

We present a novel algorithm for Problem 1. The main contribution of this paper is
to show that the algorithm has correctness and robustness properties from theoretical and
practical perspectives. It is designed on the basis of the geometry of a separable matrix.
Under reasonable assumptions, the convex hull of the column vectors of a separable matrix
forms a simplex, and in particular, the basis vectors correspond to the vertices. Therefore, if
all vertices of a simplex can be found, we can obtain the basis matrix of the separable matrix.
Our algorithm uses the fact that the vertices of simplex can be found by an ellipsoid. That
is, if we draw the minimum-volume enclosing ellipsoid (MVEE) for a simplex, the ellipsoid
only touches its vertices. More precisely, we give plus and minus signs to the vertices of a
simplex, and take the convex hull; it becomes a crosspolytope having the simplex as one of
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the facets. Then, the MVEE for the crosspolytope only touches the vertices of the simplex
with plus and minus signs.

Consider Problem 1 without noise. In this case, the data matrix is just a separable
one. Our algorithm computes the MVEE for the data points and outputs the points on the
boundary of the ellipsoid. Then, the obtained points correspond to the basis vectors for a
separable matrix. We show in Theorem 5 that the correctness property holds. Moreover, the
algorithm works well even when the problem contains noise. We show in Theorem 9 that,
if the noise is lower than a certain level, the algorithm correctly identifies the near-basis
vectors for a noisy separable matrix, and hence, the robustness property holds. The existing
algorithms (Arora et al., 2012a; Bittorf et al., 2012; Gillis, 2013; Gillis and Luce, 2013;
Gillis and Vavasis, 2014; Kumar et al., 2013) are formally shown to have these correctness
and robustness properties. In Section 2.4, our correctness and robustness properties are
compared with those of the existing algorithms.

It is possible that noise will exceed the level that Theorem 9 guarantees. In such a
situation, the MVEE for the data points may touch many points. Hence, r points need
to be selected from the points on the boundary of the ellipsoid. We make the selection by
using existing algorithms such as SPA (Gillis and Vavasis, 2014) and XRAY (Kumar et al.,
2013). Our algorithm thus works as a preprocessor which filters out basis vector candidates
from the data points and enhance the performance of existing algorithms.

We demonstrated the robustness of the algorithms to noise through experiments with
synthetic data sets. In particular, we experimentally compared our algorithm with SPA
and XRAY. We synthetically generated data sets with various noise levels, and measured
the robustness of an algorithm by its recovery rate. The experimental results indicated that
our algorithm can improve the recovery rates of SPA and XRAY.

Finally, we applied our algorithm to document clustering. Separability for a document-
term matrix means that each topic has an anchor word. An anchor word is a word which
is contained in one topic but not contained in the other topics. If an anchor word is
found, it suggests the existence of its associated topic. We conducted experiments with
document corpora and compared the clustering performances of our algorithm and SPA.
The experimental results indicated that our algorithm would usually outperform SPA and
can extract more recognizable topics.

The rest of this paper is organized as follows. Section 2 gives an outline of our algorithm
and reviews related work. Then, the correctness and robustness properties of our algorithm
are given, and a comparison with existing algorithms is described. Section 3 reviews the
formulation and algorithm of computing the MVEE for a set of points. Sections 4 and
5 are the main part of this paper. We show the correctness and robustness properties of
our algorithm in Section 4, and discuss its practical implementation in Section 5. Section 6
reports the numerical experiments for the robustness of algorithms and document clustering.
Section 7 gives concluding remarks.

1.1 Notation and Symbols

We use Rd×m to denote a set of real matrices of size d-by-m, and Rd×m+ to denote a set of
nonnegative matrices of d-by-m. Let A ∈ Rd×m. The symbols A> and rank(A) respectively
denote the transposition and the rank. The symbols ||A||p and ||A||F are the matrix p-norm
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and the Frobenius norm. The symbol σi(A) is the ith largest singular value. Let ai be
the ith column vector of A, and I be a subset of {1, . . . ,m}. The symbol A(I) denotes a
d-by-|I| submatrix of A such that (ai : i ∈ I). The convex hull of all the column vectors of
A is denoted by conv(A), and referred to as the convex hull of A for short. We denote an
identity matrix and a vector of all ones by I and e, respectively.

We use Sd to denote a set of real symmetric matrices of size d. Let A ∈ Sd. If the
matrix is positive definite, we represent it as A � 0. Let A1 ∈ Sd and A2 ∈ Sd. We denote
by 〈A1,A2〉 the Frobenius inner product of the two matrices which is given as the trace of
matrix A1A2.

We use a MATLAB-like notation. Let A1 ∈ Rd×m1 and A2 ∈ Rd×m2 . We denote by
(A1,A2) the horizontal concatenation of the two matrices, which is a d-by-(m1+m2) matrix.
Let A1 ∈ Rd1×m and A2 ∈ Rd2×m. We denote by (A1;A2) the vertical concatenation of
the two matrices, and it is a matrix of the form,(

A1

A2

)
∈ R(d1+d2)×m.

Let A be a d-by-m rectangular diagonal matrix having diagonal elements a1, . . . , at where
t = min{d,m}. We use diag(a1, . . . , at) to denote the matrix.

2. Outline of Proposed Algorithm and Comparison with Existing
Algorithms

Here, we formally describe the properties mentioned in Section 1 that an algorithm is
expected to have, and also describe the assumptions we place on Problem 1. Next, we give
a geometric interpretation of a separable matrix under these assumptions, and then, outline
the proposed algorithm. After reviewing the related work, we describe the correctness and
robustness properties of our algorithm and compare with those of the existing algorithms.

2.1 Preliminaries

Consider Problem 1 whose data matrix M is a noisy separable one of the form A + N .
Here, A is a separable matrix of (1) and N is a noise matrix. We can rewrite it as

M = A + N

= F (I,K)Π + N

= (F + N (1),FK + N (2))Π (2)

where N (1) and N (2) are d-by-r and d-by-` submatrices of N such that NΠ−1 = (N (1),N (2)).
Hereinafter, we use the notation ` to denote m− r. The goal of Problem 1 is to identify an
index set I such that M(I) = F + N (1).

As mentioned in Section 1, it is ideal that an algorithm for Problem 1 has correctness
and robustness properties. These properties are formally described as follows:

• Correctness. If the data matrix M does not contain a noise matrix N and is just
a separable matrix, the algorithm returns an index set I such that M(I) = F .
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• Robustness. If the data matrix M contains a noise matrix N and is a noisy separable
matrix such that ||N ||p < ε, the algorithm returns an index set I such that ||M(I)−
F ||p < τε for some constant real number τ .

In particular, the robustness property has τ = 1, if an algorithm can identify an index set I
such that M(I) = F+N (1) where F and N (1) are of (2) since ||M(I)−F ||p = ||N (1)||p < ε.

In the design of the algorithm, some assumptions are usually placed on a separable
matrix. Our algorithm uses Assumption 1.

Assumption 1 A separable matrix A of (1) consists of an basis matrix F and a weight
matrix W satisfying the following conditions.

1-a) Every column vector of weight matrix W has unit 1-norm.

1-b) The basis matrix F has full column rank.

Assumption 1-a can be invoked without loss of generality. If the ith column of W is zero,
so is the ith column of A. Therefore, we can construct a smaller separable matrix having
W with no zero column. Also, since we have

A = FW ⇔ AD = FWD,

every column of W can have unit 1-norm. Here, D denotes a diagonal matrix having the
(i, i)th diagonal element dii = 1/||wi||1.

The same assumption is used by the algorithm in Gillis and Vavasis (2014). We may
get the feeling that 1-b is strong. The algorithms (Arora et al., 2012a; Bittorf et al., 2012;
Gillis, 2013; Gillis and Luce, 2013; Kumar et al., 2013) instead assume simpliciality, wherein
no column vector of F can be represented as a convex hull of the remaining vectors of F .
Although 1-b is a stronger assumption, it still seems reasonable for Problem 1 from the
standpoint of practical application. This is because, in such cases, it is less common for the
column vectors of the basis matrix F to be linearly dependent.

2.2 Outline of Proposed Algorithm

Let us take a look at Problem 1 from a geometric point of view. For simplicity, consider
the noiseless case first. Here, a data matrix is just a separable matrix A. Separability
implies that A has a factorization of the form (1). Under Assumption 1, conv(A) becomes
an (r − 1)-dimensional simplex in Rd. The left part of Figure 1 visualizes a separable data
matrix. The white points are data points, and the black ones are basis vectors. The key
observation is that the basis vectors f1, . . . ,fr of A correspond to the vertices of conv(A).
This is due to separability. Therefore, if all vertices of conv(A) can be found, we can obtain
the basis matrix F of A. This is not hard task, and we can design an efficient algorithm
for doing it. But, if noise is added to a separable matrix, the task becomes hard. Let us
suppose that the data matrix of Problem 1 is a noisy separable matrix Ã of the form A+N .
The vertices of conv(Ã) do not necessarily match the basis vectors f1, . . . ,fr of A. The
right part of Figure 1 visualizes a noisy separable data matrix. This is the main reason why
it is hard to identify the basis matrix from noisy separable one.

Our algorithm is designed on the basis of Proposition 3 in Section 4.1; it states that all
vertices of a simplex can be found by using an ellipsoid. We here describe the proposition
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: Basis vector

: Data point

Figure 1: Convex hull of a separable data matrix with r = 3 under Assumption 1. (Left)
Noiseless case. (Right) Noisy case.

from a geometric point of view. Consider an (r − 1)-dimensional simplex ∆ in Rr. Let
g1, . . . , gr ∈ Rr be the vertices of ∆, and b1, . . . , b` ∈ Rr be the points in ∆. We draw
the MVEE centered at the origin for a set S = {±g1, . . . ,±gr,±b1, . . . ,±b`}. Then, the
proposition says that the ellipsoid only touches the points ±g1, . . . ,±gr among all the points
in S. Therefore, the vertices of ∆ can be found by checking whether the points in S lie
on the boundary of ellipsoid. We should mention that the convex hull of the points in
S becomes a full-dimensional crosspolytope in Rr. Figure 2 illustrates the MVEE for a
crosspolytope in R3.

Figure 2: Minimum-volume enclosing ellipsoid for a full-dimensional crosspolytope in R3.

Under Assumption 1, the convex hull of a separable matrix A becomes an (r − 1)-
dimensional simplex in Rd. Therefore, we rotate and embed the simplex in Rr by using
an orthogonal transformation. Such a transformation can be obtained by singular value
decomposition (SVD) of A.

Now let us outline our algorithm for Problem 1. In this description, we assume for sim-
plicity that the data matrix is a separable one A ∈ Rd×m+ . First, the algorithm constructs
an orthogonal transformation through the SVD of A. By applying the transformation, it
transforms A into a matrix P ∈ Rr×m such that the conv(P ) is an (r−1)-dimensional sim-
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plex in Rr. Next, it draws the MVEE centered at the origin for a set S = {±p1, . . . ,±pm},
where p1, . . . ,pm are the column vectors of P , and outputs r points lying on the ellipsoid.

We call the algorithm ellipsoidal rounding, abbreviated as ER. The main computational
costs of ER are in computing the SVD of A and the MVEE for S. The MVEE compu-
tation can be formulated as a tractable convex optimization problem with m variables. A
polynomial-time algorithm exists, and it is also known that a hybrid of the interior-point
algorithm and cutting plane algorithm works efficiently in practice.

In later sections, we will see that ER algorithm works well even if noise is added. In
particular, we show that ER correctly identifies the near-basis vectors of a noisy separable
matrix if the noise is smaller than some level. We consider a situation in which the noise
exceeds that level. In such a situation, the shape of crosspolytope formed by the data points
is considerably perturbed by the noise, and it is possible that the MVEE touches many
points. We thus need to select r points from the points on the boundary of the ellipsoid.
In this paper, we perform existing algorithms such as SPA (Gillis and Vavasis, 2014) and
XRAY (Kumar et al., 2013) to make the selection. Hence, ER works as a preprocessor
which filters out basis vector candidates from data points and enhances the performance of
existing algorithms.

2.3 Related Work

First, we will review the algorithms for NMF of general nonnegative matrices. There are an
enormous number of studies. A commonly used approach is to formulate it as a nonconvex
optimization problem and compute the local solution. Let A be a d-by-m nonnegative
matrix, and consider an optimization problem with matrix variables F ∈ Rd×r and W ∈
Rr×m,

minimize ||FW −A||2F subject to F ≥ 0 and W ≥ 0.

This is an intractable nonconvex optimization problem, and in fact, it was shown to be
NP-hard by Vavasis (2009). Therefore, the research target is in how to compute the local
solution efficiently. It is popular to use the block coordinate descent (BCD) algorithm for
this purpose. The algorithm solves the problem by alternately fixing the variables F and
W . The problem obtained by fixing either of F and W becomes a convex optimization
problem. The existing studies propose to use, for instance, the projected gradient algorithm
(Lin, 2007) and its variant (Lee and Seung, 2001), active set algorithm (Kim and Park, 2008,
2011), and projected quasi-Newton algorithm (Gong and Zhang, 2012). It is reported that
the BCD algorithm shows good performance on average in computing NMFs. However, its
performance depends on how we choose the initial point for starting the algorithm. We
refer the reader to Kim et al. (2014) for a survey on the algorithms for NMF.

Next, we will survey the algorithms that work on noisy separable matrices. Four types
of algorithm can be found:

• AGKM (Arora et al., 2012a). The algorithm constructs r sets of data points such
that all of the basis vectors are contained in the union of the sets and each set has one
basis vector. The construction entails solving m linear programming (LP) problems
with m− 1 variables. Then, it chooses one element from each set, and outputs them.
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• Hottopixx (Bittorf et al., 2012; Gillis, 2013; Gillis and Luce, 2013). Let A
be a separable matrix of the form F (I,K)Π. Consider a matrix C such that

C = Π−1

(
I K
0 0

)
Π ∈ Rm×m.

It satisfies A = AC, and also, if the diagonal element is one, the position of its
diagonal element indicates the index of basis vector in A. The algorithm models C
as the variable of an LP problem. It entails solving a single LP problem with m2

variables.

• SPA (Gillis and Vavasis, 2014). Let A be a separable matrix of size d-by-m, and
S be the set of the column vectors of A. The algorithm is based on the following
observation. Under Assumption 1, the maximum of a convex function over the ele-
ments in S is attained at the vertex of conv(A). The algorithm finds one element a
in S that maximizes a convex function, and then, projects all elements in S into the
orthogonal space to a. This procedure is repeated until r elements are found.

• XRAY (Kumar et al., 2013). The algorithm has a similar spirit as SPA, but it
uses a linear function instead of a convex one. Let A be a separable matrix of size
d-by-m and S be the set of the column vectors of A. Let Ik be the index set obtained
after the kth iteration. This is a subset of {1, . . . ,m} with cardinality k. In the
(k + 1)th iteration, it computes a residual matrix R = A(Ik)X∗ −A, where

X∗ = arg min
X≥0

||A(Ik)X −A||22,

and picks up one of the column vectors ri of R. Then, it finds one element from
S which maximizes a linear function having ri as the normal vector. Finally, Ik is
updated by adding the index of the obtained element. This procedure is repeated
until r indices are found. The performance of XRAY depends on how we select the
column vector of the residual matrix R for making the linear function. Several ways
of selection, called “rand”, “max”, “dist” and “greedy”, have been proposed by the
authors.

The next section describes the properties of these algorithms.

2.4 Comparison with Existing Algorithm

We compare the correctness and robustness properties of ER with those of AGKM, Hot-
topixx, SPA, and XRAY. ER is shown to have the two properties in Theorems 5 and 9.
In particular, our robustness property in Theorem 9 states that ER correctly identifies the
near-basis matrix of a noisy separable one Ã, and a robustness property with τ = 1 holds
if we set

ε =
σ(1− µ)

4
(3)

and p = 2 under Assumption 1. Here, σ is the minimum singular value of the basis matrix
F of a separable one A in the Ã, that is, σ = σr(F ), and µ is µ(K):

µ(K) = max
i=1,...,`

||ki||2
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for a weight matrix K of A. Under Assumption 1-a, we have µ ≤ 1, and in particular,
equality holds if and only if ki has only one nonzero element.

All four of the existing algorithms have been shown to have a correctness property,
whereas every one except XRAY has a robustness property. Hottopixx is the most similar
to ER. Bittorf et al. (2012) showed that it has the correctness and robustness with τ = 1
properties if one sets

ε =
αmin{d0, α}

9(r + 1)
(4)

and p = 1 under simpliciality and other assumptions. Here, α and d0 are as follows. α is
the minimum value of δF (j) for j = 1, . . . , r, where δF (j) denotes an `1-distance between
the jth column vector fj of F and the convex hull of the remaining column vectors in F .
d0 is the minimum value of ||ai − fj ||1 for every i such that ai is not a basis vector, and
every j = 1, . . . , r. The robustness of Hottopixx is further analyzed (Gillis, 2013; Gillis and
Luce, 2013).

It can be interpreted that the ε of ER (3) is given by the multiplication of two parameters
representing flatness and closeness of a given data matrix since σ measures the flatness of
the convex hull of data points, and 1− µ measures the closeness between basis vectors and
data points. Intuitively, we may say that an algorithm becomes sensitive to noise when a
data matrix has the following features; one is that the convex hull of data points is close to
a flat shape, and another is that there are data points close to basis vectors. The ε of (3)
well matches the intuition. We see a similar structure in the ε of Hottopixx (4) since α and
d0 respectively measure the flatness and closeness of a given data.

Compared with Hottopixx, the ε of ER (3) does not contain 1/r, and hence, it does not
decrease as r increases. However, Assumption 1-b of ER is stronger than the simpliciality of
Hottopixx. In a practical implementation, ER can handle a large matrix, while Hottopixx
may have limitations on the size of the matrix it can handle. Hottopixx entails solving
an LP problem with m2 variables. In the NMFs arising in applications, m tends to be a
large number. Although an LP is tractable, it becomes harder to solve as the size increases.
Through experiments, we assessed the performance of Hottopixx with the CPLEX LP solver.
The experiments showed that the algorithm had out of memory issues when m exceeded
2,000 with d = 100. Bittorf et al. (2012) proposed a parallel implementation to resolve
these computational issues.

AGKM and SPA were shown to have a robustness property with τ ≥ 1 for some ε in
Arora et al. (2012a) and Gillis and Vavasis (2014), respectively. In practical implemen-
tations, SPA and XRAY are scalable to the problem size and experimentally show good
robustness. Section 6 reports a numerical comparison of ER with SPA and XRAY.

3. Review of Formulation and Algorithm for MVEE Computation

We review the formulation for computing the MVEE for a set of points, and survey the
existing algorithms for the computation.

First of all, let us recall the terminology related to an ellipsoid. An ellipsoid in Rd is
defined as a set E(L, z) = {x ∈ Rd : (x − z)>L(x − z) ≤ 1} for a positive definite matrix
L of size d and a vector z ∈ Rd. Here, L determines the shape of the ellipsoid and z is
the center. Let x be a point in an ellipsoid E(L, z). If the point x satisfies the equality
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(x− z)>L(x− z) = 1, we call it an active point of the ellipsoid. In other words, an active
point is one lying on the boundary of the ellipsoid.

The volume of the ellipsoid is given as c(d)/
√

detL, where c(d) represents the volume
of a unit ball in Rd and it is a real number depending on the dimension d. ER algorithm
considers d-dimensional ellipsoids containing a set S of points in Rd, and in particular,
finds the minimum volume ellipsoid centered at the origin. In this paper, such an ellipsoid
is referred to as an origin-centered MVEE for short.

Now, we are ready to describe a formulation for computing the origin-centered MVEE for
a set of points. For m points p1, . . . ,pm ∈ Rd, let S = {±p1, . . . ,±pm}. The computation
of the origin-centered MVEE for S is formulated as

Q(S) : minimize − log detL,
subject to 〈pip>i ,L〉 ≤ 1, i = 1, . . . ,m,

L � 0,

where the matrix L of size d is the decision variable. The optimal solution L∗ of Q gives
the origin-centered MVEE for S as E(L∗) = {x : x>L∗x ≤ 1}. We here introduce some
terminology. An active point of E(L∗) is a vector pi ∈ Rd satisfying p>i L

∗pi = 1. We call
pi an active point of Q(S), and the index i of pi an active index of Q(S). The ellipsoid
E(L∗) is centrally symmetric, and if a vector pi is an active point, so is −pi. The dual of
Q reads

Q∗(S) : maximize log det Ω(u),
subject to e>u = 1,

u ≥ 0,

where the vector u is the decision variable. Here, Ω : Rm → Sd is a linear function given
as Ω(u) =

∑m
i=1 pip

>
i ui; equivalently, Ω(u) = Pdiag(u)P> for P = (p1, . . . ,pm) ∈ Rd×m.

It follows from the Karush-Kuhn-Tucker (KKT) conditions for these problems that the
optimal solution L∗ of Q is represented by 1

dΩ(u∗)−1 for the optimal solution u∗ of Q∗. We
make the following assumption to ensure the existence of an optimal solution of Q.

Assumption 2 rank(P ) = d for P = (p1, . . . ,pm) ∈ Rd×m.

Later, the KKT conditions will play an important role in our discussion of the active
points of Q. Here though, we will describe the conditions: L∗ ∈ Sd is an optimal solution
for Q and z∗ ∈ Rm is the associated Lagrange multiplier vector if and only if there exist
L∗ ∈ Sd and z∗ ∈ Rm such that

−(L∗)−1 + Ω(z∗) = 0, (5)

z∗i (〈pip>i ,L∗〉 − 1) = 0, i = 1, . . . ,m, (6)

〈pip>i ,L∗〉 ≤ 1, i = 1, . . . ,m, (7)

L∗ � 0, (8)

z∗i ≥ 0, i = 1, . . . ,m. (9)

Many algorithms have been proposed for solving problems Q and Q∗. These can be
categorized into mainly two types: conditional gradient algorithms (also referred to as

1020



Ellipsoidal Rounding for Nonnegative Matrix Factorization Under Noisy Separability

Frank-Wolfe algorithms) and interior-point algorithms. Below, we survey the studies on
these two algorithms.

Khachiyan (1996) proposed a barycentric coordinate descent algorithm, which can be
interpreted as a conditional gradient algorithm. He showed that the algorithm has a
polynomial-time iteration complexity. Several researchers investigated and revised
Khachiyan’s algorithm. Kumar and Yildirim (2005) showed that the iteration complex-
ity of Khachiyan’s algorithm can be slightly reduced if it starts from a well-selected initial
point. Todd and Yildirim (2007) and Ahipasaoglu et al. (2008) incorporated a step called as
a Wolfe’s away-step. The revised algorithm was shown to have a polynomial-time iteration
complexity and a linear convergence rate.

A dual interior-point algorithm was given by Vandenberghe et al. (1998). A primal-
dual interior-point algorithm was given by Toh (1999), and numerical experiments showed
that this algorithm is efficient and can provide accurate solutions. A practical algorithm
was designed by Sun and Freund (2004) for solving large-scale problems. In particular, a
hybrid of the interior-point algorithm and cutting plane algorithm was shown to be effi-
cient in numerical experiments. For instance, the paper reported that the hybrid algorithm
can solve problems with d = 30 and m = 30, 000 in under 30 seconds on a personal com-
puter. Tsuchiya and Xia (2007) considered generalized forms of Q and Q∗ and showed
that a primal-dual interior-point algorithm for the generalized forms has a polynomial-time
iteration complexity.

Next, let us discuss the complexity of these two sorts of algorithms for Q and Q∗. In
each iteration, the arithmetic operations of the conditional gradient algorithms are less than
those of the interior-point algorithms. Each iteration of a conditional gradient algorithm
(Khachiyan, 1996; Kumar and Yildirim, 2005; Todd and Yildirim, 2007; Ahipasaoglu et al.,
2008) requires O(md) arithmetic operations. On the other hand, assuming that the num-
ber of data points m is sufficiently larger than the dimension of data points d, the main
complexity of interior-point algorithms (Vandenberghe et al., 1998; Toh, 1999) comes from
solving an m-by-m system of linear equations in each iteration. The solution serves as the
search direction for the next iteration. Solving these linear equations requires O(m3) arith-
metic operations. In practice, the number of iterations of conditional gradient algorithms is
much larger than that of interior-point algorithms. Ahipasaoglu et al. (2008) reports that
conditional gradient algorithms take several thousands iterations to solve problems such
that d runs from 10 to 30 and m from 10, 000 to 30, 000. On the other hand, Sun and
Freund (2004) reports that interior-point algorithms usually terminate after several dozen
iterations and provide accurate solutions.

One of the concerns about interior-point algorithms is the computational cost of each
iteration. It is possible to reduce the cost considerably by using a cutting plane strategy.
A hybrid of interior-point algorithm and cutting plane algorithm has an advantage over
conditional gradient algorithms. In fact, Ahipasaoglu et al. (2008) reports that the hybrid
algorithm is faster than the conditional gradient algorithms and works well even on large
problems. Therefore, we use the hybrid algorithm to solve Q in our practical implementation
of ER. The details are in Section 5.1.

Here, it should be mentioned that this paper uses a terminology “cutting plane strategy”
for what other papers (Sun and Freund, 2004; Ahipasaoglu et al., 2008) have called the
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“active set strategy”, since it might be confused with “active set algorithm” for solving a
nonnegative least square problem.

4. Description and Analysis of the Algorithm

The ER algorithm is presented below. Throughout of this paper, we use the notation N to
denote a set of nonnegative integer numbers.

Algorithm 1 Ellipsoidal Rounding (ER) for Problem 1

Input: M ∈ Rd×m+ and r ∈ N.
Output: I.

1: Compute the SVD of M , and construct the reduced matrix P ∈ Rr×m associated
with r.

2: Let S = {±p1, . . . ,±pm} for the column vectors p1, . . . ,pm of P . Solve Q(S), and
construct the active index set I.

Step 1 needs to be explained in detail. Let M be a noisy separable matrix of size d-by-
m. In general, the M is a full-rank due to the existence of a noise matrix. However, the
rank is close to r when the amount of noise is small, and in particular, it is r in the noiseless
case. Accordingly, we construct a low-rank approximation matrix to M and reduce the
redundancy in the space spanned by the column vectors of M .

We use an SVD for the construction of the low-rank approximation matrix. The SVD
of M gives a decomposition of the form,

M = UΣV >.

Here, U and V are d-by-d and m-by-m orthogonal matrices, respectively. In this paper, we
call the U a left orthogonal matrix of the SVD of M . Let t = min{d,m}. Σ is a rectangular
diagonal matrix consisting of the singular values σ1, . . . , σt of M , and it is of the form,

Σ = diag(σ1, . . . , σt) ∈ Rd×m

with σ1 ≥ · · · ≥ σt ≥ 0. By choosing the top r singular values while setting the others to 0
in Σ, we construct

Σr = diag(σ1, . . . , σr, 0, . . . , 0) ∈ Rd×m

and let
M r = UΣrV >.

M r is the best rank-r approximation to M as measured by the matrix 2-norm and satisfies
||M −M r||2 = σr+1 (see, for instance, Theorem 2.5.3 of Golub and Loan, 1996). By
applying the left orthogonal matrix U> to M r, we have

U>M r =

(
P
0

)
∈ Rd×m,

where P is an r-by-m matrix with rank(P ) = r. We call such a matrix P a reduced matrix
of M associated with r. Since Assumption 2 holds for the P , it is possible to perform an
MVEE computation for a set of the column vectors.
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4.1 Correctness for a Separable Matrix

We analyze the correctness property of Algorithm 1. Let A be a separable matrix of size
d-by-m. Assume that Assumption 1 holds for A. We run Algorithm 1 for (A, rank(A)).
Step 1 computes the reduced matrix P of A. Since r = rank(A), we have A = Ar, where
Ar is the best rank-r approximation matrix to A. Let U ∈ Rd×d be the left orthogonal
matrix of the SVD of A. The reduced matrix P ∈ Rr×m of A is obtained as(

P
0

)
= U>A

= U>F (I,K)Π. (10)

From the above, we see that

U>F =

(
G
0

)
∈ Rd×m, where G ∈ Rr×r. (11)

Here, we have rank(G) = r since rank(F ) = r by Assumption 1-b and U is an orthogonal
matrix. By using G, we rewrite P as

P = (G,GK)Π.

From Assumption 1-a, the column vectors ki of the weight matrix K ∈ Rr×` satisfy the
conditions

||ki||1 = 1 and ki ≥ 0, i = 1, . . . , `. (12)

In Step 2, we collect the column vectors of P and construct a set S of them. Let
B = GK, and let gj and bi be the column vector of G and B, respectively. S is a set of
vectors ±g1, . . . ,±gr,±b1, . . . ,±b`. The following proposition guarantees that the active
points of Q(S) are g1, . . . , gr. We can see from (10) and (11) that the index set of the
column vectors of G is identical to that of of F . Hence, the basis matrix F of a separable
one A can be obtained by finding the active points of Q(S).

Proposition 3 Let G ∈ Rr×r and B = GK ∈ Rr×` for K ∈ Rr×`. For the column vectors
gj and bi of G and B, respectively, let S = {±g1, . . . ± gr,±b1, . . . ,±b`}. Suppose that
rank(G) = r and K satisfies the condition (12). Then, the active point set of Q(S) is
{g1, . . . , gr}.

Proof We show that an optimal solution L∗ of Q(S) is (GG>)−1 and its associated
Lagrange multiplier z∗ is (e; 0), where e is an r-dimensional all-ones vector and 0 is
an `-dimensional zero vector. Here, the Lagrange multipliers are one for the constraints
〈gjg>j ,L〉 ≤ 1, and these are zero for 〈bib>i ,L〉 ≤ 1.

Since G is nonsingular, the inverse of GG> exists and it is positive definite. Now we
check that L∗ = (GG>)−1 and z∗ = (e; 0) satisfy the KKT conditions (5)-(9) for the
problem. It was already seen that the conditions (5), (8), and (9) are satisfied. For the
remaining conditions, we have

〈gjg>j , (GG>)−1〉 = (G>(GG>)−1G)jj = 1 (13)
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and

〈bib>i , (GG>)−1〉 = (B>(GG>)−1B)ii

= (K>G>(GG>)−1GK)ii

= k>i ki

≤ ||ki||21 = 1. (14)

Here, (·)ii for a matrix denotes the (i, i)th element of the matrix. The inequality in (14)
follows from condition (12). Also, the Lagrange multipliers are zero for the inequality
constraints 〈bib>i , (GG>)−1〉 ≤ 1. Thus, conditions (6) and (7) are satisfied. Accordingly,
(GG>)−1 is an optimal solution of Q(S).

We can see from (13) that g1, . . . , gr are the active points of the problem. Moreover,
we may have equality in (14). In fact, equality holds if and only if ki has only one nonzero
element. For such ki, bi = Gki coincides with some vector in g1, . . . , gr.

From the above discussion, we can immediately notice that this proposition holds if for
a matrix K ∈ Rr×`, the column vectors ki satisfy

||ki||2 < 1, i = 1, . . . ,m. (15)

Note that in contrast with condition (12), this condition does not require the matrix to be
nonnegative.

Corollary 4 Proposition 3 holds even if we suppose that K ∈ Rr×` satisfies condition (15),
instead of condition (12).

Note that this corollary is used to show the robustness of Algorithm 1 on a noisy
separable matrix. The correctness of Algorithm 1 for a separable matrix follows from the
above discussion and Proposition 3.

Theorem 5 Let A be a separable matrix. Assume that Assumption 1 holds for A. Then,
Algorithm 1 for (A, rank(A)) returns an index set I such that A(I) = F .

4.2 Robustness for a Noisy Separable Matrix

Next, we analyze the robustness property of Algorithm 1. Let A be a separable matrix of
size d-by-m. Assume that Assumption 1 holds for A. Let Ã be a noisy separable matrix
of the form A + N . We run Algorithm 1 for (Ã, rank(A)). Step 1 computes the reduced
matrix P of Ã. Let U ∈ Rd×d be the left orthogonal matrix of the SVD of Ã, and Ãr be
the best rank-r approximation matrix to Ã. We denote the residual matrix Ã− Ãr by Ãr

�.

1024



Ellipsoidal Rounding for Nonnegative Matrix Factorization Under Noisy Separability

For the reduced matrix P of Ã, we have(
P
0

)
= U>Ãr

= U>(Ã− Ãr
�) (16)

= U>(A + N − Ãr
�)

= U>(A + N) (17)

= U>((F ,FK)Π + N)

= U>(F + N (1),FK + N (2))Π (18)

= U>(F̂ , F̂K + N̂)Π. (19)

The following notation is used in the above: N = N − Ãr
� in (17); N (1) and N (2) in (18)

are the d-by-r and d-by-` submatrices of N such that NΠ−1 = (N (1),N (2)); F̂ = F +N (1)

and N̂ = −N (1)K + N (2) in (19). This implies that

U>F̂ =

(
Ĝ
0

)
, where Ĝ ∈ Rr×r, (20)

and

U>N̂ =

(
R
0

)
, where R ∈ Rr×`. (21)

Hence, we can rewrite P as
P = (Ĝ, ĜK + R)Π.

Ã is represented by (2) as

Ã = (F̃ , F̃K + Ñ)Π,

where F̃ and Ñ denote F + N (1) and −N (1)K + N (2), respectively. From (16), we have(
(Ĝ, ĜK + R)Π

0

)
= U>((F̃ , F̃K + Ñ)Π− Ãr

�).

Therefore, the index set of the column vectors of Ĝ is identical to that of F̃ . If all the
column vectors of Ĝ are found in P , we can identify F̃ hidden in Ã.

In Step 2, we collect the column vectors of P and construct a set S of them. Let

B̂ = ĜK + R, (22)

and let ĝj and b̂i respectively be the column vectors of Ĝ and B̂. S is a set of vectors

±ĝ1, . . . ,±ĝr,±b̂1, . . . ,±b̂`. We can see from Corollary 4 that, if rank(Ĝ) = r and b̂i is
written as b̂i = Ĝk̂i by using k̂i ∈ Rr with ||k̂i||2 < 1, the active points of Q(S) are given
as the column vectors ĝ1, . . . , ĝr of Ĝ. Below, we examine the amount of noise N such that
the conditions of Corollary 4 still hold.

Lemma 6 Let Ã = A + N ∈ Rd×m. Then, |σi(Ã)− σi(A)| ≤ ||N ||2 for each i = 1, . . . , t
where t = min{d,m}.
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Proof See Corollary 8.6.2 of Golub and Loan (1996).

Lemma 7 Let n = ||N ||2 and µ = µ(K).

7-a) The matrix N of (17) satisfies ||N ||2 ≤ 2n.

7-b) The column vectors ri of matrix R of (21) satisfy ||ri||2 ≤ 2n(µ+ 1) for i = 1, . . . ,m.

7-c) The singular values of matrix Ĝ of (20) satisfy |σi(Ĝ)− σi(F )| ≤ 2n for i = 1, . . . , r.

Proof 7-a) Since N = N − Ãr
�,

||N ||2 ≤ ||N ||2 + ||Ãr
�||2.

We have ||Ãr
�||2 ≤ n since ||Ãr

�||2 = σr+1(Ã) and from Lemma 6, |σr+1(Ã)−σr+1(A)| ≤ n.

Therefore, ||N ||2 ≤ 2n.

7-b) Let n̂i be the column vector of the matrix N̂ of (19). Since U>n̂i = (ri; 0) for an
orthogonal matrix U , we have ||n̂i||2 = ||ri||2. Therefore, we will evaluate ||n̂i||2. Let ki

and n
(2)
i be the column vectors of K and N (2), respectively. Then, n̂i can be represented

as −N (1)ki + n
(2)
i . Thus, by Lemma 7-a, we have

||ri||2 = ||n̂i||2 ≤ ||N (1)||2||ki||2 + ||n(2)
i ||2 ≤ 2n(µ+ 1).

7-c) Since U>F̂ = (Ĝ; 0) for an orthogonal matrix U , the singular values of F̂ and Ĝ

are identical. Also, since F̂ = F + N (1) and Lemma 6, we have

|σi(Ĝ)− σi(F )| = |σi(F̂ )− σi(F )| ≤ ||N (1)||2 ≤ 2n.

The following lemma ensures that the conditions of Corollary 4 hold if the amount of
noise is smaller than a certain level.

Lemma 8 Let Ĝ be the matrix of (20), and let b̂i be the column vector of B̂ of (22).
Suppose that ||N ||2 < ε for ε = 1

4σ(1− µ) where σ = σr(F ) and µ = µ(K). Then,

8-a) rank(Ĝ) = r.

8-b) b̂i is represented as Ĝk̂i = b̂i by using k̂i such that ||k̂i||2 < 1.

In the proof below, n denotes ||N ||2.
Proof 8-a) From Lemma 7-c, the minimum singular value of Ĝ satisfies

σr(Ĝ) ≥ σ − 2n

> σ − 2ε =
1

2
σ(1 + µ) > 0.
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The final inequality follows from σ > 0 due to Assumption 1-b. Hence, we have rank(Ĝ) = r.

8-b) Let ki and ri be the column vectors of K and R, respectively. Then, we have
b̂i = Ĝki + ri. Since Lemma 8-a guarantees that Ĝ has an inverse, it can be represented
as b̂i = Ĝk̂i by k̂i = ki + Ĝ−1ri. It follows from Lemmas 7-b and 7-c that

||k̂i||2 ≤ ||ki||2 + ||Ĝ−1||2||ri||2

≤ µ+
2n(µ+ 1)

σ − 2n
.

Since n < 1
4σ(1− µ), we have ||k̂i||2 < 1.

The robustness of Algorithm 1 for a noisy separable matrix follows from the above
discussion, Corollary 4, and Lemma 8.

Theorem 9 Let Ã be a noisy separable matrix of the form A+N . Assume that Assumption
1 holds for the separable matrix A in Ã. Set ε = 1

4σ(1−µ) where σ = σr(F ) and µ = µ(K)

for the basis and weight matrices F and K of A. If ||N ||2 < ε, Algorithm 1 for (Ã, rank(A))
returns an index set I such that ||Ã(I)− F ||2 < ε.

In Theorem 9, let F ∗ = Ã(I), and W ∗ be an optimal solution of the convex optimization
problem,

minimize ||Ã(I)X − Ã||2F subject to X ≥ 0,

where the matrix X of size r-by-m is the decision variable. Then, (F ∗,W ∗) serves as the
NMF factor of Ã. It is possible to evaluate the residual error of this factorization in a
similar way to the proof of Theorem 4 by Gillis and Vavasis (2014).

Corollary 10 Let w∗i and ãi be the column vectors of W ∗ and Ã, respectively. Then,
||F ∗w∗i − ãi||2 < 2ε for i = 1, . . . ,m.

Proof From Assumption 1-a, the column vectors wi of W satisfy ||wi||2 ≤ 1 for i =
1, . . . ,m. Therefore, for i = 1, . . . ,m,

||F ∗w∗i − ãi||2 ≤ ||F ∗wi − ãi||2
= ||F ∗wi − Fwi + Fwi − ai − ni||2
= ||(F ∗ − F )wi − ni||2
≤ ||F ∗ − F ||2||wi||2 + ||ni||2 < 2ε,

where ai and ni denote the ith column vector of A and N , respectively.

5. Implementation in Practice

Theorem 9 guarantees that Algorithm 1 correctly identifies the near-basis matrix of a noisy
separable matrix if the noise is smaller than some level. But in the NMFs of matrices arising
from practical applications, it seems that the noise level would likely exceed the level for

1027



Mizutani

which the theorem is valid. In such a situation, the algorithm might generate more active
points than hoped. Therefore, we need to add a selection step in which r points are selected
from the active points. Also, the number of active points depends on which dimension we
choose in the computation of the reduced matrix P . Algorithm 1 computes the reduced
matrix P of the data matrix and draws an origin-centered MVEE for the column vectors
p1, . . . ,pm of P . As we will see in Lemma 11, the number of active points depends on
the dimension of p1, . . . ,pm. Therefore, we introduce an input parameter ρ to control the
dimension. By taking account of these considerations, we design a practical implementation
of Algorithm 1.

Algorithm 2 Practical Implementation of Algorithm 1

Input: M ∈ Rd×m+ , r ∈ N, and ρ ∈ N.
Output: I.

1: Run Algorithm 1 for (M , ρ). Let J be the index set returned by the algorithm.

2: If |J | < r, increase ρ by 1 and go back to Step 1. Otherwise, select r elements from
J and construct the set I of these elements.

One may wonder whether Algorithm 2 infinitely loops or not. In fact, we can show that
under some conditions, infinite loops do not occur.

Lemma 11 For p1, . . . ,pm ∈ Rρ, let S = {±p1, . . . ,±pm}. Suppose that Assumption 2
holds. Then, Q(S) has at least ρ active points.

Proof Consider the KKT conditions (5)-(9) for Q(S). Condition (5) requires Ω(z∗) to be
nonsingular. Since rank(P ) = ρ from the assumption, at least ρ nonzero z∗i exist. There-
fore, we see from condition (6) that Q(S) has at least ρ active points.

Proposition 12 Suppose that we choose r such that r ≤ rank(M). Then, Algorithm 2
terminates after a finite number of iterations.

Proof For the active index set J constructed in Step 1, Lemma 11 guarantees that |J | ≥ ρ.
The parameter ρ increases by 1 if |J | < r in Step 2 and can continue to increase up to
ρ = rank(M). Since r ≤ rank(M), it is necessarily to satisfy |J | ≥ ρ ≥ r after a finite
number of iterations.

Proposition 12 implies that ρ may not be an essential input parameter since Algorithm
2 always terminates under r ≤ rank(M) even if starting with ρ = 1.

There are some concerns about Algorithm 2. One is in how to select r elements from an
active index set J in Step 2. It is possible to have various ways to make the selection. We
rely on existing algorithms, such as XRAY and SPA, and perform these existing algorithms
for (M(J ), ρ). Thus, Algorithm 1 can be regarded as a preprocessor which filters out basis
vector candidates from the data points and enhance the performance of existing algorithms.
Another concern is in the computational cost of solving Q. In the next section, we describe
a cutting plane strategy for efficiently performing an interior-point algorithm.
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5.1 Cutting Plane Strategy for Solving Q

Let S be a set of m points in Rd. As mentioned in Section 3, O(m3) arithmetic operations
are required in each iteration of an interior-point algorithm for Q(S). A cutting plane
strategy is a way to reduce the number of points which we need to deal with in solving
Q(S). The strategy was originally used by Sun and Freund (2004). In this section, we
describe the details of our implementation.

The cutting plane strategy for solving Q has a geometric interpretation. It is thought of
that active points contribute a lot to the drawing the MVEE for a set of points but inactive
points make less of a contribution. This geometric intuition can be justified by the following
proposition. Let L be a d-by-d matrix. We use the notation δL(p) to denote 〈pp>,L〉 for
an element p ∈ Rd of S.

Proposition 13 Let S̄ be a subset of S. If an optimal solution L̄∗ of Q(S̄) satisfies
δL̄∗(p) ≤ 1 for all p ∈ S \ S̄, then L̄∗ is an optimal solution of Q(S).

The proof is omitted since it is obvious. The proposition implies that Q(S) can be solved
by using its subset S̄ instead of S. The cutting plane strategy offers a way of finding such a
S̄, in which a smaller problem Q(S̄) has the same optimal solution as Q(S). In this strategy,
we first choose some points from S and construct a set S1 containing these points. Let Sk
be the set constructed in the kth iteration. In the (k+1)th iteration, we choose some points
from S \ Sk and expand Sk to Sk+1 by adding these points to Sk. Besides expanding, we
also shrink Sk by discarding some points which can be regarded as useless for drawing the
origin-centered MVEE. These expanding and shrinking phases play an important role in
constructing a small set. Algorithm 3 describes a cutting plane strategy for solving Q(S).

Algorithm 3 Cutting Plane Strategy for Solving Q(S)

Input: S = {p1, . . . ,pm}.
Output: L∗.

1: Choose an initial set S1 from S and let k = 1.

2: Solve Q(Sk) and find the optimal solution Lk. If δLk(p) ≤ 1 holds for all p ∈ S \ Sk,
let L∗ = Lk, and stop.

3: Choose a subset F of Sk and a subset G of {p ∈ S \ Sk : δLk(p) > 1}. Update Sk as
Sk+1 = (Sk \ F) ∪ G and increase k by 1. Then, go back to Step 2.

Now, we give a description of our implementation of Algorithm 3. To construct the initial
set S1 in Step 1, our implementation employs the algorithm used in the papers (Kumar
and Yildirim, 2005; Todd and Yildirim, 2007; Ahipasaoglu et al., 2008). The algorithm
constructs a set S1 by greedily choosing 2d points in a step-by-step manner such that the
convex hull is a d-dimensional crosspolytope containing as many points in S as possible. We
refer the reader to Algorithm 3.1 of Kumar and Yildirim (2005) for the precise description.

To shrink and expand Sk in Step 3, we use a shrinking threshold parameter θ such that
θ < 1, and an expanding size parameter η such that η ≥ 1. These parameters are set before
running Algorithm 3. For shrinking, we construct F = {p ∈ Sk : δLk(p) ≤ θ} by using θ.
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For expanding, we arrange the points of {p ∈ S \ Sk : δLk(p) > 1} in descending order,
as measured by δLk(·), and construct G by choosing the top (m − 2d)/η points. If the set
{p ∈ S \ Sk : δLk(p) > 1} has less than (m − 2d)/η points, we choose all the points and
construct G.

6. Experiments

We experimentally compared Algorithm 2 with SPA and the variants of XRAY. These two
existing algorithms were chosen because their studies (Bittorf et al., 2012; Gillis and Luce,
2013; Kumar et al., 2013) report that they outperform AGKM and Hottopixx, and scale to
the problem size. Two types of experiments were conducted: one is the evaluation for the
robustness of the algorithms to noise on synthetic data sets, and the other is the application
of the algorithms to clustering of real-world document corpora.

We implemented Algorithm 2, and three variants of XRAY, “max”, “dist” and “greedy”,
in MATLAB. We put Algorithm 3 in Algorithm 2 so it would solve Q efficiently. The
software package SDPT3 (Toh et al., 1999) was used for solving Q(Sk) in Step 2 of Algorithm
3. The shrinking parameter θ and expanding size parameter η were set as 0.9999 and 5,
respectively. The implementation of XRAY formulated the computation of the residual
matrix R = A(Ik)X∗ −A as a convex optimization problem,

X∗ = arg min
X≥0

||A(Ik)X −A||2F .

For the implementation of SPA (Gillis and Vavasis, 2014), we used code from the first
author’s website. Note that SPA and XRAY are sensitive to the normalization of the
column vectors of the data matrix (see, for instance, Kumar et al., 2013), and for this
reason, we used a data matrix whose column vectors were not normalized. All experiments
were done in MATLAB on a 3.2 GHz CPU processor and 12 GB memory.

We will use the following abbreviations to represent the variants of algorithms. For
instance, Algorithm 2 with SPA for an index selection of Step 2 is referred to as ER-SPA.
Also, the variant of XRAY with “max” selection policy is referred to as XRAY(max).

6.1 Synthetic Data

Experiments were conducted for the purpose of seeing how well Algorithm 2 could im-
prove the robustness of SPA and XRAY to noise. Specifically, we compared it with SPA,
XRAY(max), XRAY(dist), and XRAY(greedy). The robustness of algorithm was measured
by a recovery rate. Let I be an index set of basis vectors in a noisy separable matrix,
and I∗ be an index set returned by an algorithm. The recovery rate is the ratio given by
|I ∩ I∗| / |I|.

We used synthetic data sets of the form F (I,K)Π + N with d = 250, m = 5, 000, and
r = 10. The matrices F ,K,Π and N were synthetically generated as follows. The entries
of W ∈ Rd×r+ were drawn from a uniform distribution on the interval [0, 1]. The column

vectors of K ∈ Rr×`+ were from a Dirichlet distribution whose r parameters were uniformly
from the interval [0, 1]. The permutation matrix Π was randomly generated. The entries
of the noise matrix N ∈ Rd×m were from a normal distribution with mean 0 and standard
deviation δ. The parameter δ determined the intensity of the noise, and it was chosen from
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Figure 3: Comparison of the recovery rates of Algorithm 2 with SPA and XRAY.
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Recovery rate 100% 90% 80% 70%

ER-SPA 0.06 0.24 0.32 0.37
SPA 0.05 0.21 0.27 0.31

ER-XRAY(max) 0.06 0.24 0.32 0.37
XRAY(max) 0.05 0.21 0.27 0.31

ER-XRAY(dist) 0.07 0.23 0.29 0.36
XRAY(dist) 0.03 0.10 0.13 0.16

ER-XRAY(greedy) 0.07 0.23 0.29 0.35
XRAY(greedy) 0.00 0.08 0.12 0.14

Table 1: Maximum values of noise level δ for different recovery rates in percentage.

0 to 0.5 in 0.01 increments. A single data set consisted of 51 matrices with various amounts
of noise, and we made 50 different data sets. Algorithm 2 was performed in the setting that
M is a matrix in the data set and r and ρ are each 10.

Figure 3 depicts the average recovery rate on the 50 data sets for Algorithm 2, SPA and
XRAY. Table 1 summarizes the maximum values of noise level δ for different recovery rates
in percentage. The noise level was measured by 0.01, and hence, for instance, the entry
“0.00” at XRAY(greedy) for 100% recovery rate means that the maximum value is in the
interval [0.00, 0.01). We see from the figure that Algorithm 2 improved the recovery rates of
the existing algorithms. In particular, the recovery rates of XRAY(dist) and XRAY(greedy)
rapidly decrease as the noise level increases, but Algorithm 2 significantly improved them.
Also, the figure shows that Algorithm 2 tended to slow the decrease in the recovery rate.
We see from the table that Algorithm 2 is more robust to noise than SPA and XRAY.

Table 2 summarizes the average number of active points and elapsed time for 50 data
sets taken by Algorithm 2 with δ = 0, 0.25 and 0.5. We read from the table that the
elapsed time increases with the number of active points. The average elapsed times of SPA,
XRAY(max), XRAY(dist), and XRAY(greedy) was respectively 0.03, 1.18, 16.80 and 15.85
in seconds. Therefore, we see that the elapsed time of Algorithm 2 was within a reasonable
range.

δ Active points Elapsed time (second)
ER-SPA ER-XRAY(max) ER-XRAY(dist) ER-XRAY(greedy)

0 10 1.05 1.07 1.07 1.07
0.25 12 3.08 3.10 3.10 3.10
0.5 23 4.70 4.71 4.71 4.71

Table 2: Average number of active points and elapsed time of Algorithm 2.

6.2 Application to Document Clustering

Consider a set of d documents. Let m be the total number of words appearing in the
document set. We represent the documents by a bag-of-words. That is, the ith document is
represented as an m-dimensional vector ai, whose elements are the appearance frequencies
of words in the document. A document vector ai can be assumed to be generated by a

1032



Ellipsoidal Rounding for Nonnegative Matrix Factorization Under Noisy Separability

convex combination of several topic vectors w1, . . .wr. This type of generative model has
been used in many papers (for instance, Xu et al., 2003; Shahnaz et al., 2006; Arora et al.,
2012b, 2013; Ding et al., 2013; Kumar et al., 2013).

Let W be an r-by-m topic matrix such that w>1 , . . . ,w
>
r are stacked from top to bottom

and are of the form (w1; . . . ;wr). The model allows us to write a document vector in the
form a>i = f>i W by using a coefficient vector fi ∈ Rr such that e>fi = 1 and fi ≥ 0. This
means that we have A = FW for a document-by-word matrix A = (a1; . . . ;ad) ∈ Rd×m+ , a

coefficient matrix F = (f1; . . . ;fd) ∈ Rd×r+ , and a topic matrix W = (w1; . . . ;wr) ∈ Rr×m+ .
In the same way as the papers (Arora et al., 2012b, 2013; Ding et al., 2013; Kumar et al.,
2013), we assume that a document-by-word matrix A is separable. This requires that W
is of (I,K)Π, and it means that each topic has an anchor word. An anchor word is a word
that is contained in one topic but not contained in the other topics. If an anchor word is
found, it suggests that the associated topic exists.

Algorithms for Problem 1 can be used for clustering documents and finding topics for
the above generative model. The algorithms for a document-word matrix A return an index
set I. Let F = A(I). The row vector elements fi1, . . . , fir of F can be thought of as the
contribution rate of topics w1, . . . ,wr for generating a document ai. The highest value
fij∗ among the elements implies that the topic wj∗ contributes the most to the generation
of document ai. Hence, we assign document ai to a cluster having the topic wj∗ . There
is an alternative to using F for measuring the contribution rates of the topics. Step 1
of Algorithm 1 produces a rank-r approximation matrix Ar to A as a by-product. Let
F ′ = Ar(I), and use it as an alternative to F . We say that clustering with F is clustering
with the original data matrix, and that clustering with F ′ is clustering with a low-rank
approximation data matrix.

Experiments were conducted in the purpose of investigating clustering performance of
algorithms and also checking whether meaningful topics could be extracted. To investigate
the clustering performance, we used only SPA since our experimental results implied that
XRAY would underperform. We assigned the values of the document-word matrix on the
basis of the tf-idf weighting scheme, for which we refer the reader to Manning et al. (2008),
and normalized the row vectors to the unit 1-norm.

To evaluate the clustering performance, we measured the accuracy (AC) and normalized
mutual information (NMI). These measures are often used for this purpose (see, for instance,
Xu et al., 2003; Manning et al., 2008). Let Ω1, . . . ,Ωr be the manually classified classes and
C1, . . . , Cr be the clusters constructed by an algorithm. Both Ωi and Cj are the subsets of
the document set {a1, . . . ,am} such that each subset does not share any documents and
the union of all subsets coincides with the document set. AC is computed as follows. First,
compute the correspondence between classes Ω1, . . . ,Ωr and clusters C1, . . . , Cr such that
the total number of common documents Ωi ∩ Cj is maximized. This computation can be
done by solving an assignment problem. After that, rearrange the classes and clusters in
the obtained order and compute

1

d

r∑
k=1

|Ωk ∩ Ck|.
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This value is the AC for the clusters constructed by an algorithm. NMI is computed as

I(Ω, C)
1
2(E(Ω) + E(C))

.

I and E denote the mutual information and entropy for the class family Ω and cluster
family C where Ω = {Ω1, . . . ,Ωr} and C = {C1, . . . , Cr}. We refer the reader to Section 16.3
of Manning et al. (2008) for the precise forms of I and E.

Two document corpora were used for the clustering-performance evaluation: Reuters-
21578 and 20 Newsgroups. These corpora are publicly available from the UCI Knowledge
Discovery in Databases Archive (http://kdd.ics.uci.edu). In particular, we used the
data preprocessing of Deng Cai, in which multiple classes are discarded. The data sets are
available from the website (http://www.cad.zju.edu.cn/home/dengcai). The Reuters-
21578 corpus consists of 21,578 documents appearing in the Reuters newswire in 1987, and
these documents are manually classified into 135 classes. The text corpus is reduced by the
preprocessing to 8,293 documents in 65 classes. Furthermore, we cut off classes with less
than 5 documents. The resulting corpus contains 8,258 documents with 18,931 words in
48 classes, and the sizes of the classes range from 5 to 3,713. The 20 Newsgroups corpus
consists of 18,846 documents with 26,213 words appearing in 20 different newsgroups. The
size of each class is about 1,000.

We randomly picked some classes from the corpora and evaluated the clustering per-
formance 50 times. Algorithm 2 was performed in the setting that M is a document-word
matrix and r and ρ each are the number of classes. In clustering with a low-rank ap-
proximation data matrix, we used the rank-r approximation matrix to a document-word
matrix.

AC NMI

Original Low-rank approx. Original Low-rank approx.
# Classes ER-SPA SPA ER-SPA SPA ER-SPA SPA ER-SPA SPA

6 0.605 0.586 0.658 0.636 0.407 0.397 0.532 0.466
8 0.534 0.539 0.583 0.581 0.388 0.387 0.491 0.456
10 0.515 0.508 0.572 0.560 0.406 0.393 0.511 0.475
12 0.482 0.467 0.532 0.522 0.399 0.388 0.492 0.469

Table 3: (Reuters-21578) Average AC and NMI of ER-SPA and SPA with the original data
matrix and low-rank approximation data matrix.

Tables 3 and 4 show the results for Reuters-21578 and 20 Newsgroups, respectively.
They summarize the average ACs and NMIs of ER-SPA and SPA. The column with “#
Classes” lists the number of classes we chose. The columns labeled “Original” and “Low-
rank approx.” are respectively the averages of the corresponding clustering measurements
with the original data matrix and low-rank approximation data matrix. The tables suggest
that clustering with a low-rank approximation data matrix performed better than clustering
with the original data matrix. We see from Table 3 that ER-SPA could achieve improve-
ments in the AC and NMI of SPA on Reuters-21578 when the clustering was done with a
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AC NMI

Original Low-rank approx. Original Low-rank approx.
# Classes ER-SPA SPA ER-SPA SPA ER-SPA SPA ER-SPA SPA

6 0.441 0.350 0.652 0.508 0.314 0.237 0.573 0.411
8 0.391 0.313 0.612 0.474 0.306 0.242 0.555 0.415
10 0.356 0.278 0.559 0.439 0.291 0.228 0.515 0.397
12 0.319 0.240 0.517 0.395 0.268 0.205 0.486 0.372

Table 4: (20 Newsgroups) Average AC and NMI of ER-SPA and SPA with the original data
matrix and low-rank approximation data matrix.

low-rank approximation data matrix. Table 4 indicates that ER-SPA outperformed SPA in
AC and NMI on 20 Newsgroups.

Finally, we compared the topics obtained by ER-SPA and SPA. We used the BBC
corpus of Greene and Cunningham (2006), which is available from the website (http:
//mlg.ucd.ie/datasets/bbc.html). The documents in the corpus have been subjected
by preprocessed such as stemming, stop-word removal, and low word frequency filtering. It
consists of 2,225 documents with 9,636 words that appeared on the BBC news website in
2004-2005. The documents were news on 5 topics: “business”, “entertainment”, “politics”,
“sport” and “tech”.

AC NMI

ER-SPA SPA ER-SPA SPA

0.939 0.675 0.831 0.472

Table 5: AC and NMI of ER-SPA and SPA with low-rank approximation data matrix for
BBC.

Anchor word 1 2 3 4 5

ER-SPA film award best oscar nomin actor
SPA film award best oscar nomin star

ER-SPA mobil phone user softwar microsoft technolog
SPA mobil phone user microsoft music download

ER-SPA bank growth economi price rate oil
SPA bank growth economi price rate oil

ER-SPA game plai player win england club
SPA fiat sale profit euro japan firm

ER-SPA elect labour parti blair tori tax
SPA blog servic peopl site firm game

Table 6: Anchor words and top-5 frequent words in topics grouped by ER-SPA and SPA
for BBC.
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Table 5 shows the ACs and NMIs of ER-SPA and SPA on the low-rank approximation
data matrix for the BBC corpus. The table indicates that the AC and NMI of ER-SPA
are higher than those of SPA. Table 6 summarizes the words in the topics obtained by ER-
SPA and SPA. The topics were computed by using a low-rank approximation data matrix.
The table lists the anchor word and the 5 most frequent words in each topic from left to
right. We computed the correspondence between topics obtained by ER-SPA and SPA and
grouped the topics for each algorithm. Concretely, we measured the 2-norm of each topic
vector and computed the correspondence by solving an assignment problem. We can see
from the table that the topics obtained by these two algorithms are almost the same from
the first to the third panel, and they seem to correspond to “entertainment”, “tech” and
“business”. The topics in the fourth and fifth panels, however, are different. The topic in
the fifth panel by ER-SPA seems to correspond to “politics”. In contrast, it is difficult to
find the topic corresponding to “politics” in the panels by SPA. These show that ER-SPA
could extract more recognizable topics than SPA.

Remark 14 Sparsity plays an important role in computing the SVD for a large document
corpus. In general, a document-word matrix arising from a text corpus is quite sparse. Our
implementation of Algorithm 2 used the MATLAB command svds that exploits the sparsity
of a matrix in the SVD computation. The implementation could work on all data of 20
Newsgroups corpus, which formed a document-word matrix of size 18,846-by-26,213.

7. Concluding Remarks

We presented Algorithm 1 for Problem 1 and formally showed that it has correctness and
robustness properties. Numerical experiments on synthetic data sets demonstrated that
Algorithm 2, which is the practical implementation of Algorithm 1, is robustness to noise.
The robustness of the algorithm was measured in terms of the recovery rate. The results
indicated that Algorithm 2 can improve the recovery rates of SPA and XRAY. The algo-
rithm was then applied to document clustering. The experimental results implied that it
outperformed SPA and extracted more recognizable topics.

We will conclude by suggesting a direction for future research. Algorithm 2 needs to do
two computations: one is the SVD of the data matrix and the other is the MVEE for a set
of reduced-dimensional data points. It would be ideal to have a single computation that
could be parallelized. The MVEE computation requires that the convex hull of data points
is full-dimensional. Hence, the SVD computation should be carried out on data points.
However, if we could devise an alternative convex set for MVEE, it would possible to avoid
SVD computation. It would be interesting to investigate the possibility of algorithms that
find near-basis vectors by using the other type of convex set for data points.
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