Journal of Machine Learning Research 15 (2014) 3693-3720 Submitted 1/14; Revised 7/14; Published 11/14

Seeded Graph Matching for Correlated Erd6s-Rényi Graphs

Vince Lyzinski VLYZINS1@QJHU.EDU
Human Language Technology Center of Excellence

Johns Hopkins University

Baltimore, MD, 21218, USA

Donniell E. Fishkind DEFQJHU.EDU
Carey E. Priebe CEPQJHU.EDU
Department of Applied Mathematics and Statistics

Johns Hopkins University

Baltimore, MD, 21218, USA

Editor: Edoardo Airoldi

Abstract

Graph matching is an important problem in machine learning and pattern recognition.
Herein, we present theoretical and practical results on the consistency of graph matching
for estimating a latent alignment function between the vertex sets of two graphs, as well as
subsequent algorithmic implications when the latent alignment is partially observed. In the
correlated Erdos-Rényi graph setting, we prove that graph matching provides a strongly
consistent estimate of the latent alignment in the presence of even modest correlation. We
then investigate a tractable, restricted-focus version of graph matching, which is only con-
cerned with adjacency involving vertices in a partial observation of the latent alignment;
we prove that a logarithmic number of vertices whose alignment is known is sufficient
for this restricted-focus version of graph matching to yield a strongly consistent estimate
of the latent alignment of the remaining vertices. We show how Frank-Wolfe methodol-
ogy for approximate graph matching, when there is a partially observed latent alignment,
inherently incorporates this restricted-focus graph matching. Lastly, we illustrate the rela-
tionship between seeded graph matching and restricted-focus graph matching by means of
an illuminating example from human connectomics.

Keywords: graph matching, Erdés-Rényi graph, consistency, estimation, seeded vertices,
Frank-Wolfe, assignment problem

1. Background and Overview

The graph matching problem (GMP)—i.e., finding the alignment between the vertices of
two graphs which best preserves the structure of the graphs—has a rich and active place in
the literature. Graph matching has applications in a wide variety of disciplines, including
machine learning (Cour et al., 2007; Liu and Qiao, 2012; Fiori et al., 2013), computer vision
(Cho et al., 2009; Cho and Lee, 2012; Zhou and De la Torre, 2012), pattern recognition (Berg
et al., 2005; Caelli and Kosinov, 2004), manifold and embedded graph alignment (Robles-
Kelly and Hancock, 2007; Xiao et al., 2009), shape matching and object recognition (Huet
et al., 1999), and MAP inference (Leordeanu et al., 2009), to name a few.
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There are no efficient algorithms known for solving graph matching exactly. Even the
easier problem of just deciding if two graphs are isomorphic is notoriously of unknown
complexity (Garey and Johnson, 1979; Read and Corneil, 1977). Indeed, graph matching is
a special case of the NP-hard quadratic assignment problem and, if the graphs are allowed
to be directed, loopy, and weighted, then graph matching is actually equivalent to the
quadratic assignment problem. Because of its practical applicability, there is a vast amount
of literature devoted to approximate graph matching algorithms; for an interesting survey
of the literature, see e.g., “Thirty Years of Graph Matching in Pattern Recognition” by
Conte et al. (2004).

In the presence of a latent alignment function between the vertex sets of two graphs,
it is natural to ask how well graph matching would mirror this underlying alignment. In
Section 2.2 we describe the correlated Erdés-Rényi random graph, which provides us with
a useful and natural setting to explore this question. The correlated Erdés-Rényi random
graph consists of two Erddés-Rényi random graphs which share a common vertex set and
a common Bernoulli-trial probability parameter; for each pair of vertices, there is a given
correlation between the two vertices’ adjacency in one graph and the two vertices’ adja-
cency in the other graph. In this manner, there is a natural latent alignment between the
two graphs, and we can then explore whether or not graph matching the two graphs will
consistently estimate this alignment.

If ®:V(Gy) — V(G2) is the latent alignment function between the vertex sets of two
graphs, we define a vertex v € V(G1) to be mismatched by graph matching if there exists
a solution v to the graph matching problem such that ®(v) # ¢(v). The graph matching
problem provides a consistent estimate of ® if the number of mismatched vertices goes to
zero in probability as |V(G1)| tends to infinity, and provides a strongly consistent estimate
of @ if the number of mismatched vertices converges to zero almost surely as |V (G1)| tends
to infinity.

The first of our main results is Theorem 1, stated in Section 2.2 and proven in Ap-
pendix A. For correlated Erdés-Rényi random graphs, under mild assumptions, Theorem 1.i
establishes that even very modest correlation is sufficient for graph matching to yield a
strongly consistent estimate of the latent alignment; this expands and strengthens the im-
portant results in Pedarsani and Grossglauser (2011). Theorem 1.ii provides a partial
converse; for very weakly correlated graphs, we prove that the expected number of permu-
tations that align the graph more effectively (i.e., with fewer induced edge disagreements)
than the latent alignment goes to infinity as the number of vertices tends to infinity. Un-
fortunately, since there is no known efficient algorithm for graph matching, Theorem 1.i
doesn’t in-of-itself provide a means of efficient graph alignment. However, it does suggest
that efficient approximate graph matching algorithms may be successful in graph alignment
when there is correlation between the graphs above the threshold given in Theorem 1.i.

Next, in Section 2.3, we discuss the seeded graph matching problem. This is a graph
matching problem for which part of the bijection between the two graphs’ vertices is pre-
specified and fixed, and we seek to complete the bijection so as to minimize the number
of edge disagreements between the graphs; in our correlated Erdds-Rényi graph setting,
the seeds are taken from the existing latent alignment. Also in Section 2.3, we describe a
restricted-focus version of the graph matching problem in the context of seeding; this is a
problem wherein we seek the bijection between the two seeded graphs’ vertices that mini-
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mizes only the number of seeded vertex to nonseeded vertex edge disagreements between the
two seeded graphs. Restricting the focus of graph matching in this particular fashion enables
this restricted-focus graph matching problem to be efficiently solved as a linear assignment
problem, in contrast to the algorithmic difficulty of (unrestricted) graph matching.

Our second main result is Theorem 2, which we state in Section 2.4 and prove in Ap-
pendix A. For correlated Erdés-Rényi graphs, under mild assumptions, Theorem 2.i asserts
that a logarithmic number of seeds is sufficient for restricted-focus graph matching to yield
a strongly consistent estimate of the latent alignment function. Theorem 2.ii again provides
a partial converse; for very weakly correlated graphs, we prove that the expected number
of permutations that align the unseeded vertices more effectively (i.e., with fewer induced
seeded vertex to nonseeded vertex edge disagreements) than the latent alignment goes to
infinity as the number of vertices tends to infinity. Now, what should we do if we want
to perform graph alignment and there are seeds, but the number of seeds is below this
logarithmic threshold? The remainder of this paper deals with that situation.

Back in the setting where there are no seeds, an important class of approximate graph
matching algorithms utilize a Frank-Wolfe approach; the idea is more formally described
later in Section 3. To briefly describe here, such methods relax an integer programming
formulation of graph matching to obtain a continuous problem, then perform an iterative
procedure in which a linearization about the current iterate is optimized, and the next
iterate comes from a line search between the current iterate and the linearization optimum.
At the conclusion of the iterative procedure, the final iterate is projected to the nearest
integer-valued point which is feasible as a graph match, and this is taken as the approximate
graph matching solution. It turns out that the linear optimization done in each iteration
can be formulated as a linear assignment problem, which can be solved efficiently, and this
makes the Frank-Wolfe approach an appealing method in terms of speed. The Frank-Wolfe
approach can also be a very accurate method for approximate graph matching as well;
see Brixius and Anstreicher (2001); Vogelstein et al. (2011); Zaslavskiy et al. (2009) for
Frank-Wolfe methodology and variants.

As done in Fishkind et al. (2012), we describe in Section 3.2 how this Frank-Wolfe
methodology for approximate graph matching is naturally and seamlessly extended to the
setting of seeded graph matching so as to perform approximate seeded graph matching. In
analyzing Frank-Wolfe methodology for approximate seeded graph matching, we observe
in Section 3.3 that each Frank-Wolfe iteration involves optimizing a sum of two terms.
Restricting this optimization to just the first of these two terms turns out to be precisely
solving the aforementioned restricted-focus graph matching problem, and restricting this
optimization to just the second of these two terms turns out to be precisely the Frank-
Wolfe methodology step if the seeds are completely ignored.

We conclude this paper with simulations and a real-data example from human con-
nectomics. These simulations and experiments illuminate the relationship between seeded
graph matching via Frank-Wolfe and restricted-focus graph matching via the Hungarian
algorithm. We demonstrate that Frank-Wolfe methodology is often superior to restricted-
focus graph matching, an unsurprising result as the Frank-Wolfe methodology merges
restricted-focus graph matching with seedless Frank-Wolfe methodology. Perhaps more
surprising, we also demonstrate the capacity for restricted-focus graph matching to outper-
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form the full Frank-Wolfe methodology; in these cases, the noise in the unseeded adjacency
can actually degrade overall performance!

2. Graph Matching, Random Graph Setting, Main Results

In this paper, all graphs will be simple graphs; in particular, edges are undirected, there
are no edges with a common vertex for both endpoints, and there are no multiple edges
between any pair of vertices. We will define G,, to be the set of simple graphs on n vertices.
If G € G, we will denote the vertex set of G as V(G) and the edge set of G via E(G). For
any v,v" € V(G), if v and v’ are adjacent in G then this will be denoted {v,v'} € E(G),
and if v and v’ are not adjacent in G then this will be denoted {v,v'} ¢ E(G). For any
finite set V', the symbol (‘2/) will denote all of the (g‘) unordered pairs of distinct elements
from V.

2.1 The Graph Matching Problem

We now describe the graph matching problem. Suppose G1 and G4 are graphs with the same
number of vertices. Let IT denote the set of bijections V/(G1) — V(G2). For any ¢ € II, the
number of adjacency disagreements induced by 1p, which will be denoted A()), is the number
of vertex pairs {v,v'} € (V(gh)) such that [{v,v'} € E(G1) and {¢(v),v(v")} ¢ E(G2)] or
{v,v'} ¢ E(G1) and {¢(v),y(v")} € E(G2)]. The graph matching problem is to find a
bijection in I1 that minimizes the number of induced edge disagreements; we will denote
the set of solutions ¥ := argminyer A(¢)). Equivalently stated, if n := [V (G1)| = |V (G2)],
and if A, B € {0,1}"*™ are the respectively the adjacency matrices for G; and Gg, then
the graph matching problem is to minimize ||[A — PBPT||r over all n-by-n permutation
matrices P, where || - || is the Frobenius matrix norm.

There are no efficient algorithms known for graph matching. Even the easier problem
of just deciding if G is isomorphic to Gy (i.e., deciding if there is a bijection V(G1) —
V(G3) which does not induce any edge disagreements) is of unknown complexity (Garey
and Johnson, 1979; Read and Corneil, 1977), and is a candidate for being in an intermediate
class strictly between P and NP-complete (if P#NP). Also, the problem of minimizing
|A— PBPT||r over all n-by-n permutation matrices P, where A and B are any real-valued
matrices, is equivalent to the NP-hard quadratic assignment problem. There are numerous
approximate graph matching algorithms in the literature; in Section 3 we will discuss Frank-
Wolfe methodology.

2.2 Correlated Erdés-Rényi Random Graphs

Presently, we describe the correlated Erdés-Rényi random graph; this will provide a theoret-
ical framework within which we will prove our main theorems, Theorem 1 and Theorem 2.

The parameters are a positive integer n, a real number p in the interval (0,1), and a
real number g in the interval [0, 1]; these parameters completely specify the distribution.
There is an underlying vertex set V' of cardinality n which is common to two graphs; call
these graphs G; and Gg. For each i = 1,2 and each pair of vertices {v,v'} € (‘2/), let
1{{v,v'} € E(G;)} denote the indicator random variable for the event {v,v'} € E(G;). For
each i = 1,2 and each pair of vertices {v,v'} € (‘2/), the random variable 1{{v,v'} € E(G;)}
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is Bernoulli(p) distributed, and they are all collectively independent except that, for each
pair of vertices {v,v'} € (‘2/), the variables 1{{v,v'} € E(G1)} and 1{{v,v'} € E(G2)} have
Pearson product-moment correlation coefficient g. At one extreme, if ¢ is 1, then G and G4
are equal, almost surely, and at the other extreme, if ¢ is 0, then G| and G4 are independent.
After G1 and G9 are thus realized, their vertices are (separately) arbitrarily relabeled, so
that we don’t directly observe the latent alignment function (bijection) ® : V(G1) — V(G2)
wherein, for all v € V(G1), the vertices v and ®(v) were corresponding vertices across the
graphs before the relabeling (i.e., the same element of V).

If GG1 is graph matched to G2, to what extent will the graph match provide a consistent
estimate of the latent alignment function? The following Theorem is our first main result.
We will be considering a sequence of random correlated Erdés-Rényi graphs with n = 1,
thenn = 2, then n = 3.. ., and the parameters p and g are each functions of n; i.e., p := p(n)
and ¢ := p(n). In this paper, when we say a sequence of events holds almost always, we
mean that, with probability 1, all but a finite number of the events hold.

Theorem 1 Suppose there exists a fixed real number & < 1 such that p < &;. Then there
exists fixed positive real numbers ci,ca, c3,cq (depending only on the value of &1) such that:

i) If 0> 011/% and p > 0210% then almost always ¥ = {®}, and
it) If 0 < c3 10% and p > 0410% then lim, oo E|{¢p € IT : A(¢) < A(®)}| = o0.

For proof of Theorem 1, see Appendix A.

Note that Theorem 1.i establishes the strong consistency of the graph matching estimate
of the latent alignment function in the presence of even modest correlation between Gy
and Gg. This theorem is a strengthening and an extension of the pioneering work on de-
anonymizing networks in Pedarsani and Grossglauser (2011), wherein the authors proved
a weaker version of Theorem 1.i in a sparse setting (in particular they require both p and
o to converge to 0 at rate po® = O(log(n)/n)). Note that range of values of p for which
Theorem 1.i applies includes both the sparse and the dense regimes.

Because there is no known efficient algorithm for graph matching, Theorem 1.i does not
directly provide a practical means of computing the latent alignment function. But it does
hold out the hope that a good graph matching heuristic might be effective in approximating
the latent alignment function for various classes of graphs.

When proving Theorems 1 and 2, it will be useful for us to observe an equivalent way
to formulate correlated Erdés-Rényi graphs. For all pairs of vertices {v,v'} € (‘2/), the
indicator random variables 1{{v,v'} € E(G1)} are independently distributed Bernoulli(p)
and then (independently for the different pairs v, v’), conditioning on 1{{v,v'} € E(G1)} =
1, we let 1{{v,v'} € E(G2)} be distributed Bernoulli(p + o(1 — p)) and, conditioning on
1{{v,v'} € E(G1)} = 0, we let 1{{v,v'} € E(G2)} be distributed Bernoulli(p(1 — p)). It
is an easy exercise to verify that as such, for each {v,v'} € (‘2/), it holds that 1{{v,v'} €
E(Gs)} is distributed Bernoulli(p), and that the correlation of 1{{v,v'} € E(G1)} and
L1{{v,v'} € E(G2)} is o, as desired.
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2.3 Seeded Graph Matching, Restricted-focus Graph Matching

Continuing with the setting from Section 2.1, suppose that we are also given a subset
Ui C V(Gh) of seeds and an injective seeding function ¢ : Uy — V (G2), say that Us C V(G2)
is the image of ¢. Let 14 denote the set of bijections ¢ : V(G1) — V(G2) such that for
all u € Uy it holds that ¢(u) = ¢(u). As before, for any bijection 1) € II,, the number
of adjacency disagreements induced by 1, which will be denoted A(%)), is the number of
vertex pairs {v,v'} € (VM) such that [{v,v'} € E(G1) and {4(v),%(v")} ¢ E(G2)] or
{v,v'} ¢ E(G1) and {¢(v),¥(v")} € E(G2)]. The seeded graph matching problem is to find
a bijection in Il that minimizes the number of induced edge disagreements; as before,
we will denote the set of solutions ¥ := argminyer, A(1). Equivalently stated, suppose
without loss of generality that U; = Uy = {v1,v2,...,0s}, and that for all j = 1,2,...,s,
¢(v;) = vj; with A and B denoting the adjacency matrices for G and G respectively, the
seeded graph matching problem is to minimize |A — (I @ P)B(I @ P)T||r over all m-by-m
permutation matrices P, where m := |V(G1)| — s, and & is the direct sum, and I is the
s-by-s identity matrix.

Like graph matching, there are no efficient algorithms known for seeded graph matching;
in fact, seeded graph matching is at least as difficult as graph matching. In Section 3.2 we
discuss how Frank-Wolfe methodology extends to provide efficient approximate seeded graph
matching.

We now present a restricted version of seeded graph matching which is efficiently solv-
able, in contrast to graph matching and seeded graph matching. Let W) := V(Gp)\U;
denote the nonseeds in V(G1). For any ¢ € Iy, let Agr(1)) denote the number of pairs
(w,u) € Wy x U; such that [{w,u} € E(G;) and {¢(w),¥(u)} ¢ E(G2)] or [{w,u} ¢
E(Gh) and {¢(w),¥(u)} € E(G2)]. The restricted-focus seeded graph matching problem
(RGM) is to find a bijection in IT, which minimizes such seed-nonseed adjacency disagree-
ments; denote the set of solutions Vg := argminyer, Ar(¥). Equivalently stated, if the
adjacency matrices for G; and G2 are respectively partitioned as

An AT> <B11 BT)
A= 21 , dB= 21
<A21 A22 an B21 B22

where Az, Bo € RIW1IXIUL] gach represent the adjacencies between the nonseed vertices
and the seed vertices (and the seed vertices are ordered in A;; conformally to Bi), then
finding a member of W is accomplished by minimizing || Aoy — PBai || over all |[W7| x |Wq|
permutation matrices P. Expanding,

HA21 — PBy; H% = trace(Agl — PBgl)T(A21 — PBQ]_)
= traceAglAgl — traceAglPle — traceBglPTAgl + traceBglPTPBgl
= | A1 ||F + 1B ||% — 2 - trace (PT(A21B3y)) (1)

thus finding a member of Wy is accomplished by maximizing tracePTAngQT1 over all
|Wi| x |W7| permutation matrices P. This is a linear assignment problem and can be
exactly solved in O(|W|?) time with the Hungarian Algorithm (Edmonds and Karp, 1972;
Kuhn, 2006). So, whereas finding a member of ¥ is intractable, finding a member of ¥p
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can done efficiently. An important question is how well ¥ i approximates V. Slightly abus-
ing notation, we shall refer to both the restricted-focus graph matching problem and the
associated algorithm for exactly solving it by RGM.

2.4 Seeded, Correlated Erd6és-Rényi Graphs

Seeded, correlated Erdés-Rényi graphs are correlated Erd6s-Rényi graphs G and G2 where
part of the latent alignment function is observed; specifically, there is a subset of seeds
Ui C V(G1) such that @ is known on U. If we take ¢ to be the restriction of ® to U; and
we run RGM, we may hope that W = {®}; if this hope is true then we are provided an
efficient means of computing the latent alignment function.

The next theorem is another of our main results. We will be considering a sequence
of random correlated Erdés-Rényi graphs where the number of nonseed vertices is m = 1,
then m = 2, then m = 3..., and the number of seeds s is a function of m.

Theorem 2 Suppose there exists a fized real number £ > 0 such that & < p < 1—& and
& < 0 < 1—¢&. Then there exists fized real numbers cs,ce > 0 (depending only on &) such
that:

i) If s > c5logm then almost always Y = {®}, and

i1) If s < cglogm then limy, o0 E[{t) € Il : Ar(¢)) < Ag(P)}| = oo.

For proof of Theorem 2, see Appendix A.

Note that Theorem 2.i establishes that RGM provides a strongly consistent estimate of
the latent alignment in the presence of a logarithmic number of seeds. As noted, a member
of U is efficiently computable, and thus Theorem 2 (unlike Theorem 1) directly provides
a means to efficiently recover the latent alignment bijection @, if there are enough seeds.

3. The SGM Algorithm: Extending Frank-Wolfe Methodology for
Approximate Graph Matching to Include Seeds

In the setting with no seeds, there are numerous approximate graph matching algorithms in
the literature. One such algorithm is the FAQ algorithm of Vogelstein et al. (2011), which is
an efficient, state-of-the-art approximate graph matching algorithm based on Frank-Wolfe
methodology. The algorithm’s performance is empirically shown to be state-of-the-art on
many benchmark problems, and when a fixed constant number of Frank-Wolfe iterations
are performed, the running time of FAQ is O(n?), where n is the number of vertices to be
matched. Moreover, if 100 < |V(G1)| and G is selected with a discrete-uniform distribution
(i.e., all possible graphs on V(G1) are equally likely) and G9 is an isomorphic copy of G
with V(G2) being a discrete-uniform random permutation of V(G1), then the probability
that FAQ (with, say, 20 Frank-Wolfe iterations allowed) yields the correct isomorphism is
empirically observed to be very nearly 1. We choose to focus on the FAQ algorithm here
because of its amenability to seeding and because it is the simplest algorithm utilizing the
Frank-Wolfe methodology while also achieving excellent performance on many of the QAP
benchmark problems; see Vogelstein et al. (2011).

In Section 3.2, we describe the SGM algorithm from Fishkind et al. (2012), which
extends the Frank-Wolfe methodology to incorporate utilization of seeds in approximate
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seeded graph matching. In Section 3.3 we point out that each Frank-Wolfe iteration in
SGM involves optimizing a sum of two terms. Restricting this optimization to just the first
of these two terms turns out to be precisely the optimization of RGM from Section 2.3, and
restricting this optimization to just the second of these two terms turns out to be precisely
the corresponding optimization step of FAQ (i.e., the seeds are completely ignored).

We conclude with simulations and real data experiments that illuminate the relationship
between SGM and RGM. SGM can be superior to RGM matching, unsurprising in that
SGM makes use of the unseeded adjacency information while RGM does not. Perhaps more
surprisingly, we also demonstrate the capacity for RGM to outperform SGM in the presence
of very informative seeds; in these case the unseeded connectivity is detrimental to overall
algorithmic performance!

3.1 The Frank-Wolfe Algorithm and Frank-Wolfe Methodology

First, a brief review of the Frank-Wolfe algorithm: The general optimization problem that
the Frank-Wolfe algorithm is applied to is maximize f(x) such that x € S, where S is a
polyhedral set in a Euclidean space, and the function f : S — R is continuously differ-
entiable. The Frank-Wolfe algorithm is an iterative procedure. A starting point z(!) € §
is chosen in some fashion, perhaps arbitrarily. For i = 1,2, 3,..., a Frank-Wolfe iteration
consists of maximizing the first order (i.e., linear) approximation to f about z(), that is
maximize f(z®) + V(@) (z — 2®) over z € S, call the solution y* (of course, this is
equivalent to maximizing V f(z®)7z over z € S), then z("*1) is defined to be the solution to
maximize f(x) over = on the line segment from z(? to (). Terminate the Frank-Wolfe algo-
rithm when the the sequence of iterates 2V, (2 ... (or their respective objective function
values) stops changing much.

Of course, the seeded graph matching problem is a combinatorial optimization problem
and, as such, the Frank-Wolfe algorithm cannot be directly applied. The term Frank- Wolfe
methodology will refer to the approach in which the integer constraints are relaxed so that
the domain is a polyhedral set and the Frank-Wolfe algorithm can be directly applied to the
relaxation and, at the termination of the Frank-Wolfe algorithm, the fractional solution is
projected to the nearest feasible integer point. It is this projected-to point that is adopted
as an approximate solution to the original combinatorial optimization problem. We next
describe the SGM algorithm, which applies Frank-Wolfe methodology to the Seeded Graph
Matching Problem.

3.2 The SGM Algorithm

We now describe the SGM algorithm for approximate seeded graph matching.

Suppose G and Gy are graphs, say V(G1) = {v1, va,...,v,} and V(Ge) = {v],vh, ..., v, },
and let A and B be the respective adjacency matrices of G; and G3. Suppose without loss of
generality that Uy = {v1,v2,...,vs} are seeds, and the seeding function ¢ : Uy — V(G2) is
given by ¢(v;) = v} foralli =1,2,...,s. Denote the number of nonseed vertices m := n—s.
Let A and B be partitioned

Ay AL } [ By BL ]
A - B =
|:A21 AQQ BQl BQQ
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where A11, B € {O, 1}SXS, Aoy, By € {O, l}mxm, and Aoy, Boy € {0, 1}m><s'

As mentioned in Section 2.3, the seeded graph matching problem is precisely to minimize
|A— (I @ P)B(Ia®P)T|% = ||A|% + || B||% — 2 - traceAT (I @ P)B(I @ P)T over all m-by-
m permutation matrices P. Clearly, the seeded graph matching problem is equivalent to
maximizing the quadratic function traceA” (I ® P)B(I @ P)" over all m-by-m permutation
matrices P.

Relax this maximization of traceAT (I ® P)B(I @ P)T over all m-by-m permutation ma-
trices P to the maximization of traceA” (I ® P)B(I@® P)T over all m-by-m doubly stochastic
matrices P (which form a polyhedral set), and then the Frank-Wolfe algorithm can be
applied directly to the relaxation. Simplification yields the objective function

f(P) = traced;1B11 + traceAglPBm + traceAngglPT + trace Agg P Boo PT (2)
= traceA;1Bi1+2- tracePTAnggl + trace Agy P Bos PT

which has gradient
V(P) = 2- AQlBgl +2- Ay PBos.

We start the Frank-Wolfe algorithm at an arbitrarily selected doubly stochastic m-by-m
matrix PU); for convenience we use the “barycenter” matrix P(!) with all entries equal to %
Then, for successive ¢ = 1,2, ..., the Frank-Wolfe iteration is to maximize the inner product
of P with the gradient of f at P(®) over all m-by-m doubly stochastic matrices matrices P;
this maximization problem is (ignoring a benign factor of 2) maximizing trace PT(Anggl +
AQQP(i)BQQ) over m-by-m doubly stochastic matrices. This is a linear assignment problem
since the optimal P in this subproblem must be a permutation matrix (by the Birkhoff-von
Neumann Theorem which states that the m-by-m doubly stochastic matrices are precisely
the convex hull of the m-by-m permutation matrices), and this linear assignment problem
can be solved efficiently with the Hungarian Algorithm in O(m?) time. Say the optimal
value of P in this subproblem is Y(); then, the function f on the line segment from P®
to Y@ is a quadratic that is easily maximized exactly, with P01 defined as the doubly
stochastic matrix attaining this maximum.

When the Frank-Wolfe iterates P, P2, PG)  stop changing much (or a constant
maximum of iterations are performed—we allowed 20 iterations), then the Frank-Wolfe
algorithm terminates; let the resultant approximate solution to the relaxed problem is
the doubly stochastic matrix ). The final step is to project ) to the nearest m-by-m
permutation matrix. Minimizing ||P — Q||p over permutation matrices P is again a linear
assignment problem solvable in O(m?) time; indeed, minimizing

1P = QIIF = |IPIF — 2traceP" Q + || QI%

is equivalent to maximizing trace PTQ over permutation matrices P. This optimal per-
mutation matrix P is adopted as the approximate solution to the seeded graph matching
problem. Specifically, the algorithm output is the bijection ¢ : V/(G1) — V(G2) where, for
i=1,2,...,s, ¢¥(v;) = v, and, for each ¢t = 1,2,...,m, Y(vs4;) = v;+j for the j such
that P;; = 1. This Frank-Wolfe Methodology approach described above is called the SGM
algorithm.
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When there are no seeds, the SGM algorithm is exactly the FAQ algorithm of Vogelstein
et al. (2011); the above development is a seamless extension of the Frank-Wolfe methodology
for approximate graph matching when there are no seeds to Frank-Wolfe methodology for
approximate seeded graph matching.

The running time for the SGM algorithm, like for the FAQ algorithm, is O(n?). This
is because of the linear assignment problem formulation and the use of the Hungarian
algorithm in each Frank-Wolfe iteration, and is a huge savings over using the simplex method
or an interior point method for solving the linearizations in each Frank-Wolfe iteration. This
trick has made Frank-Wolfe methodology a very potent weapon for efficient approximate
graph matching.

3.3 Frank-Wolfe Methodology for Approximate Seeded Graph Matching
Inherently Includes RGM

In each Frank-Wolfe iteration (described in Section 3.2), the linearization which is solved is
maximize (trace PT Ag BI +tracePTA22P(i)B22) over all m-by-m permutation matrices P.
Observe that if this maximization were just over the first term trace PT Ay BQT1 then it would
be precisely solving RGM from Section 2.3, as per Equation (1) there. Also observe that
if the maximization were just over the second term tracePTAggP(i)ng, then it would be
exactly the FAQ algorithm (ignoring all of the seeds). In this manner, the SGM algorithm
can be seen as leveraging a combination of the information gleaned from the nonseed-seed
relationships (the “restricted-focus term”) and the nonseed-nonseed relationships (the “FAQ
term”).

Although performing RGM is much simpler than performing SGM, and although RGM
almost always produces the correct graph alignment if there are enough seeds, nonetheless
SGM may perform substantially better when there aren’t enough seeds. Indeed, as noted,
SGM merges RGM with FAQ, and thus utilizes the information contained in the unseeded
adjacency structure. While FAQ alone is often unable to extract out this information (see
Figure 1 below), the RGM term can steer the FAQ term in SGM, allowing it to extract the
relevant signal in the nonseed—to—nonseed adjacency structure.

The utility of this nonseeded term depends on the amount of information captured
in the seed—to—nonseed adjacency. With less informative seeds, the SGM algorithm often
significantly outperforms RGM alone, as there is important signal in the unseeded adjacency
which RGM discards. However, in the presence of well chosen seeds, the seed—to—nonseed
adjacency structure may contain all the relevant signal about the unknown alignment,
and the unseeded adjacency information can be a nuisance (see Figure 4). As the RGM
algorithm is exactly and efficiently solvable, this points to the centrality of both selecting
and quantifying “good” seeds. This is a direction of future research, as we do not address
the problem of intelligent seed selection at present.

As we will see in Figure 1, for weakly correlated graphs, RGM can outperform SGM.
Even with poorly-chosen seeds, the noise in the nonseed—to—nonseed adjacency structure
can outweigh the relevant signal, and the performance of SGM is harmed by including
this extra nuisance information. This further highlights the utility of RGM in real data
applications, where the correlation between graphs can be low.
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We explore the above further in Figure 1. There we compare the performance of SGM
against solving RGM for correlated Erdés-Rényi graphs with n = 300 vertices, p = 0.5,
seeding levels ranging from s = 0 to 275, and correlation ranging from ¢ = 0.1 to 1. For
each value of ¢ and s, we ran 100 simulations and plotted the fraction of nonseeded vertices
correctly matched across the graphs, with corresponding error bars of +2 s.e. In all cases
(except p = 0.1), RGM needed more seeds to perform comparably to SGM. Indeed, with
sufficiently many seeds, all available information about the unknown alignment is captured
in the seed—to—nonseed connectivity, and the (exactly solvable) RGM algorithm alone is
enough to properly align the graphs.

Also note the following from Figure 1. When there are no seeds, we see FAQ (which
is SGM in the absence of seeds) working perfectly at capturing the latent alignment func-
tion when the two graphs are isomorphic (it bears noting that we have also observed FAQ
perfectly matching when the two graphs are not isomorphic but rather *very* highly cor-
related), but FAQ does a surprisingly poor job (indeed, comparable to chance) when the
correlation is even modestly less than one. However, with seeds, SGM quickly does a very
substantially better job; indeed, the “restricted-focus” term is steering the SGM algorithm
in the proper direction!

4. Matching Human Connectomes

We further illuminate the relationship between SGM and RGM through a real data experi-
ment, which will serve to highlight both the utility of RGM and the effect of SGM’s further
incorporation of the unseeded adjacency information. Our data set consists of 45 graphs,
each on 70 vertices, these graphs constructed respectively from diffusion tensor (DT) MRI
scans of 45 distinct healthy patients. We have 21 scans from the Kennedy Krieger Institute
(KKI), with raw data available at http://www.nitrc.org/projects/multimodal/, and 24
scans from the Nathan Kline Institute (NKI), with a description of the raw data available at
http://fcon_1000.projects.nitrc.org/indi/pro/eNKI_RS_TRT/FrontPage.html. All
raw scans were registered to a common template and identically processed with the MI-
GRAINE pipeline of Gray et al. (2012), each yielding a weighted, symmetric graph on
70 vertices. (All graphs can be found at http://openconnecto.me/data/public/.MR/
MIGRAINE/). Vertices in the graphs correspond to regions in the Desikan brain atlas, with
edge weights counting the number of neural fiber bundles connecting the regions (note that
although the theory and algorithms presented earlier were for simple graphs, they are easily
modified to handle edge weights). In addition to shedding light on the relationship between
SGM and RGM, we also explore the batch effect induced by the different medical centers
and demonstrate the capacity for seeding to potentially ameliorate this batch effect.

The pipeline which processes the scans into graphs first registers each of the graphs to
a common template. As a result, there is a canonical alignment between the vertex sets
of these graphs (vertices corresponding to respective regions in the Desikan brain atlas).
How well is this alignment preserved across medical centers by the adjacency structure
of the graphs alone? Figure 2 explores this question, and presents strong evidence for
the existence of a batch effect (in both adjacency and geometric structure) induced by
the different medical centers. In the figure, the heat map labeled “KKI matched to KKI”
represents a 70 x 70 matrix, whose ¢, jth entry measures the relative number of times vertex
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plotted versus the number of seeds utilized, for n = 300, p = 1/2 and correlation
o varying from 0.1 to 1. For each value of ¢ and s, we ran 100 simulations and
plotted the fraction of nonseeded vertices correctly matched across the graphs,
with corresponding error bars of +2 s.e.
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NKI matched to NKI NKI matched to KKI KKI matched to KKI

e

Figure 2: Left: NKI to NKI matching. Center: NKI to KKI matching. Right: KKI to KKI
matching. Each plot is a 70 x 70 heat map with the color intensity (from white
to red) representing the relative number of times vertex i was match with vertex
Jj across the experiments (white denoting no matches, dark red denoting many
matches). The dark red diagonal in the left and right heat maps (as compared
to the center map), indicates presence of a substantial batch effect, i.e., the cor-
rect alignment was recovered significantly better matching within medical center
versus across medical center. Vertices 1-35 and 36-70 (as ordered) correspond to
the respective brain hemispheres.

.

i was mapped to vertex j when we ran the FAQ algorithm (i.e., no seeds) over the (221) pairs
of graphs from the KKI data set. Similarly, the “NKI to KKI” heat map counts the relative
number of times vertices were matched to each other when running the FAQ algorithm
over the 21 - 24 pairs of graphs, with one graph from each of the KKI and NKI data sets.
The “NKI matched to NKI” heat map is defined similarly. The chromatic intensity of the
pixel in the 7, jth entry of each heat map represents the relative frequency in which vertex
1 was matched to vertex j across the experiments, with darker red implying more frequent
and lighter red implying less frequent. White pixels represent vertex pairs that were never
matched.

Figure 2 demonstrates the existence of significant signal in the adjacency structure
alone (without the associated brain geometry and without seeding) for recovering the la-
tent alignment in all three experiments. When matching KKI to KKI, 32.8% of the vertices
are correctly matched on average; when matching NKI to NKI, 37.4% of the vertices were
correctly matched on average; when matching NKI to KKI, 9.8% of the vertices were cor-
rectly matched on average (whereas chance would have matched =~ 1.4% on average). We
note that the dramatic performance difference when matching within versus across medical
centers is strong evidence of the presence of a batch effect induced by the different medical
centers. Whether this batch effect is an artifact of experimental differences across medical
centers (different MRI machines, different technicians, etc.) or the registration pipeline, it
must be addressed before the data sets can be aggregated for use in further inference.

Also note that while much of the within medical center matching error was due to
mismatching brain hemispheres (vertices 1-35 representing one hemisphere, and vertices
36-70 the other), the mismatch across medical centers appears significantly less structured.
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Figure 3: Clockwise from top left: SGM matching the 21 - 24 pairs of brains, one each from
the NKI and KKI data sets, using 10, 20, 30, 40 seeds; RGM matching the same
set of graphs using 40, 30, 20, 10 seeds. For each seed level, and each method we
ran 100 paired MC replicates. Each plot is a 70 x 70 heat map with the color
intensity (from white to red) representing the relative number of times vertex i
was matched with vertex j across experiments (white denoting no matches, dark
red denoting many matches). We do not count seeded vertices as being correctly
matched to each other, which would have artificially inflated the diagonal.

Can we use seeding to ameliorate this batch effect? In Figure 1, we established the
capacity of seeded vertices to unearth significant signal in the adjacency structure for re-
covering the latent alignment function, signal which was not found without seeds. Figure 3
further demonstrates this phenomenon in our present real data setting. We plot heat maps
showing the 21 - 24 matchings of pairs of graphs, one each from the NKI and KK data
sets, for various seed levels. For each number of seeds= 10, 20, 30,40, we ran 100 Monte
Carlo replicates (for each of SGM and RGM) for each pair of matched graphs, with each
seed set chosen uniformly at random from the 70 vertices. Clockwise, from the top left, we
plot the performance of SGM with 10, 20, 30, and 40 seeds and then the performance of
RGM with 40, 30, 20, and 10 seeds. The chromatic intensity of the pixel in the ¢, jth entry
of each heat map represents the relative frequency in which vertex ¢ was matched to vertex
Jj across the experiments (seeded vertices are not counted as correctly matched here), with
darker red implying more frequent and lighter red implying less frequent.

The figure conclusively demonstrates that seeding extracts statistically significant signal
in the adjacency structure alone for correctly aligning graphs across medical center, signal
that was effectively obfuscated in the absence of seeds. While unseeded FAQ correctly
matched 9.8% of the vertices on average across medical centers, with 10, 20, 30, 40 seeds,
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SGM (RGM) correctly matches 49.9%,68.4%,78.8%, 85.1% (29.9%, 53.8%, 70.7%, 80.9%) of
the unmatched vertices on average across medical centers. We also see that SGM outper-
forms RGM across all seed levels, with RGM requiring more seeds to achieve the same
performance as SGM. This is not surprising, as RGM is not utilizing any of the adjacency
information amongst the unseeded vertices.

We also see that seeding teases out additional information on the neural geometry in-
herent to the graphs. For instance, with only 10 seeds, 4.3% (15.1%) vertices on average
are mismatched across hemispheres by SGM (RGM). In contrast, 43.8% vertices on average
were mismatched across hemispheres without seeds. Interestingly, some vertex pairs are
consistently mismatched across all seed levels. For example, vertex 57 is matched by SGM
to vertex 47 across medical centers 23.8%, 20.8%, 23.1%, 23.5% of the time with 10, 20, 30, 40
seeds, whereas, with no seeds, vertex 57 is matched to vertex 47 on average 10.9% of the
time when matching among the NKI data set and 10% of the time when matching amongst
the KKI graphs. Indeed, these persistent artifacts are indicative of substantive differences
across (and within) data sets and demand further investigation.

We have noted that, on average, SGM outperformed RGM across all seed levels. How
much of this performance gap is a function of the particular seeds chosen? We explore this
further in Figure 4. For a pair of graphs, one each from the NKI and KKI data sets (we
randomly chose graph 2 in the NKI data set and graph 7 in the KKI set—mnote that we see
similar patterns across all tested graph pairs), we ran 200 Monte Carlo replicates of SGM and
RGM seeded with the same randomly selected seeds. For each of seeds= 10, 20, 30, 40, 50
(chosen uniformly at random from the vertices), the associated histogram plots the 200
values of the number of vertices correctly matched by SGM minus the number of vertices
correctly matched by RGM.

The RGM algorithm ignores all the adjacency information amongst the unseeded ver-
tices. If, in Figure 4, SGM performed uniformly better than RGM at each seed level, then
there is consistently relevant signal in the unseeded adjacency structure, and we should
never use RGM when SGM is feasibly run. However, we see that there are choices of seeds
(at every level) for which RGM outperforms SGM. The unseeded adjacency information is a
nuisance in these cases. As RGM is efficiently exactly solvable, this dramatically highlights
the importance of intelligent seeding. Indeed, “good” seeds (and hence the RGM algorithm)
have the potential to capture all of the relevant adjacency structure in the graph. While
we do not pursue the question of how to select “good” seeds here, the figure points to the
centrality of this question, and we plan on pursuing active seed selection in future work.

For higher seed levels, we note that there is significantly less difference (and less variabil-
ity) in the performance of SGM and RGM. More seeds capture more information in their
neighborhood structure, and the effect of the unseeded adjacency on algorithm performance
is dampened. Also, at higher seed levels the particular choice of seeds is less important,
as any selection of a large number of seeds will probably contain enough “good” seeds to
strongly align the graphs.

5. Discussion

Estimating the latent alignment between the vertices of two graphs is an important prob-
lem in many disciplines, and our results have both theoretical and practical implications
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Figure 4: RGM versus SGM when matching one graph each from the NKI (graph 2)
and KKI (graph 7) data sets over differing seed levels. For each of seeds=
10, 20, 30, 40, 50 (chosen uniformly at random from the vertices), each histogram
above plots 200 values of the number of vertices correctly matched by SGM mi-
nus the number of vertices correctly matched by RGM utilizing the same random
seeds.

for this problem. Indeed, under mild assumptions, we proved the strong consistency of the
graph matching problem—and its restricted focus subproblem—for estimating the latent
alignment function between the vertex sets of two correlated Erdds-Rényi graphs. Although
seeded graph matching is computationally hard, this result gives hope that efficient approx-
imation algorithms will be effective in recovering the latent alignment across a broad array
of graphs.

Embedded in the hard seeded graph matching problem is the tractable restricted-focus
graph matching problem. This problem is exactly solvable and also provides a strongly
consistent estimator of the latent alignment. While full seeded graph matching often out
performs this restricted focus variant, we demonstrated the capacity for the restricted-
focus subproblem to also outperform the full matching. The relation between the two
approaches hinges on the information contained in the seeded vertices. If the seeds capture
the adjacency structure of the graph, then the restricted-focus subproblem can benefit by
not including the unseeded adjacency information, and we demonstrate this phenomenon
in both real and simulation data. This points to the primacy of intelligently seeding in
graph matching, and we are working on active seeding algorithms for choosing good seeded
vertices.
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Even when outperformed by the full matching problem, we can still use the restricted-
focus problem to extract signal in the graphs that was obfuscated without seeding. In very
large, complex problems, when it may be infeasible to run the full seeded graph matching al-
gorithm, the restricted-focus approach could be run to provide a baseline matching between
the graphs. We are presently investigating this further, as scalability of these approaches is
an increasingly important demand of modern big-data.

Acknowledgments

This work is partially supported by a National Security Science and Engineering Faculty
Fellowship (NSSEFF), Johns Hopkins University Human Language Technology Center of
Excellence (JHU HLT COE), and the XDATA program of the Defense Advanced Research
Projects Agency (DARPA) administered through Air Force Research Laboratory contract
FA8750-12-2-0303. The line of research here was suggested by Dr. Richard Cox, director of
the JHU HLT COE. We would like to thank Joshua Vogelstein and William Gray Roncal for
providing us with the data for Section 5, and Daniel Sussman for his insightful suggestions
and comments throughout. Lastly, we would like to thank the anonymous referees whose
comments greatly improved the present draft.

Appendix A. Proofs of Theorems 1 and 2

Theorem 1 is proved in Sections A.2, A.3, and A.4, and these three subsections are a
continuation one of the other. Theorem 2 is proved in Sections A.5, A.6, and A.7 and
these three subsections are a continuation one of the other. Interestingly, the underlying
methodology for proving Theorem 1 is very similar (but with notable differences) to the
methodology for proving Theorem 2. We begin with some results that will subsequently be
used in the proof of Theorems 1 and 2.

A.1 Supporting Results
The next result, Theorem 3, is from Alon et al. (1997), in the form found in Kim et al.
(2002).

Theorem 3 Suppose random variable X is a function of n independent Bernoulli(q) ran-
dom wvariables such that changing the value of any one of the Bernoulli random wvari-
ables changes the value of X by at most 2. For any t : 0 < t < \/nq(1 —q), we have

P[|X — EX| > 4t\/nq(l — q)} < 2¢1*

The next result, Theorem 4, is a Chernoff-Hoeffding bound which is Theorem 3.2 in Chung
and Lu (2006).

Theorem 4 Suppose X has a Binomial(n, q) distribution. Then for all t > 0 it holds that

—12
P[X —EX > < S S
[ - ]_exp{2nq+2t/3}
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For any r,¢q € (0,1), define H(r,q) := rlog (g) +(1—7)log (i—:;) This is the Kullback-
Leibler divergence between binomial random variables with respective success probabilities
r and q. We will later use the following rough lower bound estimate of a binomial tail
probability:

Proposition 5 Suppose X has a Binomial(n,q) distribution, and suppose that 0 < g < r <
— % for a real number r. Then

- —1/2g . gmnH(ra)

P(X >nr) > n
,

M

Proof We compute and bound

PO 2 ) 2 BOC= [ar]) = (7)o = g

[nr

0.5
> Y 27Tqﬁ77"1 (1 — g)7Tm 0"
e2 [r] (1405 () — [ yn=Tnr1+05
— —mqﬁﬂ (1 —gq)"Trl e ()OS (g — )10
e? ()05 (g — )= 05 oy | Ir1405 (g — [ ] yn=[nr 4057

where the inequality in the second display line follows from Stirling’s formula. Now,

(nr)nr+0.5(n _ nr)n—m’+0.5 (T)nr+0.5(1 _ 74)77—777“4-0.5
(777’—| |—77"'-|+0-5(77 — "777“~| )77— [nr]4+0.5 ( [nr] ) [nr]+0.5 (1 B m)ﬂ— [nr]+0.5
n n
nr+0.5
1
— p\[rl=nr
= | T (1=7)
nr
nr+0.5
1 1
> 1-— > — (1 —
> (Hé) 1-n = -0
Combining the above, we obtain
P(X >nr) > vmo l-r —1/2gmr 1] _ gyn=r "’

e3 rl/2(1 —r)l/2

_ \Lj e L)
e T

as desired. n

(nr)m (n — mr)n=r

A.2 Overall Argument of the Proof for Theorem 1, Part i

It is notationally convenient to assume without loss of generality that the correlated Erdds-
Rényi graphs GG; and Gy are on the same set of n vertices V and we do not relabel the

3710



SEEDED GRAPH MATCHING FOR CORRELATED ERDOS-RENYI GRAPHS

vertices. Let II denote the set of bijections V' — V'; here, the identity function e € I is the
latent alignment bijection ®. For any ¢ € II,

At Ga) = vy < (]

2) s.t. {v,v'} ¢ E(G1) and {4 (v),¥(v')} € E(Gg)}],

A(G1,Gaw) = {10y € () st (0} € B(G) and (u(0). 00} ¢ (G .

A" (G, G, ) = |{{v,v’} € <V

2) st. {v,0'} ¢ B(Gy), {(0), 0 ()} € B(GY),

(W00 00 ¢ BCa) |
2(61.620) = {0y € () st (00') € BGY). ((0). 00} ¢ (G,

[0(0) ()} € E<G2>}r,
A(Gl,Gg,w) = A+(G1, GQ,T/J) + Ai(G17G27’¢).

First, note that
1
A (Gy,G1,¥) = A7 (G1,G1,¢) = §A(01,G17¢) ; (3)

this is because the number of edges in (G; isn’t changed when its vertices are permuted by
.
Next, note that
A(G1,Ga,9) — A(Gr,Ga,e) = A(G, G, ) — 2- AY(G1, Ga, ) — 2- A% (G1, Ga, ¢)
(4)
this is easily verified by replacing “G5” in (4) by “G”, and observing the truth of (4) as G,

starting out with G = G, is changed one edge-flip at a time until G = Gs.
Now, consider the event, which we shall call T, that for all ¢ € IT\{e},

A (G, Gau ) < A+(G1,G1,¢)-((1—p)(1—g)+g) and also (5)
AY(G1,Gov) < AT(G1GLY) - (p(1-0)+2). (6)

We will next show in Section A.3 that, under the hypotheses of the first part of Theorem 1,
T almost always happens (in other words, with probability 1, T happens for all but a finite
numbers of n’s). Then, adding (5) to (6) and using (3), we then obtain that almost always
A% (G1, Ga, ) + AP (G, Ga,¥) < L A(G1,G1, %) for all ¢ € IT\{e}. Substituting this
into (4) yields that almost always A(G1, G2,v) > A(G1,Ga,e) for all ¢ € IT\{e}, and the
first part of Theorem 1 is then proven.

A.3 Under Hypotheses of Theorem 1, Part i, T Occurs Almost Always

For any k € {1,2,...,n}, let II(k) denote the set of bijections in IT such that the number
of non-fixed-points of the bijection is exactly k; that is, II(k) :={yp € IT : |[{v € V : ¢p(v) #
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v}| = k}. A simple upper bound for |11 (k)| is [II (k)| < (})k! = n(n—1)(n—2) - - (n—k+1) <
k
nk.

Just for now, let & € {1,2,...,n} be chosen, and let 1) € II(k) be chosen. Denoting

T(y) = {{v, v'} e (‘2/) such that v =9 (v'), v/ = w(v)}}, we have that the random variable
A(G1,G1,7) is a function of the n := (g) + (n — k)k — |T(v)| independent Bernoulli(p)

random variables

’
{H{{Ua v } € E(Gl)}}{v,u’}e(g)\T(w) : P (v)#v or Y(v')F#v

and note that the hypotheses of Theorem 3 are satisfied, hence for the choice of t =
2—10\/77]9(1 —p) in Theorem 3 we obtain that

1
P [wal, G1,¢) = BA(G1, G, 9)| > Zup(1 = p) | < 2e7 P70/, (7)
Also note that

A(Gr, G, ) = 3 1{1{{v,v'} € B(G1)} # L{(v), 6())} E(Gn}}

{vo'}e(HNT W)
s.t. Y(v)#v or ¥(v')#v

is the sum of n Bernoulli(2p(1 — p)) random variables hence
EA(G1, G, ) = 2n0p(1 = p). (8)

Because |T'(¢))| < &, we have by elementary algebra that @ < n < nk. Thus, by (7) and
(8) we obtain that (for large enough n; in the following our constants are very conservatively
chosen)

- —-(1-¢1)
Z[1/2, 5/21> < 2emm0™kP(17P) < 9¢ ot P, (9)

A(G1, Gy, )
g < nkp(1 — p)

Conditioning on G, random variable A% (G, Ga,) has a
Binomial (A" (G, G1,¢), (1 —p)(1 — o))
distribution, and random variable A~ (G4, G2,) has a
Binomial (A~ (G4, G1,%),p(1 — 0))

distribution. Conditioning also on the event that % € [1/2, 5/2], we apply Theo-

rem 4 with the value t = £ - A% (G, Gy, 1), and we use (3) to show

P[A™(Gr, G, v) 2 AF(G1, G o) (-1 0)+ )] e i, (10)
P [AO_(Gthaw) > A7 (G1,G1,¢) - (p(l — o)+ g)} <e~minied ()
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Finally, applying (9), (10) and (11), the probability of Y¢ can be bounded using sub-
additivity:

n
P(TC) < Z Z ( 1000 nkp+e*(146§1)nkp92 Te - El)nkpg)
k=1+ell(k)
n
< Z nk" (26—(110651),“]{:1) I 26—(14551)71]%)@2)
" (1-¢1) 1) 2 4
7nkp+klogn L nkpo?+klogn L
< 2(26 1000 —1—2(3 )gn 3
k=1
the last inequality holding if p > CQIOﬂ and 0 > ¢ log " for sufficiently large, for fixed
constants ¢y, cz. Because Y 7, 32 < 00, we have by the Borel-Cantelli Lemma that Y

almost always happens. As mentioned in Section A.2, this completes the proof of the first
part of Theorem 1.

Remark 6 Note that we could tighten the constants ¢; and co appearing above. Here we
choose not to, instead focusing on the orders of magnitude of ¢, and do not pursue exact
constants further.

A.4 Proof of Theorem 1, Part ii

We now prove the second part of Theorem 1.

Just for now, let ¢» € II(n) be chosen (i.e., ¥ is a derangement), and condition on
At (G1,G1,9) = A, where tn?p(1 —p) < A < 2n?p(1 — p). The random variables
A" (G, Ga, 1) and A~ (G4, G2, ) are independent, and have distributions Binomial(A, 1)
and Binomial(A, ¢2), respectlvely, where q1 := (1 —p)(1 — o) and g2 := p(1 — o).

Denoting ry := ¢ + £ 5 and ro == @ + £ 5, and observing that, under the hypotheses of
Theorem 2, part ii, it holds that r| < 1 — % and ro < 1— % we thus have by Proposition 5
that (as % > 555)

IP)<AO+(G1,G2,¢) >A-r; and A (Gy,Go,9) > A - 7“2)

s a2 \/(1 —r)(1 - TZ)e—A'H(Tlm)—A'H(Tm%)
B QOOA 179

Note that we can change the inequalities “>" in the expression P( ) above into strict
inequalities “>” with a harmless tweak. An elementary calculus argument yields that
H(z+y,y) <2%/(y—y?) for all 0 < y < 1 and = > 0 such that y + 2z < 1. Indeed, fixing
any value for y, the function value and the derivative of H(z + y,y) with respect to x are
both 0 at # = 0, the function value and the derivative of #2/(y — y?) with respect to x are
both 0 at = 0, and the second derivative of H(x + y,y) is less than the second derivative
of 2 /(y — y?) for all relevant x. This, together with the fact that 1 —ry = ro, 1 — 179 =11
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and assuming that o is bounded away from 1 (which, indeed, will turn out to be assumed),
we have that there exists a real number ¢ > 0 such that

P(AOJF(Gl,GQ,dJ) > A-rp and A (G, Go,9) > A - 7“2)

> ﬂe_QQA@cu(llfﬂ)+4q2(11*tZ2))

~ 200A

> °. engnzp'(ﬁ)

C —on

= ﬁ - e c . (12)
From (3) and (9) we have that there exists a fixed constant ¢4 such that if p > 0410%
then, with probability > % (for n large enough) it holds that %nQp(l—p) < AT(Gy,G1,0) <
%nzp(l — p). Thus, by (12), noting again that r; + ro = 1 and that AT (G, Gy,9) =
%A(Gl, G1,1), we have unconditionally

2.2
Q

'A(Gl,Gl,@ZJ)) > % e e (13)

N |

P<AO+(G1,G2,¢) + A% (G, G, ) > o

Next, the number of derangements |I1(n)| satisfies lim, o0 \177(17?)\ = 1, thus with Stir-
ling’s formula we have that for n large enough it will hold that [II(n)| > (2)". Thus, for n

large enough, by (4) and (13),

E| {1/1 € Il: A(G1,G2,vY) < A(G1,G2,6)}| = Z P(A(Gl,G2,¢) < A(G1,G2,6))
Yell

> P(A(Gl,Gg,w) < A(Gl,Gg,e)>
)

YeIl(n

S (n)n c —0%n?
> (=) 53¢ ¢
e/ 2n?
c —o%n

2
_ e e +nlogn—m
 2n2 ’

Vv

so that there exists a fixed real number ¢3 > 0 such that if o < ¢3 10% then it holds

that E| {¢ € II(n) : A(G1,G2,v) < A(G1,G2,e)} | — 00 as n — oo, and the second part of
Theorem 1 is proven.

Remark 7 Note that we could tighten the constants c3 and c4 appearing above. Here we
choose not to, instead focusing on the orders of magnitude of ¢, and do not pursue exact
constants further.

A.5 Overall Argument of the Proof for Theorem 2, part i

The proof of Theorem 2 is very similar in structure to the proof of Theorem 1. For simplicity
of notation, suppose without loss of generality that the correlated Erd6és-Rényi graphs Gy
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and G2 are on the same set of n vertices V, and we do not relabel the vertices. Let IT
denote the set of bijections V' — V'; here the identity function e € II is the latent alignment
bijection. Further suppose that V is partitioned into s seed vertices U, and m nonseed
vertices W. Let ¢ : U — U be the identity function, and let Iy := {¢p € IT : Vu € U ¢(u) =
u}. For any ¢ € II,, define

AL (G, G, v) = |{(w,u) € W x U : {w,u} ¢ E(G1) and {¢(w),u} € E(G2)}|,
AL(G1,G2,9) == [{(w,u) € W x U : {w,u} € E(G1) and {¢(w),u} ¢ E(G2)}|,
AV (G1,Ga, ) == {(w,u) € W x U : {w,u} ¢ E(G1), {(w),u} € B(G1),
{¢(w),u} ¢ E(Ga)}
AY (G, Ga, 1)) = {(w,u) e W x U : {w,u} € E(Gy), {(w),u} ¢ E(G1),
{¢(w),u} € E(Ga)}

)

)

Ag(G1,Ga,¥) = AL(G1,Ga, ) + AR (G, Ga, 7).

First note that
1
AE(GlaGlaw) = A]}(GlaGl)d}) = iAR(G17G17¢) ; (14)

this can be easily verified by considering, for each v € U and for each cycle C' of the
permutation v, the changes of status in adjacency-to-u of the vertices as the vertices of
C' are considered in their cyclic order. (Specifically, the number of changes along C' from
adjacency-to-u to nonadjacency-to-u are equal to the number of changes along C' from
nonadjacency-to-u to adjacency-to-u.)

Next, note that

Ar(G1,G2,%) — Ar(Gi,Ga,e) = Ar(G1,G1,9)—2 - A% (G1, Ga, )
—2- A% (G1,Ga,9); (15)

this is easily verified by replacing “G2” in (15) with “G”, and observing the truth of (15)
as G, starting out with G = (g1, is changed one edge-flip at a time until G = Gs.
Now, consider the event T defined as it holding that, for all ¢ € Il besides e,

A% (Gy, G ) < AL(GY,G1,1) - ((1 —p)(1—0)+ g) and also (16)
A} (Gr,Gow) < AR(GLGLY)- (p1— ) +5). (1)

We will show in Section A.6 that, under the hypotheses of the first part of Theorem 2, Tg
almost always happens. Then, adding (16) to (17) and using (14), we then obtain that
almost always A% (G, Ga,9) + A% (G1,G2,9) < L+ Ar(G1,G1,9) for all ¢ € I\ {e}.
Substituting this into (15) yields that almost always Ar(G1, Ga,v) > Ar(G1, Ga,e) for all
¢ € IIy\{e}, and the first part of Theorem 2 will then be proven.

A.6 Under Hypotheses of Theorem 2, Part i, Tz Occurs Almost Always

For any k € {1,2,...,m}, denote II4(k) := {¢p € II : |[{v € V : ¢(v) # v}| = k}. Just for
now, let k € {1,2,...,m} be chosen, and let ¥ € II4(k) be chosen. The random variable
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ARr(G1,G1,1) is a function of the n := ks independent Bernoulli(p) random variables

{]l{{wv u} S E(Gl)}}(w,u)EWXU:w(w);éwa

and note that the hypotheses of Theorem 3 are satisfied, hence for the choice of t =
7'p(1 — p) in Theorem 3 we obtain that

1 /
P [\AR<G1, G1,9) = EAR(G1,G1,9)| > 2p(1 = p) | < 2e77PUZP/A0, (18)

Also note that

MnGnGr) = X 11w e BG) # 1{vtw). ) € BG)
S

is the sum of 1’ Bernoulli(2p(1 — p)) random variables hence
EAR(G1,G1,%) = 29'p(1 - p). (19)
Thus, by (18) and (19) we obtain that

.2
P (Agif(lf ?;)w) ¢ [9/5, 11/5]) < 2Tk P(1-P) < 9 ke, (20)

Conditioning on (1, random variable A%Jr(Gl, G2,1) has a
Binomial (A} (G1,G1,%), (1 —p)(1 — o))
distribution, and random variable A?{(Gl, Go,7) has a

Binomial (A}_z(Gl, G1,¢),p(1 — Q))

distribution. Conditioning also on the event that AR(S(%G;)M [9/5, 11/5], applying The-

orem 4 with the value t = ¢ - AL(Gy,G1,), and using (14), we have that
0+ + 0 & ks
PAK (G1,G2¥) 2 8%(G1Gry) - (L-p)(1 -0 + )] < e (21)

[AO (G, Ga, 1) > AR(Gy, G, ) - (p(1 o)+ g)} < et (22)

Finally, applying (20), (21) and (22), the probability of T% can be bounded using
subadditivity:

4
P(T%) < Z Z <2@ 200k +e 20 -|_62502'k5>
k=1vyell;(k)
= - ~¢3
< ka (26400ks—|—2620'k3>
k=1
< —&, 6. 4
< (26 100 kst+klogm + 2¢20 ks—i—klogm) <m- ﬁ?
k=1
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the last inequality holding if s > c5logm for sufficiently large, fixed constant cs. Because
Yoy % < oo we have by the Borel-Cantelli Lemma that YT almost always happens. As
mentioned in Section A.5, this completes the proof of the first part of Theorem 2.

Remark 8 We do not chase the exact constant c5 here, focusing on the order of magnitude
of s instead. Also, if we allow p and p to vary with m, then a minor alteration of the above
proof (and a tighter Chernoff-Hoeffding bound) yields the same conclusion as in Theorem 2.i
if for (an arbitrary but) fixed 0 < € < 2 and ¢q; := (1 — p)(1 — o) and g2 := p(1 — p)

cs = cs(p, 0)

2 2 16
> max y s .
{H(QI +4%,q1) - p(1—p)(2—€) H(ga+ %,q2) -p(1 —p)(2—¢€) p(1 —p) }
Details are left to the reader.

A.7 Proof of the Theorem 2, Part ii

We now prove the second part of Theorem 2.

Just for now, let ¢y € II(m) be chosen (i.e., none of the nonseeds are fixed points
for 1), and condition on AE(Gl,Gl,w) = L, where 1%smp(l —p) <L < %smp(l —
p). The random variables A% (G1, Go,1) and A%, (G1, G2,1) are independent, and have
distributions Binomial(L, ¢;) and Binomial(L, ¢2), respectively, where ¢; := (1 — p)(1 — o)
and ¢z := p(1 — o).

Denoting r1 := q1 + § and 73 := g2 + £, we have by Proposition 5 that

P<A%+(G17G27¢) >L-ry and AOR_(GlyG%w) >1. r2>

> q142 (1 - Tl)(l - T2) efL-H(m,m)*L'H(T‘qu)
— 200L 172

Considering the bound on H(z + y,y) described in Section A.4, we have that H(r1,q1)
and H (rg,q2) are both bounded above by a constant. With the fact that 1 — r; = r9 and
1 —r9 = rq, from the above we obtain that there is a positive real number ¢ such that

P<A%+(GI7G2’¢) > L-m and A%_(G17G27¢) > L-r2> = ﬁ e
Cc sm
> e e 23
~ mlogm c (23)

under the hypotheses of the second part of Theorem 2.
Next, |II;(m)| is the number of derangements of an m element set, and it satisfies

limy, 00 ‘H‘fnﬂ = %, thus with Stirling’s formula we have that for m large enough it will

3717



LyziNsKI, FISHKIND, AND PRIEBE

hold that |[II(m)| > (2)™. Thus, for m large enough, by (15) and (23),

E[{y € Ty : Ap(G1, Ga,v) < Ap(Gh,Ga,e)} = Y P<AR(G1702,¢) < AR(GDG%G))
well,

> Z P(AR(Gl,GQ,I/J) < AR(GlaG%e))
Yelly(m)
m C sm

m
()
“\e mlogm

c
mlogm

— 7 +mlogm—m
)

so that there exists a fixed real number cg > 0 such that if s < cglogm then it follows
that E| {¢ € I : Ar(G1,G2,v) < Ar(G1,G2,€)} | = 00 as m — oo, and Theorem 2 part
ii is proven.

Remark 9 We could tighten the constant cg here, but choose instead to focus on the order
of magnitude of s. If we allow p and p to be functions of m, then a simple alteration of the
above proof yields the same results of Theorem 2.ii if

1

A[H(qr+%,q1) + H(g2 + $.¢2)|p(1 — p)’

¢ == cs(p, 0) <
again details are left to the reader.
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