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Abstract

Learning preference distributions is a critical problem in many areas (e.g., recommender
systems, IR, social choice). However, many existing learning and inference methods im-
pose restrictive assumptions on the form of user preferences that can be admitted as ev-
idence. We relax these restrictions by considering as data arbitrary pairwise comparisons
of alternatives, which represent the fundamental building blocks of ordinal rankings. We
develop the first algorithms for learning Mallows models (and mixtures thereof) from pair-
wise comparison data. At the heart of our technique is a new algorithm, the generalized
repeated insertion model (GRIM), which allows sampling from arbitrary ranking distribu-
tions, and conditional Mallows models in particular. While we show that sampling from a
Mallows model with pairwise evidence is computationally difficult in general, we develop
approximate samplers that are exact for many important special cases—and have provable
bounds with pairwise evidence—and derive algorithms for evaluating log-likelihood, learn-
ing Mallows mixtures, and non-parametric estimation. Experiments on real-world data sets
demonstrate the effectiveness of our approach.1

Keywords: preference learning, ranking, incomplete data, Mallows models, mixture
models

1. Introduction

With the abundance of preference data from search engines, review sites, etc., there is
tremendous demand for learning detailed models of user preferences to support personal-
ized recommendation, information retrieval, social choice, and other applications. Much
work has focused on ordinal preference models and learning user or group rankings of al-
ternatives or items. Within this setting, we can distinguish two classes of models. First,
we may wish to learn an underlying objective (or “correct”) ranking from noisy data or
noisy expressions of user preferences (e.g., as in web search, where user selection suggests
relevance), a view adopted frequently in IR and “learning to rank” (Burges, 2010) and occa-
sionally in social choice (Young, 1995). Second, we might assume that users have different

1. Some parts of this paper appeared in: T. Lu and C. Boutilier, Learning Mallows Models with Pairwise
Preferences, Proceedings of the Twenty-Eighth International Conference on Machine Learning (ICML
2011), pp.145-152, Bellevue, WA (2011).
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types with inherently distinct preferences, and learn a population model that explains this
diversity. Learning preference types (e.g., by segmenting or clustering the population) is
key to effective personalization and preference elicitation in recommender systems, social
choice, and numerous other domains. For example, with a learned population preference
distribution, choice data obtained from a specific user allows inferences to be drawn about
her preferences. In this work, we focus on the latter setting, learning preference distributions
when users have genuinely distinct preferences.

Considerable work in machine learning has exploited ranking models developed in the
statistics and psychometrics literature, such as the Mallows model (Mallows, 1957), the
Plackett-Luce model (Plackett, 1975; Luce, 1959), and others (Marden, 1995), as well as
their non-parametric representations (Lebanon and Mao, 2008). However, most research to
date provides methods for learning preference distributions using very restricted forms of
evidence about individual user preferences, whether passively observed or actively elicited,
ranging from complete rankings, to top-t/bottom-t alternatives, to partitioned preferences
(Lebanon and Mao, 2008). Missing from this list are arbitrary pairwise comparisons of
the form “alternative a is preferred to alternative b.” Such pairwise preferences form the
building blocks of almost all reasonable evidence about preferences, and subsumes the most
general evidential models proposed in the literature. Furthermore, preferences in this form
naturally arise in active elicitation of user preferences and choice contexts (e.g., web search,
product comparison, advertisement clicks), where a user selects one alternative over others
in some set (Louviere et al., 2000). In general, data about a user’s preferences will often take
the form of arbitrary choice sets as is common in web search, online advertising, product
comparison, etc. But none of the techniques and algorithms developed to date can learn
from such choice sets. These preferences can be as simple as a single paired comparison:
“I like alternative a better than b,” or as complex as a set of comparisons: “I like a better
than b, c, . . ., and I like z better than y, x, . . .” In this sense, pairwise comparisons should
be viewed as the fundamental building block and universal language of ordinal preference
ranking.2

While learning with pairwise preferences is clearly of great importance, it is widely
believed that learning probabilistic models of ordinal preference using paired comparison
data is impractically difficult (indeed, we show this formally below). As a consequence, the
Mallows model is often shunned in favor of more inference-friendly models (e.g., Plackett-
Luce, which accommodates more general, but still restrictive, preferences; see Cheng et al.,
2010; Guiver and Snelson, 2009). To date, no methods have been proposed for learning from
arbitrary pairwise preferences in any of the commonly used ranking models in machine
learning. We tackle this problem directly by developing techniques for learning Mallows
models, and mixtures thereof, from pairwise preference data.

Our core contribution is the generalized repeated insertion model (GRIM), a new method
for sampling from arbitrary ranking distributions—including conditional Mallows—that
generalizes the repeated insertion method for unconditional sampling of Mallows models
(Doignon et al., 2004). We show that even evaluating the log-likelihood under a Mallows
model with respect to arbitrary ordinal data is #P-hard, implying that learning will be at

2. Of course, ordinal preferences do not capture strength of preference; but real-valued or scaled preferences
(e.g., movie or book ratings) can be converted to pairwise preferences readily, albeit with some loss of
information.
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least as difficult. However, we derive another method, which we call AMP, which efficiently,
though approximately, samples from any conditional Mallows distribution given arbitrary
pairwise evidence. Moreover, we show that AMP is exact for important classes of evidence
(including partitioned preferences), and that empirically it provides very close approxima-
tions given general pairwise evidence. We use this sampler as the core of a Monte Carlo EM
algorithm to learn Mallows mixtures, evaluate log-likelihood, and make predictions about
missing preferences. We also extend the non-parametric framework of Lebanon and Mao
(2008) to handle unrestricted ordinal preference data. Experiments show our algorithms can
effectively learn Mallows mixtures, with reasonable running time, on data sets with hun-
dreds of alternatives and thousands of users. Our sampling algorithm can be adapted rather
easily to other models as well (e.g., we show how a simple modification allows sampling from
Mallows models with a weighted Kendall-tau metric).

The remainder of the paper is organized as follows. In Section 2 we describe the necessary
background on ordinal preferences, Mallows models, and the repeated insertion method
(Doignon et al., 2004) for Mallows distributions, which we extend later in the paper. We
also discuss related work on learning probabilistic preference models. We introduce our
main technical tool, the generalized repeated insertion method (GRIM), in Section 3. We
show how it can be used to sample from Mallows mixtures conditioned on incomplete
preferences by first defining an approximate, but direct sampler AMP that is exact for
important special cases, and analyzing its computational and statistical properties. We
then develop Metropolis and Gibbs sampling methods that exploit AMP to soundly sample
any Mallows or Mallows mixture posterior. In Section 4 we develop an EM algorithm
for learning a Mallows mixture from arbitrary pairwise comparison data that leverages
our sampling algorithms, and provide experimental results of this procedure on several
real-world data sets in Section 5. Section 6 extends the framework of Lebanon and Mao
(2008) for non-parametric estimation to handle evidence in the form of arbitrary ordinal
preferences. We conclude in Section 7 with a discussion of future directions.

2. Preliminaries

We begin by describing the ordinal preferences (rankings) used in the work, providing a
brief overview of several common probabilistic preference models, with an emphasis on
the Mallows φ-model (and mixtures) and models of partial preference data. We then out-
line Doignon et al. (2004) repeated insertion model for sampling preferences from a Mallows
distribution (and draw connections to older models for sampling rankings proposed by Con-
dorcet, Kemeny and Young). We also briefly discuss related work on learning probabilistic
preference models.

2.1 Ordinal Preferences

We assume a set of m alternatives A = {a1, . . . , am} and n agents N = {1, . . . , n}. Each
agent ` has preferences over the set of alternatives represented by a total ordering or ranking
�` over A. We write x �` y to mean ` prefers x to y. Rankings can be represented as
permutations of A. For any positive integer b, let [b] = {1, . . . , b}. We often represent a
ranking as a permutation or bijection σ : A → [m], where σ(a) is the rank or position
of a in the ranking. Thus, for i ∈ [m], σ−1(i) is the alternative with rank i. We write
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σ = σ1σ2 · · ·σm for a ranking with i-th ranked alternative σi ∈ A, and �σ for the induced
preference relation. For any X ⊆ A, let σ|X denote the ranking obtained by restricting σ
to alternatives in X. Let 1[·] be the indicator function.

Generally, we do not have access to the complete preferences of agents, but only partial
information about their rankings (e.g., based on choice behavior, query responses, etc.). We
assume this data has a very general form: for each agent ` we have a set of revealed pairwise
preference comparisons over A, or simply preferences:

v` = {x`1 �` y`1, . . . , x`k` �` y
`
k`
}.

Intuitively, these reflect information about `’s preferences revealed by some process. For
example, this could represent product-ratings data; preference revealed by selection or pur-
chase of certain items (e.g., web links, products) over others, or responses to survey data.

Let tc(v`) denote the transitive closure of v`, i.e., the smallest transitive relation contain-
ing v`. We write {x, y} ∈ v` if there is a comparison between x and y in v` and, similarly,
{x, y} ∈ tc(v`) if x, y are comparable in its transitive closure. Since preferences are strict,
tc(v`) is a strict partial order on A. We assume each v` is consistent, i.e., tc(v`) contains
no cycles.3 Preferences v` are complete if and only if tc(v) is a total order on A. Let Ω(v)
denote the set of linear extensions of v, i.e., those rankings consistent with v. Let Ω = Ω(∅)
be the set of all m! complete preferences. A collection V = (v1, . . . , vn) is a (partial) pref-
erence profile—we assume that the observed data used for inference and learning purposes
in our work takes this form. Given ranking σ = σ1σ2 · · ·σm and preference v, we define the
dissimilarity or disagreement d(v, σ) between the two to be:

d(v, σ) =
∑

i<j≤m
1[σj � σi ∈ tc(v)]. (1)

Dissimilarity between a partial preference and a ranking is the number of pairwise disagree-
ments among the relative ranking of alternatives, i.e., those pairs in v that are misordered
relative to σ. If v is a complete ranking, d(v, σ) is the classic Kendall-tau metric on rank-
ings. Likewise, define s(v, σ) to be the number of pairwise comparisons in tc(v) that are
consistent with σ. We have that d(v, σ) + s(v, σ) is the number of comparisons in tc(v). If
v is complete, then d(v, σ) + s(v, σ) =

(
m
2

)
.

Arbitrary sets v of pairwise comparisons can be used to model a wide range of realistic
revealed preferences:4

• Complete rankings require m− 1 paired comparisons (e.g, a � b � c . . .), and can be
elicited with at most m(m− 1)/2 paired comparison queries.

• Top-t preferences (Busse et al., 2007) require that users provide a complete ranking
of their top t most preferred alternatives. These can be represented using m−1 pairs:

3. Many of the concepts for probabilistic modeling, inference and learning developed in this paper can be
applied mutatis mutandis to models where revealed preferences are noisy; however, we leave this topic
to future research.

4. One exception to this is information about preferences that involve “disjunctive” constraints. For in-
stance, a response to the question “What alternative is ranked tth?” cannot be mapped to a set of
pairwise preferences unless the positions t are queried in ascending or descending order (hence inducing
top-t or bottom-t preferences).
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t − 1 comparisons to order the top t alternatives, and m − t pairs to ensure the t-th
alternative is ranked above the remaining m− t. Bottom-t preferences are similar.

• Complete rankings of subsets X ⊆ A (Guiver and Snelson, 2009; Cheng et al., 2010)
are also representable in the obvious fashion (requiring k− 1 comparisons if |X| = k).

• Preferences revealed by the choice of an alternative a from X ⊆ A (Louviere et al.,
2000) can also be represented using k− 1 pairs of the form a � b for each b ∈ X \ {a}
(where |X| = k). Sets of such choices are captured in the obvious way.

• Ordinal ratings data: if alternatives are scored on an ordinal scale s (e.g., a scale
of 1–5 where 1 is most preferred), we simply include a � b whenever s(a) < s(b),
assuming that alternatives with the same rating cannot be compared using the level
of granularity provided.

Much of the existing work in learning or modelling distributions over ordinal prefer-
ences restricts the class of representable preferences. Much work has focused on top-t
preferences (Busse et al., 2007; Meila and Chen, 2010; Gormley and Murphy, 2007; Fligner
and Verducci, 1986, 1993), and its generalizations (Lebanon and Mao, 2008); other papers
have worked with rankings of a subset of alternatives (Guiver and Snelson, 2009; Cheng
et al., 2010). The main issue in allowing arbitrary consistent collections of paired prefer-
ences, which can represent all of the above special cases, is the difficult inference problem
that results. The primary aim of this work is to develop tractable inference algorithms for
a much broader and realistic class of preferences. Before closing our discussion of ordinal
preferences, we define a recently studied and relatively expressive class of preferences

Definition 1 (Lebanon and Mao 2008) A partial preference v is a partitioned prefer-
ence if A can be partitioned into subsets A1, . . . , Aq s.t.: (a) for all i < j ≤ q, if x ∈ Ai and
y ∈ Aj then x �tc(v) y; and (b) for each i ≤ q, alternatives in Ai are incomparable under
tc(v).

Partitioned preferences are quite general, subsuming some of the special cases above, in-
cluding top-t or bottom-t preferences, or ratings data. However, they cannot represent
many naturally occurring preferences, including those as simple as a single pairwise com-
parison a � b. We demonstrate below that our techniques can be applied effectively to such
preferences.

2.2 Mallows Models and Sampling Procedures

There are many distributional models of rankings that have been developed in psychomet-
rics, statistics and econometrics to explain choice behavior (Marden, 1995 provides a good
overview). Two of the more popular in the machine learning community are the Mallows
model (Mallows, 1957) and the Plackett-Luce model (Plackett, 1975; Luce, 1959). We focus
on Mallows in this work, though we believe our methods can be extended to other models.

2.2.1 The Mallows Model

The Mallows φ-model (which we simply call the Mallows model hereafter) is typical of a
wide-range of distance-based ranking models (Mallows, 1957; Marden, 1995). As above, let
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d be the Kendall-tau distance. The Mallows model is parameterized by a modal or reference
ranking σ and a dispersion parameter φ ∈ (0, 1]. For any ranking r, the Mallows model
specifies:

P (r) = P (r |σ, φ) =
1

Z
φd(r,σ) , (2)

where Z =
∑

r′∈Ω φ
d(r′,σ) is the normalization constant. It can be shown that

Z = 1 · (1 + φ) · (1 + φ+ φ2) · · · (1 + · · ·+ φm−1). (3)

When φ = 1 we obtain the uniform distribution over Ω (in the social choice literature, this
model is known as impartial culture). As φ → 0, the distribution concentrates all mass
on σ. The model can also be expressed as P (r|σ, λ) = 1

Z e
−λd(r,σ), where λ = − lnφ ≥ 0.

Various extensions and generalizations of this model have been developed (e.g., using other
distance measures) (Marden, 1995).

2.2.2 Condorcet’s Decision Problem

We describe a simple sampling procedure proposed by Mallows, Condorcet and further
analyzed by Young, since this will motivate the RIM sampler discussed in Section 2.2.3.
Mallows (1957) explained his model using process in which a judge assesses alternatives by
repeatedly making pairwise comparisons. The outcome of such a comparison is stochastic
and depends on the reference ranking σ. If x and y are compared and x is preferred to y in σ,
then the judge “correctly” assesses x � y with probability 1− pxy, and erroneously assesses
y � x with probability pxy < 1/2. Each assessment is independent of other comparisons.
Mallows’ process generated a pairwise comparison for each pair of alternatives as described:
after all paired comparisons are made, if the result is consistent (i.e., corresponds to a
ranking), it is accepted; otherwise the process is repeated. While the error probability pxy
can depend in a fairly general way on their positions in σ, if pxy = p for all x, y then we
obtain the Mallows model.

Such a probabilistic view of rankings was studied two centuries earlier by Nicolas de Con-
dorcet in the context of collective political decision making (Condorcet, 1785). He modeled
his view of the role of government, that of making the “right decisions,” by considering the
selection from a set of choices (e.g., policies), one that maximizes benefit to society. Mem-
bers of society, or voters, express their opinion in the form of a ranking over choices. He
assumed that some (latent) objective ranking orders choices from most to least beneficial
to society and that each voter is able to provide an independent, random assessment of
relative rank of any pair of choices: if a � b, in the objective ranking a voter will assess
that to be the case with probability 1 − p, with a error probability less than 1/2. Instead
of studying the probabilistic model per se, Condorcet addressed the decision problem: how
to find the ranking most likely to be correct. For the case of three alternatives, he proved
that the ranking which minimized the total number pairwise preference disagreements (i.e.,
Kendall-tau distance) with respect to the stated voter rankings was the most likely to be
correct.

In modern parlance, Condorcet showed how to compute the maximum likelihood esti-
mator (MLE) of the objective or reference ranking. Kemeny (1959) proposed the Kemeny
ranking as a general method for aggregating noisy voter rankings, extending Condorcet’s
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approach to accommodate any number of alternatives. The Kemeny ranking is that which
minimizes total number of pairwise preference disagreements with the set of voter rankings,
which Kemeny justified axiomatically (showing it to be the only aggregate ranking that sat-
isfies certain intuitive axioms). A statistical rationale for Kemeny’s approach was provided
by Young (1995), who extended Condorcet’s analysis, showing that, for any number of al-
ternatives, under Condorcet’s noise model, the MLE of the reference ranking is in fact the
Kemeny ranking. These two independent threads (Condorcet-Kemeny-Young and Mallows)
can both be viewed as statistical estimation of a noisy ranking model. We tie these threads
together, showing that Condorcet’s noise model for any number of alternatives corresponds
to the Mallows models (which implies, by Young’s result, that the Kemeny ranking is the
MLE for the Mallows model). The Condorcet-Mallows noisy ranking process can be for-
malized as follows:

Pairwise Comparison Sampling of Mallows

1. Let σ be the reference ranking and 0 ≤ p ≤ 1/2.
2. Initialize v ← ∅.
3. For each pair of items x, y in A, such that x �σ y,

(a) with probability 1− p add x � y to v,
(b) otherwise add y � x to v.

4. If v is intransitive, go back to step 1 and start over.
5. v is transitive and corresponds to a ranking.

This pairwise comparison process generates rankings in accordance with the Mallows
model (Equation 2), a fact shown by Mallows (1957), but which we derive here (since it
will be instructive below). Consider the following distribution over rankings v:

P ′(v | σ, p) =
1

Z ′

∏
{x,y}⊆A

{
p if v and σ disagree on x, y

1− p otherwise,
(4)

where Z ′ is the normalization constant (i.e., the sum of the probabilities generated by the
above procedure, over all transitive, complete preferences). The form of this distribution
corresponds exactly to the rankings generated. This can be seen by noticing that the
generating procedure independently decides for each pair of alternatives x, y, with a flip of
p-biased coin, whether to order them according to σ. Since intransitive preferences v are
discarded by the procedure, the generating procedure corresponds to P ′. We can simplify
the expression for P ′ to:

P ′(v | σ, p) =
1

Z ′
pd(v,σ)(1− p)s(v,σ)

=
1

Z ′
pd(v,σ)(1− p)(m2 )−d(v,σ)

=
1

Z ′
(1− p)(m2 )

(
p

1− p

)d(v,σ)

. (5)
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By setting φ = p
1−p , recalling the definition of Z (Equation 3), and noticing that

Z ′ = (1− p)(m
2 )Z (6)

= (1− p)(m
2 )
(

1 +
p

1− p

)(
1 +

p

1− p +

(
p

1− p

)2
)
· · ·
(

1 + · · ·+
(

p

1− p

)m−1
)
, (7)

we obtain Equation 2. The log-likelihood, given observed complete rankings r1, . . . , rn, is

n∑
`=1

[d(r`, σ) lnφ− lnZ] .

Hence, the MLE ranking is the minimizer of
∑n

`=1 d(r`, σ), namely, the Kemeny ranking.

2.2.3 The Repeated Insertion Model

The Condorcet/Mallows sampling procedure for drawing rankings from the Mallows distri-
bution can be very inefficient, since it relies on rejection of partially constructed rankings
as soon as a single circular, or non-transitive, triad (a � b � c � a) is drawn. While the
original motivation for these models was not computational, efficient sampling is important
for a variety of inference and learning tasks. Doignon et al. (2004) introduce the repeated
insertion model (RIM) for the analysis of probabilistic models of approval voting, but which
also provides a much more effective means of sampling from a Mallows distribution.

RIM is a generative process that gives rise to a family of distributions over rankings and
provides a practical way to sample rankings from a Mallows model. The model assumes
some reference ranking σ = σ1σ2 · · ·σm, and insertion probabilities pij for each i ≤ m, j ≤ i.
RIM generates a new output ranking using the following process, proceeding in m steps. At
step 1, σ1 is added to the output ranking. At step 2, σ2 is inserted above σ1 with probability
p2,1 and inserted below with probability p2,2 = 1 − p2,1. More generally, at the i-th step,
the output ranking will be an ordering of σ1, . . . , σi−1 and σi will be inserted at rank j ≤ i
with probability pij . Critically, the insertion probabilities are independent of the ordering
of the previously inserted alternatives.

It is easy to see that one can generate any ranking with the appropriate insertion posi-
tions. As we describe below, Doignon et al. (2004) show that one can sample from a Mallows
distribution using RIM with appropriate insertion probabilities. We now introduce several
concepts that can be used to more easily formalize and analyze RIM, and our subsequent
extensions of it.

Definition 2 Let σ = σ1 · · ·σm be a reference ranking. Let an insertion vector be any
positive integer vector j = (j1, . . . , jm) satisfying ji ≤ i,∀i ≤ m; and let I be the set of such
insertion vectors. A repeated insertion function Φσ : I → Ω maps an insertion vector j into
a ranking Φσ(j) by placing each σi, in turn, into rank ji, for all i ≤ m.

This definition is best illustrated with an example. Consider the insertion vector (1, 1, 2, 3)
and reference ranking σ = abcd. In this case, Φσ(1, 1, 2, 3) = bcda because: we first insert
a into rank 1; we then insert b into rank 1, shifting a down to obtain partial ranking ba;
we then insert c into rank 2, leaving b in place, but moving a down, obtaining bca; finally,
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we insert d at rank 3, giving bcda. By the same process we obtain Φσ(1, 2, 3, 4) = abcd,
and Φσ(1, 1, 1, 1) = dcba. Given reference ranking σ, there is a one-to-one correspondence
between rankings and insertion vectors.

Observation 3 For any reference ranking σ, the repeated insertion function Φσ is a bijec-
tion between I and Ω.

Sampling using RIM can characterized as follows:

Definition 4 The repeated insertion model is a probabilistic model over rankings defined
by a reference ranking σ, the repeated insertion function Φσ(j1, . . . , jm) and a sequence of
insertion probabilities piji for i ≤ m, ji ≤ i, such that

∑i
j=1 pij = 1, ∀i ≤ m. A ranking is

generated at random by first drawing an insertion vector j = (j1, . . . , jm) ∈ I, where each ji
is drawn independently with probability piji, and then applying the insertion function Φσ(j).

Let Φ−1
σ (r) = (j′1, . . . , j

′
m). Then the probability of generating a particular ranking r under

RIM is
∏
i≤m pij′i . It is easy to see that the Kendall-tau distance between the reference

ranking and the ranking induced by an insertion vector is the sum of the number “insertion
misorderings” over all alternatives:

Proposition 5 For any insertion vector j = (j1, . . . , jm) ∈ I, we have that

m∑
i=1

i− ji = d(Φσ(j), σ). (8)

Proof Observe that whenever σi is inserted at the ji-th position, it creates i− ji pairwise
misorderings with respect to alternatives σ1, . . . , σi−1. All pairwise misorderings can be
accounted for this way. Summing over all i ≤ m gives the Kendall-tau distance.

Doignon et al. (2004) show that by setting the insertion probabilities pij appropriately, the
resulting generative process corresponds to the Mallows model. We reprove their Theorem
here, since the proof will be instructive later.

Theorem 6 (Doignon et al. 2004) By setting insertion probabilities pij = φi−j/(1+φ+
· · · + φi−1) for j ≤ i ≤ m, the distribution induced by RIM with insertion function Φσ is
identical to that of the Mallows model with reference ranking σ and dispersion parameter φ.

Proof We reprove the Doignon et al. (2004) theorem. Let r be any ranking and σ the
reference ranking of the Mallows model. Let Φ−1

σ (r) = (j1, . . . , jm) be the insertion ranks.
If we multiply the factors φi−ji across i ≤ m this gives φ

∑m
i=1 i−ji = φd(r,σ) by Proposition 5.

This term φd(r,σ) is exactly the proportional probability of r in Mallows. The denominator
of
∏m
i=1 piji is (1 +φ)(1 +φ+φ2) · · · (1 +φ+ · · ·+φm−1) regardless of r—this is exactly the

normalizing constant in Mallows model. Interestingly, this gives an alternate proof of the
normalization constant in the Mallows model.

Thus RIM offers a simple, useful way to sample rankings from the Mallows model while
maintaining consistent partial rankings at each stage. In contrast to the rejection sampling
approach of Condorcet/Mallows, RIM can be much more effective since it does not require
the rejection of intransitive triads (which may occur with high probability if φ is large). We
summarize the RIM approach from Mallows model:
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RIM Sampling of Mallows

1. Let σ = σ1 · · ·σm be the reference ranking and φ the dispersion.
2. Start with an empty ranking r.
3. For i = 1..m:

• Insert σi into r at rank position j ≤ i with probability
φi−j/(1 + φ+ · · ·+ φi−1).

RIM has worst-case quadratic running time (required number of draws from a Bernoulli
distribution) when sampling from a Mallows model (this can be explained in much the same
way as the complexity of insertion sort). However, the average-case time complexity can
be much smaller, since insertions at each stage of the algorithm are likely to occur near the
bottom of the partial ranking.

Proposition 7 The expected time complexity of repeated insertion sampling for a Mallows
model (σ, φ) is

O

(
min

{
m(1 + φm+1)

1− φ − φ(1− φm)

(1− φ)2
,m2

})
.

Proof Suppose we have O(1) access to biased coin flips. The implementation will be as
follows. Place σ1 in the first rank. Then loop for i = 2 to m. Let pij = φi−j/

∑i−1
j′=0 φ

j′ .
Sample a rank position j to insert σi: start with j = i, flip a coin with probability pij , if
success insert at rank j. Otherwise decrease j by 1, flip a coin with probability pij/(1 −∑

j′>j pij′), if success, insert at rank j, otherwise decrease j by 1 and repeat this process
until j = 1. By the chain rule, the probability of insertion at rank j is exactly what Mallows
model requires. For each σi, when the sampled insertion rank position is j, it would require
at most i − j + 1 coin flips. The expected running time, i.e., total number of coin flips, if
φ < 1, is proportional to

m∑
i=1

∑i−1
j=0(j + 1)φj∑i−1

j=0 φ
j

=
m∑
i=1

1

1− φ − iφ
i

≤ m(1 + φm+1)

1− φ − φ(1− φm)

(1− φ)2
.

This means one can effectively sample in linear time if φ is not too close to 1. If φ = 1, the
expected running time is O(m2).

Sampling with Weighted Kendall-tau. To illustrate the flexibility of RIM, we show it can
be used to sample from a Mallows model using a weighted Kendall-tau distance. For
two rankings r and σ and insertion vector j = (j1, . . . , jm) such that Φσ(j) = r, one can
define a weighted Kendall-tau distance (Shieh, 1998) with respect to positive weights w =
(w1, . . . , wm) as follows

dw(r, σ) =
m∑
i=1

wi(i− ji).

Recall that by Proposition 5, if w = 1, then dw is the standard Kendall-tau distance.
Otherwise, this weighted Kendall-tau is sensitive to the pairwise misorderings of top-ranked
alternatives in σ.
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One can sample from a Mallows model defined by Pw(r) ∝ e−dw(r,σ) using RIM as
follows. Let φi = e−wi for i ≤ m. If we define the insertion probability of σi at position
ji ≤ i to be φi−jii /(1 + φi + · · ·+ φi−1

i ), then the probability of generating r is proportional
to e

∑m
i=1(i−ji) lnφi = e−dw(r,σ).

2.3 A Mallows Mixture Model for Incomplete Preferences

While distributions such as Mallows or its mixture formulation (Murphy and Martin, 2003)
give rise to complete rankings, there is relatively little work on generative models for partial
rankings, and in particular, models that generate arbitrary (consistent) sets of pairwise
comparisons. We introduce such a generative model in this section upon which to base our
subsequent learning and inference procedures given such pairwise evidence.

A Mallows mixture distribution with K components is parameterized by mixing propor-
tions π = (π1, . . . , πK), reference rankings σ = (σ(1), . . . , σ(K)), and dispersion parameters
φ = (φ1, . . . , φK). Rankings are generated randomly by selecting one of the K components
according to the multinomial distribution with parameters π. We sometimes represent this
with a unit component indicator vector z = (z1, . . . , zK) ∈ {0, 1}K in which the only entry
of z set to 1 is that of the selected component. If zk = 1, then ranking r is drawn from the
Mallows distribution with parameters σ(k), φk.

In our model for partial preferences, we assume that each agent ` possesses a latent
ranking r, where r is drawn from a mixture of Mallows distributions. We obtain the set
of pairwise comparisons for ` by assuming a single additional parameter α which generates
random pairs of alternatives. Intuitively, this reflects a process in which, given `’s latent
ranking r, each pair of alternatives is selected independently with probability α, and `’s
preference for that pair, as dictated by r, is revealed. That is,

P (v | r, α) =

{
α|v|(1− α)(

m
2 )−|v| if r ∈ Ω(v),

0 otherwise.
(9)

This model reflects the relatively straightforward missing at random assumption (Ghahra-
mani and Jordan, 1995), in which there is no correlation among those pairwise preferences
that are missing/observed, nor any between observed pairs and the underlying ranking
(e.g., the positions of the observed pairs). The missing at random assumption is not always
realistic (Marlin and Zemel, 2007). We also note that this model assumes a single global
parameter α that indicates the expected degree of completeness of each agent `’s partial pref-
erences. Allowing agent-specific completeness parameters α` and moving beyond “missing
at random” are important directions. However, this model serves as a reasonable starting
point for investigation.

Figure 1 illustrates a graphical model for the entire process. The resulting joint distri-
bution is

P (v, r, z | π,σ,φ, α) = P (v | r, α)P (r | z,σ,φ)P (z | π). (10)

In our basic inference and learning problem, we take the observed data to be a preference
profile V = (v1, . . . , vn) of n agents, and we let Z = (z1, . . . , zn) denote the correspond-
ing latent component memberships (i.e., zi indicates the mixture component where vi is
generated from).
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Figure 1: The generative model of incomplete preferences. Observed data v, a set of pair-
wise comparisons, is shaded.

2.4 Related Work

There is a large literature on ranking in the machine learning, statistics, economics, and
theory of computation communities. It includes a variety of approaches, evaluation criteria,
heuristics and applications, driven by several distinct motivations. In this section we briefly
review two somewhat distinct lines of research.

The first body of work is that on rank aggregation. Roughly speaking, the aim is to
find the best objective ranking given complete or partial observations generated by some
noisy process involving the (latent) objective ranking. For example, such a ranking may be
a ranking of web pages expressing a typical user’s (relative) degree of satisfaction with the
pages. Observed information may consist of feedback, in the form of expert ratings or user
preferences expressed implicitly via web page clicks on a search results page. In other appli-
cations, observed data may include partial rankings (e.g., in political elections), or pairwise
comparisons (e.g., in sports leagues). Given such feedback, the ranking system will ag-
gregate and optimize some objective function that attempts to capture user or population
satisfaction such as NDCG—common in the IR field—(Burges et al., 2005; Volkovs and
Zemel, 2009), misordered pairs (Cohen et al., 1999; Freund et al., 2003; Joachims, 2002;
R. Herbrich and Obermayer, 2000), binary relevance (Agarwal and Roth, 2005; Rudin,
2009), and objectives from social choice theory (e.g., Kemeny, Borda rankings). For ex-
ample, in machine learning, the area of learning to rank (LETOR) has been a topic of
much research since the late 1990s, starting with the work of Cohen et al. (1999). Research
into ranking systems often seeks strong generalization capabilities, in the sense that it can
produce an objective ranking given a previously unencountered ranking problem using new
attributes (e.g., rank web pages given a new search query). Much of this research has indeed
been focused on web ranking applications (e.g., the Yahoo! Learning to Rank Challenge;
see Burges, 2010). More recently, Busa-Fekete et al. (2014) have developed active learning
algorithms for inferring certain distributional properties of the Mallows model.
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There are also communities in statistics and computational social choice that are con-
cerned with estimating the maximum likelihood ranking under some distributional assump-
tions. Often such models—for example, the Mallows and Plackett-Luce models discussed
above—assume a central, modal or reference objective ranking at which the distribution is
peaked. A fundamental problem is estimation of this objective ranking from a collection of
ordinal preference data. For example, the Kemeny ranking can be interpreted as a maxi-
mum likelihood estimate of the modal ranking in a Mallows model (Young, 1995). Other
such interpretations of common rank aggregation rules also exist (Conitzer and Sandholm,
2005; Conitzer et al., 2009).

The above perspective, that of computing an objective ranking, applies to many situ-
ations (e.g., one would expect the ranking of web pages for a search query in “norovirus
symptoms” to be objectively stable, since users will largely agree the informativeness of
retrieved web pages). However, in many settings this is entirely inappropriate. When a
group of individuals plans an activity together, such as going to a restaurant for dinner,
the ranking of restaurants should clearly depend on the personal tastes and preferences of
the individuals involved. In such cases, a distribution over a population’s subjective pref-
erences better reflects reality. A second, growing, body of work aims to assess (individual
or aggregate/group) rankings of options, or decisions, by explicitly using, modelling or rea-
soning about the diversity of user preferences. This is a more general problem than that
of objective rank aggregation. For example, the Netflix collaborative filtering competition
has initiated much research on predicting a user’s movie ratings given the ratings for other
movies, including their own and those of other users. Other relevant research on such rank-
ing work includes label ranking (Hüllermeier et al., 2008), which seeks to aggregate sparse
preference data of “similar users” into personalized preferences.

In recent years there has been growing interest in applying probabilistic models of prefer-
ences from statistics, psychometrics, and econometrics to model a population’s preferences.
This is the context in which our work is situated. We focus on learning such preference dis-
tributions, including multimodal distributions over preferences where each mode (cluster)
corresponds to a “sub-type” within the population. Much recent research has focused on
using the single-peaked Mallows model as a basis for multimodal mixture distributions. One
of the first papers to propose an algorithm for learning Mallows mixtures is that of Murphy
and Martin (2003). Their method assumes that training data takes the form of complete
preference rankings (individual preferences), and has a running time that is factorial in the
number of alternatives. Busse et al. (2007) develop a tractable EM algorithm for Mallows
mixtures where preferences are restricted to be of the top-t type. A recent extension by
Meila and Chen (2010) of Mallows mixtures allows for a Bayesian treatment in choosing
the number of components using Dirichlet process mixtures, and offers experiments on con-
siderably larger data sets. Recent work has also studied fitting temporal mixture models (a
variation on the Bradley-Terry model) using EM (Francis et al., 2014).

Aside from mixture models, Lebanon and Mao (2008) propose a non-parametric kernel
density estimator for rankings, which places a “smooth Mallows bump” on each training
preference. They derive an efficiently computable, closed-form formula for the evaluation
of the estimator. However, they restrict their training data to partitioned preferences (see
above), a more general concept than top-t rankings, but significantly less expressive than
arbitrary pairwise comparisons. In contrast to our work, they do not address how to learn
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the kernel bandwidth parameter (see Section 6 for further discussion). There has been re-
cent work on sampling algorithms for rankings that shares some similarities with the GRIM
algorithm we develop here. This includes a sampling algorithm based on a generalization of
the Plackett-Luce model (Volkovs and Zemel, 2012), inspired by bipartite matching prob-
lems that occur in certain application domains. Biernacki and Jacques (2013) propose a
noisy insertion-sort model of rankings and develop EM algorithms for estimating its param-
eters. This is related to RIM but with some minor differences. However, none of this work
addresses the question of sampling from a posterior distribution given partial preferences
as evidence.

Apart from the the Mallows model, the Plackett-Luce model has also been popular as
a representation of preferences. Recent work on learning and inference with this model
includes: an approach to Bayesian inference of the modal ranking (Guiver and Snelson,
2009), but where training preferences are limited to ranking of all of alternatives in some
subset of alternatives; and a method for learning a mixture model given top-k preferences
(Gormley and Murphy, 2008), with application to political voting data.

Huang and Guestrin (2009) develop the riffle independence model, which partitions a
set of alternatives into two sets: a ranking of each set is generated stochastically (and in-
dependently); then a stochastic process is used to interleave or “riffle” the two resulting
rankings to produce a combined ranking. The model can applied hierarchically, with the
same process used to generate the required subrankings. Huang et al. (2012) show that
inference in this model is tractable for certain classes of observations. Of particular note
is that fact that conditioning on partitioned preferences (which they term “partial rank-
ing observations”) can be accomplished efficiently . Interestingly, Mallows models can be
represented using the riffle independence model.

3. Generalized Repeated Insertion Model

Our ultimate goal is to support effective learning and inference with Mallows models (and
by extension, Mallows mixtures) given observed data or evidence in the form of partial
preference profiles consisting of arbitrary pairwise comparisons. Sampling is, of course, an
important aspect of this. The rejection sampling models discussed above can obviously be
extended to accommodate pairwise observations, but are likely to be extremely inefficient.
By contrast, while RIM provides a powerful tool for sampling from Mallows models (and
mixtures), it samples unconditionally, without allowing for (direct) conditioning on evi-
dence. In this section, we describe and analyze a generalized version of the RIM technique
that permits conditioning at each insertion step. In fact, our generalized repeated inser-
tion model (GRIM) can be used to sample from arbitrary rank distributions. We begin in
Section 3.1 by describing GRIM in this general, abstract fashion. The primary focus of
our theoretical and computational analysis in Section 3.2, however, will be on its use for
Mallows distributions.

3.1 Sampling from Arbitrary Ranking Distributions

We first present the generalized repeated insertion model (GRIM) abstractly as a means of
sampling from any distribution over rankings. GRIM is based on a relatively simple insight,
namely, that the chain rule allows us to represent any distribution over rankings in a concise
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way, as long as we admit dependencies in our insertion probabilities. Specifically, we allow
the insertion probabilities for any alternative σi in the reference ranking to be conditioned
on the ordering of the previously inserted alternatives (σ1, . . . , σi−1).

Let Q be any distribution over rankings and σ an (arbitrary) reference ranking. Recall
that we can (uniquely) represent any ranking r ∈ Ω using σ and an insertion vector jr =
(jr1 , . . . , j

r
m) ∈ I, where r = Φσ(jr). Thus Q can be represented by a distribution Q′ over the

space I of insertion vectors, i.e., Q′(jr) = Q(r). Similarly, for k < m, any partial ranking
r[k] = (r1, . . . , rk) of the alternatives {σ1, . . . , σk}, can be represented by a partial insertion
vector j[k] = (jr1 , . . . , j

r
k). Letting

Q(r[k]) =
∑
{Q(r) : r1 � r2 � · · · � rk} and Q′(j[k]) =

∑
{Q′(j′) : j′[k] = j[k]},

we have Q′(j[k]) = Q(r[k]). We define conditional insertion probabilities:

pij | j[i−1] = Q′(ji = j | j[i− 1]). (11)

This denotes the probability with which the ith alternative σi in the reference ranking is
inserted at position j ≤ i, conditioned on the specific insertions (jr1 , . . . , j

r
i−1) of all previous

alternatives. By the chain rule, we have

Q′(j) = Q′(jm|j[m− 1])Q′(jm−1|j[m− 2]) · · ·Q′(j[1]).

Suppose we apply RIM with conditional insertion probabilities pij|j[i−1] defined above; that
is, we draw random insertion vectors j by sampling j1 through jm, in turn, but with each
conditioned on the previously sampled components. The chain rule ensures that the result-
ing insertion vector is sampled from the distribution Q′. Hence the induced distribution
over rankings r = Φσ(j) is Q. We call the aforementioned procedure the generalized repeated
insertion model (GRIM). Based on the arguments above, we have:

Theorem 8 Let Q be any ranking distribution and σ a reference ranking. For any r ∈
Ω, with insertion vector jr (i.e., r = Φσ(jr)), GRIM, using the insertion probabilities in
Equation 11, generates insertion vector jr with probability Q′(jr) = Q(r).

For instance, GRIM can be used to sample from a (conditional) Mallows model given
evidence in the form of pairwise comparisons, as shown in the following example.

Example 1 We illustrate GRIM using a simple example, sampling from a (conditional)
Mallows model over A = {a, b, c}, with dispersion φ, given evidence v = {a � c}. The
following table describes the steps in the process:

Insert a, b Insert c given ab Insert c given ba

r Insertion Prob. r Insertion Prob. r Insertion Prob.

a P (ja=1)=1 cab P (jc=1)= 0 cba P (jc=1)=0

ab P (jb=1)= 1
1+φ acb P (jc=2)= φ

1+φ bca P (jc=2)=0

ba P (jb=2)= φ
1+φ abc P (jc=3)= 1

1+φ bac P (jc=3)=1

The resulting ranking distribution Q is given by the product of the conditional insertion
probabilities: Q(abc) = 1/(1 + φ)2; Q(acb) = φ/(1 + φ)2; and Q(bac) = φ/(1 + φ). As
required, Q(r) = 0 iff r is inconsistent with evidence v.
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3.2 Sampling from Mallows Posteriors

We now develop and analyze several techniques for sampling from (mixtures of) Mallows
models given partial preference profiles as evidence. We use the term Mallows posterior to
refer to the conditional distribution that arises from incorporating evidence—in the form of
a set of pairwise comparisons—into a known Mallows model. This is the primary inference
task facing a system making predictions about a specific user’s preferences given pairwise
evidence from that user, assuming a reasonably stable population model. This stands in
contrast to the more general problem of learning the parameters of a Mallows model (a
problem we address in Section 4).

3.2.1 Intractability of Sampling

One key difficulty with enabling inference conditioned on pairwise comparisons is the in-
tractability of the posterior. In the above model (Equation 10), where agent `’s incomplete
preference v` is observed, it is intractable to work with the posterior P (r, z|v`,π,σ,φ, α)
even when the mixture model has a single component, a fact we prove below. One typi-
cal approach is to rely on sampling to estimate the posterior. To this end, we develop a
polynomial-time posterior sampling algorithm based on GRIM, but relying on approxima-
tion of the relevant conditional insertion probabilities.

While GRIM allows sampling from arbitrary distributions over rankings, as presented
above it is largely a theoretical device, since it requires inference to compute the required
conditional probabilities. Thus to use GRIM to sample from a Mallows posterior, given
arbitrary pairwise comparisons v, we must first derive these required terms. The Mallows
posterior is given by

Pv(r) = P (r | v) =
φd(r,σ)∑

r′∈Ω(v) φ
d(r′,σ)

1[r ∈ Ω(v)], (12)

which requires summing over an intractable number of rankings to compute the normaliza-
tion constant.

We could use RIM for rejection sampling: sample unconditional insertion ranks, and
reject a ranking at any stage if it is inconsistent with v. However, this is impractical because
of the high probability of rejection. One can also modify the pairwise comparison sampling
model (see Section 2.2.2) to reject inconsistent pairwise comparisons. However, if |v| is small
relative to m, then for values of φ that are not too small, the probability of rejection is very
high. For instance, if φ is close to 1, m = 120 and 30 alternatives appear in v, any three
alternatives the probability of a cyclic triad for any triple (e.g., a � b, b � c, c � a) is ≈ 1/4.
The 90 alternatives unconstrained by v can be divided into 30 groups of 3 alternatives, hence
the probability that a cycle occurs among at least one triad is at least 1− (3/4)30 = 0.9998.
This is a lower bound on the probability of rejection, showing rejection sampling to be
impractical in many settings.

The main obstacle to using GRIM for sampling is computation of the insertion prob-
abilities of a specific alternatives given the inserted positions all previous alternatives, as
given by Equation 11, when Q′ (more precisely, the corresponding Q) is the Mallows pos-
terior. This essentially involves computing a high-order marginal over rankings, and turns
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out to be #P-hard, even with a uniform distribution over Ω(v). The following result on the
complexity of counting linear extensions of a partial order will be useful below:

Theorem 9 (Brightwell and Winkler 1991) Given a partial order v, computing the
number of linear extensions of v, that is |Ω(v)|, is #P-complete.

To show that computing a function f(x) is #P-hard for input x, it is sufficient to show that
a #P-complete problem can be reduced to it in polynomial time.

Proposition 10 Given v, a reference ordering σ, a partial ranking r1 · · · ri−1 over σ1, . . . , σi−1,
and j ≤ i, computing the probability of inserting σi at rank j with respect to the uniform
Mallows posterior P (i.e., computing P (r) ∝ 1[r ∈ Ω(v)]) is #P-hard.

Proof We reduce the problem of counting the number of linear extensions of incom-
plete preferences v, which is a #P-complete problem, to that of computing the desired
insertion probabilities, showing the problem to be #P-hard. Given v, notice that any
r = r1 . . . rm ∈ Ω(v) has a uniform posterior probability of 1/|Ω(v)|. Let Φ−1

σ (r) =
(j1, . . . , jm). Assume the existence of an algorithm f to compute the required insertion
probabilities. We can use it to solve the counting problem as follows: we use f to compute
piji = Pr(insert σi at rank ji | r|{σ1,...,σi−1}) with partial order v for each i ∈ {2, . . . ,m}
(i.e., m − 1 applications of f). By Theorem 8, we know the posterior probability of r is
1/|Ω(v)| =

∏
i piji ; thus we can compute |Ω(v)| by inverting the product of the insertion

probabilities. Note that this reduction can be computed in polynomial time: we can con-
struct any r ∈ Ω(v) by using a topological sort algorithm, and we require only m− 1 calls
to the algorithm insertion algorithm f .

This result shows that it is hard to sample exactly in general, and suggests that computing
the normalization constant in a Mallows posterior is difficult. This would also imply a com-
putational complexity obstacle in the work on non-parametric estimators with a Mallows
kernel (Lebanon and Mao, 2008) for an arbitrary set of pairwise comparisons. Neverthe-
less we develop an approximate sampler AMP that is computationally very efficient. While
its approximation quality can be quite poor in the worst case, we see below that, empiri-
cally, it produces excellent posterior approximations. We also derive bounds that delineate
circumstances under which it will provide approximations with low error.

3.2.2 AMP: An Approximate Sampler

AMP is based on the same intuitions as those illustrated in Example 1, where instead of
computing the correct insertion probabilities, we use the (unconditional) insertion prob-
abilities used by RIM, but subject to constraints imposed by v. First, we compute the
transitive closure tc(v) of v. Then we use a modified repeated insertion procedure where
at each step, the alternative being inserted can only be placed in positions that do not
contradict tc(v). We can show that the valid insertion positions for any alternative, given
v, form a contiguous region of the ranking (see Figure 2 for an illustration).

Proposition 11 Given partial preference v, let the insertion of i−1 alternatives σ1, . . . , σi−1

induce a ranking r1 · · · ri−1 that is consistent with tc(v). Let Li = {i′ < i|ri′ �tc(v) σi} and
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b a d c

e

l5 = 2 h5 = 3
v = {b � e, e � d}

Figure 2: Valid insertion ranks for e are {l5, . . . , h5} = {2, 3} given previous insertions and
constraints v.

Algorithm 1 AMP Approximate Mallows Posterior

Input: v, σ, φ
1: r ← σ1

2: for i = 2..m do
3: Calculate li and hi from Equations 13 and 14.

4: Insert σi in r at rank j ∈ {li, . . . , hi} with probability φi−j∑
li≤j′≤hi

φi−j′
.

5: end for
Output: r

Hi = {i′ < i|ri′ ≺tc(v) σi}. Then inserting σi at rank j is consistent with tc(v) if and only
if li ≤ j ≤ hi, where

li =

{
1 if Li = ∅
max(i′ ∈ Li) + 1 otherwise,

(13)

hi =

{
i if Hi = ∅
min(i′ ∈ Hi) otherwise.

(14)

Proof Inserting σi at any rank position less than li is impossible since either li = 1 (we
can’t insert in rank 0) or σi lies above rli , which contradicts the requirement imposed by
tc(v) that rli must be ranked higher. A similar argument can be made for inserting in
rank below hi since rhi needs to be below σi. Finally, inserting into any rank in {li, . . . , hi}
does not violate tc(v) since the alternative will be inserted below all alternatives that must
precede it in tc(v) and all alternatives that must succeed it.

Proposition 11 immediately suggests an implementation of the GRIM algorithm, AMP,
for approximate sampling of the Mallows posterior—AMP is outlined in Algorithm 1. It
first initializes ranking r with σ1 at rank 1. Then for each i = 2 . . .m, it computes li, hi
and inserts σi at rank j ∈ {li, . . . , hi} with probability proportional to φi−j . Note that
tc(v), which is required as part of the algorithm, can be computed via a modified depth-
first search. AMP induces a sampling distribution P̂v that does not match the posterior Pv
exactly: indeed the KL-divergence between the two can be severe, as the following example
shows.

Example 2 Let A = {a1, . . . am} and v = a2 � a3 � · · · � am. Let P be the uniform
Mallows prior (φ = 1) with σ = a1 · · · am. There are m rankings in Ω(v), one ranking
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ri for each placement of a1 into rank position 1 ≤ i ≤ m. That is, r1 = a1a2 · · · am and
ri = a2 · · · aia1ai+1 · · · am for i ≥ 2. The true Mallows posterior Pv is uniform over Ω(v).
But AMP induces an approximation with P̂v(ri) = 2−i for i ≤ m− 1 and P̂v(rm) = 2−m−1.
To see this, note that to construct ri, AMP would need to insert alternatives a2, . . . , ai
successively, each with probability 1/2, above a1. Then ai+1 must be inserted below a1 with
probability 1/2, and finally the remaining alternatives ai+2, . . . , am can only be inserted at
the bottom (with probability 1). Hence, the KL-divergence between Pv and P̂v is

KL(Pv||P̂v) =
m∑
i=1

Pv(ri) log2

(
Pv(ri)

P̂v(ri)

)

=

[
m−1∑
i=1

1

m
log2

1/m

2−i

]
+

1

m
log2

1/m

2−m+1

= 1− 1

m
+
m− 1

2
− log2m .

3.2.3 Statistical Properties of AMP

Example 2 shows that AMP may provide poor approximations in the worst case; however
we will see below (Section 5) that it performs very well in practice. We can also prove
interesting properties, and provide theoretical guarantees of exact sampling in important
special cases.

We first observe that AMP always produces a valid ranking; in other words, valid inser-
tion positions always exist given any consistent v.

Proposition 12 For all i ≥ 2 and all rankings of alternatives σ1, . . . , σi−1 that is consistent
with v, we have that li ≤ hi, where li and hi are defined in Equation 13 and 14, respectively.
That is, AMP always has a position at which to insert alternative σi.

Proof Let r be a ranking of σ1, . . . , σi−1 consistent with v. Let x be the lowest ranking
alternative in r such that x �tc(v) σi and y the highest-ranked alternative in r with y ≺tc(v)

σi. By transitivity, x �tc(v) y. Now if hi < li (as defined in terms of r) this implies y �r x,
but this contradicts the assumption that r is consistent with v.

Furthermore, the approximate posterior has the same support as the true posterior:

Proposition 13 The support of the distribution over rankings as defined by AMP is equal
to Ω(v) which is equal to the support of the Mallows posterior as given in Equation 12.

Proof By Proposition 11, the algorithm never violates the constraints in tc(v), and by
Proposition 12, it will always have at least one valid insertion position. Hence the algorithm
always outputs a ranking consistent with v. Now, let r ∈ Ω(v) and Φ−1

σ (r) = (j1, . . . , jm)
be the its corresponding insertion vector. We show that for all i ≤ m, ji ∈ {li, . . . , hi}. If
this is not true, then there exists a smallest i′ ≤ m such that ji′ /∈ {li′ , . . . , hi′} (note i′ ≥ 2
since the first alternative is always inserted at the first position). However, Proposition 11
asserts that this insertion rank would lead to a ranking inconsistent with v—so this is not
possible. Since AMP places positive probability on any insertion position in {li, . . . , hi} then
r has positive probability under AMP.
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Proposition 14 For any r ∈ Ω(v), the probability AMP will output r is

P̂v(r) =
φd(r,σ)∏m

i=1(φi−hi + φi−hi+1 + · · ·+ φi−li)
. (15)

Proof Let Φ−1
σ (r) = (j1, . . . , jm) be the insertion ranks. We have already established in

Proposition 13 that AMP puts positive probability on these valid insertion ranks. In fact
the probability of r under the algorithm (see Algorithm 1) is

m∏
i=1

φi−ji

(φi−li + φi−li−1 + · · ·+ φi−hi)
=

φ
∑m
i=1 i−ji∏m

i=1(φi−li + φi−li−1 + · · ·+ φi−hi)

=
φd(r,σ)∏m

i=1(φi−li + φi−li−1 + · · ·+ φi−hi)
,

where the last equality comes from Proposition 5.

Using this result we can show that if v lies in the class of partitioned preferences, AMP’s
induced distribution is exactly the Mallows posterior:

Proposition 15 (Lebanon and Mao 2008) Let σ be a reference ranking. Let v be a par-
titioned preference (see Definition 1) with partition A1, . . . , Aq of A. Let δ = |{(x, y)|y �σ
x, x ∈ Ai, y ∈ Aj , i, j ∈ [q], i < j}|, which is the number of pairs of alternatives, that span
different subsets of the partition, that are misordered with respect to σ. Then

δ =

q−1∑
i=1

∑
x∈Ai

q∑
j=i+1

∑
y∈Aj

1[y �σ x], (16)

∑
r∈Ω(v)

φd(r,σ) = φδ
q∏
i=1

|Ai|∏
j=1

(1 + φ+ φ2 + · · ·+ φj−1). (17)

Notice that Equation 17 represents the normalization constant in Mallows posterior. The
intuition underlying Equation 17 is that, for any r ∈ Ω(v), the misorderings contributed by
alternatives that span two subsets, as given by δ, are the same (hence the leading factor)
whereas within a subset Ai alternatives can be ordered arbitrarily (hence the product of
normalization constants for |Ai|).

Proposition 16 Given a partitioned preference v, the distribution induced by AMP, P̂v, is
equal to the true Mallows posterior Pv.

Proof Since the numerator in Equation 15 ( which denotes the probability that AMP out-
puts r) is the same as the proportional probability of the Mallows posterior, it is sufficient
to show that the denominator in Equation 15 equals the Mallows posterior normalization
constant given by Equation 17. Suppose σ = σ1 · · ·σm. Let v be a partitioned preference
A1, . . . , Aq. Consider alternatives in Ai such that σ|Ai = σt1σt2 · · ·σt|Ai| (i.e., the rank-
ing of alternatives in Ai according to σ). For any k ∈ {1, . . . , |Ai|}, suppose alternatives
A′ = {σ1, . . . , σtk−1} are inserted. The structure of the resulting ranking is as follows: the
alternatives (A1 ∪A2 ∪ · · · ∪Ai−1) ∩A′ must lie at the top of the ranking; the alternatives
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Ai ∩ A′ = {σt1 , . . . , σtk−1
} are in the middle; and Btk = (Ai+1 ∪ · · · ∪ Aq) ∩ A′ are at bot-

tom. When inserting σtk at rank j, we have j ∈ {ltk , . . . , htk}, where htk = tk − |Btk | and
ltk = htk − |Ai ∩A′| = tk − (k− 1)− |Btk |. Hence σtk is inserted at rank j with probability

φtk−j

φtk−htk + · · ·+ φtk−ltk
=

φtk−j

φ|Btk | + · · ·φk−1+|Btk |
.

The denominator can be written φ|Btk |(1 + · · · + φk−1). Observe that Btk consists of all
alternatives from A′ that are above σtk in σ, but are below it in v (since all such alternatives

belong to Ai+1 ∪ · · · ∪Aq). So
∑|Ai|

k=1 |Btk | is the total number of pairs (x, y), where x ∈ Ai
and y ∈ Ai+1 ∪ · · · ∪Aq, that are misordered with respect to σ. Thus inserting alternatives
in Ai contributes a factor of

|Ai|∏
k=1

φ|Btk |(1 + · · ·+ φk−1) = φ
∑
x∈Ai

∑q
j=i+1

∑
y∈Aj

1[y�σx]
|Ai|∏
k=1

(1 + · · ·+ φk−1)

to the denominator in Equation 15. Once all alternatives have been inserted, the denomi-
nator becomes

φ
∑q
i=1

∑
x∈Ai

∑q
j=i+1

∑
y∈Aj

1[y�σx]
q∏
i=1

|Ai|∏
k=1

(1 + · · ·+ φk−1).

This is exactly the Mallows posterior normalization constant in Equation 17.

As a consequence, AMP provides exact sampling in the case of partitioned preferences,
In general, this is not the case with arbitrary partial preferences (pairwise comparisons).

We now derive bounds on the relative error of AMP’s posterior, bounding the ratio between
the sample probability of an arbitrary ranking r for AMP and the true posterior probability.
The main technical challenge is deriving a bound on the Mallows posterior normalization
constant. We can obtain an upper bound by exploiting the pairwise comparison interpre-
tation of Mallows model (see Section 2.2.2).

Theorem 17 (Upper Bound on Normalization Constant) Let σ be a reference rank-
ing, φ ∈ (0, 1] and v a preference. The Mallows posterior normalization constant is upper
bounded by ∑

r∈Ω(v)

φd(r,σ) ≤ φd(v,σ)(1 + φ)(
m
2 )−d(v,σ)−s(v,σ). (18)

Proof The LHS of Equation 18 can be written in terms Equation 4, by setting φ = p/(1−p)
(see Section 2.2.2 for derivations of the pairwise comparison interpretation of Mallows) as
follows: ∑

r∈Ω(v)

φd(r,σ) = Z ·
∑
r∈Ω(v)

P (r|σ, p) (19)

= Z · 1

Z ′

∑
r∈Ω(v)

∏
{x,y}⊆A

{
p if r and σ disagree on x, y

1− p otherwise,
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where p = φ/(1 + φ), Z ′ is given by Equation 6 and Z is given by Equation 3, thus the

constant in front simplifies to 1/(1−p)(m2 ). Since r must be consistent with v, if x and y are
comparable under v, then r must be agree with v on (x, y), i.e., if x �tc(v) y then x �r y.
So

P (r|σ, p) =
1

Z ′
pd(v,σ)(1− p)s(v,σ)

∏
{x,y}/∈tc(v)

{
p if r and σ disagree on x, y

1− p otherwise.

Hence, since Ω(v) is contained in the set of all intransitive relations on A that is consistent
with comparisons in tc(v), we must have (for k =

(
m
2

)
− d(v, σ)− s(v, σ))

∑
r∈Ω(v)

P (r|σ, p) ≤ 1

Z ′
pd(v,σ)(1− p)s(v,σ)

∑
z∈{0,1}k

k∏
i=1

pzi(1− p)1−zi ,

=
1

Z ′
pd(v,σ)(1− p)s(v,σ).

Z ·
∑
r∈Ω(v)

P (r|σ, p) ≤ 1

(1− p)(m2 )
pd(v,σ)(1− p)s(v,σ). (20)

Combining Equation 20 with Equation 19, and noting that p = φ/(1 + φ), we obtain
Equation 18.

Equation 18 tells us if d(v, σ) increases (i.e., v increasingly disagrees with σ), then the first
factor dominates and upper bound gets smaller—this reflects our natural intuitions since
the set Ω(v) gets “further away” from reference ranking σ and hence its probability mass
is small. We also see that if |tc(v)| is small, then d(v, σ) + s(v, σ) is small and the upper
bound increases since the second factor dominates. This too makes sense because Ω(v) is
large and has greater probability mass. If s(v, σ) is large, more constraints are placed on v,
hence Pr(Ω(v)) is smaller, and likewise the upper bound decreases. The following example
illustrates that this bound may be quite loose in some cases, but tight in others.

Example 3 Consider again the partial ranking evidence from Example 2, where v = a2 �
· · · � am, the alternatives are {a1, . . . , am}, and our reference ranking is σ = a1a2 · · · am.
Recall that there are m rankings in Ω(v), one ranking ri for each placement of a1 into rank
position i. Now the term on the LHS of Equation 18, i.e., the true value of the normalization
constant, is

m∑
i=1

φd(ri,σ) = 1 + φ+ φ2 + · · ·+ φm.

Note that d(v, σ) = 0 and s(v, σ) =
(
m−1

2

)
since all pairwise comparisons in tc(v) agree with

σ. Thus, the term on the RHS of Equation 18, i.e., the upper bound is

φ0(1 + φ)(
m
2 )−0−(m−1

2 ) = (1 + φ)m−1.

This upper bound on the normalization constant gets tight as φ→ 0, but becomes exponen-
tially loose in m as φ→ 1.
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Before we derive a lower bound, we introduce some notions from order theory.

Definition 18 Let v be a partial preference. An anti-chain of v is a subset X of A such
that for every x, y ∈ X they are incomparable under tc(v). A maximum anti-chain is an
anti-chain whose size is at least the size of any anti-chain. The width of v, w(v) is the size
of a maximum anti-chain of v.

Theorem 19 (Lower Bound on Normalization Constant) Let σ be a reference rank-
ing, and φ ∈ (0, 1]. Let X be a maximum anti-chain of v, Y = {a ∈ A\X | ∃x ∈ X, a �tc(v)

x} and Z = A\(X ∪Y ). Let δ = |{(x, y)|x ∈ X, y ∈ Y, x �σ y}|+ |{(y, z)|y ∈ Y, z ∈ Z, z �σ
y}|+ |{(x, z)|x ∈ X, z ∈ Z, z �σ x}|. Denote by tc(v)|Y and tc(v)|Z the transitive closure of
v restricted to the subsets Y and Z, respectively. Also let Ω(tc(v)|Y ) denote those rankings
over Y that are consistent with tc(v)|Y , and similarly for Ω(tc(v)|Z). We have

∑
r∈Ω(v)

φd(r,σ) ≥ φδ
 ∑
r∈Ω(tc(v)|Y )

φd(r,σ|Y )

 ∑
r∈Ω(tc(v)|Z)

φd(r,σ|Z)

 w(v)∏
i=1

i−1∑
j=0

φj . (21)

Proof We first show that Z ′ = {a ∈ A\X | ∃x ∈ X,x �tc(v) a} = Z. If a ∈ A\X does not
belong to Y then it must be comparable to at least one element in x ∈ X otherwise we can
add it to Y and obtain a larger anti-chain. Hence, since a is not in Y , then x �tc(v) a. Also,
note that if a ∈ Y then a /∈ Z ′. This is because if a belonged to both Y and Z, then there
exists x1, x2 ∈ X such that x1 �tc(v) a and a �tc(v) x2 this would mean x1 �tc(v) x2 which
contradicts the anti-chain property of X. For a particular alternative in X, alternatives in
Y are either incomparable to it or must be preferred to it, similarly alternatives in Z are
either incomparable or must be dis-preferred to it.

This also implies no alternative in Z can be preferred over alternatives in Y since if this
were to happen, i.e., if z �tc(v) y where z ∈ Z, y ∈ Y , then ∃x ∈ X such that y �tc(v) x,
this implies z �tc(v) x which is impossible from the above observation that Z ∩ Y = ∅.

Consider all rankings Ω̃(v) where we place alternatives of Y at the top, X in the middle
and Z at the bottom. Within Y and Z we rank alternatives respecting tc(v) and since X
is an anti-chain, rank these alternatives without restrictions. That is

Ω̃(v) = {r|∀y ∈ Y, x ∈ X, z ∈ Z, y �r x, x �r z, r|Y ∈ Ω(tc(v)|Y ), r|Z ∈ Ω(tc(v)|Z)}.
Now we argue Ω̃(v) ⊆ Ω(v). Note that we satisfy preference constraints when ranking
within Y , X and Z. Also as we showed above, alternatives in Y are never dis-preferred to
alternatives in X or Z and alternatives in X are never dis-preferred to alternatives in Z.

For the lower bound, first observe if r ∈ Ω̃(v) then d(r, σ) = d(r|Y , σ|Y ) + d(r|X , σ|X) +
d(r|Z , σ|Z)+δ where δ is defined in the theorem as the number of misorderings of alternatives
across X,Y, Z, which is independent of r. Hence,

∑
r∈Ω(v)

φd(r,σ) ≥
∑
r∈Ω̃(v)

φd(r,σ) = φδ

 ∑
r∈Ω(tc(v)|Y )

φd(r,σ|Y )


 ∑
r∈Ω(tc(v)|X)

φd(r,σ|X)

 ∑
r∈Ω(tc(v)|Z)

φd(r,σ|Z)

 .
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Finally, it can be seen that the sum inside the third factor is exactly the normalization
constant of an unconstrained Mallows model with |X| = w(v) alternatives, and hence equal

to
∏w(v)
i=1

∑i−1
j=0 φ

j , the second and fourth factors involve sums over rankings of Y and Z
consistent with tc(v). This proves the lower bound.

While the lower bound is not presented in a convenient closed-form, it is useful nonetheless
if w(v) is large: if there are few preference constraints in v (e.g., v involves only a small
subset of alternatives) we expect Ω(v) to be large and hence have higher probability mass.
We recover the true Mallows normalization constant if v = ∅ since w(v) = m. If v is highly
constrained—Ω(v) has smaller probability mass—then w(v) is small, but so are the factors
involving summations in Equation 21. Note that φδ decreases as the number of comparisons
in v that disagree with σ increases; this again corresponds to intuition.

With these bounds in hand, we can bound the quality of the posterior estimate P̂v(r)
produced by AMP:

Corollary 20 Let L and U be the lower and upper bound as in Theorems 19 and 17,
respectively. Then for r ∈ Ω(v), where li and hi are defined in Proposition 11, we have

L∏m
i=1

∑hi
j=li

φi−j
≤ P̂v(r)

Pv(r)
≤ U∏m

i=1

∑hi
j=li

φi−j
. (22)

Proof P̂v(r) has the form given in Proposition 14 while Pv(r) ∝ φd(r,σ). Then apply upper
and lower bounds on the normalizing constant of Pv(r).

3.2.4 MMP: An MCMC Sampler Based on AMP

While AMP may have (theoretically) poor worst-case performance, we use it as the basis
for a statistically sound sampler MMP, by exploiting AMP to propose new rankings for the
Metropolis algorithm. With Equation 15, we can derive the acceptance ratio for Metropolis.
At step t+ 1 of Metropolis, let r(t) be the previous sampled ranking. Ranking r, proposed
by AMP independently of r(t), will be accepted as the t+ 1st sample r(t+1) with probability
a∗
(
r, r(t)

)
, where:

a∗
(
r, r(t)

)
= min

1,
φd(r,σ)/Zv

φd(r(t),σ)/Zv

φd(r
(t),σ)∏m

i=1 φ
i−ht

i+φi−h
t
i
+1+···+φi−l

t
i

φd(r,σ)∏m
i=1 φ

i−hi+φi−hi+1+···+φi−li


= min

1,

m∏
i=1


hi−li+1
hti−lti+1

if φ = 1

φh
t
i−hi (1−φhi−li+1)

1−φh
t
i
−lt
i
+1

otherwise

 . (23)

Here the lis and his are defined as in Equations 13 and 14, respectively (with respect to r;
and lti), and hti are defined similarly, but with respect to r(t). The term Zv =

∑
r′∈Ω(v) φ

d(r′,σ)

is the normalization constant of the Mallows posterior (given partial evidence v). The
algorithm is specified in detail in Algorithm 2.

Exploiting Proposition 13, we can show:
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Algorithm 2 MMP Sample Mallows Posterior using Metropolis

Input: v, σ, φ, number of steps T
1: for t = 1..T do
2: r ← AMP(v, σ, φ)
3: a ∼ Uniform[0,1]

4: r(t) ←
{
r if t = 1 or a ≤ a∗(r, r(t−1))

r(t−1) otherwise
5: end for

Output: r(T )

Theorem 21 The Markov chain induced by MMP is ergodic on the class of states (rank-
ings) Ω(v).

Proof Note that the acceptance ratio as given in Equation 23 is always positive. The
proposal distribution AMP draws rankings that are independent of previous rankings and by
Proposition 13, its support is Ω(v). Hence, for any r′ ∈ Ω(v), MMP has positive probability
of making a transition to any ranking in Ω(v)—thus establishing that Ω(v) is a recurrent
class—including itself—implying aperiodicity.

Thus, along with the detailed balance property of Metropolis, we have that the steady state
distribution of MMP is exactly the Mallows posterior Pv(r).

3.3 Sampling Mallows Mixture Posterior

Extending the GRIM, AMP and MMP algorithms to sampling from a mixture of Mallows
models is straightforward. Recall the mixture posterior:

P (r, z|v,π,σ,φ) =
P (v|r, α)P (r|z,σ,φ)P (z|π)∑

z

∑
r∈Ω P (v|r, α)P (r|z,σ,φ)P (z|π)

.

We use Gibbs sampling to alternate between r and z, since the posterior does not factor in
a way that permits us to draw samples exactly by sampling one variable, then conditionally
sampling another. We initialize the process with some z(0) and r(0), then repeatedly sample
z conditional on r, and r conditional on z. For the tth sample, z(t) is drawn from a
multinomial with K outcomes:

P (z : zk = 1|r(t−1),π,σ,φ) =
P (r(t−1)|z,σ,φ)P (z|π)∑
z′ P (r(t−1)|z′,σ,φ)P (z′|π)

=
φ
d(r(t−1),σ(k))
k πk∑K

k′=1 φ
d(r(t−1),σ(k′))
k′ πk′

.

To sample r(t) given zt, we use:

P (r|z(t), v,π,σ,φ) =
P (v|r)P (r|z(t),σ,φ)P (z(t)|π)∑

r′∈Ω P (v|r′)P (r′|z(t),σ,φ)P (z(t)|π)
. (24)
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Algorithm 3 SP: Sample Mallows Mixture Posterior using Gibbs

Input: v,π,σ,φ, number of steps T
1: Initialize r(0) (e.g., topological sort on v)
2: for t = 1..T do
3: z(t) ∼ P (·|r(t−1),π,σ,φ) ∝ φd(r(t−1),σ(k))

k πk
4: Suppose z(t) is indicator for kth component.
5: r(t) ← AMP or MMP(v, σ(k), φk)
6: end for

Output: (z(T ), r(T ))

Note that the term P (z(t)|π) in the numerator and denominator cancels, and the missing
completely at random assumption (see Equation 9) implies P (v|r) = 1[r ∈ Ω(v)]f(v), where
f is a function independent of r. Thus Equation 24 becomes Equation 12 (conditioned on
parameters σ(k), φk). This is exactly the Mallows posterior sampling problem addressed in
the previous section. Combining Gibbs sampling with sampling from a single component
gives the overall SP algorithm, which is detailed in Algorithm 3. We note that this sampler
is described using either MMP to exactly sample rankings (given the sampled mixture
component) or AMP to allow more tractable, but approximate, sampling of rankings (see
Line 5). In our experiments, we find that AMP works well within this Gibbs sampler.

4. EM Learning Algorithm for Mallows Mixtures

Armed with the sampling algorithms derived from GRIM, we now turn to maximum like-
lihood learning of the parameters π, σ, and φ of a Mallows mixture using the expectation
maximization (EM) algorithm. Before detailing our EM algorithm, we first consider the
evaluation of the Mallows mixture log-likelihood in Section 4.1, which can be used to select
the number of mixture components, or to test EM learning convergence. We then review
the EM algorithm in Section 4.2 before detailing the steps of our EM learning procedure
for Mallows mixture models in Section 4.3. In Section 4.4 we analyze the running time of
our learning algorithm and suggest several ways to improve its performance.

4.1 Evaluating Log-Likelihood

The log-likelihood in our mixture model is

Lα(π,σ,φ|V ) =
∑
`∈N

ln

∑
z`

∑
r`∈Ω

P (v`|r`)P (r`|z`,σ,φ)P (z`|π)

 . (25)

This can be rewritten as

Lα(π,σ,φ | V ) =
∑
`∈N

ln

 K∑
k=1

∑
r`∈Ω(v`)

πkP (r`|σ(k), φk)α
|v`|(1− α)(

m
2 )−|v`|


=

∑
`∈N

ln

 K∑
k=1

∑
r`∈Ω(v`)

πkP (r`|σ(k), φk)

+ ln
[
α|v`|(1− α)(

m
2 )−|v`|

]
.
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Note that the latter term involving α is decoupled from the other parameters, and in fact
its maximum likelihood estimate is α∗ =

∑
`∈N 2|v`|/(nm(m − 1)). Since we are only

interested in the log-likelihood as a function of the other parameters, we can ignore this
additive constant and focus on

L(π,σ,φ | V ) =
∑
`∈N

ln

 K∑
k=1

∑
r`∈Ω(v`)

πkφ
d(r`,σ

(k))
k

Zk

 , (26)

where Zk is the Mallows normalization constant. Unfortunately, evaluating this term is
provably hard.

Theorem 22 Let V = (v1, . . . , vn) be a profile of partial preferences. Computing the log-
likelihood L(π,σ,φ|V ) is #P-hard.

Proof We reduce the problem of counting the number of linear extensions of a partial
order to this problem (see Theorem 9). Let v be a partial order for which we wish to
count its linear extensions. We encode the input to log-likelihood computation as follows:
let V = (v), K = 1 with φ = 1, and let σ be an arbitrary ranking. We have L =
L(π, σ, φ|V ) = ln

∑
r∈Ω(v) 1/m!. Thus we can recover the number of linear extensions by

computing exp(L) ·m!. That this can be accomplished in polynomial time can be seen by
noting that L is polynomial in m and we can use the power series expansion

∑
i≥0 Lim!/i!,

where we can truncating the series after a polynomial number of steps, after which the
terms in the expansion no longer impact the integer portion of the solution (number of
extensions).

Given the computational difficulty of evaluating the log-likelihood exactly, we consider
approximations. We can rewrite the log-likelihood as

L(π,σ,φ|V ) =
∑
`∈N

ln

[
K∑
k=1

πk E
P (r|σ(k),φk)

1[r ∈ Ω(v`)]

]
,

and estimate the inner expectations by sampling from the Mallows model P (r|σ(k), φk).
However, this can require exponential sample complexity in the worst case (e.g., if K = 1
and v is far from σ, i.e., d(v, σ) is large, then to ensure v is in the sample requires a sample
set of exponential size in expectation). But we can rewrite the summation inside the log as

L(π,σ,φ|V ) =
∑
`∈N

ln

 K∑
k=1

πk
Zk

∑
r∈Ω(v`)

φ
d(r,σ(k))
k

 ,
and evaluate

∑
r∈Ω(v`)

φ
d(r,σ(k))
k using importance sampling:

∑
r∈Ω(v`)

φ
d(r,σ(k))
k = E

r∼P̂v`

[
φ
d(r,σ(k))
k

P̂v`(r|σ(k), φk)

]
. (27)
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We generate samples r
(1)
`k , . . . , r

(T )
`k with AMP(v`, σ

(k), φk) for ` ≤ n and k ≤ K, then

substitute P̂v from Equation 15 into Equation 27 to obtain:

∑
`∈N

ln

 K∑
k=1

πk
Zk

1

T

T∑
t=1

m∏
i=1

i−l(`kt)i∑
j=i−h(`kt)

i

φjk

 ,
where h

(`kt)
i and l

(`kt)
i are defined in Equations 14 and 13, and defined with respect to r

(t)
`k ,

σ(k), and v`. We can simplify the expression inside the log and derive the estimate:

L̂(π,σ,φ|V ) =
∑
`∈N

ln

[
1

T

K∑
k=1

T∑
t=1

πk·
1
m!

∏m
i=1(h

(`kt)
i − l(`kt)i + 1) if φk = 1

φ
∑m
i=1 i−h

(`kt)
i

k

∏m
i=1

1−φ
h

(`kt)
i

−l(`kt)
i

+1

k

1−φik
otherwise

 . (28)

As a matter of practical implementation, to ensure the sum of terms inside the log do
not evaluate to zero (as it may be too small to be represented using common floating
point standards), we observe that given numbers a and b with a > b > 0, ln(a + b) =
ln(a) + ln(1 + b/a). Thus even if a and b are too small to be represented as floating point
data types, we still obtain good approximations if ln(a) can be readily evaluated. This same
technique can be used to ensure numerical stability.

4.2 The EM Algorithm

A popular approach to maximum likelihood estimation is the expectation maximization
(EM) algorithm (Dempster et al., 1977). It is applied to probabilistic models in which a set
of parameters θ determine the values of random variables, but observed data is available
for only some of these variables. Let v denote the observed variables, and h the remaining
unobserved (hidden or latent). In our model, we have θ = (π,σ,φ, α), while v consists of
a set of pairwise comparisons and h = (z, r) consist of the mixture-component assignment
and its underlying complete preference ranking. EM is effectively a local search algorithm,
which alternates between two steps. The E-step computes a posterior distribution over
the hidden variables given the observed variables and a current estimate θ̃ of the model
parameters:

E-Step: P (h|v, θ̃).
The M-step computes, as its new estimate, those model parameters θ that maximize the
expected value (w.r.t. θ̃) of the log-likelihood (using the posterior computed in the E-step):

M-step: max
θ

E
P (h|v,θ̃)

lnP (h, v|θ).

These steps are iterated until convergence. Indeed, EM converges and gives a locally optimal
solution, since each iteration of EM will increase the log-likelihood. In general one does not
need to maximize the log-likelihood in the M-step, but simply increase it. An important

3990



Learning Mallows Models with Pairwise Preferences

variation of EM called Monte Carlo EM is used when the posterior in the E-step is hard
to compute (e.g., when dealing with large discrete event spaces, such as rankings). In
Monte Carlo EM, ones samples from the posterior in the E-step, and in the M-step simply
optimizes the choice of parameters with respect to the empirical (sample) expectation.

4.3 Monte Carlo EM for Mallows Mixtures

Learning a Mallows mixture is challenging, since even evaluating its log-likelihood is #P-
hard. A straightforward application of EM yields the following algorithm:

Initialization. Initialize values for πold, σold, and φold.

E-step. Compute/estimate the posterior P (z`, r`|v`,πold,σold,φold) for all ` ∈ N .

M-step. Compute model parameters that maximize expected log-likelihood:

πnew,σnew,φnew = argmax
π,σ,φ

∑
`∈N

E
P (r`,z`|v`,πold,σold,φold)

[lnP (v`, r`, z`|π,σ,φ)]

= argmax
π,σ,φ

∑
`∈N

∑
z`

∑
r`∈Ω

P (r`, z`|v`,πold,σold,φold) lnP (v`, r`, z`|π,σ,φ).

Exact estimation in the E-step and optimization in the M-step is of course difficult due to
the intractability of the Mallows posterior. Hence we resort to Monte Carlo EM and exploit
our sampling methods to render EM tractable as follows. We initialize the parameters with
values πold, σold, and φold. For the E-step, instead of working directly with the posterior, we

use GRIM-based Gibbs sampling (see Section 3.3) to obtain samples (z
(t)
` , r

(t)
` )Tt=1 from the

posteriors P (r`, z`|v`,πold,σold,φold) of each agent ` ≤ n. We note once again that Gibbs
sampling may use either approximate AMP or the full-fledged MCMC MMP to generate
rankings.

In the M-step, we maximize the expected log-likelihood using the empirical expectation
with respect to the generated samples:

πnew,σnew,φnew = argmax
π,σ,φ

n∑
`=1

1

T

T∑
t=1

lnP (v`, r
(t)
` , z

(t)
` |π,σ,φ). (29)

We show below in Theorem 23 that we can perform this maximization by adjusting
the three (sets of) parameters in sequence—specifically, if the parameters are maximized in
the order π, σ and φ (and the first two can be maximized independently), this provides a
globally optimal solution for the M-step (i.e., the solution obtained by optimizing parameters
simultaneously). However, optimization of σ, in particular, is NP-hard (as we discuss
below), so we use a local search heuristic to approximate the choice of reference rankings
in the M-step. We now detail the steps involved in the M-step optimization.

Somewhat abusing notation, let indicator vector z
(t)
` denote the mixture component to

which the tth sample derived from preference ` belongs. We partition the collection of all
agent samples (over all `) into such classes: let Sk = (ρk1, . . . , ρkjk) be the sub-sample of

the rankings r
(t)
` , over all ` ∈ N, t ∈ [T ], that are drawn from the kth component of the

mixture model, i.e., where z
(t)
` = k. Note that j1 + · · · + jK = nT . We can rewrite the
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objective in the M-step as

1

T

K∑
k=1

jk∑
i=1

lnP (v`(k,i)|ρki)P (ρki|σ(k), φk)P (k|πk),

where `(k, i) is the agent in sample ρk,i. We ignore lnP (v`(k,i)|ρki), which only impacts α;
and we know ρki ∈ Ω(v`(k,i)). Thus, we can rewrite the objective as

K∑
k=1

jk∑
i=1

[
lnπk + d(ρki, σ

(k)) lnφk −
m∑
w=1

ln
1− φwk
1− φk

]
. (30)

where the last summation is the log of the Mallows normalization term.

Optimizing π. We apply the method of Lagrange multipliers. The Lagrangian L =
(
∑K

k=1

∑jk
i=1 lnπk) + λ(π1 + · · · + πK − 1), where we have removed irrelevant terms of the

objective not involving π. Taking the gradient, setting to zero and solving the system of
equations ∇π,λL = 0, we obtain:

πk =
jk
nT

, ∀k ≤ K. (31)

Optimizing σ. The only term involving σ in Equation 30 is
∑K

k=1

∑jk
i=1 d(ρki, σ

(k)) lnφk.
Since lnφk is a negative scaling factor, and we can optimize the reference rankings σ(k) for
each mixture component independently, we obtain:

σ(k)∗ = argmin
σ(k)

jk∑
i=1

d(ρki, σ
(k)). (32)

Optimizing the choice of reference ranking σ(k) within a mixture component requires com-
putation of the Kemeny ranking with respect to the rankings in Sk. This is, unfortunately,
an NP-hard problem (Bartholdi III et al., 1989). To maintain tractability, we exploit the
notion of local Kemenization (Dwork et al., 2001): instead of optimizing the ranking, we
compute a locally optimal σ(k), in which swapping any two adjacent alternatives in σ(k)

does not reduce the sum of distances in the Kemeny objective. While this may not result in
optimal rankings, it has been shown to be extremely effective experimentally (Dwork et al.,
2001; Busse et al., 2007).

We detail our local Kemenization algorithm in Algorithm 4. It works by first initializing
the new ranking σ(k) to that from the previous EM iteration, σold,(k). Then, for each
alternative x, starting with those at the top of the ranking and moving downwards, we
evaluate swaps of x with the element above it, say y, and proceeding with the swap if the
majority of rankings in Sk prefer x over y. This proceeds until the first potential swap of x
fails (at which point we move on to the next alternative). This results in a locally optimal
ranking (Dwork et al., 2001). Note we need not store all rankings in Sk; we require only its
pairwise tournament graph, which is a complete directed graph with vertices corresponding
to the alternatives A and the weight of each edge x→ y set to be cxy = |{ρ ∈ Sk : y �ρ x}|.
Here cxy is the “cost” of placing x above y.
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Algorithm 4 LocalKemeny

Input: Sk = (ρk1, . . . , ρkjk)
1: σ ← σold

k

2: Compute pairwise tournament graph:
3: for all pair (x, y) : x, y ∈ A and x 6= y do
4: cxy = |{ρ ∈ Sk : y �ρ x}|.
5: end for
6: d←∑

{x,y} : x�
σ(k)y

cxy

7: for i = 2..m do
8: x← alternative in ith rank of σ
9: for j = i− 1..1 do

10: y ← alternative in jth rank of σ
11: if cxy < cyx then
12: Swap x with y
13: d← d− cxy + cyx
14: else
15: quit this loop
16: end if
17: end for
18: end for
Output: σ, Kemeny cost d

Optimizing φ. When optimizing φ in Equation 30, the objective decomposes into a sum
that permits independent optimization of each φk. Exact optimization of φk is difficult;
however, we can use gradient ascent with:

∂ (Equation 30)

∂φk
=
d(Sk, σ

(k))

φk
− jk

m∑
i=1

[(i− 1)φk − i]φi−1
k + 1

(1− φik)(1− φk)
,

where d(Sk, σ
(k)) =

∑jk
i=1 d(ρki, σ

(k)) is the Kemeny objective, which we obtain after running
LocalKemeny.

Theorem 23 Let π∗ be given by Equation 31, σ∗ be given by Equation 32, and φ∗ be the
optimal φ in Equation 30 where π is replaced with π∗ and σ is replaced with σ∗. Then π∗,
σ∗ and φ∗ is a globally optimal solution to Equation 29.

Proof Regardless of the values of σ and φ, π is optimized by Equation 31 (see our anal-
ysis above), giving the optimal solution. It is also easy to see that the optimal reference
rankings σ are the Kemeny rankings corresponding to ranking sets S1, . . . , SK , respectively,
independent of the value of φ. Finally, if we substitute the optimal values π∗ and σ∗ into
Equation 30, its optimal solution φ∗ forms part of the optimal solution (π∗,σ∗,φ∗) to
Equation 29.

It isn’t difficult to see that a “locally optimal” pair (σ,φ) obtained by optimizing σ
first, then φ is a locally optimal pair for Equation 29. Hence the resulting EM estimates
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are also locally optimal with respect to the likelihood (Neal and Hinton, 1999). While no
approximation bounds can be given, this lends some support to the optimization approach
we adopt. To test the convergence of EM, one can test the convergence of the parameters
(use Kendall-tau distance to measure σ against that of the previous iteration). One can
also measure whether the log-likelihood is converging.

To reduce problems with local maxima, we initialize the mixture parameters using a K-
means clustering approach where distances are measured using Kendall-tau rather than the
usual squared Euclidean distance. One can use a modified version of Lloyd’s 1982 method
for K-means, where the “centroid” (pertaining to Lloyd’s method) of a set of rankings can
is simply its Kemeny ranking.

4.4 Complexity of EM Steps

We analyze the running time of one iteration of our EM approach. In the E-step, we
sample variables (z, r). We need not store the ranking r for the component corresponding
to z, since in the M-step we do not need the actual rankings in Sk, but only its pairwise
tournament graph. Hence we need only update the tournament graph corresponding to
component z with sample r, which takes O(m2) time. When sampling r, let TMetro be
the number of Metropolis steps before using the next sample. Each draw of r from AMP
requires O(m2) time. Sampling z requires O(Km logm) time since Kendall-tau distance
can be computed in O(m logm) time. Let TGibbs be the number of Gibbs sampling steps
run Gibbs before outputting a sample and suppose we restart Gibbs after each such sample.
Suppose also we draw TP posterior samples for each data point v`. Then the E-step takes
O(nTPTGibbs(TMetrom

2 +Km logm)) time. In practice, one can chose a very small number
of samples, and run relatively few steps, when running the MCMC methods. Indeed, in
our experiments below, we don’t use MMP within the Gibbs sampler, but instead use AMP
directly (this can be viewed as running Metropolis for a single step); we discuss this further
below. In principle, posterior sampling can be executed in parallel, with multiple processors
handling the sampling and tournament graph updates for disjoint subsets of the data v`,
with the results from different processors merged into the K tournament graphs.

For the M-step, updating π takes constant time, while updating the component reference
rankings σ takes O(Km2) time. Optimizing φ can also be realized effectively, for instance,
by using gradient ascent and bounding number of iterations. Hence the M-step requires
O(Km2) time. Space complexity is dominated by the size of the K tournament graphs,
hence is O(Km2).

Various techniques can be used to speed up computation from a practical perspective.
Instead of storing the tournament graphs, which require quadratic memory, one can instead
approximate the Kemeny ranking for any component using the Borda count to rank alterna-
tives, which is a 5-approximation to Kemeny (Coppersmith et al., 2006), and often provides
much better approximations in practice. If using Borda, when generating a complete rank-
ing r in the posterior-sampling step (E-step) belonging to component k, one need only to
update the Borda scores of all alternatives within component k; in the M-step we simply
rank alternatives (within each component) according to their sampled Borda scores. We
still need the Kemeny distance between the resulting Borda ranking and the sampled rank-
ings, but this can be approximated by re-running the E-step and evaluating the Kendall-tau
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distance in an online fashion. One might also consider using Spearman footrule distance,
which can be computed in O(m) time rather than O(m logm) as in Kendall-tau, since it is
2-approximation to the Kemeny distance (Diaconis, 1988).

5. Experiments

We perform a series of experiments to validate the efficacy of our sampling and learning al-
gorithms, to discover interesting properties of the learned mixture models on several popular
data sets, and to evaluate the predictive power of our learned models to help predict miss-
ing preferences. We first assess the quality of our GRIM-based posterior sampling method
AMP, measuring its accuracy relative to the true Mallows posterior. We then measure the
approximation quality of our Monte Carlo algorithm for evaluating the Mallows mixture
log-likelihood. Next we apply our EM algorithm to learn mixture models using several data
sets: synthetically generated data sets, a Movielens ratings data set (with large m); and a
sushi preference data set. The synthetic data experiments confirm the effectiveness of our
EM algorithm while also revealing insights on how the size of preference data (either n or α)
impacts learning. We also remark on some of its connections to crowdsourcing. Finally we
assess the predictive accuracy of the learned models by conditioning on partial preference
information and inferring the probability of the missing pairwise comparison preferences.
In all experiments, we use Equation 26 to measure log-likelihood.

5.1 Sampling Quality

We first assess how well AMP approximates the true Mallows posterior Pv using randomly
generated (synthetic) data. We vary parameters m, φ and α, while fixing a canonical
reference ranking σ = (1, 2, · · ·m). For each parameter setting, we generate 20 preferences
v (e.g., the partial preferences of 20 agents) using our mixture model (see Section 2.3 and
Equations 9 and 10), and evaluate the exact KL-divergence of Pv with respect to P̂v

5 This
divergence is normalized by the entropy of Pv, since, when increasing m, KL-divergence and
entropy both increase. Results are shown in Figure 3, with fixed and varying parameters
for all three plots described in the caption. These results indicate that AMP approximates
the posterior very well, with average normalized KL error ranging from 1–5%, across the
parameter ranges tested.

5.2 Evaluating Log-Likelihood

In Section 4.1 we showed the #P-hardness of evaluating the log-likelihood and derived a
Monte Carlo estimator that uses the AMP sampler. We evaluate the quality of the approx-
imation produced by this estimator in this section. We vary three parameters to generate
three experiments: (a) the number of alternatives m; (b) the number of mixture compo-
nents K; and (c) the number of samples T per agent and per component (Equation 28).
In all experiments, we fix the number of agents (i.e., the number of input preferences) at
n = 50.

5. To compute KL-divergence, we need only consider consistent completions of our partial preferences.
This set of rankings usually has size much smaller than m!, and can be enumerated by modifying the
topological sort algorithm.
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Figure 3: Comparing the posterior generated by AMP to the true Mallows posterior: nor-
malized KL-divergence. The box-and-whisker plots have boxes shown the 25-75
percentile range over 20 runs, with the line inside box indicating the median, and
the ‘+’ symbols outliers. From left to right: Plot 1: Varying α, while fixing
φ = 0.5, m = 10. Plot 2: Varying φ, while fixing α = 0.2, m = 10. Plot 3:
Varying m, fixing φ = 0.5 and for m ≤ 13, α = 0.2, for m > 13, α = 0.5.

In setting (a) (varying m), we generate v from a mixture model with K = 3 and
π = (1/3, 1/3, 1/3), φ = (1/2, 1/2, 1/2) and α = 0.2. Each σk (k ≤ K) is drawn uniformly
at random from Ω.

In setting (b) (varying K), we generate v from a mixture model with K components,
where m = 8, π = (1/K, . . . , 1/K), φ = (1/2, . . . , 1/2) and α = 0.2. Again σ drawn
uniformly at random as in setting (a).

In setting (c) (varying T ), parameters are K = 1, m = 8, σ chosen uniformly at random,
φ = 0.5 and α = 0.2.

The parameters for which we evaluated the log-likelihood are generated as follows: mix-
ture weights π are sampled from a “uniform” Dirichlet distribution with a parameter vector
(i.e., equivalent sample size counts) consisting of K 5s. The reference rankings σ were drawn
uniformly at random, and φ is drawn uniformly at random from interval (0, 1).

The results for all three settings are shown in Figure 4. Overall we see that the Monte
Carlo approximation is very good, and improves significantly while reducing variance as we
increase the sample size for each agent’s log-likelihood (as captured by K · T ). Increasing
m slightly degrades approximation quality, although it offers excellent estimates across the
entire range of tested values.

5.3 EM Mixture Learning

We now evaluate our EM mixture-learning algorithms on the synthetic, Sushi and Movielens
data sets.

5.3.1 Synthetic Data

Having empirically established that AMP provides good approximations to the true poste-
rior, and that the log-likelihood can be closely approximated by importance sampling, we
now evaluate how effective our EM algorithm is at recovering parameters in a controlled
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Figure 4: Comparing the ratio of the true log-likelihood to its Monte Carlo approximation.
20 instances are run per parameter setting. From left to right: Plot 1: Varying
m, while fixing T = 5. Plot 2: Varying K while fixing T = 5. Plot 3: Varying
T . Other parameter values are described in the text.

setting, using synthetic data generated from models with known parameters. We empha-
size that the following experiments all use AMP within the Gibbs sampler in the E-step of
Monte Carlo EM, rather than the MCMC algorithm MMP, given the approximation quality
of AMP as well as its much better tractability.

We perform four experiments in which we vary: (a) α, the (expected) fraction of pairwise
comparisons revealed from each preference; (b) the number of alternativesm; (c) the number
of mixture components K; and (d) the number of agent preferences (data set size). In each
experiment, we generate random model parameters as follows: π is drawn from a Dirichlet
distribution with a uniform parameter vector of 5s; σ is drawn uniformly at random; and
φ values are drawn uniformly at random from [0.2, 0.8]. Training data is generated using
our probabilistic model with these parameters. When varying the single parameter for
each experiment, we fix the other three, with fixed values: α = 0.2, m = 20, K = 3 and
n = 50×K. We analyze the performance of EM by (approximately) evaluating the ratio of
the log-likelihood of the learned parameters to that of the true model parameters (π,σ,φ)
on test data (preferences) generated from the true model—we set ntest = n and αtest = 1.

Results are shown in Figure 5 and provide some interesting insights. First they suggest
that learning is more effective when either of α or n is larger (i.e., when we have more
preference data for training). We also see that learning performance degrades when we
increase the number of mixture components—this is hardly surprising, since there is less
data per component as we increase K. Finally, learning improves as m increases for fixed
values of α. This holds because the transitive closure for larger m tends to offer more
preference information. For instance, a1 � a2 � a3 � a4 � a5 � a6 provides 5 comparisons,
and corresponds to 1/9 of all comparisons when m = 10, while leaving many comparisons
unavailable, even after taking its transitive closure. By contrast, a1 � a2 � · · · � a100

has 99 comparisons which is only 1/50 of all comparisons when m = 100; but its transitive
closure is a complete ranking.

These observations have interesting implications when considering information elicita-
tion via “wisdom of the crowds.” When estimating a single objective ranking (i.e., K = 1),
the amount of data needed for reliable estimation can be obtained by either increasing α (the
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Figure 5: Performance of EM on synthetic data. Each plot shows the ratio of the log-
likelihood of learned parameters to those of the true model parameters. Each
parameter setting averages results of 20 instances. Log-likelihoods are approxi-
mated as in Section 4.1 with T = 10. Other parameter settings are described in
the text.

average number of pairwise comparisons revealed per agent) and decreasing n (the number
of agents queried) or by increasing n and decreasing α. In other words, one can obtain
the same “effective” data by either asking more agents about their objective assessments
while decreasing the number of questions per agent, as asking fewer agents to respond, but
demanding more pairwise assessments per agent.

5.3.2 Sushi Data

The Sushi data set consists of 5000 complete rankings over 10 varieties of sushi indicating
sushi preferences (Kamishima et al., 2005). We used 3500 preferences for training and 1500
for validation. We ran EM experiments by generating revealed pairwise comparisons for
training with various probabilities α. To mitigate issues with local maxima, we ran EM ten
times (more than is necessary) for each instance. Figure 6 shows that, even without com-
plete preferences, EM learns well even with only 30-50% of all paired comparisons, though
it degrades significantly at 20%, in part because only 10 alternatives are ranked (still per-
formance at 20% is good when K = 1, 2). With K = 6 components, a good fit is found
when training on complete preferences: Table 1 shows the learned clusters (all with reason-
ably low dispersion), illustrating interesting patterns (e.g., fatty tuna is strongly preferred
by all but one group; a strong correlation exists across groups in preference/dispreference
for salmon roe and sea urchin, which are “atypical fish”; and cucumber roll is consistently
dispreferred).
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Figure 6: Sushi data set. Plots of average validation log-likelihood when the training data,
pairwise comparisons, are revealed with probabilities α ∈ {0.2, 0.3, 0.4, 0.5, 1.0}.
Learning degrades as α gets closer to 0.2, that is, as more pairwise comparisons
are removed.

π0 = 0.17 π1 = 0.15 π2 = 0.17 π3 = 0.18 π4 = 0.16 π5 = 0.18
φ0 = 0.66 φ1 = 0.74 φ2 = 0.61 φ3 = 0.64 φ4 = 0.61 φ5 = 0.62

fatty tuna shrimp sea urchin fatty tuna fatty tuna fatty tuna
salmon roe sea eel fatty tuna tuna sea urchin sea urchin
tuna squid sea eel shrimp tuna salmon roe
sea eel egg salmon roe tuna roll salmon roe shrimp
tuna roll fatty tuna shrimp squid sea eel tuna
shrimp tuna tuna sea eel tuna roll squid
egg tuna roll squid egg shrimp tuna roll
squid cucumber roll tuna roll cucumber roll squid sea eel
cucumber roll salmon roe egg salmon roe egg egg
sea urchin sea urchin cucumber roll sea urchin cucumber roll cucumber roll

Table 1: Learned model for K = 6 on the sushi data set with complete preferences.
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5.3.3 Movielens Data

We apply our EM algorithm to a subset of the Movielens data set (see www.grouplens.org) to
find “preference types” across users. We use the 200 (out of roughly 3900) most frequently
rated movies, and the ratings of the 5980 users (out of roughly 6000) who rated at least one
of these. Integer ratings from 1 to 5 are converted to pairwise preferences in the obvious
way (for ties, no preference was added to v). For example, if A and B had rating 5, C had
rating 3 and D rating 1 then the user preference becomes v = {A � C,A � D,B � C,B �
D,C � D}. We discard preferences that are empty when restricted to the top 200 movies,
and use 3986 preferences for training and 1994 for validation. We run EM with number of
components K = 1, . . . , 20; for each K we ran EM 20 times to mitigate the impact of local
maxima. For each K, we evaluate average log-likelihood of the best run on the validation
set to select the number of mixture components K. Log-likelihoods are approximated using
our Monte Carlo estimator (with K · T = 120).6

Log-likelihood results are shown in Figure 7 as a function of the number of mixture
components. These results suggest that the best component sizes are K = 10 and K = 5
on the validation set. The learned model with K = 5 is displayed in Table 2, with each
component ranking truncated to the top-20 movies. The five references rankings in this case
are have some intuitive interpretation, but do not seem to exhibit the same separation as in
the Sushi data set, in part due to the non-trivial overlap involving a number of “universally
popular” movies (e.g., two movies, The Shawshank Redemption and The Usual Suspects,
occur in all five components; two more occur in four, and more than 30 occur in three).
Note also that the dispersion of each component is extremely high, approaching 1.

Despite this, certain patterns can be discerned. especially by focusing on reasonably
unique movies, those than occur in only one or two components. For example, the second
component contains the following “unique” movies: Monty Python and the Holy Grail, The
Maltese Falcon, Blade Runner, One Flew Over the Cuckoo’s Nest, A Clockwork Orange,
2001: A Space Odyssey, North by Northwest, Pulp Fiction, Chinatown, and Apocalypse
Now. Themes within this cluster of unique movies include “older” science fiction, ultra-
violence, actor Jack Nicholson and director Stanley Kubrick. The average date of the (top)
twenty movies within this component is 1970, which is significantly lower than those of
other components.

The same analysis of the fifth component shows the following “unique” movies: A
Christmas Story, This is Spinal Tap, American Beauty, Pulp Fiction, The Princess Bride,
Forrest Gump, Fight Club, Fargo, Ferris Bueller’s Day Off, Raising Arizona, Good Will
Hunting, and The Matrix. Many of the movies here would commonly be characterized as
“quirky,” including five “quirky comedies,” and several that tend toward extreme violence.
The movies in this component also have a significantly later average date, 1992, than the
others.

6. The C++ implementation of our algorithms have EM wall clock times of 15–20 minutes (Intel Xeon
dual-core, 3GHz), certainly practical for a data set of this size. In other data sets, given the smaller
number of alternatives, run times are much faster.
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Figure 7: Movielens data set: average training and validation log likelihoods on the learned
model parameters of different component sizes.

π1 = 0.24, φ1 = 0.98 π2 = 0.23, φ2 = 0.98 π3 = 0.21, φ3 = 0.98 π4 = 0.19, φ4 = 0.98 π5 = 0.13, φ5 = 0.97
Citizen Kane (1941) Godfather, The (1972) Raiders of the Lost Ark

(1981)
Shawshank Redemp-
tion, The (1994)

Usual Suspects, The
(1995)

Godfather, The (1972) Dr. Strangelove (1963) Godfather, The (1972) Life Is Beautiful (1997) Shawshank Redemp-
tion, The (1994)

Dr. Strangelove (1963) Citizen Kane (1941) Schindler’s List (1993) Raiders of the Lost Ark
(1981)

Schindler’s List (1993)

Schindler’s List (1993) Casablanca (1942) Rear Window (1954) Schindler’s List (1993) Life Is Beautiful (1997)
Rear Window (1954) Star Wars: Episode IV

- A New Hope (1977)
Star Wars: Episode IV
- A New Hope (1977)

Star Wars: Episode IV
- A New Hope (1977)

Christmas Story, A
(1983)

Shawshank Redemp-
tion, The (1994)

Usual Suspects, The
(1995)

Shawshank Redemp-
tion, The (1994)

Matrix, The (1999) This Is Spinal Tap
(1984)

American Beauty
(1999)

Raiders of the Lost Ark
(1981)

Casablanca (1942) Sixth Sense, The
(1999)

American Beauty
(1999)

Godfather: Part II,
The (1974)

Monty Python and the
Holy Grail (1974)

Sixth Sense, The
(1999)

Sting, The (1973) Sixth Sense, The
(1999)

One Flew Over the
Cuckoo’s Nest (1975)

Rear Window (1954) Psycho (1960) Forrest Gump (1994) Pulp Fiction (1994)

Casablanca (1942) Maltese Falcon, The
(1941)

Citizen Kane (1941) Usual Suspects, The
(1995)

Princess Bride, The
(1987)

Usual Suspects, The
(1995)

Blade Runner (1982) Sting, The (1973) Braveheart (1995) Silence of the Lambs,
The (1991)

Pulp Fiction (1994) One Flew Over the
Cuckoo’s Nest (1975)

Usual Suspects, The
(1995)

Green Mile, The (1999) Godfather, The (1972)

Monty Python and the
Holy Grail (1974)

Clockwork Orange, A
(1971)

Saving Private Ryan
(1998)

Indiana Jones and the
Last Crusade (1989)

Forrest Gump (1994)

Fargo (1996) 2001: A Space Odyssey
(1968)

Godfather: Part II,
The (1974)

Saving Private Ryan
(1998)

Fight Club (1999)

Life Is Beautiful (1997) North by Northwest
(1959)

Silence of the Lambs,
The (1991)

Princess Bride, The
(1987)

Fargo (1996)

Graduate, The (1967) Pulp Fiction (1994) Wizard of Oz, The
(1939)

Star Wars: Episode V
- The Empire Strikes
Back (1980)

Ferris Bueller’s Day
Off (1986)

North by Northwest
(1959)

Godfather: Part II,
The (1974)

Dr. Strangelove (1963) Silence of the Lambs,
The (1991)

Raising Arizona (1987)

GoodFellas (1990) Chinatown (1974) Jaws (1975) Good Will Hunting
(1997)

Saving Private Ryan
(1998)

Chinatown (1974) Apocalypse Now
(1979)

Braveheart (1995) Ferris Bueller’s Day
Off (1986)

Good Will Hunting
(1997)

Raiders of the Lost Ark
(1981)

Shawshank Redemp-
tion, The (1994)

Aliens (1986) When Harry Met Sally
(1989)

Matrix, The (1999)

Table 2: Learned model for K = 5 on Movielens. Shows the top 20 (out of 200) movies.
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5.4 Predicting Missing Pairwise Preferences

In our prediction experiments, we seek to evaluate the performance of the learned models in
predicting unseen pairwise comparisons. In particular, we use the complete sushi data set,
train our mixture model on the first 3500 complete rankings (we train for all K = 1, . . . , 20),
and select the best K by evaluating the log-likelihood on the validation data set, which
consists of 500 complete rankings. It turns out that a mixture model with K = 6 was most
suitable.

To test posterior prediction performance, we use 1000 complete rankings, distinct from
both the training and validation sets, and randomly remove a fraction 1 − α of the pair-
wise comparisons from each ranking, then compute the transitive closure of the remaining
comparisons to obtain partial preferences. We generate preferences for four different values
of α. With α = 0, all preferences are removed; with α = 0.25, 42% of the pairwise com-
parisons are left after computing transitive closures; with α = 0.5, 76% of the all pairwise
comparisons remain; and with α = 0.75, 83% of the pairwise comparisons are left.

We conditioned the learned model on the partial preferences of each agent in turn,
to obtain posterior distributions over which we can infer each agent’s missing pairwise
comparisons. In making predictions, we use our posterior sampling algorithm SP to sample
complete rankings, which we then use to update a tournament graph—recall, this is a set
of counts cab to count the number of rankings for which a � b, for all a, b ∈ A. Then we
estimate the posterior probability P (a � b | v) by cab

cab+cba
.

We define our prediction loss as follows. Suppose we have a complete ranking r with its
corresponding partial preference v obtained as described above. For a given a �r b that is
unobserved in tc(v), we define the posterior prediction loss to be P̂ (a ≺ b | v) = cba

cab+cba
.

Let M(v) = {(a, b) : a �r b, a � b /∈ tc(v)} be the set of missing pairwise comparisons in v.
We define the average loss of v as

εv =

∑
(a,b)∈M(v`)

P̂ (a ≺ b|v)

|M(v`)|
.

We next define the average loss per preference to be

ε =
1

n

n∑
`=1

εv` ,

where n is the number of distinct agents or preferences (in this case n = 1000). For a �r b,
let D(a, b) = r(b) − r(a) be the difference in their rank positions and MD(v) = {(a, b) ∈
M(v) : D(a, b) = D}. We also measure the average loss at distance D as follows:

εD =

∑n
`=1

∑
(a,b)∈MD(v`)

P̂ (a ≺ b|v)∑n
`=1 |MD(v`)|

.

The results for average loss per preference are as follows:

• ε = 0.43 for preferences generated with α = 0;

• ε = 0.35 for α = 0.25,

• ε = 0.39 for α = 0.5, and
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Figure 8: Sushi prediction results: average prediction loss for missing pairwise comparisons
for pairs at different distances in the underlying ranking.

• ε = 0.44 for α = 0.75.

(We interpret these results below). Results for εD at various distances are plotted in Fig-
ure 8. Since these results are extremely sensitive to the number of pairwise comparisons
available in the data at different distances, we show the number of such comparisons, per
distance, in Table 3.

The results indicate that predictive performance is weakly accurate when pairs are close
in distance, but improves as the distance between the predicted alternatives increases in
the underlying ranking. For α = 0.75, the average loss at distances 5 and 6 is higher than
expected, but this is due to the small number of comparisons missing available for testing
(and in general) at those distances. We also observe that the number of comparisons of
a particular distance decreases as a function of the distance—this is more pronounced for
smaller values of α. This can be attributed to the use of transitive closure: the further
apart a pair of alternatives are in the underlying ranking, the less likely it is that we will
remove all of the pairwise comparisons required render the two alternatives incomparable
after taking the transitive closure of the preferences that remain. As a consequence of
the skewed distribution of missing pairs available for prediction at specific distances, the
average loss per preference does not in fact decrease as α increases. For example, it is
0.39 for α = 0.5, and 0.44 for α = 0.75; this is because the relative number of missing
comparisons at smaller distances (which are more difficult to predict) is much greater when
α = 0.75 than when α = 0.5 (as shown in Table 3).

6. Applications to Non-Parametric Estimators

Lebanon and Mao (2008) propose a non-parametric estimator for Mallows models when
observations form partitioned preferences. This estimator is an analogue of typical kernel
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D = 1 D = 2 D = 3 D = 4 D = 5 D = 6 D = 7 D = 8 D = 9

α = 0 9000 8000 7000 6000 5000 4000 3000 2000 1000

α = .25 6610 5487 4393 3459 2492 1744 1092 606 256

α = .5 4429 2911 1683 898 443 191 65 22 1

α = .75 2230 824 244 62 9 2 0 0 0

Table 3: The number of missing pairwise comparisons (over all agents) among pairs that
are distance D from each other, with preferences generated by randomly deleting
fraction 1 − α of preferences, then taking the transitive closure of the remaining
comparisons.

density estimators, but over the space of rankings. Their purpose, similar to mixture mod-
els, is to model the distribution of real ranking data. The idea is to place “smooth unimodal
bumps,” formulated as a single Mallows model, at every input (training) preference. This
is much like a mixture model with the number of components equal to the number of pref-
erences in the training data. They offer closed-form solutions by exploiting the existence
of the closed-form for the Mallows normalization constant when partitioned preferences are
observed. Unfortunately, with general pairwise comparisons, computing this normalization
constant is intractable unless #P=P. In contrast to our contributions above, they do not
address the question of how to find a maximum likelihood estimate of the Mallows disper-
sion parameter, also known as the kernel width, which they suggest as being “extremely
difficult.”

It turns out we can use AMP for approximate marginalization to support non-parametric
estimation with general preference data. This shows the potential applicability of our
sampling algorithm to a wider range of problems where observations consist of pairwise
comparisons. We illustrate its application by defining a non-parametric estimator and
deriving a Monte Carlo evaluation formula suitable for incomplete preferences.

Define a joint distribution q` over the probability space Ω(v`)× Ω:

q`(s, r) =
φd(r,s)

|Ω(v`)|Zφ
, (33)

where Zφ is the Mallows normalization constant with respect to dispersion φ. This dis-
tribution corresponds to drawing a ranking s uniformly at random from Ω(v`) and then
drawing r from a Mallows distribution with reference ranking s and dispersion φ. The esti-
mator, extended in the style of Lebanon and Mao (2008) to any set of paired comparisons,
is simply:

p(v) =
1

n

∑
`∈N

q`(s ∈ Ω(v`), r ∈ Ω(v)) (34)

=
1

n

∑
`∈N

∑
s∈Ω(v`)

∑
r∈Ω(v)

φd(r,s)

|Ω(v`)|Zφ
.

Note that this is a distribution over rankings and not incomplete preferences, that is, a
marginal over Ω(v). A special case arises when V consists entirely of complete rankings,
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which simplifies to a mixture of Mallows models with n equally weighted components,
each with one of the observed rankings v` as its reference ranking, and dispersion φ. This
estimator can be useful for inference over the posterior p(r|v) = p(r)1[r ∈ Ω(v)]/p(v) for
r ∈ Ω(v). For any fixed v, let f(s) =

∑
r∈Ω(v) φ

d(r,s). Then we have

p(v) =
1

nZφ

∑
`∈N

∑
s∈Ω(v`)

1

|Ω(v`)|
f(s)

=
1

nZφ

∑
`∈N

E
s∼Ω(v`)

f(s),

where s is drawn uniformly from Ω(v`). One can estimate the expectation by importance

sampling. Suppose we draw, for each `, rankings s
(1)
` , . . . , s

(T )
` using AMP(v`, σ, φ = 1)

to approximate uniform sampling (e.g., choose some ranking σ from Ω(v`)). Let w`t =

1/P̂v`(s
(t)
` ), which has a closed-form given by Equation 15. Then the estimate is

p̂(v) =
1

nZφ

n∑
`=1

∑T
t=1w`tf(s

(t)
` )∑T

t=1w`t
.

Evaluating f(s
(t)
` ) is generally intractable, but again, it can be approximated using our

earlier techniques, as given by Equation 27. In summary, we can realize non-parametric
estimation using a nested sampling procedure to first approximate the outer expectation
over s, followed by the inner summation f(s).

7. Conclusion and Future Work

We have developed a set of algorithms to support the efficient and effective learning of
ranking or preference distributions when the observed data comprise a set of unrestricted
pairwise comparisons of alternatives. Given the fundamental nature of pairwise compar-
isons in revealed preference, our methods extend the reach of rank learning in a vital way.
One of our main technical contributions, the GRIM algorithm, allows sampling of arbi-
trary distributions, including Mallows models conditioned on pairwise data. It supports a
tractable approximation to the #P-hard problem of log-likelihood evaluation of Mallows
mixtures; and it forms the heart of an EM algorithm that was shown to be quite effective
in our experiments. GRIM can also be used for non-parametric estimation.

We are pursuing a number of interesting directions, including various extensions and
applications of the model we have developed here. One of the weaknesses with Mallows
is its lack of flexibility in various dimensions, such as allowing different dispersion “rates”
in different regions of the ranking. Models that allow more flexibility while controlling
for overfitting could lead to more realistic ranking models for real-world settings. Other
extensions include exploration of other probabilistic models of incomplete preferences that
employ different distributions over rankings, such as Plackett-Luce or weighted Mallows;
that account for noisy comparison data from users; and that account for data that is not
missing at random—this may occur, say, in settings in which a bias exists towards observing
preferences for higher ranked alternatives.
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In another vein, we are interested in exploiting learned preference models of the type
developed here for decision-theoretic tasks in social choice or personalized recommendation.
Learned preferences can be leveraged in both active preference elicitation (e.g., in social
choice or group decision making (Lu and Boutilier, 2011)), or in passive (purely observa-
tional) settings. It would also be interesting to apply GRIM to other posterior distributions
such as energy models, and to compare it to different MCMC techniques like chain flipping
(Dellaert et al., 2003).
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