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Abstract

Particle Markov chain Monte Carlo (PMCMC) is a systematic way of combining the two
main tools used for Monte Carlo statistical inference: sequential Monte Carlo (SMC) and
Markov chain Monte Carlo (MCMC). We present a new PMCMC algorithm that we refer
to as particle Gibbs with ancestor sampling (PGAS). PGAS provides the data analyst
with an off-the-shelf class of Markov kernels that can be used to simulate, for instance,
the typically high-dimensional and highly autocorrelated state trajectory in a state-space
model. The ancestor sampling procedure enables fast mixing of the PGAS kernel even
when using seemingly few particles in the underlying SMC sampler. This is important
as it can significantly reduce the computational burden that is typically associated with
using SMC. PGAS is conceptually similar to the existing PG with backward simulation
(PGBS) procedure. Instead of using separate forward and backward sweeps as in PGBS,
however, we achieve the same effect in a single forward sweep. This makes PGAS well
suited for addressing inference problems not only in state-space models, but also in models
with more complex dependencies, such as non-Markovian, Bayesian nonparametric, and
general probabilistic graphical models.

Keywords: particle Markov chain Monte Carlo, sequential Monte Carlo, Bayesian infer-
ence, non-Markovian models, state-space models

1. Introduction

Monte Carlo methods are one of the standard tools for inference in statistical models as
they, among other things, provide a systematic approach to the problem of computing
Bayesian posterior probabilities. Sequential Monte Carlo (SMC, see, e.g., Doucet and Jo-
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hansen, 2011; Del Moral et al., 2006) and Markov chain Monte Carlo (MCMC, see, e.g.,
Robert and Casella, 2004; Liu, 2001) methods in particular have found application to a wide
range of data analysis problems involving complex, high-dimensional models. These include
state-space models (SSMs) which are used in the context of time series and dynamical sys-
tems modeling in a wide range of scientific fields. The strong assumptions of linearity and
Gaussianity that were originally invoked for SSMs have indeed been weakened by decades
of research on SMC and MCMC. These methods have not, however, led to a substan-
tial weakening of a further strong assumption, that of Markovianity. It remains a major
challenge to develop efficient inference algorithms for models containing a latent stochastic
process which, in contrast with the state process in an SSM, is non-Markovian. Such non-
Markovian latent variable models arise in various settings, either from direct modeling or
via a transformation or marginalization of an SSM. We discuss this further in Section 6;
see also Lindsten and Schön (2013, Section 4).

In this paper we present a new tool in the family of Monte Carlo methods which is par-
ticularly useful for inference in SSMs and, importantly, in non-Markovian latent variable
models. However, the proposed method is by no means limited to these model classes. We
work within the framework of particle MCMC (PMCMC, Andrieu et al., 2010) which is
a systematic way of combining SMC and MCMC, exploiting the strengths of both tech-
niques. More specifically, PMCMC samplers make use of SMC to construct efficient, high-
dimensional MCMC kernels. These kernels can then be used as off-the-shelf components
in MCMC algorithms and other inference strategies relying on Markov kernels. PMCMC
has in a relatively short period of time found many applications in areas such as hydrology
(Vrugt et al., 2013), finance (Pitt et al., 2012), systems biology (Golightly and Wilkinson,
2011), and epidemiology (Rasmussen et al., 2011), to mention a few.

Our method builds on the particle Gibbs (PG) sampler proposed by Andrieu et al.
(2010). In PG, the aforementioned Markov kernel is constructed by running an SMC
sampler in which one particle trajectory is set deterministically to a reference trajectory
that is specified a priori. After a complete run of the SMC algorithm, a new trajectory
is obtained by selecting one of the particle trajectories with probabilities given by their
importance weights. The effect of the reference trajectory is that the resulting Markov
kernel leaves its target distribution invariant, regardless of the number of particles used in
the underlying SMC algorithm.

However, PG suffers from a serious drawback, which is that the mixing of the Markov
kernel can be very poor when there is path degeneracy in the underlying SMC sampler (Lind-
sten and Schön, 2013; Chopin and Singh, 2014). Unfortunately, path degeneracy is in-
evitable for high-dimensional problems, which significantly reduces the applicability of PG.
This problem has been addressed in the generic setting of SSMs by adding a backward sim-
ulation step to the PG sampler, yielding a method denoted as PG with backward simulation
(PGBS, Whiteley, 2010; Whiteley et al., 2010; Lindsten and Schön, 2012). It has been
found that this considerably improves mixing, making the method much more robust to a
small number of particles as well as growth in the size of the data (Lindsten and Schön,
2013; Chopin and Singh, 2014; Whiteley et al., 2010; Lindsten and Schön, 2012).

Unfortunately, however, the application of backward simulation is problematic for mod-
els with more intricate dependencies than in SSMs, such as non-Markovian latent variable
models. The reason is that we need to consider complete trajectories of the latent process
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during the backward simulation pass (see Section 6.2 for details). The method proposed in
this paper, which we refer to as particle Gibbs with ancestor sampling (PGAS), is geared
toward this issue. PGAS alleviates the problem with path degeneracy by modifying the
original PG kernel with a so-called ancestor sampling (AS) step, thereby achieving the
same effect as backward sampling, but without an explicit backward pass.

After giving some background on SMC in Section 2, the PGAS Markov kernel is con-
structed and analyzed theoretically in Sections 3 and 4, respectively. This extends the
preliminary work that we have previously published (Lindsten et al., 2012) with a more
straightforward construction, a more complete proof of invariance, and a new uniform er-
godicity result. We then show specifically how PGAS can be used for inference and learning
of SSMs and of non-Markovian latent variable models in Sections 5 and 6, respectively.
As part of our development, we also propose a truncation strategy specifically for non-
Markovian models. This is a generic method that is also applicable to PGBS, but, as we
show in a simulation study in Section 7, the effect of the truncation error is much less
severe for PGAS than for PGBS. Indeed, we obtain up to an order-of-magnitude increase
in accuracy in using PGAS when compared to PGBS in this study. We also evaluate PGAS
on a stochastic volatility SSM and on an epidemiological model. Finally, in Section 8 we
conclude and point out possible directions for future work.

2. Sequential Monte Carlo

Let γθ,t(x1:t), for t = 1, . . . , T , be a sequence of unnormalized densities1 on the measurable
space (Xt,X t), parameterized by θ ∈ Θ. Let γ̄θ,t(x1:t) be the corresponding normalized
probability densities:

γ̄θ,t(x1:t) =
γθ,t(x1:t)

Zθ,t
,

where Zθ,t =
∫
γθ,t(x1:t) dx1:t and where it is assumed that Zθ,t > 0, ∀θ ∈ Θ. For instance,

in the (important) special case of an SSM we have γ̄θ,t(x1:t) = pθ(x1:t | y1:t), γθ,t(x1:t) =
pθ(x1:t, y1:t), and Zθ,t = pθ(y1:t). We discuss this special case in more detail in Section 5.

To make inference about the latent variables x1:T , as well as to enable learning of
the model parameter θ, a useful approach is to construct a Monte Carlo algorithm to
draw samples from γ̄θ,T (x1:T ). The sequential nature of the problem suggests the use of
SMC methods; in particular, particle filters (PFs); see, e.g., Doucet and Johansen (2011);
Del Moral et al. (2006); Pitt and Shephard (1999).

We start by reviewing a standard SMC sampler, which will be used to construct the
PGAS algorithm in the consecutive section. We will refer to the index variable t as time,
but in general it might not have any temporal meaning. Let {xi1:t−1, w

i
t−1}Ni=1 be a weighted

particle system targeting γ̄θ,t−1(x1:t−1). That is, the weighted particles define an empirical
point-mass approximation of the target distribution given by

γ̂Nθ,t−1(dx1:t−1) =
N∑
i=1

wit−1∑
l w

l
t−1

δxi1:t−1
(dx1:t−1).

1. The dominating measure is denoted simply as dx1:t.
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This particle system is propagated to time t by sampling {ait, xit}Ni=1 independently, condi-
tionally on the particles generated up to time t− 1, from a proposal kernel,

Mθ,t(at, xt) =
watt−1∑
l w

l
t−1

rθ,t(xt | xat1:t−1). (1)

Note that Mθ,t depends on the complete particle system up to time t− 1, {xi1:t−1, w
i
t−1}Ni=1,

but for notational convenience we shall not make that dependence explicit. Here, ait is the
index of the ancestor particle of xit. In this formulation, the resampling step is implicit
and corresponds to sampling these ancestor indices. When we write xi1:t we refer to the
ancestral path of particle xit. That is, the particle trajectory is defined recursively as

xi1:t = (x
ait
1:t−1, x

i
t).

Once we have generated N ancestor indices and particles from the proposal kernel (1), the
particles are weighted according to wit = Wθ,t(x

i
1:t) where the weight function is given by

Wθ,t(x1:t) =
γθ,t(x1:t)

γθ,t−1(x1:t−1)rθ,t(xt | x1:t−1)
, (2)

for t ≥ 2. The procedure is initialized by sampling from a proposal density xi1 ∼ rθ,1(x1)
and assigning importance weights wi1 = Wθ,1(xi1) with Wθ,1(x1) = γθ,1(x1)/rθ,1(x1). The
SMC sampler is summarized in Algorithm 1.

Algorithm 1 Sequential Monte Carlo (each step is for i = 1, . . . , N)

1: Draw xi1 ∼ rθ,1(x1).
2: Set wi1 = Wθ,1(xi1).
3: for t = 2 to T do
4: Draw {ait, xit} ∼Mθ,t(at, xt).

5: Set xi1:t = (x
ait
1:t−1, x

i
t).

6: Set wit = Wθ,t(x
i
1:t).

7: end for

It is interesting to note that the joint law of all the random variables generated by
Algorithm 1 can be written down explicitly. Let

xt = {x1
t , . . . , x

N
t } and at = {a1

t , . . . , a
N
t },

refer to all the particles and ancestor indices, respectively, generated at time t of the
algorithm. It follows that the SMC sampler generates a collection of random variables
{x1:T ,a2:T } ∈ XNT ×{1, . . . , N}N(T−1). Furthermore, {ait, xit}Ni=1 are drawn independently
(conditionally on the particle system generated up to time t− 1) from the proposal kernel
Mθ,t, and similarly at time t = 1. Hence, the joint probability density function (with respect
to a natural product of dx and counting measure) of these variables is given by

ψθ(x1:T ,a2:T ) ,
N∏
i=1

rθ,1(xi1)

T∏
t=2

N∏
i=1

Mθ,t(a
i
t, x

i
t).
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3. The PGAS Kernel

We now turn to the construction of PGAS, a class of Markov kernels on the space of
trajectories (XT ,X T ). We will provide an algorithm for generating samples from these
Markov kernels, which are thus defined implicitly by the algorithm.

3.1 Particle Gibbs

Before stating the PGAS algorithm, we review the main ideas of the PG algorithm of
Andrieu et al. (2010) and we then turn to our proposed modification of this algorithm via
the introduction of an ancestor sampling step.

PG is based on an SMC sampler, akin to a standard PF, but with the difference that one
particle trajectory is specified a priori. This path, denoted as x′1:T = (x′1, . . . , x

′
T ), serves

as a reference trajectory. Informally, it can be thought of as guiding the simulated particles
to a relevant region of the state space. After a complete pass of the SMC algorithm, a
trajectory x?1:T is sampled from among the particle trajectories. That is, we draw x?1:T with
P(x?1:T = xi1:T ) ∝ wiT . This procedure thus maps x′1:T to a probability distribution on X T ,
implicitly defining a Markov kernel on (XT ,X T ).

In a standard PF, the samples {ait, xit} are drawn independently from the proposal kernel
(1) for i = 1, . . . , N . When sampling from the PG kernel, however, we condition on the
event that the reference trajectory x′1:T is retained throughout the sampling procedure. To
accomplish this, we sample according to (1) only for i = 1, . . . , N − 1. The Nth particle
and its ancestor index are then set deterministically as xNt = x′t and aNt = N , respectively.
This implies that after a complete pass of the algorithm, the Nth particle path coincides
with the reference trajectory, i.e., xN1:T = x′1:T .

The fact that x′1:T is used as a reference trajectory in the SMC sampler implies an
invariance property of the PG kernel which is of key relevance. More precisely, as shown by
Andrieu et al. (2010, Theorem 5), for any number of particles N ≥ 1 and for any θ ∈ Θ, the
PG kernel leaves the exact target distribution γ̄θ,T invariant. We return to this invariance
property below, when it is shown to hold also for the proposed PGAS kernel.

3.2 Ancestor Sampling

As noted above, the PG algorithm keeps the reference trajectory x′1:T intact throughout the
sampling procedure. While this results in a Markov kernel which leaves γ̄θ,T invariant, it
has been recognized that the mixing properties of this kernel can be very poor due to path
degeneracy (Lindsten and Schön, 2013; Chopin and Singh, 2014).

To address this fundamental problem we now turn to our new procedure, PGAS. The
idea is to sample a new value for the index variable aNt in an ancestor sampling step.
While this is a small modification of the algorithm, the improvement in mixing can be quite
considerable; see Section 3.3 and the numerical evaluation in Section 7. The AS step is
implemented as follows.

At time t ≥ 2, we consider the part of the reference trajectory x′t:T ranging from the
current time t to the final time point T . The task is to artificially assign a history to this
partial path. This is done by connecting x′t:T to one of the particles {xi1:t−1}Ni=1. Recall that
the ancestry of a particle is encoded via the corresponding ancestor index. Hence, we can
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connect the partial reference path to one of the particles {xi1:t−1}Ni=1 by assigning a value
to the variable aNt ∈ {1, . . . , N}. To do this, first we compute the weights

w̃it−1|T , w
i
t−1

γθ,T ((xi1:t−1, x
′
t:T ))

γθ,t−1(xi1:t−1)
(3)

for i = 1, . . . , N . Here, (xi1:t−1, x
′
t:T ) refers to the point in XT formed by concatenating the

two partial trajectories. Then, we sample aNt with P(aNt = i) ∝ w̃it−1|T . The expression
above can be understood as an application of Bayes’ theorem, where the importance weight
wit−1 is the prior probability of the particle xi1:t−1 and the ratio between the target densities
in (3) can be seen as the likelihood that x′t:T originated from xi1:t−1. A formal argument for
why (3) provides the correct AS distribution, in order to retain the invariance properties of
the kernel, is detailed in the proof of Theorem 1 in Section 4.

The sampling procedure outlined above is summarized in Algorithm 2 and the class of
PGAS kernels is formally defined below. Note that the only difference between PG and
PGAS is on line 8 of Algorithm 2 (where, for PG, we would simply set aNt = N). However,
as we shall see, the effect of this small modification on the mixing of the kernel is quite
significant.

Definition 1 (PGAS kernels). For any N ≥ 1 and any θ ∈ Θ, Algorithm 2 maps x′1:T

stochastically into x?1:T , thus implicitly defining a Markov kernel PNθ on (XT ,X T ). The
class of Markov kernels {PNθ : θ ∈ Θ}, indexed by N ≥ 1, is referred to as the PGAS class
of kernels.

Algorithm 2 PGAS Markov kernel

Input: Reference trajectory x′1:T ∈ XT and parameter θ ∈ Θ.
Output: Sample x?1:T ∼ PNθ (x′1:T , ·) from the PGAS Markov kernel.

1: Draw xi1 ∼ rθ,1(x1) for i = 1, . . . , N − 1.
2: Set xN1 = x′1.
3: Set wi1 = Wθ,1(xi1) for i = 1, . . . , N .
4: for t = 2 to T do
5: Draw {ait, xit} ∼Mθ,t(at, xt) for i = 1, . . . , N − 1.
6: Set xNt = x′t.
7: Compute {w̃it−1|T }

N
i=1 according to (3).

8: Draw aNt with P(aNt = i) ∝ w̃it−1|T .

9: Set xi1:t = (x
ait
1:t−1, x

i
t) for i = 1, . . . , N .

10: Set wit = Wθ,t(x
i
1:t) for i = 1, . . . , N .

11: end for
12: Draw k with P(k = i) ∝ wiT .
13: return x?1:T = xk1:T .

3.3 The Effect of Path Degeneracy on PG and on PGAS

We have argued that AS can considerably improve the mixing of PG. To illustrate this effect
and to provide an explanation of its cause, we consider a simple numerical example. Further
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Figure 1: Update rates for xt versus t ∈ {1, . . . , 400} for PG (left) and for PGAS (right).
The dashed lines correspond to the ideal rates (N − 1)/N . (This figure is best
viewed in color.)

empirical evaluation of PGAS is provided in Section 7. Consider the one-dimensional linear
Gaussian state-space (LGSS) model,

xt+1 = axt + vt, vt ∼ N (0, σ2
v),

yt = xt + et et ∼ N (0, σ2
e),

where the state process {xt}t≥1 is latent and observations are made only via the measure-
ment process {yt}t≥1. For simplicity, the parameters θ = (a, σv, σe) = (0.9, 0.32, 1) are
assumed to be known. A batch of T = 400 observations are simulated from the system.
Given these, we seek the joint smoothing density p(x1:T | y1:T ). To generate samples from
this density we employ both PG and PGAS with varying number of particles ranging from
N = 5 to N = 1 000. We simulate sample paths of length 1 000 for each algorithm. To
compare the mixing, we look at the update rate of xt versus t, which is defined as the
proportion of iterations where xt changes value. The results are reported in Figure 1, which
reveals that AS significantly increases the probability of updating xt for t far from T .

The poor update rates for PG is a manifestation of the well-known path degeneracy
problem of SMC samplers (see, e.g., Doucet and Johansen 2011). Consider the process
of sampling from the PG kernel for a fixed reference trajectory x′1:T . A particle system
generated by the PG algorithm (corresponding to Algorithm 2, but with line 8 replaced
with aNt = N) is shown in Figure 2 (left). For clarity of illustration, we have used a small
number of particles and time steps, N = 20 and T = 50, respectively. By construction,
the reference trajectory (shown by a thick blue line) is retained throughout the sampling
procedure. As a consequence, the particle system degenerates toward this trajectory which
implies that x?1:T (shown as a red line) to a large extent will be identical to x′1:T .

What is, perhaps, more surprising is that PGAS is so much more insensitive to the
degeneracy issue. To understand why this is the case, we analyze the procedure for sampling
from the PGAS kernel PNθ (x′1:T , ·) for the same reference trajectory x′1:T as above. The
particle system generated by Algorithm 2 (with AS) is shown in Figure 2 (right). The thick
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Figure 2: Particle systems generated by the PG algorithm (left) and by the PGAS algorithm
(right), for the same reference trajectory x′1:T (shown as a thick blue line in the left
panel, partly underneath the red line). The gray dots show the particle positions
and the thin black lines show the ancestral dependencies of the particles. The
extracted trajectory x?1:T is illustrated with a red line. In the right panel, AS
has the effect of breaking the reference trajectory into pieces, causing the particle
system to degenerate toward something different than x′1:T . (This figure is best
viewed in color.)

blue lines are again used to illustrate the reference particles, but now with updated ancestor

indices. That is, the blue line segments are drawn between x
aNt
t−1 and x′t for t ≥ 2. It can

be seen that the effect of AS is that, informally, the reference trajectory is broken into
pieces. It is worth pointing out that the particle system still collapses; AS does not prevent
path degeneracy. However, it causes the particle system to degenerate toward something
different than the reference trajectory. As a consequence, x?1:T (shown as a red line in the
figure) will with high probability be substantially different from x′1:T , enabling high update
rates and thereby much faster mixing.

4. Theoretical Justification

In this section we investigate the invariance and ergodicity properties of the PGAS kernel.

4.1 Stationary Distribution

We begin by stating a theorem, whose proof is provided later in this section, which shows
that the invariance property of PG is not violated by the AS step.

Theorem 1. For any N ≥ 1 and θ ∈ Θ, the PGAS kernel PNθ leaves γ̄θ,T invariant:

γ̄θ,T (B) =

∫
PNθ (x′1:T , B)γ̄θ,T (dx′1:T ), ∀B ∈ X T .
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An apparent difficulty in establishing this result is that it is not possible to write down
a simple, closed-form expression for PNθ . In fact, the PGAS kernel is given by

PNθ (x′1:T , B) = Eθ,x′1:T
[
1B(xk1:T )

]
, (4)

where 1B is the indicator function for the set B ∈ X T and where Eθ,x′1:T denotes expectation
with respect to all the random variables generated by Algorithm 2, i.e., all the particles
x1:T and ancestor indices a2:T , as well as the index k. Computing this expectation is not
possible in general. Instead of working directly with (4), however, we can adopt the strategy
employed by Andrieu et al. (2010). That is, we treat all the random variables generated by
Algorithm 2, {x1:T ,a2:T , k}, as auxiliary variables, thus avoiding an intractable integration.
In the following, it is convenient to view xNt as a random variable with distribution δx′t .

Recall that the particle trajectory xk1:T is the ancestral path of the particle xkT . That is,
we can write

xk1:T = xb1:T1:T , (xb11 , . . . , x
bT
T ),

where the indices b1:T are given recursively by the ancestor indices: bT = k and bt = a
bt+1

t+1 .

Let Ω , XNT × {1, . . . , N}N(T−1)+1 be the space of all random variables generated by
Algorithm 2. Following Andrieu et al. (2010), we then define a probability density function
φθ : Ω 7→ R as follows:

φθ(x1:T ,a2:T , k) = φθ(x
b1:T
1:T , b1:T )φθ(x

−b1:T
1:T ,a−b2:T2:T | xb1:T1:T , b1:T )

,
γ̄θ,T (xb1:T1:T )

NT

︸ ︷︷ ︸
marginal

N∏
i=1
i 6=b1

rθ,1(xi1)
T∏
t=2

N∏
i=1
i 6=bt

Mθ,t(a
i
t, x

i
t)

︸ ︷︷ ︸
conditional

, (5)

where we have introduced the notation

x−it = {x1
t , . . . , x

i−1
t , xi+1

t , . . . , xNt }, x−b1:T1:T = {x−b11 , . . . , x−bTT },

and similarly for the ancestor indices. By construction, φθ is nonnegative and integrates to
one, i.e., φθ is indeed a probability density function on Ω. We refer to this density as the
extended target density.

The factorization into a marginal and a conditional density is intended to reveal some
of the structure inherent in the extended target density. In particular, the marginal density
of the variables {xb1:T1:T , b1:T } is defined to be equal to the original target density γ̄θ,T (xb1:T1:T ),
up to a factor N−T corresponding to a uniform distribution over the index variables b1:T .
This has the important implication that if {x1:T ,a2:T , k} are distributed according to φθ,
then, by construction, the marginal distribution of xb1:T1:T is γ̄θ,T .

By constructing an MCMC kernel with invariant distribution φθ, we will thus obtain
a kernel with invariant distribution γ̄θ,T (the PGAS kernel) as a byproduct. To prove
Theorem 1 we will reinterpret all the steps of the PGAS algorithm as partially collapsed
Gibbs steps for φθ. The meaning of partial collapsing will be made precise in the proof
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of Lemma 2 below, but basically it refers to the process of marginalizing out some of the
variables of the model in the individual steps of the Gibbs sampler. This is done in such
a way that it does not violate the invariance property of the Gibbs kernel, i.e., each such
Gibbs step will leave the extended target distribution invariant. As a consequence, the
invariance property of the PGAS kernel follows. First we show that the PGAS algorithm
in fact implements the following sequence of partially collapsed Gibbs steps for φθ.

Procedure 1 (Instrumental reformulation of PGAS). Given x
′,b′1:T
1:T ∈ XT and b′1:T ∈

{1, . . . , N}T :

(i) Draw x
−b′1
1 ∼ φθ( · | x

′,b′1:T
1:T , b′1:T ) and, for t = 2 to T , draw:

{x−btt ,a−btt } ∼ φθ( · | x
−b′1:t−1

1:t−1 ,a2:t−1, x
′,b′1:T
1:T , b′t−1:T ),

abtt ∼ φθ( · | x
−b′1:t−1

1:t−1 ,a2:t−1, x
′,b′1:T
1:T , b′t:T ),

(ii) Draw k ∼ φθ( · | x−b1:T1:T ,a2:T , x
′,b′1:T
1:T ).

Lemma 1. Algorithm 2 is equivalent to the partially collapsed Gibbs sampler of Procedure 1,

conditionally on x
′,b′1:T
1:T = x′1:T and b′1:T = (N, . . . , N).

Proof. From (5) we have, by construction,

φθ(x
−b1:T
1:T ,a−b2:T2:T | xb1:T1:T , b1:T ) =

N∏
i=1
i 6=b1

rθ,1(xi1)
T∏
t=2

N∏
i=1
i 6=bt

Mθ,t(a
i
t, x

i
t).

By marginalizing this expression over {x−bt+1:T

t+1:T ,a
−bt+1:T

t+1:T } we get

φθ(x
−b1:t
1:t ,a−b2:t2:t | xb1:T1:T , b1:T ) =

N∏
i=1
i 6=b1

rθ,1(xi1)

t∏
s=2

N∏
i=1
i 6=bs

Mθ,s(a
i
s, x

i
s),

It follows that

φθ(x
−b1
1 | xb1:T1:T , b1:T ) =

N∏
i=1
i 6=b1

rθ,1(xi1), (6a)

and, for t = 2, . . . , T ,

φθ(x
−bt
t ,a−btt | x−b1:t−1

1:t−1 ,a
−b2:t−1

2:t−1 , xb1:T1:T , b1:T )

=
φθ(x

−b1:t
1:t ,a−b2:t2:t | xb1:T1:T , b1:T )

φθ(x
−b1:t−1

1:t−1 ,a
−b2:t−1

2:t−1 | xb1:T1:T , b1:T )
=

N∏
i=1
i 6=bt

Mθ,t(a
i
t, x

i
t). (6b)

Hence, we can sample from (6a) and (6b) by drawing xi1 ∼ rθ,1(·) for i ∈ {1, . . . , N} \ b1
and {ait, xit} ∼ Mθ,t(·) for i ∈ {1, . . . , N} \ bt, respectively. Consequently, with the choice
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bt = N for t = 1, . . . , T , the initialization at line 1 and the particle propagation at line 5
of Algorithm 2 correspond to sampling from (6a) and (6b), respectively.

Next, we consider the AS step. Recall that abtt identifies to bt−1. We can thus write

φθ(a
bt
t | x1:t−1,a2:t−1, x

bt:T
t:T , bt:T ) ∝ φθ(x1:t−1,a2:t−1, x

bt:T
t:T , bt−1:T )

= φθ(x
b1:T
1:T , b1:T )φθ(x

−b1:t−1

1:t−1 ,a
−b2:t−1

2:t−1 | xb1:T1:T , b1:T )

=
γθ,T (xb1:T1:T )

γθ,t−1(x
b1:t−1

1:t−1 )

γθ,t−1(x
b1:t−1

1:t−1 )

Zθ,TNT

N∏
i=1
i 6=b1

rθ,1(xi1)

t−1∏
s=2

N∏
i=1
i 6=bs

Mθ,s(a
i
s, x

i
s). (7)

To simplify this expression, note first that we can write

γθ,t−1(x1:t−1) = γθ,1(x1)
t−1∏
s=2

γθ,s(x1:s)

γθ,s−1(x1:s−1)
.

By using the definition of the weight function (2), this expression can be expanded according
to

γθ,t−1(x1:t−1) = Wθ,1(x1)rθ,1(x1)
t−1∏
s=2

Wθ,s(x1:s)rθ,s(xs | x1:s−1).

Plugging the trajectory x
b1:t−1

1:t−1 into the above expression, we get

γθ,t−1(x
b1:t−1

1:t−1 ) = wb11 rθ,1(xb11 )

t−1∏
s=2

wbss rθ,s(x
bs
s | x

b1:s−1

1:s−1 )

=

(
t−1∏
s=1

N∑
l=1

wls

)
wb11∑
l w

l
1

rθ,1(xb11 )

t−1∏
s=2

wbss∑
l w

l
s

rθ,s(x
bs
s | x

b1:s−1

1:s−1 )

=
w
bt−1

t−1∑
l w

l
t−1

(
t−1∏
s=1

N∑
l=1

wls

)
rθ,1(xb11 )

t−1∏
s=2

Mθ,s(a
bs
s , x

bs
s ). (8)

Expanding the numerator in (7) according to (8) results in

φθ(a
bt
t | x1:t−1,a2:t−1, x

bt:T
t:T , bt:T )

∝
γθ,T (xb1:T1:T )

γθ,t−1(x
b1:t−1

1:t−1 )

w
bt−1

t−1∑
l w

l
t−1

(∏t−1
s=1

∑
l w

l
s

)
Zθ,TNT

N∏
i=1

rθ,1(xi1)

t−1∏
s=2

N∏
i=1

Mθ,s(a
i
s, x

i
s)

∝ wbt−1

t−1

γθ,T ((x
b1:t−1

1:t−1 , x
bt:T
t:T ))

γθ,t−1(x
b1:t−1

1:t−1 )
. (9)

Consequently, with bt = N and xbt:Tt:T = x′t:T , sampling from (9) corresponds to the AS step
of line 8 of Algorithm 2. Finally, analogously to (9), it follows that φθ(k | x1:T ,a2:T ) ∝ wkT ,
which corresponds to line 12 of Algorithm 2. �
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Next, we show that Procedure 1 leaves φθ invariant. This is done by concluding that the
procedure is a properly collapsed Gibbs sampler; see Dyk and Park (2008). Marginalization,
or collapsing, is commonly used within Gibbs sampling to improve the mixing and/or to
simplify the sampling procedure. However, it is crucial that the collapsing is carried out in
the correct order to respect the dependencies between the variables of the model.

Lemma 2. The Gibbs sampler of Procedure 1 is properly collapsed and thus leaves φθ
invariant.

Proof. Consider the following sequence of complete Gibbs steps:

(i) Draw {x−b
′
1

1 ,x
−b′2:T
2:T ,a

−b′2:T
2:T } ∼ φθ( · | x

′,b′1:T
1:T , b′1:T ) and, for t = 2 to T , draw:

{x−btt ,at,x
−b′t+1:T

t+1:T ,a
−b′t+1:T

t+1:T } ∼ φθ( · | x
−b′1:t−1

1:t−1 ,a2:t−1, x
′,b′1:T
1:T , b′t:T ).

(ii) Draw k ∼ φθ( · | x
−b′1:T
1:T ,a2:T , x

′,b′1:T
1:T ).

In the above, all the samples are drawn from conditionals under the full joint density
φθ(x1:T ,a2:T , k). Hence, it is clear that the above procedure will leave φθ invariant. Note
that some of the variables above have been marked by an underline. It can be seen that
these variables are in fact never conditioned upon in any subsequent step of the procedure.
That is, the underlined variables are never used. Therefore, to obtain a valid sampler
it is sufficient to sample all the non-underlined variables from their respective marginals.
Furthermore, from (6b) it can be seen that {x−btt ,a−btt } are conditionally independent of abtt ,
i.e., it follows that the complete Gibbs sweep above is equivalent to the partially collapsed
Gibbs sweep of Procedure 1. Hence, the Gibbs sampler is properly collapsed and it will
therefore leave φθ invariant. �

Proof (Theorem 1). Let L(dx
−b′1:T
1:T , da2:T , dk | x′1:T , b

′
1:T ) denote the law of the random

variables generated by Procedure 1, conditionally on x
′,b′1:T
1:T = x′1:T and on b′1:T . Using

Lemma 2 and recalling that φθ(x
b1:T
1:T , b1:T ) = N−T γ̄θ,T (xb1:T1:T ) we have

γ̄θ,T (B) =

∫
1B(xk1:T )L(dx

−b′1:T
1:T , da2:T , dk | x′1:T , b

′
1:T )

× δx′1(dx
b′1
1 ) · · · δx′T (dx

b′T
T )

γ̄θ,T (x′1:T )

NT
dx′1:Tdb

′
1:T , ∀B ∈ X T . (10)

By Lemma 1 we know that Algorithm 2, which implicitly defines PNθ , is equivalent to

Procedure 1 conditionally on x
′,b′1:T
1:T = x′1:T and b′1:T = (N, . . . , N). That is to say,

PNθ (x′1:T , B) =

∫
1B(xk1:T )L(dx

−(N, ..., N)
1:T , da2:T , dk | x′1:T , (N, . . . , N))

× δx′1(dxN1 ) · · · δx′T (dxNT ),

However, the law of x?1:T in Algorithm 2 is invariant to permutations of the particle indices.
That is, it does not matter if we place the reference particles on the Nth positions, or on
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some other positions, when enumerating the particles.2 This implies that for any b′1:T ∈
{1, . . . , N}T ,

PNθ (x′1:T , B) =

∫
1B(xk1:T )L(dx

−b′1:T
1:T , da2:T , dk | x′1:T , b

′
1:T )δx′1(dx

b′1
1 ) · · · δx′T (dx

b′T
T ). (11)

Plugging (11) into (10) gives the desired result,

γ̄θ,T (B) =

∫
PNθ (x′1:T , B)γ̄θ,T (x′1:T )

∑
b′1:T

1

NT


︸ ︷︷ ︸

=1

dx′1:T , ∀B ∈ X T .

�

4.2 Ergodicity

To show ergodicity of the PGAS kernel we need to characterize the support of the target
and the proposal densities. Let,

Sθ,t = {x1:t ∈ Xt : γ̄θ,t(x1:t) > 0},
Qθ,t = {x1:t ∈ Xt : rθ,t(xt | x1:t−1)γ̄θ,t−1(x1:t−1) > 0},

with obvious modifications for t = 1. The following is a minimal assumption.

(A1) For any θ ∈ Θ and t ∈ {1, . . . , T} we have Sθt ⊆ Qθt .

Assumption (A1) basically states that the support of the proposal density should cover
the support of the target density. Ergodicity of PG under Assumption (A1) has been
established by Andrieu et al. (2010). The same argument can be applied also to PGAS.

Theorem 2 (Andrieu et al. (2010, Theorem 5)). Assume (A1). Then, for any N ≥ 2 and
θ ∈ Θ, PNθ is γ̄θ,T -irreducible and aperiodic. Consequently,

lim
n→∞

‖(PNθ )n(x′1:T , ·)− γ̄θ,T (·)‖TV = 0, γ̄θ,T -a.a. x′1:T .

To strengthen the ergodicity results for the PGAS kernel, we use a boundedness con-
dition for the importance weights, given in assumption (A2) below. Such a condition is
typical also in classical importance sampling and is, basically, a stronger version of assump-
tion (A1).

(A2) For any θ ∈ Θ and t ∈ {1, . . . , T}, there exists a constant κθ < ∞ such that
‖Wθ,t‖∞ ≤ κθ.

Theorem 3. Assume (A2). Then, for any N ≥ 2 and θ ∈ Θ, PNθ is uniformly ergodic.
That is, there exist constants Rθ <∞ and ρθ ∈ [0, 1) such that

‖(PNθ )n(x′1:T , ·)− γ̄θ,T (·)‖TV ≤ Rθρnθ , ∀x′1:T ∈ XT .

2. A formal proof of this statement is given for the PG sampler by Chopin and Singh (2014). The same
argument can be used also for PGAS.
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Proof. We show that PNθ satisfies a Doeblin condition,

PNθ (x′1:T , B) ≥ εθγ̄θ,T (B), ∀x′1:T ∈ XT ,∀B ∈ X T , (12)

for some constant εθ > 0. Uniform ergodicity then follows from Tierney (1994, Proposi-
tion 2). To prove (12) we use the representation of the PGAS kernel in (4),

PNθ (x′1:T , B) = Eθ,x′1:T
[
1B(xk1:T )

]
=

N∑
j=1

Eθ,x′1:T

[
wjT∑
l w

l
T

1B(xj1:T )

]

≥ 1

Nκθ

N−1∑
j=1

Eθ,x′1:T
[
wjT1B(xj1:T )

]
=
N − 1

Nκθ
Eθ,x′1:T

[
Wθ,T (x1

1:T )1B(x1
1:T )

]
. (13)

Here, the inequality follows from bounding the weights in the normalization by κθ and by
simply discarding the Nth term of the sum (which is clearly nonnegative). The last equality
follows from the fact that the particle trajectories {xi1:T }

N−1
i=1 are equally distributed under

Algorithm 2. Let hθ,t : Xt 7→ R+ and consider

Eθ,x′1:T
[
hθ,t(x

1
1:t)
]

= Eθ,x′1:T
[
Eθ,x′1:T

[
hθ,t(x

1
1:t) | x1:t−1,a2:t−1

]]
= Eθ,x′1:T

 N∑
j=1

∫
hθ,t((x

j
1:t−1, xt))

wjt−1∑
l w

l
t−1

rθ,t(xt | xj1:t−1) dxt


≥ N − 1

Nκθ
Eθ,x′1:T

[∫
hθ,t((x

1
1:t−1, xt))Wθ,t−1(x1

1:t−1)rθ,t(xt | x1
1:t−1) dxt

]
, (14)

where the inequality follows analogously to (13). Now, let

hθ,T (x1:T ) = Wθ,T (x1:T )1B(x1:T ),

hθ,t−1(x1:t−1) =

∫
hθ,t(x1:t)Wθ,t−1(x1:t−1)rθ,t(xt | x1:t−1) dxt, t ≤ T.

Then, by iteratively making use of (14) and changing the order of integration, we can bound
(13) according to(

N − 1

Nκθ

)−T
PNθ (x′1:T , B) ≥ Eθ,x′1:T

[
hθ,1(x1

1)
]

=

∫
Wθ,1(x1)rθ,1(x1)

T∏
t=2

(Wθ,t(x1:t)rθ,t(xt | x1:t−1))1B(x1:T ) dx1:T

=

∫
γθ,1(x1)

T∏
t=2

(
γθ,t(x1:t)

γθ,t−1(x1:t−1)

)
1B(x1:T ) dx1:T

=

∫
γθ,T (x1:T )1B(x1:T ) dx1:T = Zθ,T γ̄θ,T (B).

With N ≥ 2 and since Zθ,T > 0 the result follows. �

2158



Particle Gibbs with Ancestor Sampling

5. PGAS for State-Space Models

SSMs comprise an important special case of the model class treated above. In this section,
we illustrate how PGAS can be used for inference and learning of these models.

5.1 Sampling from the Joint Smoothing Distribution with PGAS

Consider the (possibly) nonlinear/non-Gaussian SSM

xt+1 ∼ fθ(xt+1 | xt), (15a)

yt ∼ gθ(yt | xt), (15b)

and x1 ∼ µθ(x1), where θ ∈ Θ is a static parameter, xt is the latent state and yt is the
observation at time t, respectively. Given a batch of measurements y1:T , we wish to make
inferences about θ and/or about the latent states x1:T . In the subsequent section we will
provide both a Bayesian and a frequentist learning algorithm based on the PGAS kernel.
However, we start by discussing how to implement the PGAS algorithm for this specific
model.

For an SSM the target distribution of interest is typically the joint smoothing distri-
bution pθ(x1:T | y1:T ). Consequently, since pθ(x1:T | y1:T ) ∝ pθ(x1:T , y1:T ), the sequence of
unnormalized target densities is given by

γθ,t(x1:t) = pθ(x1:t, y1:t), t = 1, . . . , T. (16)

As we have previously discussed, the process of sampling from the PGAS kernel is similar to
running a PF. The only non-standard (and nontrivial) operation is the AS step. By plugging
the specific choice of unnormalized target densities (16) into the general expression for the
AS weights (3), we get

w̃it−1|T = wit−1

pθ((x
i
1:t−1, x

′
t:T ), y1:T )

p(xi1:t−1, y1:t−1)
= wit−1pθ(x

′
t:T , yt:T | xit−1) ∝ wit−1fθ(x

′
t | xit−1). (17)

This expression can be understood as an application of Bayes’ theorem. Recall that we
want to assign an ancestor at time t−1 to the reference particle x′t. The importance weight
wit−1 is the prior probability of the particle xit−1 and the factor fθ(x

′
t | xit−1) is the likelihood

of moving from xit−1 to x′t. The product of these two factors is thus proportional to the
posterior probability that x′t originated from xit−1, which gives us the AS probability.

Expression (17) can also be recognized as the backward sampling weights in a backward
simulator; see Godsill et al. (2004); Lindsten and Schön (2013). Consequently, the AS
step corresponds to a one-step backward simulation, which highlights the close relationship
between PGAS and PGBS for SSMs. The latter method is conceptually similar to PGAS,
but it makes use of an explicit backward simulation pass; see Whiteley (2010); Whiteley
et al. (2010) or Lindsten and Schön (2013, Section 5.4). We discuss this relationship in
more detail in Appendix A. In particular, we show that PGAS and PGBS are in fact
probabilistically equivalent under certain conditions when applied to SSMs. Note, however,
that this equivalence does not hold in general for models outside the class of SSMs. In
particular, for the class of non-Markovian models, discussed in the subsequent section, we
have found that PGAS and PGBS have quite different properties.

2159



Lindsten, Jordan and Schön

For concreteness we provide a restatement of the PGAS algorithm, specifically for the
case of SSMs, in Algorithm 3. To highlight the similarities between PGAS and a standard
PF, we have chosen to present Algorithm 3 using a notation and nomenclature that is com-
mon in the particle filtering literature, but that differs slightly from our previous notation.
However, we emphasize that Algorithm 3 is completely equivalent to Algorithm 2 when the
target distributions are given by (16). Note that the computational cost of the AS step
is O(N) per time step, i.e., of the same order as the PF. Consequently, for an SSM, the
computational complexity of PGAS is the same as for PG, in total O(NT ).

Algorithm 3 PGAS Markov kernel for the joint smoothing distribution pθ(x1:T | y1:T )

Input: Reference trajectory x′1:T ∈ XT and parameter θ ∈ Θ.
Output: Sample x?1:T ∼ PNθ (x′1:T , ·) from the PGAS Markov kernel.

1: Draw xi1 ∼ rθ,1(x1 | y1) for i = 1, . . . , N − 1.
2: Set xN1 = x′1.
3: Set wi1 = gθ(y1 | xi1)µθ(x

i
1)/rθ,1(xi1 | y1) for i = 1, . . . , N .

4: for t = 2 to T do
/* Resampling and ancestor sampling */

5: Generate {x̃i1:t−1}
N−1
i=1 by sampling N − 1 times with replacement from {xi1:t−1}Ni=1

with probabilities proportional to the importance weights {wit−1}Ni=1.
6: Draw J with

P(J = i) =
wit−1fθ(x

′
t | xit−1)∑

l=1w
l
t−1fθ(x

′
t | xlt−1)

, i =1, . . . , N

and set x̃N1:t−1 = xJ1:t−1.

/* Particle propagation */
7: Simulate xit ∼ rθ,t(xt | x̃it−1, yt) for i = 1, . . . , N − 1.
8: Set xNt = x′t.
9: Set xi1:t = (x̃i1:t−1, x

i
t) for i = 1, . . . , N .

/* Weighting */
10: Set wit = gθ(yt | xit)fθ(xit | x̃it−1)/rθ,t(x

i
t | x̃it−1, yt) for i = 1, . . . , N .

11: end for
12: Draw k with P(k = i) ∝ wiT .
13: return x?1:T = xk1:T .

5.2 Learning Algorithms for State-Space Models

We now turn to the problem of learning the model parameter θ in the SSM (15), given a
batch of observations y1:T . Consider first the Bayesian setting where a prior distribution
π(θ) is assigned to θ. We seek the parameter posterior p(θ | y1:T ) or, more generally, the joint
state and parameter posterior p(θ, x1:T | y1:T ). Gibbs sampling can be used to simulate from
this distribution by sampling the state variables {xt} one at a time and the parameters θ
from their respective conditionals. However, it has been recognized that this can result in
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Algorithm 4 PGAS for Bayesian learning of SSMs

1: Set θ[0] and x1:T [0] arbitrarily.
2: for n ≥ 1 do
3: Draw x1:T [n] ∼ PNθ[n−1](x1:T [n− 1], ·). /* By running Algorithm 3 */

4: Draw θ[n] ∼ p(θ | x1:T [n], y1:T ).
5: end for

poor mixing, due to the often high autocorrelation of the state sequence. The PGAS kernel
offers a different approach, namely to sample the complete state trajectory x1:T in one
block. This can considerably improve the mixing of the sampler (de Jong and Shephard,
1995). Due to the invariance and ergodicity properties of the kernel (Theorems 1– 3), the
validity of the Gibbs sampler is not violated. We summarize the procedure in Algorithm 4.

PGAS is also useful for maximum-likelihood-based learning of SSMs. A popular strategy
for computing the maximum likelihood estimator

θ̂ML = arg max
θ∈Θ

log pθ(y1:T )

is to use the expectation maximization (EM) algorithm (Dempster et al., 1977; McLachlan
and Krishnan, 2008). EM is an iterative method, which maximizes log pθ(y1:T ) by iteratively
maximizing an auxiliary quantity: θ[n] = arg maxθ∈ΘQ(θ, θ[n− 1]), where

Q(θ, θ[n− 1]) =

∫
log pθ(x1:T , y1:T )pθ[n−1](x1:T | y1:T ) dx1:T .

When the above integral is intractable to compute, one can use a Monte Carlo approximation
or a stochastic approximation of the intermediate quantity, leading to the MCEM (Wei
and Tanner, 1990) and the SAEM (Delyon et al., 1999) algorithms, respectively. When
the underlying Monte Carlo simulation is computationally involved, SAEM is particularly
useful since it makes efficient use of the simulated values. The SAEM approximation of the
auxiliary quantity is given by

Q̂n(θ) = (1− αn)Q̂n−1(θ) + αn log pθ(x1:T [n], y1:T ), (18)

where αn is the step size and, in the vanilla form of SAEM, x1:T [n] is drawn from the joint
smoothing density pθ[n−1](x1:T | y1:T ). In practice, the stochastic approximation update
(18) is typically made on some sufficient statistic for the complete data log-likelihood; see
Delyon et al. (1999) for details. While the joint smoothing density is intractable for a
general nonlinear/non-Gaussian SSM, it has been recognized that it is sufficient to sample
from a uniformly ergodic Markov kernel, leaving the joint smoothing distribution invariant
(Benveniste et al., 1990; Andrieu et al., 2005). A practical approach is therefore to compute
the auxiliary quantity according to the stochastic approximation (18), but where x1:T [n]
is simulated from the PGAS kernel PNθ[n−1](x1:T [n − 1], ·). This particle SAEM algorithm,

previously presented by Lindsten (2013), is summarized in Algorithm 5.

6. Beyond State-Space Models

For SSMs, the Markovianity implies a simple expression for the AS weights, depending
only of the one-step transition density according to (17). For models with more intricate
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Algorithm 5 PGAS for frequentist learning of SSMs

1: Set θ[0] and x1:T [0] arbitrarily. Set Q̂0(θ) ≡ 0.
2: for n ≥ 1 do
3: Draw x1:T [n] ∼ PNθ[n−1](x1:T [n− 1], ·). /* By running Algorithm 3 */

4: Compute Q̂n(θ) according to (18).
5: Compute θ[n] = arg maxθ∈Θ Q̂n(θ).
6: if convergence criterion is met then
7: return θ[n].
8: end if
9: end for

dependencies between the latent variables, however, this is not the case and the general
expression (3) needs to be used. In this section we consider the computational aspects
of the AS step, first in a very general setting and then specifically for the class of non-
Markovian latent variable models.

6.1 Modifications and Mixed Strategies

The interpretation of the PGAS algorithm as a standard MCMC sampler on an extended
space opens up for straightforward modifications of the algorithm while still making sure
that it retains its desirable theoretical properties. In particular, for models where the
computation of the AS weights in (3) is costly—that is, when evaluating the unnormalized
joint target density γθ,T is computationally involved—it can be beneficial to modify the AS
step to reduce the overall computational cost of the algorithm. Let

ρ(i) =
w̃it−1|T∑N
l=1 w̃

l
t−1|T

, i = 1, . . . , N, (19)

denote the law of the ancestor index aNt , sampled at line 8 of Algorithm 2. From Lemma 1,
we know that this step of the algorithm in fact corresponds to a Gibbs step for the extended
target distribution (5). To retain the correct limiting distribution of the PGAS kernel, it is
therefore sufficient that aNt is sampled from a Markov kernel leaving (19) invariant (resulting
in a standard combination of MCMC kernels; see, e.g., Tierney 1994).

A simple modification is to carry out the AS step only for a fraction of the time steps.
For instance, we can generate the ancestor index aNt according to:{

With probability 1− η, set aNt = N ,

Otherwise, simulate aNt with P(aNt = i) = ρ(i),
(20)

where η ∈ [0, 1] is a user specified parameter, controlling the probability of executing the AS
step. This strategy results in a mix between PG and PGAS; for η = 0 we recover the original
PG algorithm and for η = 1 we obtain the basic PGAS algorithm. For complex models,
this modification can be quite useful. In fact, there is no immediate gain in changing the
ancestry of the reference trajectory as long as the particle trajectories have not degenerated.
That is, it is sufficient to carry out the AS step “once in a while” to obtain high update
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rates for the complete trajectory (cf. Figure 1 where we get high update rates for PG for
the last few time steps, even when using a small number of particles). We illustrate this
empirically in the simulation study in Section 7.3.

Another modification, that can be used either on its own or in conjunction with (20), is
to use MH to simulate from (19). Let q(i′ | i) be an MH proposal kernel on {1, . . . , N}. We
can thus propose a move for the ancestor index aNt , from N to i′, by simulating i′ ∼ q( · | N).
With probability

1 ∧
w̃i
′

t−1|T

w̃Nt−1|T

q(N | i′)
q(i′ | N)

(21)

the sample is accepted and we set aNt = i′, otherwise we keep the ancestry aNt = N . Using
this approach, we avoid computing the normalizing constant in (19), i.e., we only need to
evaluate the AS weights for the proposed values. This will reduce the computational cost of
the AS step by, roughly, a factor N which can be very useful whenever N is moderately large.
Since the variable aNt is discrete-valued, it is recommended to use a forced move proposal
in the spirit of Liu (1996). That is, q is constructed so that q(i | i) = 0, ∀i, ensuring that
the current state of the chain is not proposed anew, which would be a wasteful operation.

6.2 Non-Markovian Latent Variable Models

A very useful generalization of SSMs is the class of non-Markovian latent variable models,

xt+1 ∼ fθ(xt+1 | x1:t),

yt ∼ gθ(yt | x1:t).

Similarly to the SSM (15), this model is characterized by a latent process xt ∈ X and an
observed process yt ∈ Y. However, it does not share the conditional independence properties
that are central to SSMs. Instead, both the transition density fθ and the measurement
density gθ may depend on the entire past history of the latent process. Below we discuss
the AS step of the PGAS algorithm specifically for these non-Markovian models and derive a
truncation strategy for the AS weights. First, however, to motivate the present development
we review some application areas in which this type of models arise.

In Bayesian nonparametrics (Hjort et al., 2010) the latent random variables of the
classical Bayesian model are replaced by latent stochastic processes, which are typically
non-Markovian. This includes popular models based on the Dirichlet process, e.g., Teh et al.
(2006); Escobar and West (1995), and Gaussian process regression and classification models
(Rasmussen and Williams, 2006). These processes are also commonly used as components
in hierarchical Bayesian models, which then inherit their non-Markovianity. An example
is the Gaussian process SSM (Turner and Deisenroth, 2010; Frigola et al., 2013), a flexible
nonlinear dynamical systems model, for which PGAS has been successfully applied (Frigola
et al., 2013).

Another typical source of non-Markovianity is by marginalization over part of the state
vector, i.e., Rao-Blackwellization, (Chen and Liu, 2000; Whiteley et al., 2010; Lindsten et al.,
2013) or by a change of variables in an SSM. This type of operation typically results in a
loss of the Markov property, but can, however, be very useful. For instance, by expressing
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an SSM in terms of its “innovations” (i.e., the driving noise of the state process), it is
possible to use backward and ancestor sampling in models for which the state transition
density is not available. This includes many models for which the transition is implicitly
given by a simulator (Gander and Stephens, 2007; Fearnhead et al., 2008; Golightly and
Wilkinson, 2008; Murray et al., 2013) or degenerate models where the transition density
does not even exist (Ristic et al., 2004; Gustafsson et al., 2002). We illustrate these ideas
in Section 7. See also Lindsten and Schön (2013, Section 4) for a more in-depth discussion
on reformulations of SSMs as non-Markovian models.

Finally, it is worth to point out that many statistical models which are not sequential
“by nature” can be conveniently viewed as non-Markovian latent variable models. This
includes, among others, probabilistic graphical models such as Markov random fields; see
Lindsten and Schön (2013, Section 4).

To employ PGAS, or in fact any backward-simulation-based method (see Lindsten and
Schön 2013), we need to evaluate the AS weights (3) which depend on the ratio

γθ,T (x1:T )

γθ,t−1(x1:t−1)
=

pθ(x1:T , y1:T )

pθ(x1:t−1, y1:t−1)
=

T∏
s=t

gθ(ys | x1:s)fθ(xs | x1:s−1). (22)

Assuming that gθ and fθ can both be evaluated in constant time, the computational cost
of computing the backward sampling weights (3) will thus be O(NT ). This implies that
the overall computational complexity of the PGAS kernel will scale quadratically with T
which can be prohibitive in some cases. The general strategies discussed in Section 6.1, i.e.,
using AS sporadically and/or using MH within PGAS, can of course be used to mitigate
this issue. Nonetheless, the AS step can easily become the computational bottleneck when
applying the PGAS algorithm to a non-Markovian model.

To make further progress we consider non-Markovian models in which there is a decay
in the influence of the past on the present, akin to that in Markovian models but without
the strong Markovian assumption. Hence, it is possible to obtain a useful approximation of
the AS weights by truncating the product (22) to a smaller number of factors, say `. We
can thus replace (3) with the approximation

w̃`,it−1|T , w
i
t−1

γθ,t−1+`((x
i
1:t−1, x

′
t:t−1+`))

γθ,t−1(xi1:t−1)

= wit−1

t−1+`∏
s=t

gθ(ys | xi1:t−1, x
′
t:s)fθ(x

′
s | xi1:t−1, x

′
t:s−1). (23)

Let ρ̂`(k) be the probability distribution defined by the truncated AS weights (23), analo-
gously to (19). The following proposition formalizes our assumption.

Proposition 1. Let hs(k) = gθ(yt−1+s | xk1:t−1, x
′
t:t−1+s)fθ(x

′
t−1+s | xk1:t−1, x

′
t:t−1+s) and

assume that maxk,l (hs(k)/hs(l)− 1) ≤ A exp(−cs), for some constants A and c > 0. Then,
DKLD(ρ‖ρ̂`) ≤ C exp(−c`) for some constant C, where DKLD is the Kullback-Leibler (KL)
divergence.

Proof. See Appendix B. �
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Figure 3: Probability under ρ̂` as a function of the truncation level ` for two different
systems; one 5-dimensional (left) and one 20-dimensional (right). The N = 5
dotted lines correspond to ρ̂`(k) for k ∈ {1, . . . , N}, respectively (N.B. two of
the lines overlap in the left figure). The dashed vertical lines show the value of
the truncation level `adpt., resulting from the adaption scheme with υ = 0.1 and
τ = 10−2. See Section 7.2 for details on the experiments.

Using the approximation given by (23), the AS weights can be computed in constant
time within the PGAS framework. The resulting approximation can be quite useful; indeed,
in our experiments we have seen that even ` = 1 can lead to very accurate inferential results.
In general, however, it will not be known a priori how to set the truncation level `. To
address this problem, we propose to use an adaptive strategy. Since the approximative
weights (23) can be evaluated sequentially, the idea is to start with ` = 1 and then increase
` until the weights have, in some sense, converged. In particular, in our experimental work,
we have used the following simple approach.

Let ε` = DTV(ρ̂`, ρ̂`−1) be the total variation (TV) distance between the approximative
AS distributions for two consecutive truncation levels. We then compute the exponentially
decaying moving average of the sequence ε`, with forgetting factor υ ∈ [0, 1], and stop when
this falls below some threshold τ ∈ [0, 1]. This adaption scheme removes the requirement
to specify ` directly, but instead introduces the design parameters υ and τ . However, these
parameters are much easier to reason about—a small value for υ gives a rapid response to
changes in ε` whereas a large value gives a more conservative stopping rule, improving the
accuracy of the approximation at the cost of higher computational complexity. A similar
tradeoff holds for the threshold τ as well. Most importantly, we have found that the same
values for υ and τ can be used for a wide range of models, with very different mixing
properties.

To illustrate the effect of the adaption rule, and how the distribution ρ̂` typically evolves
as we increase `, we provide two examples in Figure 3. These examples are taken from the
simulation study provided in Section 7.2. Note that the untruncated distribution ρ is given
for the maximal value of `, i.e., furthest to the right in the figures. By using the adaptive
truncation, we can stop the evaluation of the weights at a much earlier stage, and still
obtain an accurate approximation of ρ.
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The approximation (23) can be used in a few different ways. First, as discussed above,
we can simply replace ρ with ρ̂` in the PGAS algorithm, resulting in a total computational
cost of O(NT`). This is the approach that we have favored, owing to its simplicity and the
fact that we have found the truncation to lead to very accurate approximations. Another
approach, however, is to use ρ̂` as an efficient proposal distribution for the MH algorithm
suggested in Section 6.1, leading to an O(NT` + T 2) complexity. The MH accept/reject
decision will then compensate for the approximation error caused by the truncation. A
third approach is to use the MH algorithm, but to make use of the approximation (23) when
evaluating the acceptance probability (21). By doing so, the algorithm can be implemented
with O(NT + T`) computational complexity.

7. Numerical Evaluation

In this section we illustrate the properties of PGAS in a simulation study. First, in Sec-
tion 7.1 we consider a stochastic volatility SSM and investigate the improvement in mixing
offered by AS when PGAS is compared with PG. We do not consider PGBS in this example
since, as we show in Proposition 2 in Appendix A, PGAS and PGBS are probabilistically
equivalent in this scenario. The conditions of Proposition 2 imply that the weight function
in the PF is independent of the ancestor indices. When applied to non-Markovian models,
however, Proposition 2 does not apply, since the weight function then will depend on the
complete history of the particles. PGAS and PGBS will then have different properties as
is illustrated empirically in Section 7.2 where we consider inference in degenerate SSMs
reformulated as non-Markovian models. Finally, in Section 7.3 we use a similar reformu-
lation and apply PGAS for identification of an epidemiological model for which the state
transition kernel is not available.

7.1 Stochastic Volatility Model with Leverage

Stochastic volatility (SV) models are commonly used to model the variation (or volatility)
of a financial asset; see, e.g., Kim et al. (1998); Shephard (2005). Let rt be the price of
an asset at time t and let yt = log(rt/rt−1) denote the so-called log-returns. A typical SV
model is then given by the SSM:

xt+1 = µ(1− ϕ) + ϕxt + σvt,

yt = exp(−1
2xt)et,

(
vt
et

)
∼ N

([
0
0

]
,

[
1 ρ
ρ 1

])
. (24)

The correlation between the process noise and the observation noise allows for a leverage
effect by letting the price of the asset influence the future volatility. Assuming stationarity,
the distribution of the initial state is given by µθ(x1) = N (x1;µ, σ2/(1−ϕ2)). The unknown
parameters of the model are θ = (µ, ϕ, σ2, ρ).

This system is used as a proof of concept, primarily to illustrate the superior mixing of
PGAS when compared to PG. However, we also compare PGAS with the particle marginal
MH (PMMH) algorithm by Andrieu et al. (2010), which has previously been used to cali-
brate SV models on the form (24) (Hallgren and Koski, 2014; Pitt et al., 2010). We analyze
the Standard and Poor’s (S&P) 500 data from 3/April/2006 to 31/March/2014, consisting
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Figure 4: ACFs the parameter σ2 for PG (left column) and for PGAS (right column) for
the S&P 500 data consisting of T = 102 (top row) and T = 2 011 (bottom
row) observations, respectively. The results are reported for different number of
particles N . (This figure is best viewed in color.)

of T = 2 011 observations.3 We consider the the PGAS sampler (Algorithm 4) as well as
the PG and PMMH samplers by Andrieu et al. (2010), all for a range of different number
of particles, N ∈ {5, 10, 100, 500, 1 000}. All methods are simulated for 50 000 iterations,
whereafter the first 10 000 samples are discarded as burn-in. For updating θ, PG and PGAS
simulate the parameters one at a time from their respective conditionals, whereas PMMH
uses a Gaussian random walk tuned according to an initial trial run. Additional details on
the experiments are given in Appendix C.

To evaluate the mixing of the samplers, we compute the autocorrelation functions
(ACFs) for the sequences θ[n] − E[θ | y1:T ].4 We start by considering the simpler problem
of analyzing a small subset of the data, consisting of T = 102 samples (1/November/2013–
31/March/2014). The results for PG and PGAS for the parameter σ2 are reported in the
top row of Figure 4. Similar results hold for the other parameters as well. We see that the
PG sampler requires a fairly large N to obtain good mixing and using N ≤ 10 causes the
sampler to get completely stuck. For PGAS, on the other hand, the ACF is much more
robust to the choice of N . Indeed, we obtain comparable mixing rates for any number of
particles N ≥ 5. This suggests that the sampler in fact performs very closely to a fictive

3. The data was acquired from the Yahoo Finance web page https://finance.yahoo.com/q/hp?s=

%5EGSPC&a=03&b=3&c=2006&d=02&e=31&f=2014&g=d

4. The “true” posterior mean is computed from a long (500 000 samples) run of PMMH.
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w/o sub-sampling w sub-sampling

PGAS PMMH PGAS PMMH

N = 5 111.7 > 104 24.6 3 923.3
N = 10 96.6 > 104 20.7 6 187.0
N = 100 71.3 4 796.1 21.1 1 146.8
N = 500 73.3 59.2 47.8 33.5
N = 1 000 72.6 31.5 80.9 31.5

Table 1: Average inefficiencies for the SV model.

“ideal” Gibbs sampler, i.e., a sampler that simulates x1:T from the true joint smoothing
distribution.

Next, we rerun the methods on the whole data set with T = 2 011 observations. The
results are shown in the bottom row of Figure 4. The effect can be seen even more clearly
in this more challenging scenario. Again, we find PGAS to perform very closely to an ideal
Gibbs sampler for any N ≥ 5. In other words, for this model it is the mixing of the ideal
Gibbs sampler, not the intrinsic particle approximation, that is the limitation of PGAS.
The big difference in mixing between PG and PGAS can be understood as a manifestation
of how they are affected by path degeneracy. These results are in agreement with the
discussion in Section 3.3.

We now turn to a comparison between PGAS and PMMH. However, in doing so it
is important to realize that these two methods, while both being instances of PMCMC,
have quite different properties. In particular, just as PGAS can be thought of as an ap-
proximation of an ideal Gibbs sampler, PMMH can be viewed as an approximation of an
ideal marginal MH sampler. Consequently, their respective performances depend on the
properties of these ideal samplers and the preference for one method over the other heavily
depends on the specific problem under study. Nevertheless, we apply both methods to the
S&P 500 data (with T = 2 011). To evaluate the mixing, we compute5 the inefficiencies:

IF , 1 + 2
∞∑
j=1

ACF(j)

for the four parameters of the model, where ACF(j) is the ACF at lag j. The interpretation
of the inefficiency is that we need n× IF draws from the Markov chain to obtain the same
precision as using n i.i.d. draws from the posterior. The average inefficiencies for the four
parameters for PGAS and PMMH are reported in Table 1.

In the two columns to the left, the inefficiencies for PGAS and PMMH, respectively,
are given without taking the computational cost of the algorithms into account. As above
we find that PGAS is quite insensitive to the number of particles N , with only a minor
increase in inefficiency as we reduce N from 1 000 to 5. PMMH requires a larger number
of particles to mix well—this is in agreement with previous analyzes and empirical studies
(Doucet et al., 2014; Andrieu et al., 2010). Using too few particles with PMMH causes the
method to get stuck, hence the very large inefficiency values. For large N , however, PMMH

5. We use the initial monotone sequence estimator by Geyer (1992) to estimate the inefficiencies.
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outperforms PGAS. The reason for this is that the limiting behavior (as we increase N) of
PMMH is that of an ideal marginal MH sampler. For the model under study, it is apparent
that this marginal MH sampler has better mixing properties than the ideal Gibbs sampler.

Finally, in the rightmost two columns of Table 1 we report the average inefficiencies for
the two samplers when we have matched their computational costs. We use PMMH with
N = 1 000 as the base algorithm. We then match the computational times (as measured by
the tic/toc commands in Matlab) of the algorithms and modify the inefficiencies accord-
ingly. This corresponds to sub-sampled versions of the algorithms, such that each iteration
of any method take the same amount of time as one iteration of PMMH with N = 1 000.
In this comparison, we obtain the best overall performance for PGAS with N = 10.

While the computational complexities of both algorithms scale like O(N), it is worth
to note that the computational overhead is quite substantial (we use a vectorized imple-
mentation of the particle filters in Matlab). In fact, when reducing N from 1 000 to 5, the
reduction in computational time is closer to a factor 5 than to a factor 200. Of course,
the computational overhead will be less noticeable in more difficult scenarios where it is re-
quired to use N � 1 000 for PMMH to mix well. Nevertheless, this effect needs to be taken
into account when comparing algorithms with very different computational properties, such
as PGAS and PMMH, and increasingly so when considering implementations on parallel
computer architectures. That is, matching the algorithms “particle by particle” would be
overly favorable for PGAS. We discuss this further in Section 8.

7.2 Degenerate LGSS Models

Many dynamical systems are most naturally modeled as degenerate in the sense that the
transition kernel of the state-process does not admit any density with respect to a dominat-
ing measure. It is problematic to use (particle-filter-based) backward sampling methods for
these models, owing to the fact that the backward kernel of the state process will also be
degenerate. As a consequence, it is not possible to approximate the backward kernel using
the forward filter particles.

To illustrate how this difficulty can be remedied by a change of variables, consider an
LGSS model of the form(

xt+1

zt+1

)
=

(
A11 A12

A21 A22

)(
xt
zt

)
+

(
vt
0

)
, vt ∼ N (0, Q), (25a)

yt = C

(
xt
zt

)
+ et, et ∼ N (0, R). (25b)

Since the Gaussian process noise enters only on the first part of the state vector (or, equiv-
alently, the process noise covariance matrix is rank deficient) the state transition kernel is
degenerate. However, for the same reason, the state component zt is σ(x1:t)-measurable
and we can write zt = zt(x1:t). Therefore, it is possible to rephrase (25) as a non-Markovian
model with latent process given by {xt}t≥1.

As a first illustration, we simulate T = 200 samples from a four-dimensional, single
output system with poles6 at −0.65, −0.12, and 0.22 ± 0.10i. We let dim(xt) = 1 and

6. The poles of a linear system are given by the eigenvalues of the matrix A and they encode the frequency
response of the system.
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Figure 5: Running RMSEs for x1:T for five independent runs of PGAS (•) and PGBS (◦),
respectively. The truncation level is set to ` = 1. The thick gray line corresponds
to a run of an untruncated FFBS particle smoother.

Q = R = 0.1. For simplicity, we assume that the system parameters are known and
seek the joint smoothing distribution p(x1:T | y1:T ). In the non-Markovian formulation
it is possible to apply backward-simulation-based methods, such as PGAS and PGBS, as
described in Section 6.2. The problem, however, is that the non-Markovianity gives rise
to an O(T 2) computational complexity. To obtain more practical inference algorithms we
employ the weight truncation strategy (23).

First, we consider the coarse approximation ` = 1. We run PGAS and PGBS, both with
N = 5 particles for 10 000 iterations (with the first 1 000 discarded as burn-in). We then
compute running means of the latent variables x1:T and, from these, we compute the running
root-mean-squared errors (RMSEs) εn relative to the true posterior means (computed with
a modified Bryson-Frazier smoother, Bierman, 1973). Hence, if no approximation would
have been made, we would expect εn → 0, so any static error can be seen as the effect of the
truncation. The results for five independent runs are shown in Figure 5. First, we note that
both methods give accurate results. Still, the error for PGAS is significantly lower than
for PGBS. For further comparison, we also run an untruncated forward filter/backward
simulator (FFBS) particle smoother (Godsill et al., 2004), using N = 10 000 particles and
M = 1 000 backward trajectories, with a computational cost of O(NMT 2). The resulting
RMSE value is shown as a thick gray line in Figure 5. This result suggest that PGAS
can be a serious competitor to more “classical” particle smoothers, even when there are no
unknown parameters of the model. Already with ` = 1, PGAS outperforms FFBS in terms
of accuracy and, due to the fact that AS allows us to use as few as N = 5 particles at each
iteration, at a much lower computational cost.

To see how the samplers are affected by the choice of truncation level ` and by the
mixing properties of the system, we consider randomly generated systems of the form (25)
of different orders (i.e., with different state dimensions d). We generate 150 random systems,
using the Matlab function drss from the Control Systems Toolbox, with model orders 2, 5
and 20 (50 systems for each model order). The number of outputs are taken as 1, 2 and
4 for the different model orders, respectively. We consider different fixed truncation levels
(` ∈ {1, 2, 3} for 2nd order systems and ` ∈ {1, 5, 10} for 5th and 20th order systems), as
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Figure 6: Box plots of the RMSE errors for PGAS (black) and PGBS (gray), for 150 ran-
dom systems of different dimensions d (left, d = 2; middle, d = 5; right, d = 20).
Different values for the truncation level ` are considered. The rightmost boxes
correspond to an adaptive truncation and the values in parentheses are the aver-
age truncation levels over all systems and MCMC iterations (the same for both
methods). The dots within the boxes show the median errors.

well as an adaptive level with υ = 0.1 and τ = 10−2 (see Section 6.2). All other settings
are as above.

Again, we compute the posterior means of x1:T (discarding 1 000 samples) and RMSE
values relative to the true posterior mean. Box plots over the different systems are shown
in Figure 6. Since the process noise only enters on one of the state components, the mixing
tends to deteriorate as we increase the model order. Figure 3 shows how the probability
distributions on {1, . . . , N} change as we increase the truncation level, in two representative
cases for a 5th and a 20th order system, respectively. By using an adaptive level, we can
obtain accurate results for systems of different dimensions, without having to change any
settings between the runs.

7.3 Epidemiological Model

As a final numerical illustration, we consider identification of an epidemiological model
using PGAS. Seasonal influenza epidemics each year cause millions of severe illnesses and
hundreds of thousands of deaths world-wide (Ginsberg et al., 2009). Furthermore, new
strains of influenza viruses can possibly cause pandemics with very severe effects on the
public health. The ability to accurately predict disease activity can enable early response
to such epidemics, which in turn can reduce their impact.

We consider a susceptible/infected/recovered (SIR) model with environmental noise and
seasonal fluctuations (Keeling and Rohani, 2007; Rasmussen et al., 2011). The model, spec-
ified by a stochastic differential equation, is discretized according to the Euler-Maruyama
method, yielding

St+dt = St + µPdt− µStdt− (1 + Fvt)βtStP−1Itdt, (26a)

It+dt = It − (γ + µ)Itdt+ (1 + Fvt)βtStP−1Itdt, (26b)

Rt+dt = Rt + γItdt− µRtdt, (26c)
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where vt ∼ N (0, 1/
√
dt) and dt is the sampling time. Here, St, It and Rt represent the num-

ber of susceptible, infected and recovered individuals at time t (months), respectively. The
total population size P = 106 and the host birth/death rate µ = 0.0012 are assumed known.
The seasonally varying transmission rate is given by βt = R0(γ+µ)(1+α sin(2πt/12)) where
R0 is the basic reproductive ratio, γ is the rate of recovery and α is the strength of season-
ality.

Furthermore, we consider an observation model which is inspired by the Google Flu
Trends project (Ginsberg et al., 2009). The idea is to use the frequency of influenza-related
search engine queries to infer knowledge of the dynamics of the epidemic. Let Qk be
the proportion of influenza-related queries counted during a time interval (∆(k − 1),∆k].
Following Ginsberg et al. (2009), we use a linear relationship between the log-odds of the
relative query counts and the log-odds of the proportion of infected individuals,

yk , logit(Qk) = ρ logit(Īk/P) + ek, ek ∼ N (0, σ2), (27)

where Īk is the mean value of It during the time interval (∆(k − 1),∆k] and logit(p) =
log(p/(1−p)). As in Ginsberg et al. (2009) we consider weekly query counts, i.e., ∆ = 7/30
(assuming for simplicity that we have 30 days in each month). Using this value of ∆ as
sampling time will, however, result in overly large discretization errors. Instead, we sample
the model (26) m = 7 times per week: dt = ∆/m.

Rasmussen et al. (2011) use the PMMH sampler (Andrieu et al., 2010) to identify a
similar SIR model, though with a different observation model. A different Monte Carlo
strategy, based on a particle filter with an augmented state space, for identification of an
SIR model is proposed by Skvortsov and Ristic (2012). We investigate the possibility of
using PGAS for joint state and parameter inference in the model (26)–(27). However,
there are two difficulties in applying PGAS directly to this model. Firstly, the transition
kernel of the state process, as defined between consecutive observation time points ∆(k−1)
and ∆k, is not available in closed form. Secondly, since the state is three-dimensional,
whereas the driving noise vt is scalar, the transition kernel is degenerate. To cope with
these difficulties we (again) suggest collapsing the model to the driving noise variables.

Let Vk =
(
v∆(k−1) v∆(k−1)+dt · · · v∆k−dt

)T
. It follows that the model (26)–(27) can be

equivalently expressed as the non-Markovian latent variable model,

Vk ∼ N (0, Im/
√
dt), (28a)

yk ∼ gθ(yk | V1:k), (28b)

for some likelihood function gθ; see (29). A further motivation for using this reformulation
is that the latent variables Vk are a priori independent of the model parameters θ. This
can result in a significant improvement in mixing of the Gibbs sampler, in particular when
there are strong dependencies between the system state and the parameters (Golightly and
Wilkinson, 2008; Papaspiliopoulos et al., 2003).

The parameters of the model are θ = (γ,R0, α, F, ρ, σ), with the true values given by
γ = 3, R0 = 10, α = 0.16, F = 0.03 , ρ = 1.1 and σ = 0.224. We use an improper
flat prior on R6

+ for θ. We generate eight years of data with weekly observations. The
number of infected individuals It over this time period is shown in Figure 7. The first
half of the data batch is used for estimation of the model parameters using PGAS. It is
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Figure 7: Disease activity (number of infected individuals It) over an eight year period.
The first four years are used as estimation data, to find the unknown parameters
of the model. For the consecutive four years, one-month-ahead predictions are
computed using the estimated model.

worth pointing out that while the sampler effectively targets the collapsed model (28), it
is most straightforwardly implemented using the original state variables from (26). With
xk = (S∆k, I∆k, R∆k)

T we can simulate xk+1 given xk according to (26) which is used in the
underlying particle filter. The innovation variables Vk need only be taken into account for
the AS step. Let V ′1:T be the reference innovation trajectory. To compute the AS weights
(3) we need to evaluate the ratios,

pθ((V
i

1:k−1, V
′
k:T ), y1:T )

pθ(V
i

1:k−1, y1:k−1)
∝

T∏
`=k

gθ(y` | V i
1:k−1, V

′
k:`).

Using (27), the observation likelihood can be written as

gθ(y` | V i
1:k−1, V

′
k:`) = N (y` | ρ logit(Ī`{xik−1, V

′
k:`}/P), σ2), (29)

where I`{xik−1, V
′
k:`} is obtained by simulating the system (26) from time ∆(k − 1) to time

∆`, initialized at xik−1 and using the innovation sequence V ′k:`.

We run PGAS with N = 10 particles for 50 000 iterations (discarding the first 10 000).
For sampling θ, we use MH steps with a Gaussian random walk proposal, tuned according
to an initial trial run. The innovation variables V1:T are sampled from the PGAS kernel
by Algorithm 2. Since the latter step is the computational bottleneck of the algorithm,
we execute ten MH steps for θ, for each draw from the PGAS kernel. No truncation is
used for the AS weights; instead we investigate the effect of using the strategy proposed
in (20). That is, to reduce the computational cost we execute the AS step only with some
probability η, otherwise we keep the current ancestry of the reference trajectory.

In Figure 8 we report the ACFs for the six parameters of the model, for η ranging from
0 to 1. As a comparison, we also provide the results for a run of the PMMH algorithm
with N = 1 000 particles and a random walk proposal distribution tuned according to an
initial trial run. For most parameters, PMMH achieves better mixing than PGAS (however,
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Figure 8: ACFs for PGAS with N = 10 and η ranging from 0 to 1. As comparison, we also
show the ACF for PMMH with N = 1 000. (This figure is best viewed in color.)

requiring a much larger N) which can be accredited to the fact that the ideal marginal MH
sampler mixes better than the ideal Gibbs sampler.

Note that for η = 0, PGAS reduces to the standard PG algorithm. Since we use only
N = 10 particles this sampler mixes very poorly, in agreement with our previous findings.
However, interestingly, increasing the probability of ancestor sampling to as little as η = 0.01
results in a large improvement in mixing and with η = 0.1 we get results that are comparable
to η = 1. This suggests that, in cases when the AS step is the computational bottleneck of
the algorithm, it can indeed be a good idea to carry out this step only sporadically.

To further investigate the effect of η, we plot the update rates for the trajectory V1:T in
Figure 9 (cf. Figure 1). As expected, the update rate deteriorates as we decrease η, but the
relationship is clearly nonlinear. Specifically, for small values of η we get an average update
rate which is larger than η; for instance η = 0.1 gives an average update rate of 0.31. The
reason for this is that any ancestor index update will result in an update, not only for the
corresponding latent variable, but also for a collection of neighboring latent variables. The
number of variables that will be affected by changing one of the ancestor indices depends
on how quickly the PF degenerates. Consequently, there is an inverse relationship between
η and N ; by increasing the number of particles we can get away with a smaller η and still
obtain high update rates for the entire trajectory.

In Figure 10 we show histograms representing the estimated posterior parameter distri-
butions, reported for PGAS with η = 0.1 and for PMMH. As can be seen, the true system
parameters fall well within the credible regions. Finally, the identified model, based on
PGAS with η = 0.1, is used to make one-month-ahead predictions of the disease activity for
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Figure 9: Update rates for V1:T for PGAS with N = 10 and with η ranging from 0 to 1. As
a comparison, the PMMH sampler with N = 1 000 particles attains an average
acceptance probability of 0.19. (This figure is best viewed in color.)
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Figure 10: Posterior densities for the parameters of model (26)–(27) for PGAS; N = 10,
η = 0.1 (gray bars) and for PMMH; N = 1 000 (black dots). The true values
are marked by vertical dashed lines.

the subsequent four years, as shown in Figure 7. The predictions are made by sub-sampling
the Markov chain and, for each sample, running a particle filter on the validation data using
100 particles. As can be seen, we obtain an accurate prediction of the disease activity, which
falls within the estimated 95 % credibility intervals, one month in advance.

8. Discussion

PGAS is a novel approach to PMCMC that provides the statistician with an off-the-shelf
class of Markov kernels which can be used to simulate, for instance, the typically high-
dimensional and highly autocorrelated state trajectory in a state-space model. This opens

2175



Lindsten, Jordan and Schön

up the possibility of using PGAS as a key component in different inference algorithms, en-
abling both Bayesian and frequentist parameter inference as well as state inference. How-
ever, PGAS is by no means limited to inference in state-space models. Indeed, we believe
that the method can be particularly useful for models with more complex dependencies,
such as non-Markovian, nonparametric, and graphical models.

The PGAS Markov kernels are built upon two main ideas. First, by conditioning the
underlying SMC sampler on a reference trajectory the correct stationary distribution of
the kernel is enforced. Second, ancestor sampling enables movement around the reference
trajectory which drastically improves the mixing of the sampler. In particular, we have
shown empirically that ancestor sampling makes the mixing of the PGAS kernels robust to
a small number of particles as well as to large data records.

Ancestor sampling is basically a way of exploiting backward simulation ideas without
needing an explicit backward pass. Compared to PGBS, a conceptually similar method
that does require an explicit backward pass, PGAS has several advantages, most notably for
inference in non-Markovian models. When using the proposed truncation of the backward
weights, we have found PGAS to be more robust to the approximation error than PGBS,
yielding up to an order-of-magnitude improvement in accuracy. An interesting topic for
future work is to further investigate the effect on these samplers by errors in the backward
weights, whether these errors arise from a truncation or some other approximation of the
transition density function. It is also worth pointing out that for non-Markovian models
PGAS is simpler to implement than PGBS as it requires less bookkeeping. It can also be
more memory efficient; by using the techniques proposed by Jacob et al. (2013), it is possible
to store the paths of the particle filter in PGAS with an expected memory cost bounded by
T +CN logN for some constant C. This is in contrast with PGBS, which requires storage
of all NT intermediate particles.

The aforementioned samplers—PG, PGAS, and PGBS—share the same interpretation
of being PMCMC-versions of an ideal Gibbs sampler. A different type of PMCMC, however,
is the PMMH sampler by Andrieu et al. (2010). To comprehensively compare PGAS with
PMMH is nontrivial, since the two samplers have quite different properties. However, some
of the most important differences are that, (i) in the limit N → ∞, PMMH approaches a
marginal sampler for θ, whereas PGAS approaches an ideal Gibbs sampler for θ and x1:T ,
(ii) empirically, PGAS is more robust to small N/large T than PMMH, and (iii) PGAS
defines a Markov kernel on the space of trajectories, which is not the case for PMMH,
making it more suitable to use as a component in composite sampling schemes. Due to
these differences—(i) being in favor for PMMH and (ii)–(iii) for PGAS—the preference
for one sampler over the other depends heavily on the specific properties of the problem at
hand.

Another important difference is that PMMH readily allows for parallelization over the
particles. While this is of course possible also for PGAS, the fact that the sampler typically
requires only a small number of particles limits the computational benefits of doing so. To
enable PGAS to make better use of modern computational architectures, other approaches
might therefore prove to be more fruitful. This includes, for instance, to couple PGAS with
parallel MCMC methods (see, e.g., VanDerwerken and Schmidler 2013; Wilkinson 2005)
or to use the PGAS Markov kernels together with SMC samplers (Del Moral et al., 2006)
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instead of with classical MCMC. The practical usefulness of these approaches is a topic
that requires further investigation.

Other directions for future work include further analysis of the ergodicity of PGAS.
While the established uniform ergodicity result is encouraging, it does not provide infor-
mation about how fast the mixing rate improves with the number of particles. Finding
informative rates with an explicit dependence on N is an interesting, though challenging,
topic for future work. It would also be interesting to further investigate empirically the con-
vergence rate of PGAS for different settings, such as the number of particles, the amount
of data, and the dimension of the latent process.
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Appendix A. The Relationship between PGAS and PGBS for SSMs

As pointed out in Section 5, there is a close relationship between PGAS and PGBS, in
particular when considering the special case of SSMs. PGBS is conceptually similar to
PGAS, but it makes use of an explicit backward simulation pass; see Whiteley (2010);
Whiteley et al. (2010) or Lindsten and Schön (2013, Section 5.4). More precisely, to generate
a draw from the PGBS kernel, we first run a particle filter with reference trajectory x′1:T

without AS (i.e., in Algorithm 2, we replace line 8 with aNt = N , as in the basic PG sampler).
Thereafter, we extract a new trajectory by running a backward simulator. That is, we draw
j1:T with P(jT = i) ∝ wiT and then, for t = T − 1 to 1,

P(jt = i | jt+1) ∝ witfθ(x
jt+1

t+1 | x
i
t), (30)

and take x?1:T = xj1:T1:T as the output from the algorithm. In the above, the conditioning on
the forward particle system {x1:T ,a2:T } is implicit.

Let the Markov kernel on (XT ,X T ) defined by this procedure be denoted as PNBS,θ. An

interesting question to ask is whether or not the PGAS kernel PNθ and the PGBS kernel
PNBS,θ are probabilistically equivalent. In the specific setting when both methods use the
bootstrap proposal kernel in the internal particle filters, it turns out that this is indeed
the case. We formalize this is Proposition 2 below. The analysis builds upon Olsson and
Rydén (2011, Proposition 5), where the equivalence between a (standard) bootstrap PF and
a backward simulator is established. Below, we adapt their argument to handle the case
with conditioning on a reference trajectory and the AS step. For improved readability we
provide the complete proof, though it should be noted that the main part is due to Olsson
and Rydén (2011).
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Proposition 2. Assume that PGAS and PGBS both target the joint smoothing distribution
for an SSM and that both methods use the bootstrap proposal kernel in the internal particle
filters, i.e., rθ,t(xt | x1:t−1) = fθ(xt | xt−1). Then, for any x′1:T ∈ XT and B ∈ X T ,
PNθ (x′1:T , B) = PNBS,θ(x

′
1:T , B).

Proof. For ease of notation, we write E for Eθ,x′1:T . First, note that for a bootstrap proposal
kernel, the weight function (2) is given by Wθ,t(xt) = gθ(yt | xt), i.e., it depends only on
the current state and not on its ancestor. As a consequence, the law of the forward particle
system is independent of the ancestor variables {aNt }Tt=2, meaning that the particle systems,
excluding {aNt }Tt=2, are equally distributed for PGAS and for PGBS.

Let B ∈ X T be a measurable rectangle: B = ×Tt=1Bt with Bt ∈ X for t = 1, . . . , T .
Then,

PNθ (x′1:T , B) = E

[
T∏
t=1

1Bt(x
bt
t )

]
, and PNBS,θ(x

′
1:T , B) = E

[
T∏
t=1

1Bt(x
jt
t )

]
.

Since the measurable rectangles form a π-system generating X T , it is by the π-λ theorem
sufficient to show that E[h(xb1:T1:T )] = E[h(xj1:T1:T )] for all bounded, multiplicative functionals,

h(x1:T ) =
∏T
t=1 ht(xt). As Olsson and Rydén (2011), we establish this result by induction.

Hence, for t < T , assume that

E

[
T∏

s=t+1

hs(x
bs
s )

]
= E

[
T∏

s=t+1

hs(x
js
s )

]
.

For t = T − 1, the induction hypothesis holds since bT and jT are equally distributed (both
are drawn from the discrete distribution induced by the weights {wiT }Ni=1). Let

Λt(x
jt+1

t+1 , h) , E
[
h(xjtt ) | xjt+1

t+1

]
= E

[
E
[
h(xjtt ) | xt, xjt+1

t+1

]
| xjt+1

t+1

]
= E

[
N∑
i=1

h(xit)
witfθ(x

jt+1

t+1 | xit)∑
l w

l
tfθ(x

jt+1

t+1 | xlt)
| xjt+1

t+1

]
,

where we recall that wit = Wθ,t(x
i
t) and where the last equality follows from (30). Consider,

E

[
T∏
s=t

hs(x
bs
s )

]
= E

[
E
[
ht(x

bt
t ) | xbt+1:T

t+1:T , bt+1:T

] T∏
s=t+1

hs(x
bs
s )

]
. (31)

Using the Markov property of the generated particle system and the tower property of
conditional expectation, we have

E
[
ht(x

bt
t ) | xbt+1:T

t+1:T , bt+1:T

]
= E

[
E
[
ht(x

bt
t ) | xt, xbt+1

t+1 , bt+1

]
| xbt+1

t+1 , bt+1

]
. (32)

Recall that bt = a
bt+1

t+1 . Consider first the case bt+1 < N . From (1), we have that

P(bt = i | xt) ∝ wit and x
bt+1

t+1 | x
bt
t ∼ fθ( · | xbtt ). If follows from Bayes’ theorem that
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P(bt = i | xt, x
bt+1

t+1 ) ∝ witfθ(x
bt+1

t+1 | x
bt
t ). However, by the AS procedure (Algorithm 2,

line 8), the same expression holds also for bt+1 = N . We can thus write (32) as

E
[
ht(x

bt
t ) | xbt+1:T

t+1:T , bt+1:T

]
= E

[
N∑
i=1

ht(x
i
t)

witfθ(x
bt+1

t+1 | xit)∑
l w

l
tfθ(x

bt+1

t+1 | xlt)
| xbt+1

t+1 , bt+1

]
= Λt(x

bt+1

t+1 , ht),

Hence, since the function xt+1 7→ Λt(xt+1, ht) is bounded, we can use the induction hypoth-
esis to write (31) as

E

[
T∏
s=t

hs(x
bs
s )

]
= E

[
Λt(x

bt+1

t+1 , ht)
T∏

s=t+1

hs(x
bs
s )

]
= E

[
Λt(x

jt+1

t+1 , ht)
T∏

s=t+1

hs(x
js
s )

]

= E

[
E
[
ht(x

jt
t ) | xjt+1:T

t+1:T , jt+1:T

] T∏
s=t+1

hs(x
js
s )

]
= E

[
T∏
s=t

hs(x
js
s )

]
.

�

Appendix B. Proof of Proposition 1

With M = T − t+ 1 and w(k) = wkt−1, the distributions of interest are given by

ρ(k) =
w(k)

∏M
s=1 hs(k)∑

l w(l)
∏M
s=1 hs(l)

and ρ̂`(k) =
w(k)

∏`
s=1 hs(k)∑

l w(l)
∏`
s=1 hs(l)

,

respectively. Let εs , maxk,l (hs(k)/hs(l)− 1) ≤ A exp(−cs) and consider(∑
l

w(l)
∏̀
s=1

hs(l)

)
M∏

s=`+1

hs(k) ≤
∑
l

(
w(l)

∏̀
s=1

hs(l)
M∏

s=`+1

hs(l)(1 + εs)

)

=

(∑
l

w(l)

M∏
s=1

hs(l)

)
M∏

s=`+1

(1 + εs).

It follows that the KL divergence is bounded according to,

DKLD(ρ‖ρ̂`) =
∑
k

ρ(k) log
ρ(k)

ρ̂`(k)
=
∑
k

ρ(k) log

∏M
s=`+1 hs(k)

(∑
l w(l)

∏`
s=1 hs(l)

)
∑

l w(l)
∏M
s=1 hs(l)


≤
∑
k

ρ(k)
M∑

s=`+1

log(1 + εs) ≤
M∑

s=`+1

εs ≤ A
M∑

s=`+1

exp(−cs) = A
e−c(`+1) − e−c(M+1)

1− e−c
.

�

Appendix C. Details on the Experiment in Section 7.1

The parameters of the SV model (24) are θ = (µ, ϕ, σ2, ρ). For µ and ϕ, we use the
priors proposed by Kim et al. (1998) (who consider inference in an SV model without the
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correlation parameter ρ), namely µ ∼ N (0, 10) and ϕ = 2ϕ?−1 where ϕ? is beta distributed;
ϕ? ∼ B(20, 1.5). Consequently, ϕ is supported on (−1, 1) with a prior mean of 0.86. This
choice is made to ensure stationarity and identifiability of the model. We also use the
efficient rejection sampler proposed by Kim et al. (1998) to simulate ϕ from its posterior
conditional distribution. For σ2 and ρ, we note that the model (24) can be written as

xt+1 = µ(1− ϕ) + ϕxt + σρyt exp(−1
2xt) + σ

√
1− ρ2v?t ,

yt = exp(−1
2xt)et,

where v?t and et are mutually independent standard normal. To obtain an efficient updating
formula for (σ2, ρ), we assume a conjugate normal-inverse-gamma prior for the pair (ϑ, ς2) ,
(σρ, σ2(1−ρ2)), with ϑ | ς2 ∼ N (0, ς2/0.05) and ς2 ∼ IG(5/2, 0.05/2). We also investigated
the possibility of letting σ2 and ρ be a priori independent with an inverse gamma and a
uniform prior, respectively, but we did not experience any notable differences in the posterior
distributions.

In the experiments, all the samplers are initialized at θ[0] = (0, 0.975, 0.05, 0). For
PMMH, we tune the covariance matrix of the random walk proposal distribution according
to the posterior distribution obtained from an initial trial run, using PGAS with N = 20
for 10 000 iterations.
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