
Journal of Machine Learning Research 15 (2014) 4105-4143 Submitted 12/12; Revised 5/14; Published 12/14

Active Imitation Learning: Formal and Practical Reductions
to I.I.D. Learning

Kshitij Judah judahk@eecs.oregonstate.edu

Alan P. Fern afern@eecs.oregonstate.edu

Thomas G. Dietterich tgd@eecs.oregonstate.edu

Prasad Tadepalli tadepall@eecs.oregonstate.edu

School of Electrical Engineering and Computer Science

Oregon State University

1148 Kelley Engineering Center

Corvallis, OR 97331-5501, USA

Editor: Joelle Pineau

Abstract

In standard passive imitation learning, the goal is to learn a policy that performs as well
as a target policy by passively observing full execution trajectories of it. Unfortunately,
generating such trajectories can require substantial expert effort and be impractical in
some cases. In this paper, we consider active imitation learning with the goal of reducing
this effort by querying the expert about the desired action at individual states, which are
selected based on answers to past queries and the learner’s interactions with an environment
simulator. We introduce a new approach based on reducing active imitation learning to
active i.i.d. learning, which can leverage progress in the i.i.d. setting. Our first contribution
is to analyze reductions for both non-stationary and stationary policies, showing for the
first time that the label complexity (number of queries) of active imitation learning can
be less than that of passive learning. Our second contribution is to introduce a practical
algorithm inspired by the reductions, which is shown to be highly effective in five test
domains compared to a number of alternatives.

Keywords: imitation learning, active learning, active imitation learning, reductions

1. Introduction

Traditionally, passive imitation learning involves learning a policy that performs nearly as
well as an expert’s policy based on a set of trajectories of that policy. However, generating
such trajectories is often tedious or even impractical for an expert (e.g., real-time low-level
control of multiple game agents). In order to address this issue, we consider active imitation
learning where full trajectories are not required, but rather the learner asks queries about
specific states, which the expert labels with the correct actions. The goal is to learn a policy
that is nearly as good as the expert’s policy using as few queries as possible.

The active learning problem for i.i.d. supervised learning1 has received considerable
attention both in theory and in practice (Settles, 2012), which motivates leveraging that

1. i.i.d. stands for independent and identically distributed. The i.i.d. supervised learning setting is where
the input data during both training and testing are drawn independently from the same data distribution.

c©2014 Kshitij Judah, Alan Fern, Thomas Dietterich and Prasad Tadepalli.

Judah, Fern, Dietterich and Tadepalli

work for active imitation learning. However, the direct application of i.i.d. approaches to
active imitation learning can be problematic. This is because active i.i.d. learning algorithms
assume access to either a target distribution over unlabeled input data (in our case states)
or a large sample drawn from it. The goal then is to select the most informative query
to ask, usually based on some combination of label (in our case actions) uncertainty and
unlabeled data density. Unfortunately, in active imitation learning, the learner does not
have direct access to the target state distribution, which is the state distribution induced
by the unknown expert policy.

In principle, one could approach active imitation learning by assuming a uniform or an
arbitrary distribution over the state space and then apply an existing active i.i.d. learner.
However, such an approach can perform very poorly. This is because if the assumed dis-
tribution is considerably different from that of the expert, then the learner is prone to ask
queries in states rarely or even never visited by the expert. For example, consider a bicycle
balancing problem. Clearly, asking queries in states where the bicycle has entered an un-
avoidable fall is not very useful, because no action can prevent a crash. However, an active
i.i.d. learning technique will tend to query in such uninformative states, leading to poor
performance, as shown in our experiments. Furthermore, in the case of a human expert,
a large number of such queries poses serious usability issues, since labeling such states is
clearly wasted effort from the expert’s perspective.

In this paper, we consider the problem of reducing active imitation learning to active
i.i.d. learning both in theory and practice. Our first contribution is to analyze the Probably
Approximately Correct2 (PAC) label complexity (number of expert queries) of a reduction
for learning non-stationary policies, which requires only minor modification to existing
results for passive learning. Our second contribution is to introduce a reduction for learning
stationary policies resulting in a new algorithm, Reduction-based Active Imitation Learning
(RAIL), and an analysis of the label complexity. The resulting complexities for active
imitation learning are expressed in terms of the label complexity for the i.i.d. case and show
that there can be significant query savings compared to existing results for passive imitation
learning. Our third contribution is to describe a new practical algorithm, RAIL-DA (for
data aggregation), inspired by the RAIL algorithm, which makes a series of calls to an active
i.i.d. learning algorithm. We evaluate RAIL-DA in five test domains and show that it is
highly effective when used with an i.i.d. algorithm that takes the unlabeled data density
into account.

The rest of the paper is organized as follows. We begin by reviewing the relevant
related work in Section 2. In Section 3, we present the necessary background material and
describe the active imitation learning problem setup. In Section 4, we present the proposed
reductions for the cases of non-stationary and stationary policies. In Section 5, we present
the RAIL-DA algorithm. In Section 6, experimental results are presented. In Section 7, we
summarize and present some directions for future research.

2. Related Work

Active learning has been studied extensively in the i.i.d. supervised learning setting (Settles,
2012) but to a much lesser degree for sequential decision making, which is the focus of

2. See Section 3.3.

4106

Active Imitation Learning

active imitation learning. Several studies have considered active learning for reinforcement
learning (RL) (Clouse, 1996; Mihalkova and Mooney, 2006; Gil et al., 2009; Doshi et al.,
2008), where learning is based on both autonomous exploration and queries to an expert.
In our imitation learning framework, in contrast, we do not assume a reward signal and
learn only from expert queries. Other work (Shon et al., 2007) studies active imitation
learning in a multiagent setting, where the expert is itself a reward seeking agent which
acts to maximize its own reward, and hence is not necessarily helpful for learning. In the
current setting, we only consider helpful experts.

One approach to imitation learning is inverse RL (IRL) (Ng and Russell, 2000), where
a reward function is learned based on a set of target policy trajectories. The learned reward
function and transition dynamics are then given to a planner to obtain a policy. There
has been limited work on active IRL. This includes Active Sampling (Lopes et al., 2009),
a Bayesian approach where the posterior over reward functions is used to select the state
with maximum uncertainty over the actions. Another Bayesian approach (Cohn et al.,
2010, 2011) models uncertainty about the entire MDP model and uses a decision-theoretic
criterion, Expected Myopic Gain (EMG), to select various types of queries to pose to the
expert, e.g., queries about transition dynamics, the reward function, or optimal action
at a particular state. For autonomous navigation tasks, Silver proposed two active IRL
techniques that request demonstrations from the expert on examples that are either novel
(novelty reduction) or uncertain (uncertainty reduction) to the learner (Silver et al., 2012).
Specifically, in novelty reduction, a start and goal location is selected such that the path that
may most likely be demonstrated by the expert results in the learner seeing novel portions
of the navigation terrain. This helps in learning behavior on previously unseen regions of
the navigation terrain. In uncertainty reduction, a start and goal location is selected such
that there is high uncertainty about the best path from start to goal.

While promising, the scalability of these approaches is hindered by the assumptions
made by IRL, and these approaches have only been demonstrated on small problems. In
particular, they require that the exact domain dynamics are provided or can be learned,
which is often not realistic, for example, in the Wargus domain considered in this paper.
Furthermore, even when a model is available, prior IRL approaches require an efficient
planner for the MDP model. For the large domains considered in this paper, standard
planning techniques for flat MDPs, which scale polynomially in the number of states, are
not practical. While there has been substantial work on MDP planning for large domains
via the use of factored representations (e.g., Boutilier et al. 1999) or simulators (e.g., Kocsis
and Szepesvri 2006), robustness and scalability are still problematic in general.

To facilitate scalability, rather than following an IRL framework we consider a direct
imitation framework where we attempt to directly learn a policy instead of the reward
function and/or transition dynamics. Unlike inverse RL, this framework does not require
an exact dynamic model nor an efficient planner. Rather, our approach requires only a
simulator of the environment dynamics that is able to generate trajectories given a policy.
The simulator may or may not be exact, and the performance of our approach will depend
on how precise the simulator is. Even though a precise simulator is not always available
for a real world domain, for many domains such a simulator is often available (e.g., flight
simulators, computer network simulators etc.), even when a compact description of the
transition dynamics and/or a planner are not.

4107

Judah, Fern, Dietterich and Tadepalli

Active learning work in the direct imitation framework includes Confidence Based Au-
tonomy (CBA) (Chernova and Veloso, 2009), and the related dogged learning framework
(Grollman and Jenkins, 2007), where a policy is learned in an online manner as it is exe-
cuted. When the learner is uncertain about what to do at the current state, the policy is
paused and the expert is queried about what action to take, resulting in a policy update.
The execution resumes from the current state with the learner taking the action suggested
by the expert. One can roughly view CBA as a reduction of imitation learning to stream-
based active learning where the learner receives unlabeled inputs (states) one at a time and
must decide whether or not to request the label (action) of the current input. CBA makes
this decision by estimating its uncertainty about the action to take at a given state and
requesting an action label for states with uncertainty above a threshold. One difficulty in
applying this approach is setting the uncertainty threshold for querying the expert. While
an automated threshold selection approach is suggested by Chernova and Veloso (Chernova
and Veloso, 2009), our experiments show that it is not always effective (See Section 6). In
particular, we observed that the proposed threshold selection mechanism is quite sensitive
to the initial training data supplied to the learner.

Recently, Ross et al. proposed novel algorithms for imitation learning that are able to
actively query the expert on states encountered during the execution of the policy being
trained (Ross and Bagnell, 2010; Ross et al., 2011). The motivation behind these algo-
rithms is to eliminate the discrepancy between the training (expert’s) and test (learner’s)
state distributions that arises in the traditional passive imitation learning approach when-
ever the learned policy is unable to exactly mimic the expert’s policy. This discrepancy
often leads to the poor performance of the traditional approach. Note that such an issue
is not present in the i.i.d. learning setting, where mistakes made by the learner do not in-
fluence the distribution of future test samples. They show that under certain assumptions
their algorithms achieve better theoretical performance guarantees than traditional passive
imitation learning.

However, because the primary goal of these algorithms is not to minimize the labeling
effort of the expert, these algorithms query the expert quite aggressively, which makes them
impractical for human experts or computationally expensive with automated experts. To
see this, consider the first iteration of the DAGGER algorithm proposed by Ross et al. (Ross
et al., 2011). In the first iteration, DAGGER trains a policy on a set of expert-generated
trajectories, as in passive imitation learning. Thus, in practice the query complexity of
the first iteration of DAGGER will be similar to that of passive imitation learning. In
subsequent iterations, additional queries are asked by querying the expert on states along
trajectories produced by learned policies in prior iterations. In contrast, our work focuses
on active querying for the purpose of minimizing the expert’s labeling effort. In particular,
we show that an active approach can achieve an improved query complexity over passive
in theory (under certain assumptions) and in practice. Like our work, their approach also
requires a dynamics simulator to help select queries.

Our goal in this paper is to study the problem of active imitation learning and show
that it can achieve better label complexity than passive imitation learning. To this end, we
mention some prior work on the theoretical analysis of the label complexity of passive imi-
tation learning. Khardon formalized a model for passive imitation learning of deterministic
stationary policies in the realizable setting and gave a PAC-style label complexity result

4108

Active Imitation Learning

(Khardon, 1999). He showed that for any policy class for which there exists a consistent
learner, the class is efficiently learnable in the sense that only a polynomial number of expert
trajectories are required by the learner to produce a policy as good as the expert’s policy.
However, the result holds for only deterministic policies in the realizable setting and the
generalizations to stochastic policies and the agnostic setting were left as future work.

More recently, Syed and Schapire performed theoretical analysis of passive imitation
learning in a more general setting where the expert policy is allowed to be stochastic and
the learning can be agnostic (Syed and Schapire, 2010). In their analysis, they take a
reduction based approach, where the problem of passive imitation learning is reduced to
classification, and they relate the performance of the learned policy to the accuracy of the
classifier. Standard PAC analysis can then be used to show that only a polynomial number
of expert trajectories are required to achieve the desired level of performance. A similar
analysis was done by Ross and Bagnell (Ross and Bagnell, 2010). To our knowledge, no
prior work has addressed the relative sample complexity of active versus passive imitation
learning, which is one of the primary contributions of this paper. Some of the material in
this paper appeared in an earlier version of the paper (Judah et al., 2012).

3. Problem Setup and Background

In this section, we present the necessary background material and formally set up the active
imitation learning problem.

3.1 Markov Decision Processes

We consider imitation learning in the framework of Markov decision processes (MDPs). An
MDP is a tuple 〈S,A, P,R, I〉, where S is the set of states, A is the finite set of actions,
P (s, a, s′) is the transition function denoting the probability of transitioning to state s′

upon taking action a in state s, R(s, a) ∈ [0, 1] is the reward function giving the immediate
reward in state s upon taking action a, and I is the initial state distribution. A stationary
policy π : S 7→ A is a deterministic mapping from states to actions such that π(s) indicates
the action to take in state s when executing π. A non-stationary policy is a tuple π =
(π1, . . . , πT) of T stationary policies such that π(s, t) = πt(s) indicates the action to take in
state s at time t when executing π, where T is the time horizon. The expert’s policy, which
we assume is deterministic, is denoted by π∗.

A key concept used in this paper is the notion of a state distribution of a policy at a
particular time step. We use dtπ : S 7→ [0, 1] to denote the state distribution induced at time
step t by starting in s1 ∼ I and then executing π. Note that d1

π = I for all policies. We
use dπ = 1

T

∑T
t=1 d

t
π to denote the state distribution induced by policy π over T time steps.

To sample an (s, a) pair from dtπ, we start in s1 ∼ I, execute π to generate a trajectory
T = (s1, a1, . . . , sT , aT , sT+1) and set (s, a) = (st, at). Similarly, to sample from dπ, we first
sample a random time step t ∈ {1, . . . , T}, and then sample an (s, a) pair from dtπ. Note
that in order to sample from dπ∗ (or dtπ∗), we need to execute π∗. Throughout the paper,
we assume that the only way π∗ can be executed is by querying the expert for an action
in the current state and executing the given action, which puts significant burden on the
expert.

4109

Judah, Fern, Dietterich and Tadepalli

The T -horizon value of a policy V (π) is the expected total reward of trajectories that
start in s1 ∼ I at time t = 1 and then execute π for T steps. This can be expressed as

V (π) = T · Es∼dπ [R(s, π(s))].

The regret of a policy π with respect to an expert policy π∗ is equal to V (π∗)− V (π).

3.2 Problem Setup

Passive Imitation Learning. In imitation learning, the goal is to learn a policy π with a
small regret with respect to the expert. In this work, we consider the direct imitation learn-
ing setting, where the learner directly selects a policy π from a hypothesis class Π (e.g.,
linear action classifiers). In the passive imitation learning setup, the protocol is to provide
the learner with a training set of full execution trajectories of π∗ and the state-action pairs
(or a sample of them) are passed to a passive i.i.d. supervised learning algorithm Lp. The
hypothesis π ∈ Π that is returned by Lp is used as the learned policy.

Active Imitation Learning. To help avoid the cost of generating full trajectories, the active
imitation learning setup allows the learner to pose action queries. Each action query in-
volves presenting a state s to the expert and then obtaining the desired action π∗(s) from
the expert. In addition to having access to the expert for answering queries, we assume that
the learner has access to a simulator of the MDP. The input to the simulator is a policy π
and a horizon T . The simulator output is a state trajectory that results from executing π
for T steps starting in the initial state. The learner is allowed to interact with this simulator
as part of its query selection process. The simulator is not assumed to provide a reward
signal, which means that the learner cannot find π by pure reinforcement learning. The
only way for the learner to gain information about the target policy is through queries to
the expert at selected states.

Given access to the expert and the simulator of the MDP, the goal in active imitation
learning is to learn a policy π ∈ Π that has a small regret by posing as few queries to
the expert as possible. Note that it is straightforward for the active learner to generate
full expert trajectories by querying the expert at each state of the simulator it encounters.
Thus, an important baseline active learning approach is to generate an appropriate number
N of expert trajectories for consumption by a passive learner. The number of queries for
this baseline is N · T . A fundamental question that we seek to address is whether an active
learner can achieve the same performance with significantly fewer queries both in theory
and in practice.

3.3 Background on I.I.D. Learning

Since our analysis in the next two sections is based on reducing to active i.i.d. learning and
comparing to passive i.i.d. learning, we briefly review the Probably Approximately Correct
(PAC) (Valiant, 1984) learning formulation for the i.i.d. setting. Here we consider the re-
alizable PAC setting, which will be the focus of our initial analysis. Section 4.3 extends to
the non-realizable or agnostic setting.

Passive Learning. In passive i.i.d. supervised learning, N i.i.d. data samples are drawn

4110

Active Imitation Learning

from an unknown distribution DX over an input space X and are labeled according to an
unknown target classifier f : X 7→ Y, where Y denotes the label space. In the realizable PAC
setting it is assumed that f is an element of a known class of classifiers H and, given a set of
N examples, a learner outputs a hypothesis h ∈ H. Let ef (h,DX) = Ex∼DX [h(x) 6= f(x)]
denote the generalization error of the returned classifier h. Standard PAC learning theory
provides a bound on the number of labeled examples that is sufficient to guarantee that for
any distribution DX , with probability at least 1 − δ, the returned classifier h will satisfy
ef (h,DX) ≤ ε. We will denote this bound by Np(ε, δ), which corresponds to the label/query
complexity of i.i.d. passive supervised learning for a class H. We will also denote a passive
learner that achieves this label complexity as Lp(ε, δ).

Active Learning. In active i.i.d. learning, the learner is given access to two resources rather
than just a set of training data: 1) A “cheap” resource (Sample) that can draw an unlabeled
sample from DX and provide it to the learner when requested, 2) An “expensive” resource
(Label) that can label a given unlabeled sample according to target concept f when re-
quested. Given access to these two resources, an active learning algorithm is required to
learn a hypothesis h ∈ H while posing as few queries to Label as possible. It can, however,
pose a much larger number of queries to Sample (though still polynomial), as it is cheap.

Unlike passive i.i.d. learning, formal label/query complexity results for active i.i.d. learn-
ing depend not only on the hypothesis class being considered, but also on joint properties
of the target hypothesis and data distribution (e.g., as measured by the disagreement co-
efficient proposed by Hanneke, 2009). We use Na(ε, δ,DX) to denote the label complexity
(i.e., calls to Label) that is sufficient for an active learner to return an h that for distri-
bution DX with probability at least 1 − δ satisfies ef (h,DX) ≤ ε. Note that here we did
not explicitly parameterize Na by the target hypothesis f since, in the context of our work,
f will correspond to the expert policy and can be considered as fixed. We will denote an
active learner that achieves this label complexity as La(ε, δ,D), where the final argument
D indicates that the Sample function used by La samples from distribution D.

It has been shown that for certain problem classes, Na can be exponentially smaller than
Np (Hanneke, 2009; Dasgupta, 2011). For example, in the realizable learning setting (i.e.,
the target concept is in the hypothesis space), for any active learning problem with finite
VC-dimension and finite disagreement coefficient, the sample complexity is exponentially
smaller for active learning compared to passive learning with respect to 1

ε . That is, ignoring
the dependence on δ, Np = O(1

ε) whereas Na = O(log(1
ε)). A concrete problem for which

this is the case is when the data are uniformly distributed on a unit sphere in a d dimensional
input space Rd, and the hypothesis space H consists of homogeneous linear separators. As
an example active learning algorithm that achieves this performance, the algorithm of Cohn
et al. (Cohn et al., 1994) simply samples a sequence of unlabeled examples and queries for
the label of example x only when there are at least two hypotheses that disagree on the
label of x, but agree on all previously labeled examples.

While results such as the above gives some theoretical justification for the use of ac-
tive learning over passive learning in the i.i.d. setting, the results and understanding are
not nearly as broad as for passive learning. Further, there are known limitations to the
advantages of active versus passive learning. For example, lower bounds have been shown
(Dasgupta, 2006; Beygelzimer et al., 2009a) implying that no active learning algorithm can

4111

Judah, Fern, Dietterich and Tadepalli

asymptotically improve over passive learning across all problems with finite VC-dimension.
However, despite the limited theoretical understanding, there is much empirical evidence
that in practice active learning algorithms can often dramatically reduce the required
amount of labeled data compared to passive learning. Further, there are active learning
algorithms that in the worst case are guaranteed to achieve performance similar to passive
learning in the worst case, while also showing exponential improvement in the best case
(Beygelzimer et al., 2009a).3

4. Reductions for Active Imitation Learning

One approach to solving novel machine learning problems is via reduction to well-studied
core problems. A key advantage of this reduction approach is that theoretical and empir-
ical advances on the core problems can be translated to the more complex problem. For
example, i.i.d. multi-class and cost-sensitive classification have been reduced to i.i.d. binary
classification (Zadrozny et al., 2003; Beygelzimer et al., 2009b). In particular, these reduc-
tions allow guarantees regarding binary classification to translate to the target problems.
Further, the reduction-based algorithms have shown equal or better empirical performance
compared to specialized algorithms. More closely related to our work, in the context of
sequential decision making, both imitation learning and structured prediction have been re-
duced to i.i.d. classification (Daumé et al., 2009; Syed and Schapire, 2010; Ross and Bagnell,
2010).

In this section, we consider a reduction approach to active imitation learning. In par-
ticular, we reduce to active i.i.d. learning, which is a core problem that has been the focus
of much theoretical and empirical work. The key result is to relate the label complexity of
active imitation learning to the label complexity of active i.i.d. learning. In doing so, we
can assess when improved label complexity (either empirical or theoretical) of active i.i.d.
learning over passive i.i.d. learning can translate to improved label complexity of active imi-
tation learning over passive imitation learning. In what follows, we first present a reduction
for the case of deterministic non-stationary policies. Next, we give a reduction for the more
difficult case of deterministic stationary policies.

4.1 Non-Stationary Policies

Syed and Schapire analyze the traditional reduction from passive imitation learning to
passive i.i.d. learning for non-stationary policies (Syed and Schapire, 2010). The algorithm
receives N expert trajectories as input, noting that the state-action pairs at time t across
trajectories can be viewed as i.i.d. draws from distribution dtπ∗ . The algorithm, then returns
the non-stationary policy π̂ = (π̂1, . . . , π̂T), where π̂t is the policy returned by running the
learner Lp on examples from time t.

3. A simple example of such an algorithm is the previously mentioned algorithm of Cohn et al. (Cohn et al.,
1994) for the realizable learning setting. In this case, active learning can be stopped after drawing a
number of unlabeled instances equal to the passive query complexity of the hypothesis class. This is
because, for each instance, the algorithm either asks a query to get the label or the algorithm knows
the label in cases when there is no disagreement. Thus, in the worst case, the algorithm will query each
drawn example and ask for the same number of labels as a passive algorithm. But when the disagreement
coefficient is finite, exponentially fewer queries will be made.

4112

Active Imitation Learning

Let εt = eπ∗t (π̂t, d
t
π∗) be the generalization error of π̂t at time t. Syed and Schapire

(Syed and Schapire, 2010, Lemma 3)4 show that if at each time step εt ≤ ε′, then V (π̂) ≥
V (π∗)−ε′T 2. Hence, if we are interested in learning a π̂ whose regret is no more than ε with
high probability, then we must simultaneously guarantee that with high probability εt ≤ ε

T 2

at all time steps. This can be achieved by calling the passive learner Lp at each time step
with Np(

ε
T 2 ,

δ
T) examples. Thus, the overall passive label complexity of this algorithm (i.e.,

the number of actions provided by the expert) is T ·Np(
ε
T 2 ,

δ
T). To our knowledge, this is

the best known label complexity for passive imitation learning of non-stationary policies.

Our goal now is to provide a reduction from active imitation learning to active i.i.d.
learning that can achieve an improved label complexity. A naive way to do this would
simply replace calls to Lp in the above approach with calls to an active learner La. Note,
however, that in order to do this the active learner at time step t requires the ability to
sample from the unlabeled distribution dtπ∗ . Generating each such unlabeled sample requires
executing the expert policy for t steps from the initial state, which in turn requires t label
queries to the expert. Thus, the label complexity of this naive approach will be at least
linearly related to the number of unlabeled examples required by the active i.i.d. learning
algorithm. Typically, this number is similar to the passive label complexity rather than the
potentially much smaller active label complexity. Thus, the naive reduction does not yield
an advantage over passive imitation learning.

It turns out that for a slightly more sophisticated reduction to passive i.i.d. learning,
introduced by Ross and Bagnell (Ross and Bagnell, 2010), it is possible to simply replace Lp
with La and maintain the potential benefit of active learning. Ross and Bagnell introduced
the forward training algorithm for non-stationary policies, which trains a non-stationary
policy in a series of T iterations. In particular, iteration t trains policy π̂t by calling a
passive learner Lp on a labeled data set drawn from the state distribution induced at time
t by the non-stationary policy π̂t−1 = (π̂1, . . . , π̂t−1), where π̂1 is learned on states drawn
from the initial distribution I. The motivation for this approach is to train the policy at
time step t based on the same state-distribution that it will encounter when being run after
learning. By doing this, they show that the algorithm has a worst case regret of εT 2 and
under certain assumptions can achieve a regret as low as O(εT).

Importantly, the state-distribution used to train π̂t given by dtπ̂t−1 is easy for the learner
to sample from without making queries to the expert. In particular, to generate a sample
the learner can simply simulate π̂t−1, which is available from previous iterations, from a
random initial state and return the state at time t. Thus, we can simply replace the call to
Lp at iteration t with a call to La with unlabeled state distribution dtπ̂t−1 as input. More
formally, the active forward training algorithm is presented in Algorithm 1.

Ross and Bagnell (Ross and Bagnell, 2010, Theorem 3.1) give the worst case bound on
the regret of the forward training algorithm which assumes the generalization error at each
iteration is bounded by ε. Since we also maintain that assumption when replacing Lp with
La (the active variant) we immediately inherit that bound.

4. The main result of Syed and Schapire (Syed and Schapire, 2010) holds for stochastic expert policies
and requires a more complicated analysis that results in a looser bound. Lemma 3 is strong enough for
deterministic expert policies, which is the assumption made in our work.

4113

Judah, Fern, Dietterich and Tadepalli

Algorithm 1 Active Forward Training

Input: active i.i.d. learning algorithm La, ε, δ
Output: non-stationary policy π̂ = (π̂1, . . . , π̂T)

1: Initialize π̂1 = La(ε,
δ
T
, I) . queries by La answered by expert; unlabeled data

is generated from initial state distribution I.
2: for t = 2 to T do
3: π̂t−1 = (π̂1, . . . , π̂t−1)
4: π̂t = La(ε,

δ
T
, dtπ̂t−1) . queries by La answered by expert; unlabeled data is

generated using simulator and π̂t−1 as described in the main text.
5: end for
6: return π̂ = (π̂1, ..., π̂T)

Proposition 1 Given a PAC active i.i.d. learning algorithm La, if active forward training
is run by giving La parameters ε and δ

T at each step, then with probability at least 1− δ it
will return a non-stationary policy π̂ such that V (π̂) ≥ V (π∗)− εT 2.

Note that La is run with δ
T as the reliability parameter to ensure that all T iterations

succeed with probability at least 1− δ.
We can apply Proposition 1 to obtain the overall label complexity of active forward

training required to achieve a regret of less than ε with probability at least 1 − δ. In
particular, we must run the active learner at each of the T iterations with parameters ε

T 2

and δ
T , giving an overall label complexity of

∑T
t=1Na(

ε
T 2 ,

δ
T , d

t
π̂t−1), where d1

π̂0 = I and the
π̂t−1 are random variables in this expression. Recall, from above, that the best known label
complexity of passive imitation learning is T ·Np(

ε
T 2 ,

δ
T).

Comparing these quantities we see that if we use an active learning algorithm whose
sample complexity is no worse than that of passive, i.e., Na(

ε
T 2 ,

δ
T , d

t
π̂t−1) is no worse than

Np(
ε
T 2 ,

δ
T) for any t, then the expected sample complexity of active imitation learning

will be no worse than the passive case. As mentioned in the previous section, such i.i.d.
active learning algorithms can be realized. Further, if in addition, for some iterations the
expected value of Na(

ε
T 2 ,

δ
T , d

t
π̂t−1) for some values of t is better than the passive complexity,

then there will be an overall expected improvement over passive imitation learning. While
this additional condition cannot be verified in general, we know that such cases can exist,
including cases of exponential improvement. Further, empirical experience in the i.i.d.
setting also suggests that in practice Na can often be expected to be substantially smaller
than Np and rarely worse. The above result suggests that those empirical gains will be able
to transfer to the imitation learning setting.

4.2 Stationary Policies

A drawback of active forward training is that it is impractical for large T and the resulting
policy cannot be run indefinitely. We now consider the case of learning stationary policies;
first we review the existing results for passive imitation learning.

In the traditional approach, a stationary policy π̂ is trained on the expert state distribu-
tion dπ∗ using a passive learning algorithm Lp and returning a stationary policy π̂. Ross and
Bagnell (Ross and Bagnell, 2010, Theorem 2.1) show that if the generalization error of π̂

4114

Active Imitation Learning

Algorithm 2 RAIL

Input: active i.i.d. learning algorithm La, ε, δ
Output: stationary policy π̂

1: Initialize π̂0 to arbitrary policy or based on prior knowledge
2: for t = 1 to T do
3: π̂t = La(ε,

δ
T
, dπ̂t−1) . queries by La answered by expert; unlabeled data is

generated using simulator as described in Section 3
4: end for
5: return π̂T

with respect to the i.i.d. distribution dπ∗ is bounded by ε′ then V (π̂) ≥ V (π∗)− ε′T 2. Since
generating i.i.d. samples from dπ∗ can require up to T queries (see Section 3) the passive
label complexity of this approach for guaranteeing a regret less than ε with probability at
least 1−δ is T ·Np(

ε
T 2 , δ). Again, to our knowledge, this is the best known label complexity

for passive imitation learning. Further, Ross and Bagnell (Ross and Bagnell, 2010) show
that there are imitation learning problems where this bound is tight, showing that in the
worst case, the traditional approach cannot be shown to do better.

The above approach cannot be converted into an active imitation learner by simply re-
placing the call to Lp with La, since again we cannot sample from the unlabeled distribution
dπ∗ without querying the expert. To address this issue, we introduce a new algorithm called
RAIL (Reduction-based Active Imitation Learning) which makes a sequence of T calls to
an active i.i.d. learner, noting that it is likely to find a useful stationary policy well before
all T calls are issued. RAIL is an idealized algorithm intended for analysis, which achieves
the theoretical goals but has a number of inefficiencies from a practical perspective. Later
in Section 5, we describe the practical instantiation that is used in our experiments.

RAIL is similar in spirit to active forward training, though its analysis is quite different
and more involved. Like forward-training, RAIL iterates for T iterations, but on each
iteration, RAIL learns a new stationary policy π̂t that can be applied across all time steps
t = 1 . . . T . Note that T denotes the length of the horizon as well as the total number of
iterations that RAIL runs for. Similarly t denotes a single time step as well as a single
iteration of RAIL. Iteration t+1 of RAIL learns a new policy π̂t+1 that achieves a low error
rate at predicting the expert’s actions with respect to the state distribution of the previous
policy dπ̂t . More formally, Algorithm 2 gives pseudocode for RAIL. The initial policy π̂0 is
arbitrary and could be based on prior knowledge and the algorithm returns the final policy
π̂T , which is learned using the active learning applied to unlabeled state distribution dπ̂T−1 .

Similar to active forward training, RAIL makes a sequence of T calls to an active learner.
Unlike forward training, however, the unlabeled data distributions used at each iteration
contains states from all time points within the horizon, rather than being restricted to states
arising at a particular time point. Because of this difference, the active learner is able to
ask queries across a range of time points and we might expect policies learned in earlier
iterations to achieve non-trivial performance throughout the entire horizon. In contrast, at
iteration t the policy produced by forward training is only well defined up to time t.

4115

Judah, Fern, Dietterich and Tadepalli

The complication faced by RAIL, however, compared to forward training, is that the
distribution used to train π̂t+1 differs from the state distribution of the expert policy dπ∗ .
This is particularly true in early iterations of RAIL, since π̂0 is initialized arbitrarily. Intu-
itively, however, we might expect that as the iterations proceed, the unlabeled distributions
used for training dπt will become similar to dπ∗ . To see this, consider the first iteration.
While dπ̂0 need not be at all similar to dπ∗ overall, we know that they will agree on the
initial state distribution. That is, we have that d1

π̂0 = d1
π∗ = I. Because of this, the policy

π̂1 learned on dπ̂0 can be expected to agree with the expert on the first step. This implies
that the states encountered after the first action of the expert and learned policy will tend
to be similar. That is d2

π̂1 will be similar to d2
π∗ . In this same fashion we might expect dt+1

π̂t

to be similar to dt+1
π∗ after iteration t. We now show that this intuition can be formalized in

order to bound the disparity between dπ̂T and dπ∗ , which will allow us to bound the regret
of the learned policy. We first state the main result, which we prove below.

Theorem 2 Given a PAC active i.i.d. learning algorithm La, if RAIL is run with parame-
ters ε and δ

T passed to La at each iteration, then with probability at least 1− δ it will return
a stationary policy π̂ such that V (π̂) ≥ V (π∗)− εT 3.

Recall that the corresponding regret for active forward training of non-stationary policies
was εT 2. From this we see that the impact of moving from non-stationary to stationary
policies in the worst case is a factor of T in the regret bound. Similarly the bound is a
factor of T worse than the comparable result above for passive imitation learning, which
suffered a worst-case regret of εT 2. From this we see that the total label complexity for
RAIL required to guarantee a regret of ε with probability 1 − δ is

∑T
t=1Na(

ε
T 3 ,

δ
T , dπ̂t−1)

compared to the above label complexity of passive learning T ·Np(
ε
T 2 , δ).

We first compare these quantities in the worst case. If, in each iteration, the active i.i.d.
label complexity is the same as the passive complexity, then active imitation learning via
RAIL can ask more queries than passive. That is, the active complexity would scale as
T ·Np(

ε
T 3 ,

δ
T) versus T ·Np(

ε
T 2 , δ), which is dominated by the factor of 1

T difference in the
accuracy parameters. In the realizable setting with finite VC-dimension, RAIL’s complexity
could be a factor of T higher than passive in this worst-case scenario.

However, if across the iterations the expected active i.i.d. label complexityNa(
ε
T 3 ,

δ
T , dπ̂t−1)

is substantially better than Np(
ε
T 3 ,

δ
T), then RAIL will leverage those savings. For exam-

ple, in the realizable setting with finite VC-dimension, if all distributions dπ̂t−1 result in a
finite disagreement coefficient, then we can get exponential savings. In particular, ignor-
ing the dependence on δ (which is only logarithmic), we get an active label complexity of

O(T log T 3

ε) versus the corresponding passive complexity of O(T
3

ε).

The above analysis points to an interesting open problem. Is there an active imitation
learning algorithm that can guarantee to never perform worse than passive, while at the
same time showing exponential improvement in the best case?

For the proof of Theorem 2, we introduce the quantity P tπ(M), which is the probability
that a policy π is consistent with a length t trajectory generated by the expert policy π∗ in
MDP M . It will also be useful to index the state distribution of π by the MDP M , denoted
by dπ(M). The main idea is to show that at iteration t, P tπ̂t(M) is not too small, meaning
that the policy at iteration t mostly agrees with the expert for the first t actions. We first

4116

Active Imitation Learning

state two lemmas, that are useful for the final proof. First, we bound the regret of a policy
in terms of P Tπ (M).

Lemma 3 For any policy π, if P Tπ (M) ≥ 1− ε, then V (π) ≥ V (π∗)− εT .

Proof Let Γ∗ and Γ be all state-action sequences of length T that are consistent with π∗

and π respectively. If R(T) is the total reward for a sequence T then we get the following

V (π) =
∑
T ∈Γ

Pr(T |M,π)R(T)

≥
∑

T ∈Γ∩Γ∗

Pr(T |M,π)R(T)

=
∑
T ∈Γ∗

Pr(T |M,π∗)R(T)−
∑

T ∈Γ∗−Γ

Pr(T |M,π∗)R(T)

= V (π∗)−
∑

T ∈Γ∗−Γ

Pr(T |M,π∗)R(T)

≥ V (π∗)− T ·
∑

T ∈Γ∗−Γ

Pr(T |M,π∗)

≥ V (π∗)− εT.

The last two inequalities follow since the reward for a sequence must be no more than T ,
and due to our assumption about P Tπ (M).

Next, we show how the value of P tπ(M) changes across one iteration of RAIL. We
show that if we learn a policy π̂ on state distribution dπ(M) of policy π whose error rate
eπ∗(π̂, dπ(M)) (see Section 3.3) w.r.t. to the expert’s policy π∗ is no more than ε, then
P t+1
π̂ (M) is at least as large as P tπ(M)− Tε. When π and π̂ correspond to policies learned

at iteration t and (t+1) respectively, then Lemma 4 describes change in the value of P tπ(M)
across one iteration.

Lemma 4 For any policies π and π̂ and 1 ≤ t < T , if eπ∗(π̂, dπ(M)) ≤ ε, then P t+1
π̂ (M) ≥

P tπ(M)− Tε.

Proof We define Γ̂ to be all sequences of state-action pairs of length t+1 that are consistent
with π̂. Also define Γ to be all length t+ 1 state-action sequences that are consistent with
π on the first t state-action pairs (so need not be consistent on the final pair). We also
define M ′ to be an MDP that is identical to M , except that the transition distribution of
any state-action pair (s, a) is equal to the transition distribution of action π(s) in state s.
That is, all actions taken in a state s behave like the action selected by π in s.

We start by arguing that if eπ∗(π̂, dπ(M)) ≤ ε then P t+1
π̂ (M ′) ≥ 1−Tε, which relates our

error assumption to the MDP M ′. To see this, note that for MDP M ′, all policies, including
π∗, have state distribution given by dπ. Thus by the union bound 1−P t+1

π̂ (M ′) ≤
∑t+1

i=1 εi,
where εi is the error of π̂ at predicting π∗ on distribution diπ. This sum is bounded by Tε

4117

Judah, Fern, Dietterich and Tadepalli

since eπ∗(π̂, dπ(M)) = 1
T

∑T
i=1 εi. Using this fact we can now derive the following

P t+1
π̂ (M) =

∑
T ∈Γ̂

Pr(T |M,π∗)

≥
∑
T ∈Γ∩Γ̂

Pr(T |M,π∗)

=
∑
T ∈Γ

Pr(T |M,π∗)−
∑
T ∈Γ−Γ̂

Pr(T |M,π∗)

= P tπ(M)−
∑
T ∈Γ−Γ̂

Pr(T |M,π∗)

= P tπ(M)−
∑
T ∈Γ−Γ̂

Pr(T |M ′, π∗)

≥ P tπ(M)−
∑
T 6∈Γ̂

Pr(T |M ′, π∗)

≥ P tπ(M)− (1− P t+1
π̂ (M ′))

≥ P tπ(M)− Tε.

The equality of the fourth line follows because Γ contains all sequences whose first t actions
are consistent with π with all possible combinations of the remaining action and state tran-
sition. Thus, summing over all such sequences yields the probability that π∗ agrees with the
first t steps. The equality of the fifth line follows because Pr(T | M,π∗) = Pr(T | M ′, π∗)
for any T that is in Γ and for which π∗ is consistent (has non-zero probability under π∗).
The final line follows from the above observation that P t+1

π̂ (M ′) ≥ 1− Tε.

We can now complete the proof of the main theorem.
Proof [Proof of Theorem 2] Using failure parameter δ

T in the call to La in each iteration
of RAIL ensures that with at least probability (1 − δ) that for all 1 ≤ t ≤ T , we will have
eπ∗(π̂

t, dπ̂t−1(M)) ≤ ε, where dπ̂0(M) denotes the state distribution of the initial policy π̂0.
This can be easily shown using the union bound. Next, we show using induction that for
1 ≤ t ≤ T , we have P tπ̂t ≥ 1− tT ε. As a base case for iteration t = 1, we have P 1

π̂1 ≥ 1−Tε,
since the the error rate of π̂1 relative to the initial state distribution at time step t = 1 is
at most Tε (this is the worst case when all errors are committed at time step 1). Assume
that the inequality holds for t = k, i.e., P k

π̂k
≥ 1− kTε. Consider π̂k+1 trained on dπ̂k(M).

By the union bound argument above, we know that eπ∗(π̂
k+1, dπ̂k(M)) ≤ ε. Hence, π̂k+1

and π̂k satisfy the precondition of Lemma 4. Therefore we have

P k+1
π̂k+1 ≥ P kπ̂k − Tε (by Lemma 4)

≥ 1− kTε− Tε (by inductive argument)

≥ 1− (k + 1)Tε.

Hence, for 1 ≤ t ≤ T , we have P tπ̂t ≥ 1 − tT ε. In particular, when t = T , we have
P T
π̂T
≥ 1− T 2ε. Combining this with Lemma 3 completes the proof.

4118

Active Imitation Learning

4.3 Agnostic Case

Above we considered the realizable setting, where the expert’s policy was assumed to be in
a known hypothesis class H. In the agnostic case, we do not make such an assumption. The
learner still outputs a hypothesis from a class H, but the unknown policy is not necessarily
in H. The agnostic i.i.d. PAC learning setting is defined similarly to the realizable setting,
except that rather than achieving a specified error bound of ε with high probability, a learner
must guarantee an error bound of infπ∈H ef (π,DX)+ε with high probability (where f is the
target), where DX is the unknown data distribution. That is, the learner is able to achieve
close to the best possible accuracy given class H. In the agnostic case, it has been shown
that exponential improvement in label complexity with respect to 1

ε is achievable when
infπ∈H ef (π,DX) is relatively small compared to ε (Dasgupta, 2011). Further, there are
many empirical results for practical active learning algorithms that demonstrate improved
label complexity compared to passive learning.

It is straightforward to extend our above results for non-stationary and stationary poli-
cies to the agnostic case by using agnostic PAC learners for Lp and La. Here we outline
the extension for RAIL. Note that the RAIL algorithm will call La using a sequence of
unlabeled data distributions, where each distribution is of the form dπ for some π ∈ H
and each of which may yield a different minimum error given H. For this purpose, we
define ε∗ = supπ∈H inf π̂∈H eπ∗(π̂, dπ) to be the minimum generalization error achievable
in the worst case considering all possible state distributions dπ that RAIL might possibly
encounter. With minimal changes to the proof of Theorem 1, we can get an identical result,
except that the regret is (ε∗ + ε)T 3 rather than just εT 3. A similar change in regret holds
for passive imitation learning. This shows that in the agnostic setting we can get significant
improvements in label complexity via active imitation learning when there are significant
savings in the i.i.d. case.

5. RAIL-DA: A Practical Variant of RAIL

Despite the theoretical guarantees, there are at least two potential drawbacks of the RAIL
algorithm from a practical perspective. First, RAIL does not share labeled data across
iterations which is potentially wasteful in practice, though important for our analysis. In
practice, we might expect that aggregating labeled data across iterations would be beneficial
due to the larger amount of data. This is somewhat confirmed by the empirical success
of the DAGGER algorithm (Ross et al., 2011) and motivates evaluating the use of data
aggregation within RAIL. Incorporating data aggregation into RAIL, however, complicates
the theoretical analysis, which we leave for future work. The second practical inefficiency of
RAIL is that the unlabeled state distributions used at early iterations may be quite different
from dπ∗ . In particular, the state distribution of policy π̂t, which is used to train the policy
at iteration t + 1, is only guaranteed to be close to the expert’s state distribution for the
first t time steps and can (in the worst case) differ arbitrarily at later times. Thus, early
iterations may focus substantial query effort on parts of the state space that are not the
most relevant for learning π∗.

4119

Judah, Fern, Dietterich and Tadepalli

Algorithm 3 RAIL+

Input: L0, n, AccumData, N , K
. L0 : initial set of labeled data
. n : no. of queries per iteration
. AccumData : accumulate data across iterations or not
. N : committee size for DWQBC
. K : # trajectories used to generate unlabeled data

Output: stationary policy π̂

1: Initialize L = L0

2: while query budget remaining do
3: U = SampleUnlabeledData(K,L) . generates pool of unlabeled data
4: if !AccumData then
5: Initialize L = L0

6: end if
7: for i = 1 to n do . select n queries from pool U
8: s = DWQBC(L,U ,N) . density-weighted QBC is used as active i.i.d. learner
9: L = L ∪ {(s, Label(s))} . obtain label from expert

10: end for
11: end while
12: return π̂ = SupervisedLearn(L)

We now describe a parameterized practical instantiation of RAIL used in our experi-
ments, which is intended to address the above issues and also specify certain other imple-
mentation details. Algorithm 3 gives pseudocode for this algorithm, which we call RAIL+

to distinguish it from the idealized version of RAIL in our analysis. In Section 6, we will
compare different instances of RAIL+, including parameterizations corresponding to pure
RAIL and RAIL-DA (for data aggregation), which is the primary algorithm in our empirical
study. We note that our description assumes the use of a pool-based active learner, which
is a common active learning setting, meaning that the learner requires as input a pool of
unlabeled examples U that represents the unlabeled target distribution.

5.1 Data Aggregation and Incremental Querying

The first major difference compared to RAIL is that RAIL+ can aggregate data across
iterations when the Boolean parameter AccumData is set to true. In this case, during
each iteration the newly labeled data is added to the set of labeled data from previous
iterations (lines 7-10). Otherwise, the labeled data from previous iterations is discarded
after generating unlabeled data U (lines 4-6).

The second major difference is that RAIL+ may ask fewer queries per iteration than
RAIL as specified by the parameter n. RAIL corresponds to a version of RAIL+ that
does not use data aggregation and has n = Na. Because RAIL+ can aggregates data, it
opens up the possibility of asking only a small number of queries per iteration (n � Na)
and hence behaving more incrementally. This is reflected in the main loop of Algorithm 3

4120

Active Imitation Learning

Algorithm 4 Density-Weighted Query-By-Committee Algorithm

1: procedure DWQBC(L,U ,N)
2: C = SampleCommittee(N ,L) . committee represents posterior over policies
3: d̂L =EstimateDensity(U) . estimate density of states in U (see text)
4: s∗ = argmax{V E(s, C) ∗ d̂L(s) : s ∈ U} . selection heuristic (see text)
5: return s∗

6: end procedure

(lines 2-11). Each iteration starts with the current set of labeled examples L, which have
been accumulated across all previous iterations by RAIL+. This set of examples is used to
generate a pool U of unlabeled examples/states (see details below) intended to represent
the unlabeled target distribution. A pool-based active learner, DWQBC (explained later),
is then called n times to select n queries from this pool. Each query is labeled by the expert
and added to the growing set of labeled training data L. After the n queries have been
issued and L is updated, the next iteration begins.

This incremental version of RAIL allows for rapid updating of the unlabeled state dis-
tributions used for learning (represented via U) and prevents RAIL from using its query
budget on earlier less accurate distributions. In our experiments, we find that using n = 1
is most effective compared to larger values, which facilitates the most rapid update of the
distribution. In this case, each query selected by the active i.i.d. learner is based on the
most up-to-date state distribution, which takes all prior data into account. We refer to this
best performing variant of RAIL+ with n = 1 and data aggregation as RAIL-DA.

An interesting variation to RAIL+ is when queries take a non-trivial amount of real-time
to answer and there are k experts available that can answer queries in parallel. In this case,
it can be beneficial to ask k simultaneous queries per iteration in order to reduce the amount
of real-time required to learn a policy. The problem of selecting k such queries is known as
batch active learning, and a variety of approaches are available for the i.i.d. setting (Brinker,
2003; Xu et al., 2007; Hoi et al., 2006a,b; Guo and Schuurmans, 2008; Azimi et al., 2012).
An advantage of our reduction-based approach to active imitation learning is that we can
directly plug in the i.i.d. batch active learner in our framework without requiring any other
changes to be made.

5.2 Density Weighted QBC

Since it is important that the active i.i.d. learner be sensitive to the unlabeled data dis-
tribution, we choose a density-weighted learning algorithm. In particular, we use density-
weighted query-by-committee (McCallum and Nigam, 1998) in our implementation. Given
a set of labeled data L and unlabeled data U , this approach first uses bootstrap aggregation
on L in order to generate a policy committee for query selection (Algorithm 4, line 2). In
our experiments we use a committee of size 5. The approach then computes a density esti-
mator over the unlabeled data U (line 3). In our implementation we use a simple distance
based binning approach to density estimation, though more complex approaches could be
used. The selected query is the state that maximizes the product of state density and
committee disagreement (line 4). As a measure of disagreement we use the entropy of the
vote distribution (Dagan and Engelson, 1995) (denoted as VE), which is a common choice.

4121

Judah, Fern, Dietterich and Tadepalli

Algorithm 5 Procedure SampleUnlabeledData

1: procedure SampleUnlabeledData(K,L)
2: C = SampleCommittee(K,L) . committee represents posterior over policies
3: U = {} . initialize multi-set of unlabeled data
4: for π ∈ C do
5: S = SimulateTrajectory(π) . states generated on trajectory of π
6: U = U ∪ S
7: end for
8: return U
9: end procedure

Intuitively, the selection heuristic of DWQBC attempts to trade off the uncertainty about
what to do at a state (measured by VE) with the likelihood that the state is relevant to
learning the target policy (measured by the density).

5.3 Bayesian Learner

The final choice we make while implementing RAIL+ (and hence RAIL-DA) is again mo-
tivated by the goal of arriving at an accurate unlabeled data distribution as quickly as
possible. Recall that at iteration t + 1, RAIL learns using an unlabeled data distribution
dπ̂t , where π̂t is a point estimate of the policy based on the labeled data from iteration t.
In order to help improve the accuracy of this unlabeled distribution (with respect to dπ∗),
instead of using a point estimate, we adopt a Bayesian approach in RAIL+. In particular,
at iteration t let L be the set of state-action pairs collected from the previous iteration
(or from all previous iterations if data is accumulated). We use this to define a posterior
P (π̂|L) over policies in our policy class H. This distribution, in turn, defines a posterior
unlabeled state distribution dL = Eπ̂∼P (π̂|L)[dπ̂(s)] that RAIL+ effectively uses in place of
dπ̂t as used in RAIL. Note that we can sample states from dL by first sampling a policy π̂
and then sampling a state from dπ̂, all of which can be done without interaction with the
expert.

Our implementation of this idea uses bootstrap aggregation (Breiman, 1996) in order
to approximate dL by an unlabeled data pool U via a call to the procedure Sample-
UnlabeledData in Algorithm 3 (line 3). Our implementation assumes a class of linear
parametric policies with a zero-mean Gaussian prior over the parameters. The procedure
first uses bootstrap aggregation to approximate sampling a set of policies from the posterior
(Algorithm 5, line 2) forming a “committee” C of K policies. We view C as an empirical
distribution representing the posterior over policies. In particular, each policy is the result
of first generating a bootstrap sample of the current labeled data and then calling a super-
vised learner on the sampled data. Each member of the committee is then simulated to
form a state trajectory, and the states on those trajectories are aggregated to produce the
unlabeled data pool U (Algorithm 5, lines 4-7). Our implementation uses K = 5.

From a theoretical perspective, the use of a Bayesian classifier does not impact the
validity of RAIL’s performance guarantee provided that the Bayesian approach provides
PAC guarantees. In fact, early theoretical work in active learning (Freund et al., 1997) used
exactly this type of assumption in their analysis of the query-by-committee algorithm.

4122

Active Imitation Learning

Algorithm 6 Procedure SampleCommittee

1: procedure SampleCommittee(K,L)
2: C = {} . initialize the committee
3: for i = 1 to K do
4: L′ = BootstrapSample(L) . create a bootstrap sample of L
5: π′ = SupervisedLearn(L′) . learn a classifier(policy) using L′

6: C = C ∪ π′
7: end for
8: return C
9: end procedure

In practice, dL is a significantly more useful estimate of dπ∗ than the point estimate
with respect to learning a policy. This is because it places more weight on states that are
more frequently visited by policies drawn from the posterior rather than just a single policy.
As an extreme example of the advantage of using dL in practice, consider active imitation
learning in an MDP with deterministic dynamics and a single start state. At iteration t,
RAIL will use the state distribution of the point estimate π̂t−1, which for our assumed
MDP will be uniform over the deterministic state sequence generated by π̂t−1. Thus, active
learning will place equal emphasis on learning among that set of states. This is despite the
fact that, in early iterations, we should expect that states appearing later in the trajectory
are less likely to be relevant to learning π∗. This is because inaccuracies in π̂t−1 lead to
error propagation as the trajectory unfolds. In contrast, dL will weigh states according to
the trajectories produced by all policies, weighted by the posterior. The practical effect is
a non-uniform distribution over states in those trajectories, roughly weighted by how many
policies visit the states. Thus, states at the tail end of trajectories in early iterations will
generally carry very little weight, since they are only visited by one or a small number of
policies.

6. Experiments

We conduct our empirical evaluation on five domains: 1) Cart-pole, 2) Bicycle, 3) Wargus,
4) Driving, and 5) NETtalk. Below we first describe the details of these domains. We then
present various experiments that we performed in these domains. In the first experiment,
we study the impact of data aggregation and query size on the performance of RAIL+ from
Algorithm 3. For this we compare several parameter settings, varying from versions that
are close to pure RAIL to RAIL-DA (n = 1 with data aggregation). We show that versions
closer to RAIL-DA that aggregate data and ask queries incrementally are more effective in
practice. In particular, we show that RAIL-DA (which aggregates data and asks only one
query per iteration) is the most effective parameterization. Next, we evaluate the impact of
another implementation choice discussed in Section 5, the choice of base active learner in
RAIL+. We show that a density-weighted base active learner leads to better performance
in practice than using other base active learners that ignore the data distribution. Once
we have shown that RAIL-DA with a density-weighted base active learner is the best, we

4123

Judah, Fern, Dietterich and Tadepalli

compare it with a number of baseline approaches to active imitation learning in our last set
of experiments. Finally, we provide some overall observations.

For all the learners in the experiments that are presented in this section, we employed
the SimpleLogistic classifier from Weka (Hall et al., 2009) to learn policies over the set of
features that were provided for each domain.

6.1 Domain Details

In this subsection, we give the details of all the domains used in our experiments.

6.1.1 Cart-Pole

Cart-pole is a well-known RL benchmark. In this domain, there is a cart on which rests
a vertical pole. The objective is to keep the attached pole balanced by applying left or
right force to the cart. An episode ends when either the pole falls or the cart goes out of
bounds. There are two actions, left and right, and four state variables (x, ẋ, θ, θ̇) describing
the position and velocity of the cart and the angle and angular velocity of the pole. We
made slight modifications to the usual setting where we allow the pole to fall down and
become horizontal and the cart to go out of bounds (we used [-2.4, 2.4] as the in bounds
region). We let each episode run for a fixed length of 5000 time steps. This opens up the
possibility of generating several “undesirable” states where either the pole has fallen or the
cart is out of bounds that are rarely or never generated by the expert’s state distribution.

For all the experiments in cart-pole, the learner’s policy is represented via a linear
logistic regression classifier using features of state-action pairs where features correspond
to state variables. The expert policy was a hand-coded policy that can balance the pole
indefinitely. For each learner, we ran experiments from 150 random initial states close to
the equilibrium start state ((x, ẋ, θ, θ̇) = (0.0, 0.0, 0.0, 0.0)). For each start state a policy is
learned and a learning curve is generated measuring the performance as function of number
of queries posed to the expert. To measure performance, we use a reward function (unknown
to the learner) that gives +1 reward for each time step where the pole is kept balanced and
the cart is within bounds and −1 otherwise. The final learning curve is the average of the
individual curves.

6.1.2 Bicycle Balancing

This domain is a variant of the RL benchmark of bicycle balancing and riding (Randløv and
Alstrøm, 1998). The goal is to balance a bicycle moving at a constant speed for 1000 time
steps. If the bicycle falls, it remains fallen for the rest of the episode. Similar to the cart-pole
domain, in bicycle balancing there is a huge possibility of spending significant amount of
time in “undesirable” states where the bicycle has fallen down. The state space is described
using nine variables (ω, ω̇, θ, θ̇, ψ, xf , yf , xb, yb), where ω and ω̇ are the vertical angle and
angular velocity of the bicycle, θ and θ̇ are the angle and angular velocity of the handlebar, ψ
is the angle of the bicycle to the goal, xf and yf are x and y coordinates of the front tire and
xb and yb are x and y coordinates of the rear tire of the bicycle. There are five possible actions
A = {(τ = 0, v = −0.02), (τ = 0, v = 0), (τ = 0, v = 0.02), (τ = 2, v = 0), (τ = −2, v = 0)},
where the first component is the torque applied to the handlebar and the second is the
displacement of the rider.

4124

Active Imitation Learning

As in the cart-pole domain, for all experiments in bicycle balancing, the learner’s policy
is represented as a linear logistic regression classifier over features of state-action pairs. A
feature vector for a state-action pair is defined as follows: Given a state s, a vector consisting
of following 20 basis functions is computed:

(1, ω, ω̇, ω2, ω̇2, ωω̇, θ, θ̇, θ2, θ̇2, θθ̇, ωθ, ωθ2, ω2θ, ψ, ψ2, ψθ, ψ̄, ψ̄2, ψ̄θ)T ,

where ψ̄ = π − ψ if ψ > 0 and ψ̄ = −π − ψ if ψ < 0. This vector of basis functions is
repeated for each of the 5 actions giving a feature vector of length 100. The expert policy
was hand-coded and can balance the bicycle for up to 26K time steps. We used a similar
evaluation procedure as for cart-pole where we generated 150 random start states and for
each start state, a policy was learned using each of the learning algorithms and a learning
curve was generated measuring total reward as function of number of queries posed to the
expert. We give a +1 reward for each time step where the bicycle is kept balanced and a
−1 reward otherwise.

6.1.3 Wargus

We consider controlling a group of 5 friendly close-range military units against a group of
5 enemy units in the real-time strategy game Wargus, similar to the setup used by Judah
et al. (Judah et al., 2010). The objective is to win the battle while minimizing the loss
in total health of friendly units. The set of actions available to each friendly unit is to
attack any one of the remaining units present in the battle (including other friendly units,
which is always a bad choice). In our setup, we allow the learner to control one of the units
throughout the battle, whereas the other friendly units are controlled by a fixed “reasonably
good” policy. This situation would arise when training the group via coordinate ascent on
the performance of individual units. The expert policy corresponds to the same policy used
by the other units. Note that poor behavior from even a single unit generally results in a
huge loss.

The learner’s policy is represented using 27 state-action features that capture different
information about the current battle situation such as the distance between the friendly
agent and the target of attack, whether the target is already under attack by other friendly
units, health of the target relative to friendly unit, whether the target is actually a friendly
unit, etc. Providing full demonstrations in real time in such tactical battles is very difficult
for human players and quite time consuming if demonstrations are done in slow motion,
which motivates state-based active learning for this domain. For experiments, we designed
21 battle maps differing in the initial unit positions, using 5 for training and 16 for testing.
We report results in the form of learning curves showing the performance metric as a
function of number of queries posed to the expert. We use the difference in the total health
of friendly and enemy units at the end of the battle as the performance metric (which
is positive for a win). Due to the slow pace of the experiments running on the Wargus
infrastructure, we average results across at most 20 trials.

6.1.4 Driving Domain

The driving domain is a traffic navigation problem often used as a test domain in the
imitation learning literature (Abbeel and Ng, 2004). This domain was also the main test

4125

Judah, Fern, Dietterich and Tadepalli

Figure 1: Screenshot of the driving simulator.

bed used to evaluate the confidence based autonomy (CBA) learner in prior work (Chernova
and Veloso, 2009). Here we evaluate RAIL-DA on a particular implementation of the driving
domain used by Cohn et al. (Cohn et al., 2011). In this domain, the goal is to successfully
navigate a car through traffic on a busy five lane highway. The highway consists of three
traffic lanes and two shoulder lanes (see Figure 1). The learner controls the black car, which
moves at a constant speed. The other cars move at a randomly chosen continuous-valued
constant speed, and they don’t change lanes. At each discrete time step, the learner controls
the car by taking one of the three actions: 1) Left, which moves the car to the adjacent left
lane, 2) Right, which moves the car to the adjacent right lane, and 3) Stay, which keeps the
car in the current lane. The agent is allowed to drive on the shoulder lane but cannot move
off the shoulder lanes.

The learner’s policy is represented as a linear logistic regression classifier that maps a
given state to one of the three actions. The state space is represented using 68 features. The
first 5 features are binary features that specify the learner’s current lane. The next 3 binary
features specify whether the learner is colliding with, tailgating or trailing another car. The
remaining 60 features, consisting of three parts, one for the learner’s current lane and two
for the two adjacent lanes, which are binary features that specify whether the learner’s car
will collide with or pass another car in 2X time steps, where X ranges from 0 to 19. This
captures the agent’s view of the traffic while taking car velocities into account.

To conduct experiments in the driving domain, we carefully designed a reward function
that induces good driving behavior and used Sarsa(λ) (Sutton and Barto, 1998) with linear
function approximation to learn a policy to serve as the expert policy. The expert policy
uses the same set of 68 features as used by the agent for value function approximation.
For each learner, we ran 100 different learning trials where during each trial the learner is
allowed to pose a maximum of 500 (1000 in Experiment 1) queries to the expert and learn
from it. For each trial, a learning curve is generated that measures the performance as a
function of the number of queries posed to the expert. To measure performance, after each
query is posed and the policy is updated, the updated policy is allowed to navigate the car
for 1000 time steps in a test episode, and the total reward is recorded. The final performance
measure is the average total reward per episode measured over 500 test episodes. The final
learning curve is the average over all 100 trials.

4126

Active Imitation Learning

6.1.5 Structured Prediction

We evaluate RAIL-DA on two structured prediction tasks, stress prediction and phoneme
prediction, both based on the NETtalk data set (Dietterich et al., 2008). In stress prediction,
given a word, the goal is to assign one of the 5 stress labels to each letter of the word in left-
to-right order so that the word is pronounced correctly. The output labels are ‘2’ (strong
stress), ‘1’ (medium stress), ‘0’ (light stress), ‘<’ (unstressed consonant, center of syllable
to the left), and ‘>’ (unstressed consonant, center of syllable to the right). In phoneme
prediction, the task is to assign one of the 51 phoneme labels to each letter of the word. It
is straightforward to view structured prediction as imitation learning (see for example Ross
et al., 2011,Daumé et al., 2009) where at each time step (letter location), the learner has
to execute the correct action (i.e., predict correct label) given the current state. The state
consists of features describing the input (the current letter and its immediate neighbors) and
the previous L predictions made by the learner (the prediction context). In our experiments,
we use L = 1, 2.

The NETtalk data set consists of 2000 words divided into 1000 training words and
1000 test words. Each method is allowed to select a state located on any of the words
in the training data and pose it as a query. The expert reveals the correct label at that
location. We use character accuracy as a measure of performance. The details of how in
each learning trial RAIL-DA and other baselines select a query from the set of training
words will be described when we present our results in the following subsections. We report
final performance in the form of learning curves averaged across 50 learning trials.

6.2 Experiment 1: Evaluation of the Effects of Data Aggregation and Query
Size

We compare different versions of RAIL+, by varying the parameters AccumData and n in
Algorithm 3, in order to observe the impact of data aggregation and query size. We use the
notation RAIL+-n-DA for versions that aggregate data and ask n queries per iteration and
use RAIL+-n to denote variants that ask n queries per iteration without data aggregation.
Note that RAIL+-1-DA is the same as RAIL-DA and that RAIL+-n with a large value of n
corresponds to the original version of RAIL from our analysis. Note that all these variants
use the DWQBC active i.i.d. learner as described in Section 5.

For this experiment, we focus on three domains: 1) Cart-Pole, 2) Bicycle Balancing, and
3) Driving Domain. In each domain, we evaluated RAIL+-n-DA and RAIL+-n for values
of n starting at n = 1 in increments until some maximum value. The maximum value of n
in each domain was selected to be a value where i.i.d. active learning from the true expert
state distribution reliably converged to a near perfect policy. For each RAIL+ variant and
domain, we show the averaged learning curve as described earlier.

Figure 2 shows the results of the experiment. We first discuss results in the Bicycle
domain due to more discernible trends in this domain. Figure 2(b) shows results of the
experiment in the Bicycle domain. First, observe the impact of data aggregation by com-
paring each pair RAIL+-n and RAIL+-n-DA. Clearly, RAIL+-n-DA is significantly better
than RAIL+-n for each value of n, indicating that it is generally better to aggregate data
across iterations in this domain. This is likely explained by the fact that the use of ag-
gregation allows for the algorithms to learn from more data at later iterations. This is

4127

Judah, Fern, Dietterich and Tadepalli

0 100 200 300 400 500 600 700 800 900 1000
−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

5000

6000

Number of Queries

T
o

ta
l

R
e

w
a

r
d

Expert

RAIL
+
−50

RAIL
+
−50−DA

RAIL
+
−10

RAIL
+
−10−DA

RAIL
+
−1

RAIL
+
−1−DA (RAIL−DA)

(a)

0 50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

500

600

700

800

900

1000

Number of Queries

T
o

ta
l
R

e
w

a
r
d

Expert

RAIL
+
−100

RAIL
+
−100−DA

RAIL
+
−50

RAIL
+
−50−DA

RAIL
+
−10

RAIL
+
−10−DA

RAIL
+
−1

RAIL
+
−1−DA (RAIL−DA)

(b)

0 100 200 300 400 500 600 700 800 900 1000
−5

−4

−3

−2

−1

0

1
x 10

4

Number of Queries

T
o

ta
l
R

e
w

a
r
d

Expert

RAIL
+
−200

RAIL
+
−200−DA

RAIL
+
−100

RAIL
+
−100−DA

RAIL
+
−50

RAIL
+
−50−DA

RAIL
+
−1

RAIL
+
−1−DA (RAIL−DA)

(c)

Figure 2: Evaluation of the effects of data aggregation and query size in RAIL+: (a) Cart-
pole (b) Bicycle balancing (c) Driving domain.

4128

Active Imitation Learning

particularly important for small values of n, such as n = 1 and n = 10, where without
aggregation each iteration is learning from only a small amount of data (the small amount
of initial data + n).

Now consider the impact of varying n with the use of aggregation in Bicycle. The
clear trend is that when aggregation is being used the performance improves significantly
as n decreases from n = 100 to n = 1. That is, the more incremental variants of RAIL+

dominate, with n = 1 (i.e. the RAIL-DA algorithm) dominating all others by a large margin.
The main reason for this particularly striking trend is that in Bicycle the distributions being
learned from in early iterations are quite distant from that of the expert. In particular, the
early iterations involve learning from state distributions of policies that result in early
crashes, and hence many useless states from the point of view of learning. This means that
when using n = 100, the first 100 queries are selected from such a distribution and not
much is learned. In fact, we see a downward trend, indicating that learning from those
distributions hurts performance. On the other hand, as n decreases fewer queries are spent
on those early inaccurate distributions, and the data from a small number of queries per
iteration accumulates, resulting in policies that have better state distributions to learn
from. Indeed, for n = 1, only one query is asked for each distribution, and we see very rapid
improvement until reaching expert performance after just over 50 queries.

Figure 2(a) shows results for Cart-Pole. The target concept in this domain is simpler,
and hence the learning curves improve more quickly compared to Bicycle. However, we
see the same general trends as for Bicycle. Aggregation is beneficial and we get the best
performance for small values of n when using aggregation. Again we see that RAIL+-1-DA
(i.e., RAIL-DA) is the top performer. These same trends are observed in Figure 2(c) for
Driving.

Overall, these experiments provide strong evidence that in practice aggregation is an
important enhancement to RAIL+ over RAIL, and that more incremental variants are
preferable. Thus, for the remainder of the paper we will use the RAIL-DA algorithm which
uses aggregation and n = 1.

6.3 Experiment 2: Evaluation of RAIL-DA with Different Base Active
Learners

In Section 5, we mentioned that it is important that the active i.i.d. learner used with
RAIL be sensitive to the unlabeled data distribution. To test this hypothesis, we conducted
experiments to study the effects of using active i.i.d. learners that take data distribution into
consideration against active learners that ignore the data distribution altogether in RAIL-
DA. We compare the performance of three different versions of RAIL-DA: 1) RAIL-DA, the
RAIL-DA algorithm from the previous experiment that uses density-weighted QBC as the
base active learner, 2) RAIL-DA-QBC, RAIL-DA but with density-weighted QBC replaced
with the standard QBC (without density weighting), and 3) RAIL-DA-RAND, which uses
random selection of unlabeled data points.

Figure 3 shows the performance of the three versions of RAIL-DA on our first four test
domains. We see that, in Cart-Pole, Bicycle and Wargus, RAIL-DA performs better than
both RAIL-DA-QBC and RAIL-DA-RAND. This shows that it is critical for the active
i.i.d. learner to exploit the state density information that is estimated by RAIL-DA at

4129

Judah, Fern, Dietterich and Tadepalli

0 10 20 30 40 50 60 70 80 90 100
−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

5000

6000

Number of Queries

T
o

ta
l

R
e

w
a

r
d

Expert

RAIL−DA

RAIL−DA−QBC

RAIL−DA−RAND

(a)

0 10 20 30 40 50 60 70 80 90 100
−200

0

200

400

600

800

1000

1200

Number of Queries

T
o

ta
l
R

e
w

a
r
d

Expert

RAIL−DA

RAIL−DA−QBC

RAIL−DA−RAND

(b)

0 10 20 30 40 50 60 70 80 90 100
−20

0

20

40

60

80

100

120

140

Number of Queries

T
o

ta
l
R

e
w

a
r
d

Expert

RAIL−DA

RAIL−DA−QBC

RAIL−DA−RAND

(c)

0 50 100 150 200 250 300 350 400 450 500
−5

−4

−3

−2

−1

0

1
x 10

4

Number of Queries

T
o

ta
l
R

e
w

a
r
d

Expert

RAIL−DA

RAIL−DA−QBC

RAIL−DA−RAND

(d)

Figure 3: Performance of RAIL-DA with different base active learners on (a) Cart-pole (b)
Bicycle balancing (c) Wargus (d) Driving Domain.

4130

Active Imitation Learning

0 50 100 150 200 250 300
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Number of Queries

P
re

d
ic

ti
o

n
 A

c
c

u
ra

c
y

 p
e

r
C

h
a

ra
c

te
r

RAIL−DA

RAIL−DA−QBC

RAIL−DA−RAND

(a)

0 50 100 150 200 250 300
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Number of Queries

P
re

d
ic

ti
o

n
 A

c
c

u
ra

c
y

 p
e

r
C

h
a

ra
c

te
r

RAIL−DA

RAIL−DA−QBC

RAIL−DA−RAND

(b)

0 50 100 150 200 250 300
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Queries

P
re

d
ic

ti
o

n
 A

c
c

u
ra

c
y

 p
e

r
C

h
a

ra
c

te
r

RAIL−DA

RAIL−DA−QBC

RAIL−DA−RAND

(c)

0 50 100 150 200 250 300
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Queries

P
re

d
ic

ti
o

n
 A

c
c

u
ra

c
y

 p
e

r
C

h
a

ra
c

te
r

RAIL−DA

RAIL−DA−QBC

RAIL−DA−RAND

(d)

Figure 4: Performance of RAIL-DA with different base active learners on NETtalk: (a)
Stress prediction, L = 1 (b) Stress prediction, L = 2 (c) Phoneme prediction,
L = 1 (d) Phoneme prediction, L = 2. Character accuracy of the expert is 1.

4131

Judah, Fern, Dietterich and Tadepalli

each iteration. Recall that in these domains, especially during early iterations, RAIL-
DA is quite likely to generate several uninformative states that are far from the expert’s
state distribution (states with fallen pole or bike, or states where the friendly team is
heavily outnumbered by the enemy team in Wargus). Taking state density information into
account helps to avoid querying in such states compared to a learner that ignores density
information. In the driving domain, we see that although RAIL-DA performs better than
RAIL-DA-RAND, its performance is comparable to that of RAIL-DA-QBC. This is because
in the driving domain, even states that are not close to the expert’s state distribution provide
informative training information. This allows RAIL-DA-QBC to pose useful queries and
generalize well from them.

Figure 4 shows the performance of the three versions of RAIL-DA on the NETtalk data
set along with 95% confidence intervals. RAIL-DA and RAIL-DA-QBC can select the best
query across the entire training set. RAIL-DA-RAND selects a random query from the
set of unlabeled states generated on a random training sequence. For stress prediction, we
see that RAIL-DA performs better than both RAIL-DA-QBC and RAIL-DA-RAND. For
phoneme prediction, RAIL-DA performs better than RAIL-DA-RAND, but its performance
is comparable to RAIL-DA-QBC. Overall, we see that RAIL-DA performs best, so it will
be compared against the other baselines in the next section.

6.4 Experiment 3: Comparison of RAIL-DA with Baselines

We compare RAIL-DA against the following baselines:

1. Passive. This baseline simulates the traditional approach by starting at the initial
state and querying the expert about what to do at each visited state.

2. unif-QBC. This baseline views all the MDP states as i.i.d. according to the uniform
distribution and applies the standard query-by-committee (QBC) (Seung et al., 1992)
active learning approach. Intuitively, this approach will select the state with highest
action uncertainty according to the current data set and ignores the state distribution.

3. unif-RAND. This baseline selects states to query uniformly at random.

4. Confidence based autonomy (CBA) (Chernova and Veloso, 2009). This approach re-
quires the use of policies that provide some form of confidence estimate (e.g., prob-
abilities over actions). Given the current set of labeled data, the approach executes
trajectories of the current policy until it reaches a state where the policy confidence
falls below a threshold. It then queries the expert for the correct action and updates
the policy accordingly. It then executes the correct action and continues until the
next low confidence state is reach. It is possible for CBA to stop asking queries once
the confidence exceeds the threshold in all states visited by the current policy. We use
the same automated threshold adjustment strategy proposed by Chernova and Veloso
(Chernova and Veloso, 2009). We also experimented with other threshold adjustment
mechanisms as well as fixed thresholds, but were unable to find an improvement that
performed better across our domains.

Figure 5 shows the results of this experiment along with 95% confidence intervals on
our first four test domains. Figure 5(a) shows the performance of RAIL-DA on cart-pole.

4132

Active Imitation Learning

0 20 40 60 80 100
−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

5000

6000

Number of Queries

T
o

ta
l

R
e

w
a

r
d

Expert

Passive

RAIL−DA

CBA

unif−QBC

unif−RAND

(a)

0 20 40 60 80 100
−200

0

200

400

600

800

1000

1200

Number of Queries

T
o

ta
l

R
e

w
a

r
d

Expert

Passive

RAIL−DA

CBA

unif−QBC

unif−RAND

(b)

0 20 40 60 80 100
0

50

100

150

Number of Queries

A
v

e
ra

g
e

 H
e

a
lt

h
 D

if
fe

re
n

c
e

Expert

Passive

RAIL−DA

CBA

(c)

0 100 200 300 400 500

−5

−4

−3

−2

−1

0

1
x 10

4

Number of Queries

T
o

ta
l
R

e
w

a
r
d

Expert

Passive

RAIL−DA

CBA

unif−QBC

unif−RAND

(d)

Figure 5: Active imitation learning results: (a) Cart-pole (b) Bicycle balancing (c) Wargus
(d) Driving domain.

4133

Judah, Fern, Dietterich and Tadepalli

−12 −10 −8 −6 −4 −2 0 2 4 6

x 10
−3

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

theta

th
e

ta
d

o
t

(a)

−12 −10 −8 −6 −4 −2 0 2 4 6

x 10
−3

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

theta

t
h

e
t
a
d

o
t

(b)

Figure 6: Queried states in Cart-pole for learners: (a) Passive, (b) RAIL-DA. The black
circles represent states where the right action is suggested by the expert policy.
The red stars represent states where the left action is suggested. The decision
boundary separating these two sets of states is a line very close to θ̇ = 0. We see
that unlike Passive, RAIL-DA focuses its queries around the decision boundary.
This figure is best viewed in color.

4134

Active Imitation Learning

We observe that RAIL-DA learns quickly and achieves optimal performance with only 30-
35 queries. Passive, on the other hand, takes 100 queries to get close to the optimal
performance. The reason for this difference is clear when one visualizes the states queried
by RAIL-DA versus Passive. Figure 6(a) shows the states queried by Passive. The black
circles represent states where the right action is suggested by the expert. The red stars
represent states where the left action is optimal according to the expert. The decision
boundary of the expert policy is the line separating these two sets of states (very close
to θ̇ = 0). We notice that Passive asks many uninformative queries that are not close to
the decision boundary. Figure 6(b) shows the queries posed by RAIL-DA. We see that the
queries posed by RAIL-DA tend to be close to the decision boundary of the expert policy.

A naive reduction to active learning can be dangerous, as demonstrated by the poor
performance of unif-QBC. Further, RAIL-DA performs much better than random query
selection as demonstrated by the performance of unif-RAND. By ignoring the real data
distribution altogether and incorrectly assuming it to be uniform, these naive methods end
up asking many queries that are not relevant to learning the expert policy (e.g., states
where the pole is in an irrecoverable fall or the cart is out of bounds). CBA, like RAIL-DA,
learns quickly but settles at a suboptimal level of performance. This is because it becomes
confident prematurely and stops asking queries. This shows that CBA’s automatic threshold
adjustment mechanism did not work well in this domain. We did experiment with several
modifications to the threshold adjustment strategy, but we were unable to find one that
was robust across all our domains. Thus we report results for the original strategy.

Figure 5(b) compares each approach in the bicycle domain. The results are similar
to those of cart-pole with RAIL-DA being the top performer. Unif-RAND and Unif-QBC
show notably poor performance in this domain. This is because bicycle balancing is a harder
learning problem than cart-pole with many more uninformative states (an unrecoverable
fall or fallen state). We found that almost all queries posed by Unif-RAND and Unif-QBC
were in these states. CBA does only slightly better than Passive, though unlike cart-pole,
it achieves near-optimal asymptotic performance.

The results in the Wargus domain are shown in Figure 5(c). Passive learns along the
expert’s trajectory in each map on all 5 training maps considered sequentially according to
a random ordering. For RAIL-DA, in each iteration a training map is selected randomly
and a query is posed in the chosen map. For CBA, a map is selected randomly and CBA is
allowed to play an episode in it, pausing and querying as and when needed. If the episode
ends, another map is chosen randomly and CBA continues to learn in it. After each query,
the learned policy is tested on the 16 test maps. We use the difference in the total health
of friendly and enemy units at the end of the battle as the performance metric (which is
positive for a win). We did not run experiments for unif-QBC and unif-RAND, because it
is difficult to define the space of feasible states over which to sample uniformly.

We see that although Passive learns quickly for the first 20 queries, it fails to improve
further. This shows that the states located in this initial prefix of the expert’s trajectory
are very useful, but thereafter Passive gets stuck on the uninformative part of the trajec-
tory until its query budget is over. On the other hand, RAIL-DA and CBA continue to
improve beyond Passive, with the performance of CBA being comparable to RAIL-DA in
this domain, which indicates that both these active learners are able to locate and query
more informative states.

4135

Judah, Fern, Dietterich and Tadepalli

The results for the driving domain are shown in Figure 5(d). We see qualitatively
similar performance trends as in the previous three domains with RAIL-DA still being the
best performing learner and outperforming most of the competing baselines. The exception
however is that unif-QBC and unif-RAND perform quite well in this domain, both being
able to outperform Passive and even CBA. Furthermore, performance of unif-QBC is quite
comparable to that of RAIL-DA. The good performance of unif-QBC and unif-RAND in the
driving domain is due to the fact that obtaining action labels on most states in the driving
domain can serve as useful training data for learning the expert policy. This is unlike the
previous three domains, where labels obtained for many states were relatively useless for
learning the target policy (e.g., states with a fallen pole or bike).

Our final set of results are in the structured prediction domain. Passive learns along
the expert’s trajectory on each training sequence considered in the order it appears in
the training set. Therefore, Passive always learns on the correct context, i.e., previous
L characters correctly labeled. RAIL-DA and unif-QBC can select the best query across
the entire training set. CBA, like Passive, considers training sequences in the order they
appear in the training set and learns on each sequence by pausing and querying as and
when needed. To minimize the effects of the ordering of the training sequences on the
performance of Passive and CBA, for all learners, we ran 50 different trials where in each
trial we randomize the order of the training sequences. We report final performance as the
learning curves averaged across all 50 trials. The learning curves along with 95% confidence
intervals are shown in figure 7.

Figures 7(a) and (b) presents the stress prediction results. The results are qualitatively
similar to cart-pole, except that Unif-QBC and unif-RAND do quite well in this domain
but not as well as RAIL-DA. We see that CBA performs quite poorly because we found
that in several trials it prematurely stops asking queries,5 which reveals its sensitivity to its
threshold adjustment mechanism. Similar trends are seen in the phoneme prediction results
shown in Figures 7(c) and (d). CBA does well on this task but not as well as RAIL-DA.

6.5 Overall Observations

We can draw a number of conclusions from the experiments. First, the implementation
choices discussed in Section 5 are necessary to make RAIL more practical. In particular,
RAIL-DA, which aggregates data and asks only one query per iteration, proved to be the
most robust among all the variants of RAIL. Second, the choice of the active i.i.d. learner
used for RAIL is important. In particular, performance can be poor when the active learning
algorithm does not take density information into account. Using density weighted query-
by-committee was effective in all of our domains. Third, RAIL-DA proved to be the most
robust and effective active imitation learning algorithm among several baselines in all of
our domains. It outperformed all other baselines in our experiments. Fourth, we found
that CBA is quite sensitive to the threshold adjustment mechanism, and we were unable
to find an alternative mechanism that works across our domains. In the original CBA
paper by Chernova and Veloso (Chernova and Veloso, 2009), CBA was tested only on

5. To plot the learning curve for CBA, for each trial, we took the character accuracy after the last query
and extrapolated it to 300 queries to obtain a curve. The final curve is the average of the extrapolated
curves.

4136

Active Imitation Learning

0 50 100 150 200 250 300
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Number of Queries

P
re

d
ic

ti
o

n
 A

c
c

u
ra

c
y

 p
e

r
C

h
a

ra
c

te
r

Passive

RAIL−DA

CBA

unif−QBC

unif−RAND

(a)

0 50 100 150 200 250 300
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Number of Queries

P
re

d
ic

ti
o

n
 A

c
c

u
ra

c
y

 p
e

r
C

h
a

ra
c

te
r

Passive

RAIL−DA

CBA

unif−QBC

unif−RAND

(b)

0 50 100 150 200 250 300
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Queries

P
re

d
ic

ti
o

n
 A

c
c

u
ra

c
y

 p
e

r
C

h
a

ra
c

te
r

Passive

RAIL−DA

CBA

unif−QBC

unif−RAND

(c)

0 50 100 150 200 250 300
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Queries

P
re

d
ic

ti
o

n
 A

c
c

u
ra

c
y

 p
e

r
C

h
a

ra
c

te
r

Passive

RAIL−DA

CBA

unif−QBC

unif−RAND

(d)

Figure 7: Active imitation learning results on NETtalk: (a) Stress prediction, L = 1 (b)
Stress prediction, L = 2 (c) Phoneme prediction, L = 1 (d) Phoneme prediction,
L = 2. Character accuracy of the expert is 1.

4137

Judah, Fern, Dietterich and Tadepalli

Passive Imitation Learning Active Imitation Learning

Non-stationary T ·Np(
ε
T 2 ,

δ
T)

∑T
t=1Na(

ε
T 2 ,

δ
T , d

t
π̂t−1)

Stationary T ·Np(
ε
T 2 , δ)

∑T
t=1Na(

ε
T 3 ,

δ
T , dπ̂t−1)

Table 1: A comparison of the best known label complexities for PAC learning deterministic
stationary and non-stationary policies in the passive and active settings. The label
complexities are for learning policies with regret no more than ε with probability
at least 1 − δ. Np(ε

′, δ′) and Na(ε
′, δ′, D) are label complexities of passive and

active i.i.d. learning respectively with accuracy and reliability parameters ε′ and δ′

and data distribution D. When Na is exponentially smaller than Np on some or all
of the distributions dπ̂t−1 , t = 1 . . . T , then these savings in label complexity in the
i.i.d. setting translate to imitation learning resulting in improved label complexity
of active imitation learning compared to passive.

the driving domain, and in their experiment CBA was initialized with a large amount of
training data. We found that initializing CBA with a larger training set also resulted in
improved performance of CBA in all of our domains. However, this conflicts with our goal of
minimizing the amount of training data required from the expert, and hence we initialized
all learners with the minimum training data required by the SimpleLogistic classifier. This
turned out to be insufficient for CBA to function properly. Fifth, we showed that a more
naive application of active i.i.d. learning in the imitation setting is not always effective.

7. Summary and Future Work

We considered reductions from active imitation learning to active i.i.d. learning, which al-
low for advances in the i.i.d. setting to translate to imitation learning. First, we analyzed
the label complexity of reductions for both non-stationary and stationary policies, showing
the number of queries required for active imitation learning in terms of the active sample
complexity in the i.i.d. setting. These results for the realizable learning setting are sum-
marized in Table 1. In the non-stationary case, the results show that active IL will not be
worse than passive IL provided that the i.i.d. active learning algorithm is guaranteed to be
no worse than passive. Further we can expect significant improvement in query complexity
when the active i.i.d. algorithm is significantly better than the passive i.i.d. learner.

For the case of stationary policies, our current reduction RAIL only guarantees improve-
ment or equivalence to passive IL when there is significant reduction in sample complexity
of i.i.d. active learning over passive learning. While this is often the case in practice, it
leaves an open theoretical problem. If we use an active i.i.d. learner that is guaranteed to
do no worse than passive, then can we find a reduction such that active IL also has that
guarantee?

Our second contribution was to introduced RAIL-DA, a practical variant of the reduction
for stationary policies. RAIL-DA employees data aggregation and incremental learning in
order to address several practical inefficiencies noted for the RAIL algorithm studied in the
analysis. Our experiments showed that RAIL-DA significantly improved over RAIL and

4138

Active Imitation Learning

other variants of RAIL+. Further, we showed that in five domains RAIL-DA significantly
outperformed a number of natural alternatives and the CBA algorithm from prior work.

The work presented in this paper is a first theoretical effort towards analyzing an active
imitation learning approach and showing that it enjoys better label complexity than the
traditional passive approach. In addition to the above open problem, an interesting line of
followup work is to analyze RAIL-DA or other variants of RAIL that use data aggregation.
Further, it is of interest to consider the online active learning setting, where the learner is
embedded in a real environment, rather than having access to a simulator that can be reset.
Such an algorithm might resemble the CBA algorithm, which would continually execute
the current policy and only query the expert when it was uncertain. This is similar to
the traditional QBC active learning algorithm in the i.i.d. setting. The only difference is
that in the imitation learning setting the unlabeled data stream does not come from a fixed
i.i.d. distribution, but rather from the policy being executed. It seems plausible that the
theoretical results for QBC could be extended to the imitation learning setting.

We are also interested in extending the allowed query responses. For example, it is
natural to allow the expert to declare a query as “bad” and refuse to provide an action
label. This is useful in situations where the queries are posed at states that the expert
would rarely or never encounter, and hence may have not natural preference about what
to do. In our bicycle balancing example, these correspond to states where the bicycle is in
an unavoidable fall, and no action can prevent the crash. In such cases, the expert is likely
to be uncertain or agnostic about the action, since the choice does not arise for the expert
or is unimportant. We would like to study how to incorporate the “bad query” response
into the query selection process and update policy parameters based on such responses as
those responses effectively indicate states to be avoided. A first step in this direction has
already been taken, where we used the “bad query” responses within a Bayesian active
learning framework to select queries (Judah et al., 2011). However, the responses were not
incorporated into the learning of policy parameters (or updating the posterior) in that work.

Finally, we would like to apply active imitation learning to other types of imitation
learning applications, e.g., the development of policy learning agents that learn by imitation
of computationally expensive automated experts. For example, given a domain model or
a simulator, automated experts based on various types of search can make near optimal
decisions, if provided enough time. However, generating full trajectories of near-optimal
behavior can be extremely time consuming, and require many trajectories if the learned
policy representation is complex. Active imitation learning could be a viable approach to
speed up the learning of more reactive policies, based on data from such computationally
expensive experts.

It is important to consider usability issues that arise when interacting with human ex-
perts. In particular, it is likely that the cost model of queries studied in this paper (cost of
1 per query) is overly simplistic. For example, it may be less work for an expert to answer
sets of queries about related states/scenarios, rather than arbitrary sets of queries. Under-
standing how to acquire and use such cost models for active learning is an interesting future
direction. Finally, real experts will often not correspond to deterministic policies. Rather,
they may appear to be non-deterministic or stochastic policies. Studying both passive and
active imitation learning in such a setting is an interesting an important direction.

4139

Judah, Fern, Dietterich and Tadepalli

Acknowledgments

The authors acknowledge support of the ONR ATL program N00014-11-1-0106. Any opin-
ions, findings and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the ONR. We would also like to
thank Robert Cohn and Aaron Wilson for making driving and bicycle simulators available.

References

P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the Twenty-First International Conference on Machine Learning, pages
1–8, 2004.

J. Azimi, A. Fern, X. Fern, G. Borradaile, and B. Heeringa. Batch active learning via
coordinated matching. In Proceedings of the Twenty-Ninth International Conference on
Machine Learning, pages 1199–1206, 2012.

A. Beygelzimer, S. Dasgupta, and J. Langford. Importance weighted active learning. In
Proceedings of the Twenty-Sixth International Conference on Machine Learning, pages
49–56, 2009a.

A. Beygelzimer, J. Langford, and P. Ravikumar. Error-correcting tournaments. In Proceed-
ings of the Twentieth International Conference on Algorithmic Learning Theory, pages
247–262, 2009b.

C. Boutilier, R. Dearden, and M. Goldszmidt. Stochastic dynamic programming with
factored representations. Artificial Intelligence, 121(1-2):49–107, 1999.

L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

K. Brinker. Incorporating diversity in active learning with support vector machines. In
Proceedings of the Twentieth International Conference on Machine Learning, pages 59–
66, 2003.

S. Chernova and M. Veloso. Interactive policy learning through confidence-based autonomy.
Journal of Artificial Intelligence Research, 34:1–25, 2009.

J. A. Clouse. An introspection approach to querying a trainer. Technical report, University
of Massachusetts, Amherst, MA, USA, 1996.

D. Cohn, L. Atlas, and R. Ladner. Improving generalization with active learning. Machine
Learning, 15(2):201–221, 1994.

R. Cohn, M. Maxim, E. Durfee, and S. Singh. Selecting operator queries using expected
myopic gain. In Proceedings of the IEEE/WIC/ACM International Conference on Web
Intelligence and Intelligent Agent Technology, pages 40–47, 2010.

R. Cohn, E. Durfee, and S. Singh. Comparing action-query strategies in semi-autonomous
agents. In Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence,
pages 1102–1107, 2011.

4140

Active Imitation Learning

I. Dagan and S. P. Engelson. Committee-based sampling for training probabilistic classifiers.
In Proceedings of the Twelfth International Conference on Machine Learning, pages 150–
157, 1995.

S. Dasgupta. Coarse sample complexity bounds for active learning. In Advances in Neural
Information Processing Systems 18, pages 235–242. MIT Press, 2006.

S. Dasgupta. Two faces of active learning. Theoretical Computer Science, 412(19):1767–
1781, 2011.

H. Daumé, J. Langford, and D. Marcu. Search-based structured prediction. Machine
learning, 75(3):297–325, 2009.

T. Dietterich, G. Hao, and A. Ashenfelter. Gradient tree boosting for training conditional
random fields. Journal of Machine Learning Research, 9:2113–2139, 2008.

F. Doshi, J. Pineau, and N. Roy. Reinforcement learning with limited reinforcement: using
bayes risk for active learning in POMDPs. In Proceedings of the Twenty-Fifth Interna-
tional Conference on Machine Learning, pages 256–263, 2008.

Y. Freund, H. S. Seung, E. Shamir, and N. Tishby. Selective sampling using the query by
committee algorithm. Machine Learning, 28(2-3):133–168, 1997.

A. Gil, H. Stern, and Y. Edan. A Cognitive Robot Collaborative Reinforcement Learning
Algorithm. International Journal of Information and Mathematical Sciences, 5:273–280,
2009.

D. H. Grollman and O. C. Jenkins. Dogged learning for robots. In Proceedings of the IEEE
International Conference on Robotics and Automation, pages 2483–2488, 2007.

Y. Guo and D. Schuurmans. Discriminative batch mode active learning. In Advances in
Neural Information Processing Systems 20, pages 593–600. Curran Associates, Inc., 2008.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The WEKA
data mining software: an update. ACM SIGKDD Explorations Newsletter, 11(1):10–18,
2009.

S. Hanneke. Theoretical Foundations of Active Learning. PhD thesis, CMU Machine Learn-
ing Department, 2009.

S. C. H. Hoi, R. Jin, and M. R. Lyu. Large-scale text categorization by batch mode active
learning. In Proceedings of the Fifteenth International Conference on World Wide Web,
pages 633–642, 2006a.

S. C. H. Hoi, R. Jin, J. Zhu, and M. R. Lyu. Batch mode active learning and its application to
medical image classification. In Proceedings of the Twenty-Third International Conference
on Machine Learning, pages 417–424, 2006b.

K. Judah, S. Roy, A. Fern, and T. Dietterich. Reinforcement learning via practice and
critique advice. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial
Intelligence, pages 481–486, 2010.

4141

Judah, Fern, Dietterich and Tadepalli

K. Judah, A. Fern, and T. Dietterich. Active imitation learning via state queries. In
Proceedings of the ICML Workshop on Combining Learning Strategies to Reduce Label
Cost, 2011.

K. Judah, A. Fern, and T. Dietterich. Active imitation learning via reduction to i.i.d. active
learning. In Proceedings of the Twenty-Eighth Conference on Uncertainty in Artifial
Intelligence, pages 428–437, 2012.

R. Khardon. Learning to take actions. Machine Learning, 35(1):57–90, 1999.

L. Kocsis and C. Szepesvri. Bandit based monte-carlo planning. In Proceedings of the
Seventeenth European Conference on Machine Learning, pages 282–293, 2006.

M. Lopes, F. Melo, and L. Montesano. Active learning for reward estimation in inverse
reinforcement learning. In Proceedings of the European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases, pages 31–46, 2009.

A. McCallum and K. Nigam. Employing em and pool-based active learning for text classi-
fication. In Proceedings of the Fifteenth International Conference on Machine Learning,
pages 359–367, 1998.

L. Mihalkova and R. Mooney. Using active relocation to aid reinforcement learning. In
Prodeedings of the Nineteenth International Florida Artificial Intelligence Research Soci-
ety Conference, pages 580–585, 2006.

A. Y. Ng and S. Russell. Algorithms for inverse reinforcement learning. In Proceedings of
the Seventeenth International Conference on Machine Learning, pages 663–670, 2000.

J. Randløv and P. Alstrøm. Learning to drive a bicycle using reinforcement learning and
shaping. In Proceedings of the Fifteenth International Conference on Machine Learning,
pages 463–471, 1998.

S. Ross and J. A. Bagnell. Efficient reductions for imitation learning. In Proceedings of
the Thirteenth International Conference on Artificial Intelligence and Statistics, pages
661–668, 2010.

S. Ross, G. Gordon, and J. A. Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the Fourteenth International
Conference on Artifical Intelligence and Statistics, pages 627–635, 2011.

B. Settles. Active learning. Synthesis Lectures on Artificial Intelligence and Machine Learn-
ing, 6(1):1–114, 2012.

H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In Proceedings of the
Fifth Annual Workshop on Computational Learning Theory, pages 287–294, 1992.

A. P. Shon, D. Verma, and R. P. N. Rao. Active imitation learning. In Proceedings of the
Twenty-Second AAAI Conference on Artificial Intelligence, pages 756–762, 2007.

4142

Active Imitation Learning

D. Silver, J. A. Bagnell, and A. Stentz. Active learning from demonstration for robust
autonomous navigation. In Proceedings of the IEEE International Conference on Robotics
and Automation, pages 200–207, 2012.

R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press, Cambridge,
Massachusetts, 1998.

Umar Syed and Robert E. Schapire. A reduction from apprenticeship learning to classi-
fication. In Advances in Neural Information Processing Systems 23, pages 2253–2261.
Curran Associates, Inc., 2010.

L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,
1984.

Z. Xu, R. Akella, and Y. Zhang. Incorporating diversity and density in active learning
for relevance feedback. In Proceedings of the Twenty-Ninth European Conference on IR
Research, pages 246–257, 2007.

B. Zadrozny, J. Langford, and N. Abe. Cost-sensitive learning by cost-proportionate ex-
ample weighting. In Proceeings of the IEEE International Conference on Data Mining,
pages 435–442, 2003.

4143

	Introduction
	Related Work
	Problem Setup and Background
	Markov Decision Processes
	Problem Setup
	Background on I.I.D. Learning

	Reductions for Active Imitation Learning
	Non-Stationary Policies
	Stationary Policies
	Agnostic Case

	RAIL-DA: A Practical Variant of RAIL
	Data Aggregation and Incremental Querying
	Density Weighted QBC
	Bayesian Learner

	Experiments
	Domain Details
	Cart-Pole
	Bicycle Balancing
	Wargus
	Driving Domain
	Structured Prediction

	Experiment 1: Evaluation of the Effects of Data Aggregation and Query Size
	Experiment 2: Evaluation of RAIL-DA with Different Base Active Learners
	Experiment 3: Comparison of RAIL-DA with Baselines
	Overall Observations

	Summary and Future Work

