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Abstract

The ramp loss is a robust but non-convex loss for classification. Compared with other
non-convex losses, a local minimum of the ramp loss can be effectively found. The effec-
tiveness of local search comes from the piecewise linearity of the ramp loss. Motivated by
the fact that the `1-penalty is piecewise linear as well, the `1-penalty is applied for the
ramp loss, resulting in a ramp loss linear programming support vector machine (ramp-
LPSVM). The proposed ramp-LPSVM is a piecewise linear minimization problem and the
related optimization techniques are applicable. Moreover, the `1-penalty can enhance the
sparsity. In this paper, the corresponding misclassification error and convergence behavior
are discussed. Generally, the ramp loss is a truncated hinge loss. Therefore ramp-LPSVM
possesses some similar properties as hinge loss SVMs. A local minimization algorithm and
a global search strategy are discussed. The good optimization capability of the proposed
algorithms makes ramp-LPSVM perform well in numerical experiments: the result of ramp-
LPSVM is more robust than that of hinge SVMs and is sparser than that of ramp-SVM,
which consists of the ‖ · ‖K-penalty and the ramp loss.

Keywords: support vector machine, ramp loss, `1-regularization, generalization error
analysis, global optimization

1. Introduction

In a binary classification problem, the input space is a compact subset X ⊂ Rn and the
output space Y = {−1, 1} represents two classes. Classification algorithms produce binary
classifiers C : X → Y induced by real-valued functions f : X → R as C = sgn(f), where the
sign function is defined by sgn(f(x)) = 1 if f(x) ≥ 0 and sgn(f(x)) = −1 otherwise. Since
proposed by Cortes and Vapnik (1995), the support vector machine (SVM) has become a
popular classification method, because of its good statistical property and generalization
capability. SVM is usually based on a Mercer kernel K to produce non-linear classifiers.
Such a kernel is a continuous, symmetric, and positive semi-definite function defined on
X × X. Given training data z = {xi, yi}mi=1 with xi ∈ X, yi ∈ Y and a loss function
L : R → R+, in the functional analysis setting, SVM can be formulated as the following
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optimization problem

min
f∈HK,b∈R

µ

2
‖f‖2K +

1

m

m∑
i=1

L(1− yi(f(xi) + b)), (1)

where HK is the Reproducing Kernel Hilbert Space (RKHS) induced by the Mercer kernel
K with the norm ‖ · ‖K (Aronszajn, 1950) and µ > 0 is a trade-off parameter. The constant
term b is called offset, which leads to much flexibility. The corresponding binary classifier
is evaluated based on the optima of (1) by its sign function. Traditionally, the hinge loss
Lhinge(u) = max{u, 0} is used. Besides, the squared hinge loss (Vapnik, 1998) and the least
squares loss (Suykens and Vandewalle, 1999; Suykens et al., 2002) also have been widely
applied. In classification and the related methodologies, robustness to outliers is always
an important issue. The influence function (see, e.g., Steinwart and Christmann, 2008; De
Brabanter et al., 2009) related to the hinge loss is bounded, which means that the effect of
outliers on the result of minimizing the hinge loss is bounded. Though the effect is bounded,
it can be significantly large since the penalty given to the outliers by the hinge loss is quite
huge. In fact, any convex loss is unbounded. To remove the effect of outliers, researchers
turn to some non-convex losses, such as the hard-margin loss, the normalized sigmoid loss
(Mason et al., 2000), the ψ-learning loss (Shen et al., 2003), and the ramp loss (Collobert
et al., 2006a,b). The ramp loss is defined as follows,

Lramp(u) =

{
Lhinge(u), u ≤ 1,
1, u > 1,

which is also called a truncated hinge loss in Wu and Liu (2007). The plots of the mentioned
losses are illustrated in Figure 1, showing the robustness of these non-convex losses.
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Figure 1: Plots of losses used for classification: (a) convex losses: the hinge loss (dash-
dotted line), the squared hinge loss (solid line), and the least squares loss (dashed
line); (b) robust but non-convex losses: the hard margin loss (blue dash-dotted
line), the ψ-learning loss (green dashed line), the normalized sigmoid loss (blue
solid line), and the ramp loss (red dashed line).
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Among the mentioned robust but non-convex losses, the ramp loss is an attractive one.
Using the ramp loss in (1), one obtains a ramp loss support vector machine (ramp-SVM).
Because the ramp loss can be easily written as a difference of convex functions (DC),
algorithms based on DC programming are applicable for ramp-SVM. The discussion about
DC programming can be found in An et al. (1996), Horst and Thoai (1999), and An and
Tao (2005). To apply DC programming in the ramp loss, we first observe the identity

Lramp(u) = min{max{u, 0}, 1} = max{u, 0} −max{u− 1, 0}. (2)

Therefore, SVM (1) with L = Lramp can be decomposed into the convex part µ
2‖f‖

2
K +

1
m

∑m
i=1 max{1 − yi(f(xi) + b), 0} and the concave part − 1

m

∑m
i=1 max{−yi(f(xi) + b), 0}.

Hence DC programming can be used for finding a local minimizer of this problem, which
has been applied by Collobert et al. (2006a), Wu and Liu (2007). DC programming for
ramp-SVM is also referred to as a concave-convex procedure by Yuille and Rangarajan
(2003). Besides the continuous optimization methods, ramp-SVM has been formulated as
a mixed integer optimization problem by Brooks (2011) as below,

min
f∈HK,b∈R,ω

µ
2‖f‖

2
K + 1

m

∑m
i=1(ei + ωi)

s.t. ωi ∈ {0, 1},
0 ≤ ei ≤ 1, i = 1, · · · ,m,
yi(f(xi) + b) ≥ 1− ei, if ωi = 0.

(3)

The optimization problem (3) should be solved over all possible binary vectors ω = [ω1, . . . ,
ωm]T ∈ {0, 1}m. Once the binary vector ω is given, this problem can be solved by quadratic
programming. Consequently, when the size of the problem grows, the computation time
explodes.

It is worth noting the case of taking L = Lhinge in (1). It corresponds to the well-known
C-SVM. One can solve C-SVM by its dual form, then the output function is represented as∑m

i=1 ν
∗
i yiK(x, xi) + b∗, where [ν∗1 , · · · , ν∗m]T is the optimal solution of

min
νi∈R

1
2

∑m
i,j=1 νiνjyiyjK(xi, xj)−

∑m
i=1 νi

s.t.
∑m

i=1 νiyi = 0,
0 ≤ νi ≤ 1

µm , i = 1, · · · ,m.

The optimal offset b∗ can be computed from the Karush-Kuhn-Tucker (KKT) conditions
after {ν∗i }mi=1 is found (see, e.g., Suykens et al., 2002). From the dual form of C-SVM, we
find that though we search the function f in a rather large space HK, the optimal solution
actually belongs to a finite-dimensional subspace given by H+

K,z with

H+
K,z =

{∑m

i=1
αiyiK(x, xi), ∀α = [α1, . . . , αm]T � 0

}
.

Here the notation � 0 means all the elements of the vector being non-negative.
To enhance the sparsity in the output function, the linear programming support vector

machine (LPSVM) directly minimizes the data fitting term 1
m

∑m
i=1 Lhinge(1−yi(f(xi)+b))

with a `1-penalty term (see Vapnik, 1998; Smola et al., 1999). Given f ∈ H+
K,z, the `1-

penalty is defined as

Ω(f) =

m∑
i=1

αi, for f =
m∑
i=1

αiyiK(x, xi), (4)
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which is the `1-penalty of the combinatorial coefficients of f . Then LPSVM can be formu-
lated as follows,

min
f∈H+

K,b∈R
µΩ(f) +

1

m

m∑
i=1

Lhinge(1− yi(f(xi) + b)). (5)

LPSVM is also related to 1-norm SVM proposed by Zhu et al. (2004), which searches a
linear combination of basis functions and does not consider the non-negative constraint.
The properties of LPSVM have been demonstrated in the literature (e.g., Bradley and
Mangasarian, 2000; Kecman and Hadzic, 2000). Generalization error analysis for LPSVM
can be found in Wu and Zhou (2005).

For problem (1), one can choose different penalty terms and different loss functions.
For example, using ‖f‖K together with the hinge loss, we obtain C-SVM. The property of
C-SVM can be observed from the properties of ‖f‖K and the hinge loss: since ‖f‖K is a
quadratic function and the hinge loss is piecewise linear (pwl), the objective function of C-
SVM is piecewise quadratic (pwq) and can be solved by constrained quadratic programming.
For LPSVM, which consists of the `1-penalty and the hinge loss, the objective function is
convex piecewise linear and hence can be minimized by linear programming. In Table 1, we
summarize the properties of several penalties and losses.

squared least ψ- normalized
‖f‖K Ω(f) hinge hinge squares learning sigmoid ramp

function type quadratic pwl pwl pwq quadratic discontinuous log pwl
convexity

√ √ √ √ √ × × ×
continuity

√ √ √ √ √ × √ √
smoothness

√ × × √ √ × √ ×
sparsity × √ √ √ × √ × √
bounded
influence fun. — —

√ × × √ √ √
bounded
penalty value — — × × × √ √ √

∗ “pwl” stands for piecewise linear; “pwq” stands for piecewise quadratic.

Table 1: Properties of Different Penalties and Losses

The ramp loss gives a constant penalty for any large outlier and it is obviously robust.
From Table 1, we observe that both Ω(f) and the ramp loss are continuous piecewise linear.
It follows that if we choose Ω(f) and the ramp loss, the objective function of (1) is continuous
piecewise linear and can be minimized by linear programming. Besides, minimizing Ω(f)
enhances the sparsity. Motivated by this observation, in this paper we study the binary
classifiers generated by minimizing the ramp loss and the `1-penalty, which is called a ramp
loss linear programming support vector machine (ramp-LPSVM). The ramp-LPSVM has
the following formulation,

(f∗z,µ, b
∗
z,µ) = argmin

f∈H+
K,z,b∈R

µΩ(f) +
1

m

m∑
i=1

Lramp(1− yi(f(xi) + b)), (6)
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where Ω(·) is the `1-penalty defined by (4). And the induced classifier is given by sgn(f∗z,µ+
b∗z,µ). We call (6) ramp-LPSVM, which implies that the algorithm proposed later involves
linear programming problems. Similarly to ramp-SVM, the proposed ramp-LPSVM enjoys
robustness. Moreover, it can give a sparser solution. In addition to enhancing the sparsity,
replacing the ‖ · ‖K-penalty in ramp-SVM by the `1-penalty is mainly motivated by the fact
that both the ramp loss and the `1-penalty are piecewise linear, which helps developing
more efficient algorithms.

Resulting from the identity (2), the problem related to ramp-LPSVM leads to a polyhe-
dral concave problem, which minimizes a concave function on one polyhedron. A polyhedral
concave problem is easier to handle than a regular non-convex problem and some efficient
methods were reviewed by Horst and Hoang (1996). Moreover, ramp-LPSVM (6) has a
piecewise linear objective function. For such kind of problems, a hill detouring technique
proposed by Huang et al. (2012a) has shown good global search capability. As the name sug-
gests, the hill detouring method searches on the level set to escape from a local optimum.
One contribution of this paper is that we establish algorithms for solving ramp-LPSVM
(6), including DC programming for local minimization and hill detouring for global search.
Additionally, we investigate the asymptotic performance of ramp-LPSVM under the frame-
work of statistical learning theory. Our analysis implies that ramp-LPSVM has a similar
misclassification error bound and similar convergence behavior as C-SVM. Moreover, one
can expect that the output binary classifier of algorithm (6) is robust, due to the ramp loss,
and has a sparse representation, due to the `1-penalty.

The remainder of the paper is organized as follows: some statistical properties for the
proposed ramp-LPSVM are discussed in Section 2. In Section 3, we establish problem-
solving algorithms including DC programming for local minimization, and hill detouring
for escaping from local optima. The proposed algorithms are tested then on numerical
experiments in Section 4. Section 5 ends the paper with concluding remarks.

2. Theoretical Properties

In this section, we establish the theoretical analysis for ramp-LPSVM under the framework
of statistical learning theory. In the following, we first show that the ramp loss is classifica-
tion calibrated; see Proposition 1. In other works, we prove that minimizing the ramp loss
results in the Bayes classifier. After that, an inequality is presented in Theorem 2 to bound
the difference between the risk of the Bayes classifier and that of the classifier induced from
minimizing the ramp loss. Finally, we obtain the convergence behavior of ramp-LPSVM,
which is given in Theorem 5. To prove Theorem 5, error decomposition theorems for ramp-
SVM and ramp-LPSVM are discussed. The analysis on the ramp loss is closely related to
the properties of the hinge loss, because the ramp loss can be regarded as a truncated hinge
loss. In our analysis, the global minimizer of the ramp loss plays an important role, which
motivates us to establish a global search strategy in the next section.

To this end, we assume that the sample z = {xi, yi}mi=1 is independently drawn from a
probability measure ρ on X×Y . The misclassification error for a binary classifier C : X → Y
is defined as the probability of the event C(x) 6= y:

R(C) =

∫
X×Y

Iy 6=C(x)dρ =

∫
X
ρ(y 6= C(x)|x)dρX ,
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where I is the indicator function, ρX is the marginal distribution of ρ on X, and ρ(y|x)
is the conditional distribution of ρ at given x. It should be pointed out that ρ(y|x) is a
binary distribution, which is given by Prob(y = 1|x) and Prob(y = −1|x). The classifier
that minimizes the misclassification error is the Bayes rule fc, which is defined as,

fc = arg min
C:X→Y

R(C).

The Bayes rule can be evaluated as

fc(x) =

{
1, if Prob(y = 1|x) ≥ Prob(y = −1|x),
−1, if Prob(y = 1|x) < Prob(y = −1|x).

The performance of a binary classifier induced by a real-valued function f is measured by
the excess misclassification error R(sgn(f))−R(fc). Let fz,µ = f∗z,µ + b∗z,µ with (f∗z,µ, b

∗
z,µ)

being the global minimizer of ramp-LPSVM (6). The purpose of the theoretical analysis is
to estimate R(sgn(fz,µ))−R(fc) as the sample size m tends to infinity. Convergence rates
will be derived under the choice of the parameter µ and conditions on the distribution ρ.

As an important ingredient in classification algorithms, the loss function L is used
to model the target function of interest. Concretely, the target function denoted as fL,ρ
minimizes the expected L-risk

RL,ρ(f) =

∫
X×Y

L(1− yf(x))dρ

over all possible functions f : X → R and can be defined pointwisely as below,

fL,ρ(x) = arg min
t∈R

∫
Y
L (1− yt) dρ(y|x), ∀x ∈ X.

The basic idea on designing algorithms is to replace the unknown true risk RL,ρ by the
empirical L-risk

RL,z(f) =
1

m

m∑
i=1

L(1− yif(xi)), (7)

and to minimize this empirical risk (or its penalized version) over a suitable function class.
When the hard margin loss, which counts the number of misclassification,

Lmis(u) =

{
0, u ≥ 0,
1, u < 0,

is used, one can check that for any binary classifier C : X → Y , there holds R(C) =
RLmis,ρ(C). Therefore, the excess misclassification error can be written as

RLmis,ρ(sgn(f))−RLmis,ρ(fc).

However, the empirical algorithms based on Lmis will lead to NP-hard optimization prob-
lems, and thus it is not computationally realizable. One way to resolve this issue is to
use surrogate loss functions as discussed in Section 1, and then to minimize the empirical
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risk associated with the used surrogate loss. Among these losses, the hinge loss plays an
important role, since one has fLhinge,ρ = fc.

Now we investigate the ramp loss. For a given x ∈ X, a simple calculation shows that∫
Y
Lramp (1− yt) dρ(y|x)

= Lramp(1− t)Prob(y = 1|x) + Lramp(1 + t)Prob(y = −1|x)

=


Prob(y = 1|x), t ≤ −1,
Prob(y = 1|x) + (1 + t)Prob(y = −1|x), −1 < t ≤ 0,
(1− t)Prob(y = 1|x) + Prob(y = −1|x), 0 ≤ t < 1,
Prob(y = −1|x), t ≥ 1.

Obviously, when Prob(y = 1|x) > Prob(y = −1|x), the minimal value is Prob(y = −1|x),
which is achieved by t = 1. When Prob(y = 1|x) < P(y = −1|x), the minimal value is
Prob(y = 1|x), which is achieved by t = −1. Therefore, the corresponding target function
fLramp,ρ that minimizes the expected Lramp-risk is the Bayes rule. The discussion above can
be concluded in the following proposition.

Proposition 1 For any measurable function f : X → R, there holds

RLramp,ρ(f) ≥ RLramp,ρ(fc).

That is, the Bayes rule fc is a minimizer of the expected Lramp-risk.

Next, for a real-valued function f : X → R, we consider bounding the excess misclas-
sification error by the generalization error RLramp,ρ(f) − RLramp,ρ(fLramp,ρ). Such kind of
bound plays an essential role in error analysis of classification algorithms. When the loss
function is convex and satisfies some regularity conditions, the corresponding bound is the
so-called self-calibration inequality and has been established by Bartlett et al. (2006) and
Steinwart (2007). For example, a typical result presented in Cucker and Zhou (2007) claims
that, if a general loss function satisfies the following conditions:

• L(1− u) is convex with respect to u;

• L(1− u) is differentiable at u = 0 and dL(1−u)
du |u=0 < 0;

• min{u : L(1− u) = 0} = 1;

• d2L(1−u)
du2

|u=1 > 0,

then there exists a constant cL > 0 such that for any measurable function f : X → R,

RLmis,ρ(sgn(f))−RLmis,ρ(fc) ≤ cL
√
RL,ρ(f)−RL,ρ(fL,ρ). (8)
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This inequality holds for many loss functions, such as the hinge loss, the squared hinge loss,
and the least squares loss. For the hinge loss Lhinge, Zhang (2004) gave a tighter bound by
the following inequality,

RLmis,ρ(sgn(f))−RLmis,ρ(fc) ≤ RLhinge,ρ(f)−RLhinge,ρ(fLhinge,ρ).

The improvement is mainly due to the property that RLhinge,ρ(fLhinge,ρ) = RLhinge,ρ(fc).
For the ramp loss Lramp, we cannot directly use the conclusion given by (8), since the loss

is not convex. However, as Lramp can be considered as a truncated hinge loss and maintains
the same property due to Proposition 1, one thus can establish a similar inequality for the
ramp loss.

Theorem 2 For any probability measure ρ and any measurable function f : X → R,

RLmis,ρ(sgn(f))−RLmis,ρ(fc) ≤ RLramp,ρ(f)−RLramp,ρ(fLramp,ρ). (9)

Proof By Proposition 1, we have RLramp,ρ(fLramp,ρ) = RLramp,ρ(fc). Since y and fc(x)
belong to {−1, 1}, 1−yfc(x) takes value of 0 or 2. We hence haveRLmis,ρ(fc) = RLramp,ρ(fc),
which comes from the fact that

Lmis(0) = Lramp(0) and Lmis(2) = Lramp(2).

Thus, to prove (9), we need to show that

RLmis,ρ(sgn(f)) ≤ RLramp,ρ(f), (10)

which is equivalent to∫
X×Y

Lmis

(
1− ysgn(f(x))

)
− Lramp

(
1− yf(x)

)
dρ ≤ 0.

For any y and f(x), if yf(x) ≤ 0, then ysgn(f(x)) ≤ 0, which follows that Lmis(1 −
ysgn(f(x))) = Lramp(1 − yf(x)) = 1. If yf(x) > 0, then we have ysgn(f(x)) = 1 and
Lmis(1− ysgn(f(x))) = 0. Since Lramp(1− yf(x)) is always nonnegative, we have Lmis(1−
ysgn(f(x)))− Lramp(1− yf(x)) ≤ 0 for this case.

Summarizing the above discussion, we prove (10) and then Theorem 2.

From Theorem 2, in order to estimate RLmis,ρ(sgn(fz,µ))−RLmis,ρ(fc), we turn to bound
RLramp,ρ(fz,µ) − RLramp,ρ(fc). We thus need an error decomposition for the latter. This
decomposition process is well-developed in the literature for RKHS-based regularization
schemes (see, e.g., Cucker and Zhou, 2007; Steinwart and Christmann, 2008). To explain
the details, we take ramp-SVM below as an example. For z = {xi, yi}mi=1 and λ > 0, let
f̃z,λ = f̃∗z,λ + b̃∗z,λ, where

(f̃∗z,λ, b̃
∗
z,λ) = argmin

f∈HK,b∈R

λ

2
‖f‖2K +

1

m

m∑
i=1

Lramp(1− yi(f(xi) + b)). (11)
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Then the following decomposition holds true:

RLramp,ρ(f̃z,λ)−RLramp,ρ(fc) ≤
{
RLramp,ρ(f̃z,λ)−RLramp,z(f̃z,λ)

}
+
{
RLramp,z(fλ)−RLramp,ρ(fλ)

}
+A(λ),

where RLramp,z(f) is the empirical Lramp-risk given by (7). The function fλ depends on λ
and is defined by the data-free limit of (11), that is fλ = f∗λ + b∗λ with

(f∗λ , b
∗
λ) = argmin

f∈HK,b∈R

λ

2
‖f‖2K +Rramp,ρ(f + b). (12)

The term A(λ) measures the approximation power of the system (K, ρ) and is defined by

A(λ) = inf
f∈HK,b∈R

λ

2
‖f‖2K +Rramp,ρ(f + b)−Rramp,ρ(fc), ∀λ > 0. (13)

It is easy to establish such kind of decomposition if one notices the fact that both f̃z,λ and
fλ lie in the same function space. However, it is not the case for ramp-LPSVM. The data-
dependent nature of H+

K,z leads to an essential difficulty in the error analysis. Motivated by
Wu and Zhou (2005), we shall establish the error decomposition for ramp-LPSVM (6) with
the aid of f̃z,λ. To this end, we first show some properties of f̃z,λ, which play an important
role in our analysis.

Proposition 3 For any λ > 0, (f̃∗z,λ, b̃
∗
z,λ) is given by (11) and f̃z,λ = f̃∗z,λ + b̃∗z,λ. Then

f̃∗z,λ ∈ H
+
K,z and

Ω(f̃∗z,λ) ≤ λ−1RLramp,z(f̃z,λ) + ‖f̃∗z,λ‖2K. (14)

Proof Following the idea of Brooks (2011), one can formulate the minimization problem
(11) as a mixed integer optimization problem, which is given by (3) with µ = λ. We first
show that if the binary vector ω∗ = [ω∗1, · · · , ω∗m]T ∈ {0, 1}m is optimal for the optimization
problem (3), then the global minimizer of (11) can be obtained by solving the following
minimization problem

min
f∈HK,ei,b∈R

λ
2‖f‖

2
K + 1

m

∑m
i=1 ei

s.t. ei ≥ 0, i = 1, · · · ,m,
yi(f(xi) + b) ≥ 1− ei, if ω∗i = 0.

(15)

In fact, when the optimal ω∗ is given, the global minimizer of (11) can be solved by the
optimization problem (3), which is reduced to

min
f∈HK,ei,b∈R

λ
2‖f‖

2
K + 1

m

∑m
i=1 ei

s.t. 0 ≤ ei ≤ 1, i = 1, · · · ,m,
yi(f(xi) + b) ≥ 1− ei, if ω∗i = 0.

(16)

Let e∗ = [e∗1, · · · , e∗m]T be the optimal slack variables in the above minimization problem.
Then the triple (f̃∗z,λ, b̃

∗
z,λ, e

∗) is the optimal solution of minimization problem (16). Cor-

respondingly, denote (f̃1z,λ, b̃
1
z,λ, e

∗1) as the optimal solution of minimization problem (15)
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with e∗1 = [e∗11 , · · · , e∗1m ]T . As the constraints in problem (16) is a subset of that in problem
(15), we thus have

λ

2
‖f̃1z,λ‖2K +

1

m

m∑
i=1

e∗1i ≤
λ

2
‖f̃∗z,λ‖2K +

1

m

m∑
i=1

e∗i .

To prove our claim, we just need to verify that 0 ≤ e∗1i ≤ 1 for i = 1, · · · ,m. For ω∗i = 1,
it is easy to see that e∗1i = 0. Next we prove the conclusion for the case ω∗i = 0. Define
an index set as I := {i ∈ {1, · · · ,m} : ω∗i = 0 and e∗1i > 1}. If I is an non-empty set, we
further define a binary vector ω′ with ω′i = 1 for i ∈ I and ω′i = ω∗i otherwise. As ωi = 1
implies the corresponding optimal ei should equal 0, we then define e′i as e′i = 0 if ω′i = 1
and e′i = e∗1i otherwise. One can check that

λ

2
‖f̃1z,λ‖2K +

1

m

m∑
i=1

(e′i + ω′i) <
λ

2
‖f̃1z,λ‖2K +

1

m

m∑
i=1

(e∗1i + ω∗i ) ≤
λ

2
‖f̃∗z,λ‖2K +

1

m

m∑
i=1

(e∗i + ω∗i ).

We thus derive a contradiction to the assumption that (f̃∗z,λ, b̃
∗
z,λ, e

∗, ω∗) is a global optimal
solution for problem (3) and the conclusion follows.

Now we can prove our desired result based on the optimization problem (15). Let
I0 = {i : ω∗i = 0} and I1 = {i : ω∗i = 1}. Since the triple (f̃∗z,λ, b̃

∗
z,λ, e

∗) is the optimal
solution of problem (15), from the KKT condition, there exist constants {α̃∗i }i∈I0 , such that

f̃∗z,λ(x) =
∑
i∈I0

α̃∗i yiK(xi, x) with 0 ≤ α̃∗i ≤
1

λm
,

∑
i∈I0

α̃∗i yi = 0,

1− yi(f̃∗z,λ(xi) + b̃∗z,λ) ≤ 0, if i ∈ I0 and α̃∗i = 0,

0 ≤ e∗i = 1− yi(f̃∗z,λ(xi) + b̃∗z,λ) ≤ 1, if i ∈ I0 and α̃∗i 6= 0.

We also have e∗i = 0, if i ∈ I1. Moreover, by the same argument used in the proof about
the equivalence of problems (15) and (16), one can find that when i ∈ I1, we must have
1− yi(f̃∗z,λ(xi) + b̃∗z,λ) > 1 or 1− yi(f̃∗z,λ(xi) + b̃∗z,λ) < 0 due to the optimality of ω∗.

From the expression of f̃∗z,λ, we can write f̃∗z,λ as
∑m

i=1 α
∗
i yiK(xi, x) with α∗i = α̃∗i if

i ∈ I0 and α∗i = 0 otherwise. Then f̃∗z,λ ∈ H
+
K,z. Furthermore, the relation

∑
i∈I0 α̃

∗
i yi = 0

implies
∑

i∈I0 α̃
∗
i yib̃

∗
z,λ = 0. Then we have

Ω(f̃∗z,λ) =
∑
i∈I0

α̃∗i =
∑
i∈I0

α̃∗i (1− yi(f̃∗z,λ(xi) + b̃∗z,λ)) +
∑
i∈I0

α̃∗i yif̃
∗
z,λ(xi).

Note that f̃∗z,λ(x) =
∑

i∈I0 α̃
∗
i yiK(xi, x). By the definition of ‖ · ‖K-norm, it follows that∑

i∈I0

α̃∗i yif̃
∗
z,λ(xi) =

∑
i,j∈I0

α̃∗i yiα̃
∗
jyjK(xi, xj) = ‖f̃∗z,λ‖2K.
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Additionally, based on our analysis, we also have∑
i∈I0

α̃∗i (1− yi(f̃∗z,λ(xi) + b̃∗z,λ)) =
∑
i∈I0

α̃∗iLramp(yi(f̃
∗
z,λ(xi) + b̃∗z,λ)) ≤ λ−1RLramp,z(f̃z,λ).

Hence the bound for Ω(f̃∗z,λ) follows.

Now we are in the position to make an error decomposition for ramp-LPSVM.

Theorem 4 For 0 < µ ≤ λ ≤ 1, let η = µ
λ . Recall that fz,µ = f∗z,µ + b∗z,µ where (f∗z,µ, b

∗
z,µ)

is a global minimizer of ramp-LPSVM (6) and fλ = f∗λ + b∗λ with (f∗λ , b
∗
λ) given by (12).

Define the sample error S(m,µ, λ) as below,

S(m,µ, λ) =
{
RLramp,ρ(fz,µ)−RLramp,z(fz,µ)

}
+ (1 + η)

{
RLramp,z(fλ)−RLramp,ρ(fλ)

}
.

Then there holds

RLramp,ρ(fz,µ)−Rramp,ρ(fc) + µΩ(f∗z,µ) ≤ ηRLramp,ρ(fc) + S(m,µ, λ) + 2A(λ), (17)

where A(λ) is the approximation error given by (13).

Proof Recall that for any λ > 0, f̃z,λ = f̃∗z,λ + b̃∗z,λ where (f̃∗z,λ, b̃
∗
z,λ) is given by (11). Due

to the definition of fz,µ and the fact f̃∗z,λ ∈ H
+
K,z, we have

RLramp,z(fz,µ) + µΩ(f∗z,µ) ≤ RLramp,z(f̃z,λ) + µΩ(f̃∗z,λ).

Proposition 3 gives

Ω(f̃∗z,λ) ≤ λ−1RLramp,z(f̃z,λ) + ‖f̃∗z,λ‖2K.

Hence,

RLramp,z(fz,µ) + µΩ(f∗z,µ) ≤
(

1 +
µ

λ

)
RLramp,z(f̃z,λ) + µ‖f̃∗z,λ‖2K.

This enables us to bound RLramp,ρ(fz,µ) + µΩ(f∗z,µ) as

RLramp,ρ(fz,µ) + µΩ(f∗z,µ) ≤
{
RLramp,ρ(fz,µ)−RLramp,z(fz,µ)

}
+
(

1 +
µ

λ

)
RLramp,z(f̃z,λ) + µ‖f̃∗z,λ‖2K.

Next we use the definitions of f̃z,λ and fλ to analyze the last two terms of the above bound:(
1 +

µ

λ

)
RLramp,z(f̃z,λ) + µ‖f̃∗z,λ‖2K

≤
(

1 +
µ

λ

)(
RLramp,z(f̃z,λ) + λ‖f̃∗z,λ‖2K

)
≤
(

1 +
µ

λ

) (
RLramp,z(fλ) + λ‖f∗λ‖2K

)
=
(

1 +
µ

λ

) (
RLramp,z(fλ)−RLramp,ρ(fλ) +RLramp,ρ(fλ) + λ‖f∗λ‖2K

)
.
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Combining the above estimates, we find that RLramp,ρ(fz,µ)−Rramp,ρ(fc) +µΩ(f∗z,µ) can be
bounded by{

RLramp,ρ(fz,µ)−RLramp,z(fz,µ)
}

+
(

1 +
µ

λ

){
RLramp,z(fλ)−RLramp,ρ(fλ)

}
+
(

1 +
µ

λ

){
RLramp,ρ(fλ)−RLramp,ρ(fc) + λ‖f∗λ‖2K

}
+
µ

λ
RLramp,ρ(fc).

Recalling the definition of fλ, one has A(λ) = RLramp,ρ(fλ)−RLramp,ρ(fc) +λ‖f∗λ‖2K. Hence
the desired result follows.

With the help of Theorem 4, the generalization error is estimated by bounding S(m,µ, λ)
and A(λ) respectively. As the ramp loss is Lipschitz continuous, one can show that

Rramp,ρ(f)−Rramp,ρ(fc) ≤ ‖f − fc‖L1
ρX
.

Hence the approximation error A(λ) can be estimated by the approximation in a weighted
L1 space with the norm ‖f‖L1

ρX
=
∫
X |f(x)|dρX , as done in Smale and Zhou (2003). The

following assumption is standard in the literature of learning theory (see, e.g., Cucker and
Zhou, 2007; Steinwart and Christmann, 2008).

Assumption 1 For any 0 < β ≤ 1 and cβ > 0, the approximation error satisfies

A(λ) ≤ cβλβ, ∀λ > 0. (18)

We also expect that the sample error S(m,λ, µ) will tend to zero at a certain rate as the
sample size tends to infinity. The asymptotical behaviors of S(m,λ, µ) can be illustrated
by the convergence of the empirical mean 1

m

∑m
i=1 ςi to its expectation Eςi, where {ςi}mi=1

are independent random variables defined as

ςi = Lramp(yif(xi)). (19)

At the end of this section, we present our main theorem to illustrate the convergence
behavior of ramp-LPSVM (6).

Theorem 5 Suppose that Assumption 1 holds with 0 < β ≤ 1. Take µ = m
− β+1

4β+2 and
fz,µ = f∗z,µ + b∗z,µ with (f∗z,µ, b

∗
z,µ) being the global minimizer of ramp-LPSVM (6). Then for

any 0 < δ < 1, with probability at least 1− δ, there holds

RLmis,ρ(sgn(fz,µ))−RLmis,ρ(fc) ≤ c̃
(

log
4

δ

)1/2

m
− β

4β+2 , (20)

where c̃ is a constant independent δ or m.

This theorem will be proved in Appendix by concentration techniques developed by
Bartlett and Mendelson (2003). Based on the decomposition formula (17) established for
ramp-LPSVM, one can also derive sharp convergence results under the framework applied
by Wu and Zhou (2005). Here we use ramp-SVM (11) to conduct an error decomposition
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for ramp-LPSVM (6), so the derived convergence rates of the latter are essentially no worse
than those of ramp-SVM. Actually, also from our discussion in this section, ramp-SVM and
C-SVM should have almost the same error bounds. One thus can expect that ramp-LPSVM
enjoys similar asymptotic behaviors as C-SVM. It also should be pointed that, throughout
our analysis, the global optimality plays an important role. Therefore, to guarantee the
performance of ramp-LPSVM, a global search strategy is necessary.

3. Problem-solving Algorithms

In the previous section, we discussed theoretical properties for ramp-LPSVM. Its robustness
and sparsity can be expected, if a good solution of ramp-LPSVM (6) can be obtained.
However, (6) is non-convex. Therefore, in this paper, we propose a downhill method for
local minimization and a heuristic for escaping a local minimum. Difference of convex
function (DC) programming proposed by An et al. (1996) and An and Tao (2005) has been
applied for ramp loss minimization problems (see Wu and Liu, 2007; Wang et al., 2010).
By Yuille and Rangarajan (2003), Collobert et al. (2006b), Zhao and Sun (2008), this type
of methods is also called a concave-convex procedure. For the proposed ramp-LPSVM, the
DC technique is applicable as well.

Let α = [α1, · · · , αm]T ∈ Rm. Based on the identity (2), ramp-LPSVM (6) can be
written as follows,

min
α�0,b

µ

m∑
i=1

αi +
1

m

m∑
i=1

max

1− yi

 m∑
j=1

αjyjK(xi, xj) + b

 , 0


− 1

m

m∑
i=1

max

−yi
 m∑
j=1

αjyjK(xi, xj) + b

 , 0

 . (21)

We let ζ = [αT , b]T stand for the optimization variable and D(ζ) for the feasible set of
(21). Denote the convex part (the first line of ) as g(ζ), and the concave part (the second
line of (21)) as h(ζ). After that, (21) can be written as minζ∈D(ζ) g(ζ) − h(ζ). Then DC
programming developed by Horst and Thoai (1999) and An and Tao (2005) is applicable.
We give the following algorithm for local minimization for ramp-LPSVM.

Algorithm 1: DC programming for ramp-LPSVM from α̂, b̂

• Set δ > 0, k := 0 and ζ0 := [α̂T , b̂]T ;
repeat
• Select ηk ∈ ∂h(ζk);
• ζk+1 := arg min

ζ∈D(ζ)
g(ζ)−

(
h(ζk) + (ζ − ζk)T ηk

)
;

• Set k := k + 1;
until ‖ζk − ζk−1‖ < δ;
• Algorithm ends and returns ζk.

Since g(ζ) is convex and piecewise linear, Algorithm 1 involves only LP, which can be
effectively solved. One noticeable point is that h(ζ) is not differentiable at some points.
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The non-differentiability of h(ζ) comes from max{u, 0}, of which the sub-gradient at u = 0
is in the interval [0, 1]:

∂max{u, 0}
∂u

∣∣∣
u=0
∈ [0, 1].

In our algorithm, we choose 0.5 as the value of the above sub-gradient and then ηk ∈ ∂h(ζk)
is uniquely defined. The local optimality condition for DC problems has been investi-
gated by An and Tao (2005) and references therein. For a differentiable function, one can
use the gradient information to check whether the solution is locally optimal. However,
ramp-LPSVM is non-smooth and a sub-gradient technique should be considered. The local
minimizer of a non-smooth objective function should meet the local optimality condition
for all vectors in its sub-gradient set. In Algorithm 1, we only consider one value of the
sub-gradient, thus, the result of the above process is not necessarily a local minimum. The
rigorous local optimality condition and the related algorithm can be found in Huang et al.
(2012b). However, because of the effectiveness of DC programming, we suggest Algorithm
1 for ramp-LPSVM in this paper.

As a local search algorithm, DC programming can effectively decrease the objective
value of (21). The main difficulty of solving (21) is that it is non-convex and hence we may
be trapped in a local optimum. To escape from a local optimum, we introduce slack variable
c = [c1, · · · , cm]T and transform (21) into the following concave minimization problem,

min
α,b,c

µ
m∑
i=1

αi +
1

m

m∑
i=1

ci −
1

m

m∑
i=1

max

−yi
 m∑
j=1

αjyjK(xi, xj) + b

 , 0


s.t. ci ≥ 1− yi

(∑m

j=1
αjyjK(xi, xj) + b

)
, i = 1, 2, . . . ,m, (22)

ci ≥ 0, i = 1, 2, . . . ,m,

αi ≥ 0, i = 1, 2, . . . ,m.

This is a concave minimization problem constrained in a polyhedron, which is called a
polyhedral concave problem by Horst and Hoang (1996). Generally, among non-convex
problems, a polyhedral concave problem is relatively easy to deal with. Various techniques,
such as γ-extension, vertex enumeration, partition algorithm, concavity cutting, have been
discussed insightfully in Horst and Hoang (1996) and successfully applied (see, e.g., Porem-
bski, 2004; Mangasarian, 2007; Shu and Karimi, 2009). Moreover, the objective function of
(22) is piecewise linear, which makes the hill detouring method proposed by Huang et al.
(2012a) applicable. In the following, we first introduce the basic idea of the hill detouring
method and then establish a global search algorithm for ramp-LPSVM.

For notational convenience, we use ξ = [αT , b, cT ]T to denote the optimization variable
of (22). The objective function is continuous piecewise linear and is denoted as p(ξ). The
feasible set, which is a polyhedron, can be written as Aξ ≤ q. Then (22) is compactly
represented as the following polyhedral concave problem, of which the objective function is
piecewise linear:

minξ p(ξ), s.t. Aξ ≤ q. (23)

Assume that we are trapped in a local optimum ξ̃ with value p̃ = p(ξ̃) and we are trying to
escape from it. We observe that (in a non-degenerated case): i) the local optimum ξ̃ is a
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vertex of the feasible set; ii) any level set {ξ : p(ξ) = u},∀u is the boundary of a polyhedron.
The first property can be derived from the concavity of the objective function. The second
property comes from the piecewise linearity of p(ξ). These properties imply a new method
searching on the level set to find another feasible solution ξ̂ with the same objective value
p(ξ̂) = p̃. If such ξ̂ is found, we escape from ξ̃ and a downhill method can be used to find
a new local optimum. Otherwise, if such ξ̂ does not exist, one can conclude that ξ̃ is the
optimal solution. Searching on the level set of p(ξ) = p̃ will not decrease neither increase
the objective value and it is hence called hill detouring. In practice, in order to avoid to find
ξ̃ again, we search on {p(ξ) = p̃− ε} with a small positive ε for computational convenience.
If {p(ξ) = p̃ − ε} = ∅, we know that ξ̃ is ε-optimal. The performance of hill detouring is
not sensitive to the ε value, when ε is small (but large enough to distinguish p̃− ε and p̃).
In this paper, we set ε = 10−6.

Hill detouring, which is to solve the feasibility problem

find ξ, s.t. p(ξ) = p̃− ε, Aξ ≤ q, (24)

is a natural idea for global optimization but it is hard to implement for a regular concave
minimization functions. The main difficulty is the nonlinear equation p(ξ) = p̃−ε. In ramp-
LPSVM, the objective function of (22) is continuous and piecewise linear, thus, p(ξ) = p̃−ε
can be transformed into (finite) linear equations. That means (24) can be written as a series
of LP feasibility problems, which makes line search on {ξ : p(ξ) = p̃− ε} possible.

To investigate the property of (23) and the corresponding hill detouring technique,
we consider a 2-dimensional problem. In this intuitive example, the objective function is
p(ξ) = aT0 ξ + b0 −

∑6
i=1 max{0, aTi ξ + bi}, where

a0 =

[
0.05
−0.1

]
a1 =

[
−1
−0.4

]
a2 =

[
1
0

]
a3 =

[
0.5
0.1

]
a4 =

[
−0.9
0.4

]
a5 =

[
−0.6
−1

]
a6 =

[
0.9
0.9

]
b0 = −0.2 b1 = 0.8 b2 = −0.2 b3 = −0.5 b4 = 0.2 b5 = 1 b6 = 0.8.

The feasible domain is an octagon, of which the vertices are [2, 1]T , [1, 2]T , . . . , [1,−2]T . The
plots of p(ξ) and the feasible set are shown in Figure 2, where ξ̃ = [2, 1]T is a local optimum
and the global optimum is ξ? = [−2,−1]T .

Now we try to escape from ξ̃ by hill detouring. In other words, we search on the level
set {ξ : p(ξ) = p̃ − ε} to find a feasible solution. The level set is displayed by the green
dashed line in Figure 3. According to the property that ξ̃ is a vertex of the feasible domain,
we can first search along the corresponding active edges, which are shown by the black solid
lines, to find the γ-extensions. The definition of γ-extension was given by Horst and Hoang
(1996) and is reviewed below.

Definition 6 Suppose f is a concave function, ξ is a given point, γ is a scalar with γ ≤
f(ξ), and θ0 is a positive number large enough. Let d 6= 0 be a direction and θ = min
{θ0, sup{t : f(ξ + td) ≥ γ}}, then ξ + θd is called the γ-extension of f(ξ) from ξ along d.

Set γ = p̃ − ε. γ-extensions from ξ̃ can be easily found by bisection according to the
concavity of p(ξ). For any direction d, we set t1 = 0 and t2 as a large enough positive
number. If p(ξ̃+ t2d) > γ, there is no γ-extension along this direction. Otherwise, after the
following bisection scheme, 1

2(t1 + t2) is the γ-extension from ξ̃ along d,

2199



Huang, Shi, and Suykens

−4
−3

−2
−1

0
1

2
3

4

−4

−2

0

2

4

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

−16

−14

−12

−10

−8

−6

−4

−2

ξ1

ξ2

ξ̃ξ⋆

Figure 2: Plots of the objective function p(ξ) and the feasible domain Aξ ≤ q, of which
the boundary is shown by the blue solid line. ξ̃ = [2, 1] is a local optimum and
p̃ = p(ξ̃) = −4.5; ξ? = [−2,−1] with p(ξ?) = −8.2 is the global optimum.
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1
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Figure 3: Hill detouring method. From a local optimum ξ̃, we can find v01, which is the
γ-extension along the active edge. Searching in the hyperplane of the level set,
we arrive at v11, v

2
1, and ξ̂, successively. ξ̂ is feasible and has a less objective value

than p(ξ̃), then we successfully escape from the local optimum ξ̃.
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While t2 − t1 > 10−6

If f(ξ̃ + 1
2(t1 + t2)d)) > γ, set t1 = 1

2(t1 + t2); Else set t2 = 1
2(t1 + t2).

For the concerned example, along the edges of the feasible set, which are active at ξ̃, we
find the γ-extensions, denoted by v01 and v02. If the convex hull of v01, v

0
2 and ξ̃ covers the

feasible set, ξ̃ is ε-optimal for (23). Otherwise, these extensions provide good initial points
for hill detouring.

The objective function p(x) is piecewise linear and there exist a finite number of subre-
gions, in each of which, p(ξ) becomes a linear function. Therefore, for any given ξ0, we can
find a subregion, denoted by Dξ0 , such that ξ0 ∈ Dξ0 and there is a corresponding linear
function, denoted by pξ0(ξ), satisfying: p(ξ) = pξ0(ξ), ∀ξ ∈ Dξ0 . Constrained in the region
related to ξ0, the feasibility problem (24) becomes

find ξ

s.t. pξ0(ξ) = p̃− ε, ξ ∈ Dξ0 (25)

Aξ ≤ q.

Since p(ξ) is concave and pξ0(ξ) is essentially the first order Taylor expansion of p(ξ), we
know that p(ξ) ≤ pξ0(ξ), ∀ξ0, ξ, where the equality holds when ξ ∈ Dξ0 . For a solution ξ′

satisfying pξ0(ξ′) = p̃− ε but outside Dξ0 , we have p(ξ′) < p̃− ε. If ξ′ is feasible (Aξ′ ≤ q),
then a better solution is found. Therefore, in hill detouring method, we ignore the constraint
ξ ∈ Dξ0 in (25) and consider the following optimization problem,

min
ξ(1),ξ(2)

‖ξ(1) − ξ(2)‖∞

s.t. pξ0(ξ(1)) = p̃− ε (26)

Aξ(2) ≤ q,

for which ξ(1) = ξ0, ξ
(2) = ξ̃ provides a feasible solution. Notice that after introducing

a slack variable s ∈ R, minimizing ‖ξ(1) − ξ(2)‖∞ is equivalently to minimize s with the
constraint that each component of ξ(1) − ξ(2) is between −s and s. Then (26) is essentially
an LP problem. Starting from v01, we set ξ0 = v01 and solve (26), of which the solution is

denoted by ξ
(1)
0 , ξ

(2)
0 . As displayed in Figure 3, ξ

(1)
0 is the point which is closest to the feasible

domain among all the points in hyperplane pv01 (ξ) = p̃− ε. Heuristically, we search on the

level set towards ξ
(1)
0 : going along the direction d0 = ξ

(1)
0 − ξ0 and finding point v11, where

p(ξ) becomes another linear function. v11 is also a vertex of the level set {ξ : p(ξ) = p̃− ε}.
Then we construct a new linear function pv11 (ξ), which is different to pv01 (ξ). Repeating the

above process, we can get v21. After that, solving (26) for ξ0 = v21 leads to ξ̂, which is feasible
and has a objective value p̃− ε, then we successfully escape from ξ̃ by hill detouring.

We have shown the basic idea of the hill detouring method by one 2-dimensional prob-
lem. For ramp-LPSVM, the hill detouring method for (22) is similar to the above process.
Specifically, the local linear function for a given ξ0 = [αT0 , b0, c

T
0 ]T is below,

pξ0(ξ) = µ

m∑
i=1

αi +
1

m

m∑
i=1

ci +
1

m

∑
i∈Mξ0

yi

 m∑
j=1

αjyjK(xi, xj) + b

 , (27)
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whereMξ0 is a union ofM+
ξ0

and any subset ofM0
ξ0

and the related sets are defined below,

M+
ξ =

{
i : −yi

(∑m

j=1
αjyjK(xi, xj) + b

)
> 0
}
,

M0
ξ =

{
i : −yi

(∑m

j=1
αjyjK(xi, xj) + b

)
= 0
}
.

The above choice meansM+
ξ0
⊆Mξ0 ⊆M

+
ξ0

⋃
M0

ξ0
. For a random ξ,M0

ξ is usually empty.

For a point like v11 in Figure 3, which is a vertex of the level set,M0
v11
6= ∅. In this case, there

are multiple choices for pξ0 and we selectMξ0 which has not been considered. Summarizing
the discussions, we give the following algorithm for ramp-LPSVM (6).

Algorithm 2: Global Search for ramp-LPSVM

initialize
• Set δ (the threshold of convergence for DC programming), ε (the difference
value in hill detouring), Kstep (the maximal number of hill detouring steps)

• Give an initial feasible solution α̂, b̂ ;
repeat

• Use Algorithm 1 from α̂, b̂ to obtain locally optimal solution α̃, b̃;

• Compute c̃i := max
{
−yi

(∑m
j=1 α̃jyjK(xi, xj) + b̃

)
, 0
}

;

• Set ξ̃ := [α̃T , b̃, c̃T ]T , γ := p(ξ̃)− ε, where p(ξ) is the object of (22), and
compute the γ-extensions for edges active at ξ̃. We denote the γ-extensions as
v1, v2, . . . and the distance of vi to the feasible set of (22) as disti;
• Let k := 0 and SM := ∅;
repeat
• Let k := k + 1, select i0 := arg min

i
disti, and set ξ0 := vi0 ;

• Select Mξ0 according to M+
ξ0
,M0

ξ0
such that Mξ0 6∈ SM;

• Set SM := SM
⋃
{Mξ0};

• Construct pξ0(ξ) and solve LP (26), of which the solution is ξ
(1)
0 , ξ

(2)
0 ;

if ξ
(1)
0 = ξ

(2)
0 then

• Set α̂, b̂ according to ξ
(1)
0 and terminate the inner loop;

else

• Let d := ξ
(1)
0 − ξ0 and find θ := max{θ : p(ξ0 + θd) = pξ0(ξ0 + θd)};

• Set vi0 := ξ0 + θd and update disti0 ;
end

until k ≥ Kstep;

until α̃ = α̂, b̃ = b̂;

• Algorithm ends and returns α̃, b̃.

4. Numerical Experiments

In the numerical experiments, we evaluate the performance of ramp-LPSVM (6) and its
problem-solving algorithms. We first report the optimization performance and then discuss
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the robustness and the sparsity compared with C-SVM, LPSVM (5), and ramp-SVM (11).
C-SVM and LPSVM are convex problems, which are solved by the Matlab optimization
toolbox. For ramp-SVM, we apply the algorithm proposed by Collobert et al. (2006a).
The data are downloaded from the UCI Machine Learning Repository given by Frank and
Asuncion (2010). In data sets “Spect”, “Monk1”, “Monk2”, and “Monk3”, the training
and the testing sets are provided. For the others, we randomly partition the data into
two parts: half data are used for training and the remaining data are for testing. In this
paper, we focus on outliers and hence we contaminate the training data set by randomly
selecting some instances in class −1 and changing their labels. Since there are random
factors in sampling and adding outliers, we repeat the above process 10 times for each data
set and report the average accuracy on the testing data. In our experiments, we apply a
Gaussian kernel K(xi, xj) = exp

(
−‖xi − xj‖2/σ2

)
. The training data are normalized to

[0, 1]n and then the regularization coefficient µ and the kernel parameter σ are tuned by
10-fold cross-validation for each method. In the tuning phase, grid search using logarithmic
scale is applied. The range of possible µ value is [10−2, 103] and the range of σ value is
between 10−3 and 102. For ramp-LPSVM, since the global search needs more computation
time, the parameters tuning by cross-validation is conducted based on Algorithm 1. The
experiments are done in Matlab R2011a in Core 2-2.83 GHz, 2.96G RAM.

Intuitively, ramp-LPSVM can provide a sparse and robust result, if a good solution for
(6) can be obtained. Hence, we first consider the optimization performance of the proposed
algorithms. To evaluate them, we set µ = 1/10, σ = 1 and use the four data sets for which
the training data are provided. The result of ramp-LPSVM is sparse, we hence use α̂ = 0,
which is optimal when µ is large sufficiently, as the initial solution. When α̂ = 0, simply
calculating shows that b̂ = 1 is optimal to (6) if there are more training data in class +1
than in class −1 (#{i : yi = 1} ≥ #{i : yi = −1}). Otherwise, we set b̂ = −1. From α̂, b̂, we
apply Algorithm 2 to minimize (6). Basically, Algorithm 2 in turn applies DC programming
for local minimization and hill detouring for escaping local optima. In Table 2, we report
the objective values of the obtained local optima and the corresponding computation time.
The superscript indicates the sequence and f1 is the result of Algorithm 1.

Data f1 f2 f3 f4 f5 f6 GA

Spect objective value 36.59 9.36 7.38 6.41 5.43 5.40 8.78
time (s) 0.298 2.64 2.89 5.46 4.63 19.84 39.6

Monk1 objective value 9.94 8.96 7.11 — — — 10.10
time (s) 4.04 8.14 26.8 — — — 66.34

Monk2 objective value 9.17 8.24 7.31 5.48 — — 12.66
time (s) 12.3 20.9 43.1 43.5 — — 108.1

Monk3 objective value 4.92 4.02 — — — — 11.38
time (s) 3.93 32.7 — — — — 69.21

Table 2: Global Search Performance of Algorithm 2 (δ = 10−6, ε = 10−6,Kstep = 50)

From the reported results, one can see the effectiveness of hill detouring for escaping from
local optima. Another observation is that with the increasing quality of the local optimum,
the hill detouring needs more time for escaping. When the initial point is not good, the

2203



Huang, Shi, and Suykens

computation time for hill detouring is also small, which means that the performance of
Algorithm 2 is not sensitive to the initial solution. To evaluate the global search capability,
we also use the Genetic Algorithm (GA) toolbox developed by Chipperfield et al. (1994).
The result of GA is random and we run GA algorithm repeatedly in the similar computing
time of Algorithm 2. Then we select the best one and report it in Table 2. The comparison
illustrates the global search capability of Algorithm 2. The basic elements of Algorithm
1 and Algorithm 2 are both to iteratively solve LPs. For large-scale problems, some fast
methods for LP, especially the techniques designed for LPSVM by Bradley and Mangasarian
(2000), Fung and Mangasarian (2004), and Mangasarian (2006), are applicable to speed up
the solving procedure, which can be potential future work for ramp-LPSVM.

In the experiments above, the proposed algorithms show good minimization capability
for ramp-LPSVM (6). Then one can expect good performance of the proposed model and
algorithms, according to the robustness, sparsity, and other statistical properties discussed
in Section 3. For each training set, we randomly select some data from class −1 and change
their labels to be +1. The ratio of the outliers, denoted by r, is set to be r = 0.0, 0.05, 0.10.
Based on the contaminated training set, we use C-SVM, LPSVM (5), ramp-SVM (11),
and ramp-LPSVM (6) (solved by Algorithm 1 and Algorithm 2, respectively) to train the
classifier and calculate the classification accuracy on the testing data. The above process
is repeated 10 times. The average testing accuracy and the average number of support
vectors (the corresponding |αi| is larger than 10−6) are reported in Table 3, where the data
dimension n and the size of training data m are reported as well. The best results in the
view of classification accuracy are underlined and the sparsest results are given in bold.

From Table 3, we observe that when there are no outliers, C-SVM performs well and
LPSVM also provides good classifiers. The number of support vectors of LPSVM is always
smaller than that of C-SVM, which relates to the property of `1 minimization. With an
increasing number of outliers, the accuracy of C-SVM and LPSVM decreases. In contrast,
the results of ramp-SVM and ramp-LPSVM are more stable, showing the robustness of the
ramp loss. The ramp loss also brings some sparsity, since when yif(xi) ≥ 0, the ramp
loss gives a constant penalty, which corresponds to a zero dual variable. The proposed
ramp-LPSVM consists of the `1-penalty and the ramp loss, both of which can enhance the
sparsity. Hence, the sparsity of the result of ramp-LPSVM is significant. Comparing the
two algorithms for ramp-LPSVM, we find that Algorithm 2, which pursues a global solution,
results in a more robust classifier. But the computation time of Algorithm 2 is significantly
larger, as illustrated in Table 2. Generally, if there are heavy outliers and plenty allowable
computation time, it is worth considering Algorithm 2 to find a good classifier. Otherwise,
solving ramp-LPSVM by Algorithm 1 is a good choice.

5. Conclusion

In this paper, we proposed a robust classification method, called ramp-LPSVM. It consists of
the `1-penalty and the ramp loss, which correspond to sparsity and robustness, respectively.
The consistency and error bound for ramp-LPSVM have been discussed. Ramp-LPSVM
trains a classifier by minimizing the ramp loss together with the `1-penalty, both of which are
piecewise linear. According to the piecewise linearity, a local optimization method using
DC programming and a global search strategy using hill detouring technique have been

2204



Ramp Loss Linear Programming Support Vector Machine

ramp-LPSVM ramp-LPSVM
Data n m r C-SVM LPSVM ramp-SVM (Algorithm 1) (Algorithm 2)

Spect 21 80 0.00 86.03% #80 88.77% #22 88.77% #75 88.77% #22 88.77% #22
21 80 0.05 83.96% #80 86.90% #18 87.70% #76 88.77% #21 88.77% #21
21 80 0.10 84.49% #79 84.33% #20 85.56% #74 87.71% #18 88.37% #18

Monk1 6 124 0.00 85.70% #70 84.68% #44 83.25% #65 83.09% #39 84.40% #38
6 124 0.05 82.70% #72 80.61% #47 81.17% #61 81.92% #36 82.07% #37
6 124 0.10 76.77% #73 73.52% #38 78.66% #57 79.20% #31 79.91% #33

Monk2 6 169 0.00 83.80% #96 81.05% #62 83.80% #86 82.62% #57 82.86% #53
6 169 0.05 77.78% #95 79.05% #59 77.78% #85 80.05% #54 80.24% #61
6 169 0.10 71.76% #96 75.88% #58 74.68% #75 78.53% #52 79.84% #52

Monk3 6 122 0.00 90.15% #55 91.76% #34 91.32% #53 88.73% #29 89.34% #30
6 122 0.05 87.13% #61 88.47% #33 88.68% #47 87.42% #31 86.80% #31
6 122 0.10 81.13% #69 83.49% #34 85.00% #50 84.35% #32 84.94% #30

Breast 10 350 0.00 96.68% #87 95.14% #28 96.78% #73 96.25% #18 96.45% #17
10 350 0.05 95.63% #90 93.41% #25 95.90% #71 96.20% #16 96.07% #16
10 350 0.10 90.43% #84 84.66% #22 91.59% #79 93.54% #16 95.77% #18

Pima 8 385 0.00 76.04% #233 72.53% #47 75.98% #67 75.59% #41 74.22% #39
8 385 0.05 75.78% #230 74.31% #33 75.29% #68 74.56% #40 74.40% #42
8 385 0.10 74.01% #228 74.28% #31 73.26% #69 74.35% #37 74.67% #37

Trans. 4 375 0.00 76.33% #199 75.86% #22 77.01% #32 77.11% #5 77.11% #6
4 375 0.05 74.62% #285 74.97% #19 76.20% #31 76.28% #6 76.69% #7
4 375 0.10 73.06% #274 72.90% #12 76.73% #30 75.28% #8 76.28% #8

Haber. 3 154 0.00 74.77% #86 73.69% #10 74.31% #57 75.05% #5 74.92% #5
3 154 0.05 74.38% #81 73.25% #9 73.26% #68 73.79% #8 73.97% #8
3 154 0.10 71.66% #75 72.54% #11 73.56% #57 73.79% #11 73.86% #11

Ionos. 33 176 0.00 93.81% #93 92.41% #29 93.64% #92 93.10% #32 93.01% #34
33 176 0.05 92.22% #97 89.26% #32 92.89% #95 92.33% #32 93.03% #31
33 176 0.10 90.13% #98 89.41% #32 92.63% #87 92.22% #27 92.94% #28

Table 3: Classification Accuracy on Testing Data and Number of Support Vectors
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proposed. The proposed algorithms have good optimization capability and ramp-LPSVM
has shown robustness and sparsity in numerical experiments.
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Appendix A.

In this appendix, we prove Theorem 5 in Section 2. First, we bound the offset by the
following lemma.

Lemma 7 For any µ > 0, m ∈ N, and z = {xi, yi}mi=1, we can find a solution (f∗z,µ, b
∗
z,µ)

of equation (6) satisfying min1≤i≤m |fz,µ(xi)| ≤ 1, where fz,µ = f∗z,µ + b∗z,µ. Hence, |b∗z,µ| ≤
1 + ‖f∗z,µ‖∞.

Proof Suppose a minimizer fz,µ = f∗z,µ + b∗z,µ of (6) satisfies

r := min
1≤i≤m

|fz,µ(xi)| = |fz,µ(xi0)| > 1.

Then for each i, either yifz,µ(xi) ≥ r > 1 or yifz,µ(xi) ≤ −r < −1. We consider a
function fdz,µ := fz,µ − d with d = (r − 1)sgn(fz,µ(xi0)). Then fdz,µ satisfies |fdz,µ(xi0)| = 1

and |fdz,µ(xi0)| ≥ 1. When yifz,µ(xi) > 1, one can check that yif
d
z,µ(xi) ≥ 1. Similarly,

if yifz,µ(xi) < −1, one still has yif
d
z,µ(xi) ≤ −1. Then Lramp,z(fz,µ) = Lramp,z(fdz,µ).

Therefore, fdz,µ is also a solution of equation (6) and satisfies our requirement.
Now if fz,µ = f∗z,µ + b∗z,µ satisfies

|fz,µ(xi0)| = min
1≤i≤m

|fz,µ(xi)| ≤ 1,

we then have
|b∗z,µ| ≤ 1 + |f∗z,µ(xi0)| ≤ 1 + ‖f∗z,µ‖∞.
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In this way, we complete the proof.

In the following, we shall always choose fz,µ as in lemma 7. According to our proof,
such kind of solutions can be easily constructed even though the obtained ones from the
algorithm do not meet the requirement. Next, we find a function space covering fz,µ when
z runs over all possible samples.

Lemma 8 For every µ > 0, we have f∗z,µ ∈ HK and

‖f∗z,µ‖K ≤ κΩ(f∗z,µ) ≤ κ

µ
,

where κ = supx,y∈X
√
|K(x, y)|.

Proof It is trivial that f∗z,µ ∈ HK. By the reproducing property (see Aronszajn, 1950), for
f∗z,µ =

∑m
i=1 α

∗
i,zyiK(x, xi),

‖f∗z,µ‖K =

 m∑
i,j=1

α∗i,zα
∗
j,zK(xi, xj)

1/2

≤ κ

 m∑
i,j=1

αi,zαj,z

1/2

= κΩ(f∗z,µ).

Due to the definition of f∗z,µ, we have

Rramp,z(fz,µ) + µΩ(f∗z,µ) ≤ Rramp,z(0) + µΩ(0) ≤ 1.

This gives Ω(f∗z,µ) ≤ 1
µ , and completes the proof.

From Lemma 7, Lemma 8 and the relation

‖f‖∞ ≤ κ‖f‖K, ∀f ∈ HK,

we know that fz,µ lies in

Fµ =

{
f = f∗ + b∗ : ‖f∗‖K ≤

κ

µ
and |b∗| ≤ 1 +

κ2

µ

}
. (28)

Now we are in the position to prove the main theorem in Section 2. Our analysis mainly
focus on estimating the sample error S(m,µ, λ).

Proof of Theorem 5. We fist estimate RLramp,z(fλ) − RLramp,ρ(fλ) by considering the
random variable ςi defined by (19) with f = fλ. As Lramp : R → [0, 1], there holds
|ςi−Eςi| ≤ 2. Then by the Hoeffding inequality (see, e.g., Cucker and Zhou, 2007, Corollary
3.6), with probability at least 1− δ/2, we have

RLramp,z(fλ)−RLramp,ρ(fλ) ≤

√
8 log 2

δ

m
. (29)
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For the term RLramp,ρ(fz,µ) − RLramp,z(fz,µ), note that fz,µ varies with samples. In
order to obtain the corresponding upper bound, we shall apply the uniform concentration
inequality to the function set Fµ. One can directly use Theorem 8 in Bartlett and Mendelson
(2003) to deal with this term and find with probability at least 1− δ/2,

RLramp,ρ(fz,µ)−RLramp,z(fz,µ) ≤ EzEσ

[
sup
g∈F̃

∣∣∣∣∣ 2

m

m∑
i=1

σig(xi, yi)

∣∣∣∣∣
]

+

√
8 log 4

δ

m
(30)

where F̃ := {(x, y)→ Lramp(yf(x))− Lramp(0) : f ∈ F} and σ1, · · · , σm are independent
uniform {−1,+1}-valued random variables. As the ramp loss is Lipschitz with constant
1, we further bound the first term in the right-hand side by the result of Bartlett and
Mendelson (2003, Theorem 12) as

EzEσ

[
sup
g∈F̃

∣∣∣∣∣ 2

m

m∑
i=1

σig(xi, yi)

∣∣∣∣∣
]

≤ 2EzEσ

[
sup
f∈F

∣∣∣∣∣ 2

m

m∑
i=1

σif(xi)

∣∣∣∣∣
]

≤ 2EzEσ

[
sup

{f∗∈HK:‖f∗‖K≤κµ}

∣∣∣∣∣ 2

m

m∑
i=1

σif
∗(xi)

∣∣∣∣∣
]

+
2√
m

+
2κ2

µ
√
m

≤ 6κ2

µ
√
m

+
2√
m
.

Here, the last inequality is from Lemma 22 in Bartlett and Mendelson (2003). Combining
the above bound and (29), (30), we then have with probability at least 1− δ,

S(m,µ, λ) ≤ (2 + η)

√
8 log 4

δ

m
+

6κ2

µ
√
m

+
2√
m
.

Finally, we let µ = m
− β+1

4β+2 and λ = m
− 1

4β+2 . Then η = µ
λ = m

− β
4β+2 ≤ 1. Therefore, by

Theorem 2 and Theorem 4, we can derive the bound (20) with c̃ = 15 + 2cβ + 6κ2. This
completes our proof.
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