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Abstract

We give novel algorithms for stochastic strongly-convex optimization in the gradient oracle
model which return a O( 1

T )-approximate solution after T iterations. The first algorithm
is deterministic, and achieves this rate via gradient updates and historical averaging. The
second algorithm is randomized, and is based on pure gradient steps with a random step
size.

This rate of convergence is optimal in the gradient oracle model. This improves upon

the previously known best rate of O( log(T )
T ), which was obtained by applying an online

strongly-convex optimization algorithm with regret O(log(T )) to the batch setting.
We complement this result by proving that any algorithm has expected regret of

Ω(log(T )) in the online stochastic strongly-convex optimization setting. This shows that
any online-to-batch conversion is inherently suboptimal for stochastic strongly-convex opti-
mization. This is the first formal evidence that online convex optimization is strictly more
difficult than batch stochastic convex optimization.1

Keywords: stochastic gradient descent, convex optimization, regret minimization, online
learning

1. Introduction

Stochastic convex optimization has an inherently different flavor than standard convex
optimization. In the stochastic case, a crucial resource is the number of data samples from
the function to be optimized. This resource limits the precision of the output: given few
samples there is simply not enough information to compute the optimum up to a certain
precision. The error arising from this lack of information is called the estimation error.

The estimation error is independent of the choice of optimization algorithm, and it is
reasonable to choose an optimization method whose precision is of the same order of mag-
nitude as the sampling error: lesser precision is suboptimal, whereas much better precision
is pointless. This issue is extensively discussed by Bottou and Bousquet (2007) and by
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1. An extended abstract of this work appeared in COLT 2011 (Hazan and Kale, 2011). In this version

we have included a new randomized algorithm which is based on pure gradient steps, and extended the
results to strong convexity with respect to general norms.
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Shalev-Shwartz and Srebro (2008). This makes first-order methods ideal for stochastic con-
vex optimization: their error decreases as a polynomial in the number of iterations, usually
make only one iteration per data point, and each iteration is extremely efficient.

In this paper we consider first-order methods for stochastic convex optimization. For-
mally, the problem of stochastic convex optimization is the minimization of a convex (pos-
sibly non-smooth) function on a convex domain K:

min
x∈K

F (x).

The stochasticity is in the access model: the only access to F is via a stochastic subgradient
oracle, which given any point x ∈ K, produces a random vector ĝ whose expectation is a
subgradient of F at the point x, i.e., E[ĝ] ∈ ∂F (x), where ∂F (x) denotes the subdifferential
set of F at x.

We stress that F may be non-smooth. This is important for the special case when
F (x) = EZ [f(x, Z)] (the expectation being taken over a random variable Z), where for
every fixed z, f(x, z) is a convex function of x. The goal is to minimize F while given a
sample z1, z2, . . . drawn independently from the unknown distribution of Z. A prominent
example of this formulation is the problem of support vector machine (SVM) training (see
Shalev-Shwartz et al., 2009). For SVM training, the function F is convex but non-smooth.

An algorithm for stochastic convex optimization is allowed a budget of T calls to the gra-
dient oracle. It sequentially queries the gradient oracle at consecutive points x1,x2, . . . ,xT ,
and produces an approximate solution x̄. The rate of convergence of the algorithm is the
expected excess cost of the point x̄ over the optimum, i.e. E[F (x̄)] −minx∈K F (x), where
the expectation is taken over the randomness in the gradient oracle and the internal random
seed of the algorithm. The paramount parameter for measuring this rate is in terms of T ,
the number of gradient oracle calls.

Our first and main contribution is the first algorithm to attain the optimal rate of
convergence in the case where F is λ-strongly convex, and the gradient oracle is G-bounded
(see precise definitions in Section 2.1). After T gradient updates, the algorithm returns
a solution which is O( 1

T )-close in cost to the optimum. Formally, we prove the following
theorem.

Theorem 1 Assume that F is λ-strongly convex and the gradient oracle is G-bounded.
Then there exists a deterministic algorithm that after at most T gradient updates returns a
vector x̄ such that for any x? ∈ K we have

E[F (x̄)]− F (x?) ≤ O
(
G2

λT

)
.

This matches the lower bound of Agarwal et al. (2012) up to constant factors.

The previously best known rate was O( log(T )T ), and follows by converting a more general
online convex optimization algorithm of Hazan et al. (2007) to the batch setting. This
standard online-to-batch reduction works as follows. In the online convex optimization
setting, in each round t = 1, 2, . . . , T , a decision maker (represented by an algorithm A)
chooses a point xt in convex domain K, and incurs a cost ft(xt) for an adversarially chosen
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convex cost function ft. In this model performance is measured by the regret, defined as

Regret(A) :=
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x). (1)

A regret minimizing algorithm is one that guarantees that the regret grows like o(T ). Given
such an algorithm, one can perform batch stochastic convex optimization by setting ft to
be the function f(·, zt). A simple analysis then shows that the cost of the average point,
x̄ = 1

T

∑T
t=1 xt, converges to the optimum cost at the rate of the average regret, which

converges to zero.

The best previously known convergence rates for stochastic convex optimization were
obtained using this online-to-batch reduction, and thus these rates were equal to the average
regret of the corresponding online convex optimization algorithm. While it is known that
for general convex optimization, this online-to-batch reduction gives the optimal rate of
convergence, such a result was not known for stochastic strongly-convex functions. In this
paper we show that for stochastic strongly-convex functions, minimizing regret is strictly
more difficult than batch stochastic strongly-convex optimization.

More specifically, the best known regret bound for λ-strongly-convex cost functions with

gradients bounded in norm by G is O(G
2 log(T )
λ ) (Hazan et al., 2007). This regret bound

holds even for adversarial, not just stochastic, strongly-convex cost functions. A matching
lower bound was obtained by Takimoto and Warmuth (2000) for the adversarial setting.

Our second contribution in this paper is a matching lower bound for strongly-convex
cost functions that holds even in the stochastic setting, i.e., if the cost functions are sampled
i.i.d from an unknown distribution. Formally:

Theorem 2 For any online decision-making algorithm A, there is a distribution over λ-
strongly-convex cost functions with norms of gradients bounded by G such that

E[Regret(A)] = Ω

(
G2 log(T )

λ

)
.

Hence, our new rate of convergence of O(G
2

λT ) is the first to separate the complexity of
stochastic and online strongly-convex optimization. The following table summarizes our
contribution with respect to the previously known bounds. The setting is assumed to be
stochastic λ-strongly-convex functions with expected subgradient norms bounded by G.

Previously known bound New bound here

Convergence rate O
(
G2 log(T )

λT

)
(Hazan et al., 2007) O

(
G2

λT

)
Regret Ω

(
G2

λ

)
(Trivial bound2) Ω

(
G2 log(T )

λ

)
2. The lower bound follows from the work of Agarwal et al. (2012), but a simple lower bound example is

the following. Consider an adversary that plays a fixed function, either λ
2
x2 or λ

2
(x− G

λ
)2, for all rounds,

with K = [0, G
λ

]. On the first round, the loss of the algorithm’s point x1 for one of these two functions

is at least G2

8λ
: this is because λ

2
x21 + λ

2
(x1 − G

λ
)2 = λ(x1 − G

2λ
)2 + G2

4λ
≥ G2

4λ
. Clearly the best point in

hindsight has 0 loss, so the regret of the algorithm is at least G2

8λ
for one of the two functions.
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We also sharpen our results: Theorem 1 bounds the expected excess cost of the solution
over the optimum by O( 1

T ). We can also show high probability bounds. In situations where
it is possible to evaluate F at any given point efficiently, simply repeating the algorithm a

number of times and taking the best point found bounds the excess cost by O(
G2 log( 1

δ
)

λT ) with
probability at least 1− δ. In more realistic situations where it is not possible to evaluate F
efficiently, we can still modify the algorithm so that with high probability, the actual excess
cost of the solution is bounded by O( log log(T )T ):

Theorem 3 Assume that F is λ-strongly convex, and the gradient oracle is strongly G-
bounded. Then for any δ > 0, there exists an algorithm that after at most T gradient
updates returns a vector x̄ such that with probability at least 1− δ, for any x? ∈ K we have

F (x̄)− F (x?) ≤ O

(
G2(log(1δ ) + log log(T ))

λT

)
.

The algorithm attaining the convergence rate claimed in Theorem 1 is deterministic,
albeit not a pure gradient-step algorithm: it proceeds in epochs; each epoch performs
gradient steps only. However, the initialization of any epoch is given by the average iterate
of the previous epoch. A natural question that arises is whether there exists a pure gradient
step algorithm, that performs only gradient steps with carefully controlled step size. We
also give an algorithm achieving this (although using random step sizes).

1.1 Related Work

For an in depth discussion of first-order methods, the reader is referred to the book by
Bertsekas (1999).

The study of lower bounds for stochastic convex optimization was undertaken by Ne-
mirovski and Yudin (1983), and recently extended and refined by Agarwal et al. (2012).

Online convex optimization was introduced by Zinkevich (2003). Optimal lower bounds
for the convex case, even in the stochastic setting, of Ω(

√
T ) are simple and given in the

book by Cesa-Bianchi and Lugosi (2006). For exp-concave cost functions, Ordentlich and
Cover (1998) give a Ω(log T ) lower bound on the regret, even when the cost functions are
sampled according to a known distribution. For strongly convex functions, no non-trivial
stochastic lower bound was known. Takimoto and Warmuth (2000) give a Ω(log T ) lower
bound in the regret for adaptive adversaries. Abernethy et al. (2009) put this lower bound
in a general framework for min-max regret minimization.

It has been brought to our attention that Juditsky and Nesterov (2010) and Ghadimi
and Lan (2010) have recently published technical reports that have very similar results to
ours, and also obtain an O( 1

T ) convergence rate. Our work was done independently and a
preliminary version was published on arXiv (Hazan and Kale, 2010) before the technical
reports of Juditsky and Nesterov (2010) and Ghadimi and Lan (2010) were made available.
Note that the high probability bound in this paper has better dependence on T than the
result of Ghadimi and Lan (2010): we lose an additional log log T factor vs. the log2 log T
factor lost in the paper of Ghadimi and Lan (2010). Our lower bound on the regret for
stochastic online strongly-convex optimization is entirely new.

Following our work, a number of other works have appeared which obtain the optimal
O( 1

T ) convergence rate using other methods. Rakhlin et al. (2012) show that for strongly
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convex cost functions that are also smooth, a O( 1
T ) rate is attainable by vanilla stochastic

gradient descent (SGD), and further that SGD with special averaging of the last iterates
recovers this optimal rate even in the non-smooth case. They also show that empirically,
our algorithm indeed performs better than vanilla averaged SGD; though it is slightly worse
than the suffix-averaging variant of SGD in their paper. Shamir and Zhang (2013) later
considered the last iterate of vanilla SGD, for which they show O( log TT ) convergence rate in
the strongly convex case. This complements the bound of O( 1

T ) on the suboptimality of a
random iterate from the random SGD variant we give in this paper.

2. Setup and Background

In this section we give basic definitions and describe the optimization framework for our
results.

2.1 Stochastic Convex Optimization

We work in a Euclidean space3 H with norm ‖ · ‖ with the dual norm ‖ · ‖?. For x,w ∈ H,
let w · x denote their inner product. For a convex and differentiable function f , we denote
by ∇f its gradient at a given point. Consider the setting of stochastic convex optimization
of a convex (possibly non-smooth) function F over a convex (possibly non-compact) set
K ⊆ H. Let x? be a point in K where F is minimized. We make the following assumptions:

1. We assume that we have a convex and differentiable function R : H → R∪{−∞,+∞}
with its corresponding Bregman divergence defined as:

BR(y,x) := R(y)−R(x)−∇R(x) · (y − x).

By direct substitution, this definition implies that for any vectors x,y, z ∈ H,

(∇R(z)−∇R(y)) · (x− y) = BR(x,y)−BR(x, z) +BR(y, z). (2)

We assume further that R is strongly-convex w.r.t. the norm ‖ · ‖, i.e., for any two
points x,y ∈ H, we have

BR(y,x) ≥ 1

2
‖x− y‖2.

2. We assume that F is λ-strongly convex w.r.t. BR: i.e., for any two points x,y ∈ K
and any α ∈ [0, 1], we have

F (αx + (1− α)y) ≤ αF (x) + (1− α)F (y)− λα(1− α)BR(y,x).

A sufficient condition for F to be λ-strongly-convex w.r.t. BR is if F (x) = EZ [f(x, Z)]
and f(·, z) is λ-strongly-convex w.r.t. BR for every z in the support of Z.

This implies F satisfies the following inequality:

F (x)− F (x?) ≥ λBR(x?,x). (3)

3. In this paper, we work in a Euclidean space for simplicity. Our results extend without change to any
real Banach space B with norm ‖ · ‖ with the dual space B? and the dual norm ‖ · ‖?, with the additional
assumption that K is compact.
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This follows by setting y = x?, dividing by α, taking the limit as α→ 0+, and using
the fact that x? is the minimizer of F . This inequality holds even if x? is on the
boundary of K. In fact, (3) is the only requirement on the strong convexity of F for
the analysis to work; we will simply assume that (3) holds.

3. Assume that we have a stochastic subgradient oracle for F , i.e., we have black-box
access to an algorithm that computes an unbiased estimator ĝ of some subgradient
of F at any point x, i.e., E[ĝ] ∈ ∂F (x). We assume that each call to the oracle uses
randomness that is independent of all previously made calls. Further, we assume that
at any point x ∈ K, the stochastic subgradient ĝ output by the oracle satisfies one of
the assumptions below:

(a) E[‖ĝ‖2?] ≤ G2.

(b) E
[
exp

(
‖ĝ‖2?
G2

)]
≤ exp(1).

It is easy to see that assumption 3b implies assumption 3a by Jensen’s inequality. We
will need the stronger assumption 3b to prove high probability bounds. We call an
oracle satisfying the weaker assumption 3a G-bounded, and an oracle satisfying the
stronger assumption 3b strongly G-bounded. For a G-bounded oracle, note that
by Jensen’s inequality, we also have that ‖E[ĝ]‖2? ≤ G2, so in particular, at all points
x ∈ K, there is a subgradient of F with ‖ · ‖? norm bounded by G.

For example, in the important special case F (x) = EZ [f(x, Z)] where f(·, z) is convex
for every z in the support of Z, we can obtain such a stochastic subgradient oracle
simply by taking a subgradient of f(·, z).

4. The Fenchel conjugate of R is the function R? : H → R ∪ {−∞,+∞}

R?(w) := sup
x

w · x−R(x).

By the properties of Fenchel conjugacy (see Borwein and Lewis, 2006, for more details),
we have that ∇R? = ∇R−1. We assume that the following “Bregman update and
projection” operations can be carried out efficiently over the domain K, for any x,g ∈
H:

y = ∇R?(∇R(x)− ηg).

x′ = arg min
z∈K

{BR(z,y)} .

In general this is a convex optimization problem and can be solved efficiently; however
the method described in this paper is really useful when this operation can be carried
very efficiently (say linear time).

For example, if R(x) = 1
2‖x‖

2
2, where ‖ · ‖2 is the usual Euclidean `2 norm, then

BR(x,y) = 1
2‖x− y‖22, and the Bregman update and projection operations reduce to

the usual projected gradient algorithm:

x′ = arg min
z∈K

1

2
‖(x− ηg)− z‖22.
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The above assumptions imply the following lemma:

Lemma 4 For all x ∈ K, and x? the minimizer of F , we have F (x)− F (x?) ≤ 2G2

λ .

Proof For any x ∈ K, let g ∈ ∂F (x) be a subgradient of F at x such that ‖g‖? ≤ G
(the existence of g is guaranteed by assumption 3a). Then by the convexity of F , we
have F (x) − F (x?) ≤ g · (x − x?), so that by the Cauchy-Schwarz inequality, we have
F (x)− F (x?) ≤ G‖x− x?‖. But assumption 1 and 2 imply that

F (x)− F (x?) ≥ λBR(x?,x) ≥ λ

2
‖x? − x‖2.

Putting these together, we get that ‖x− x?‖ ≤ 2G
λ . Finally, we have

F (x)− F (x?) ≤ G‖x− x?‖ ≤ 2G2

λ
.

2.2 Online Convex Optimization and Regret

Recall the setting of online convex optimization given in the introduction. In each round
t = 1, 2, . . . , T , a decision-maker needs to choose a point xt ∈ K, a convex set. Then nature
provides a convex cost function ft : K → R, and the decision-maker incurs the cost ft(xt).
The (adversarial) regret of the decision-maker is defined to be

AdversarialRegret :=
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x). (4)

When the cost functions ft are drawn i.i.d. from some unknown distribution D, (stochastic)
regret is traditionally defined measured with respect to the expected cost function, F (x) =

ED[f1(x)]:

StochasticRegret := E
D

[
T∑
t=1

F (xt)

]
− T min

x∈K
F (x). (5)

In either case, if the decision-making algorithm is randomized, then we measure the per-
formance by the expectation of the regret taken over the random seed of the algorithm in
addition to any other randomness.

When cost functions are drawn i.i.d. from an unknown distribution D, it is easy to
check that

E
D

[
min
x∈K

T∑
t=1

ft(x)

]
≤ min

x∈K
E
D

[
T∑
t=1

ft(x)

]
,

by considering the point x? = arg minx∈K ED
[∑T

t=1 ft(x)
]
. So

E
D

[AdversarialRegret] ≥ StochasticRegret.

2495



Hazan and Kale

Thus, for the purpose of proving lower bounds on the regret (expected regret in the case
of randomized algorithms), it suffices to prove such bounds for StochasticRegret. We prove
such lower bounds in Section 5. For notational convenience, henceforth the term “regret”
refers to StochasticRegret.

3. The Optimal Algorithm and its Analysis

Our algorithm is an extension of stochastic gradient descent. The new feature is the in-
troduction of “epochs” inside of which standard stochastic gradient descent is used, but in
each consecutive epoch the learning rate decreases exponentially.

Algorithm 1 Epoch-GD

1: Input: parameters η1, T1 and total time T .
2: Initialize x1

1 ∈ K arbitrarily, and set k = 1.
3: while

∑k
i=1 Ti ≤ T do

4: // Start epoch k
5: for t = 1 to Tk do
6: Query the gradient oracle at xkt to obtain ĝt
7: Update

ykt+1 = ∇R?(∇R(xkt )− ηkĝt),

xkt+1 = arg min
x∈K

{
BR(x,ykt+1)

}
.

8: end for
9: Set xk+1

1 = 1
Tk

∑Tk
t=1 x

k
t

10: Set Tk+1 ← 2Tk and ηk+1 ← ηk/2.
11: Set k ← k + 1
12: end while
13: return xk1.

Our main result is the following theorem, which immediately implies Theorem 1.

Theorem 5 Set the parameters T1 = 4 and η1 = 1
λ in the Epoch-GD algorithm. The

final point xk1 returned by the algorithm has the property that

E[F (xk1)]− F (x?) ≤ 16G2

λT
.

The total number of gradient updates is at most T .

The intra-epoch use of online mirror decent is analyzed using the following lemma, which
follows the ideas of Zinkevich (2003); Bartlett et al. (2007), and given here for completeness:

Lemma 6 Starting from an arbitrary point x1 ∈ K, apply T iterations of the update

yt+1 = ∇R?(∇R(xt)− ηĝt),
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xt+1 = arg min
x∈K

{BR(x,yt+1)} .

Then for any point x? ∈ K, we have

T∑
t=1

ĝt · (xt − x?) ≤ η

2

T∑
t=1

‖ĝt‖2? +
BR(x?,x1)

η
.

Proof Since ∇R? = ∇R−1, we have ∇R(yt+1) = ∇R(xt)− ηĝt. Thus, we have

ĝt · (xt − x?) =
1

η
(∇R(yt+1)−∇R(xt)) · (x? − xt)

=
1

η
[BR(x?,xt)−BR(x?,yt+1) +BR(xt,yt+1)] via (2)

≤ 1

η
[BR(x?,xt)−BR(x?,xt+1) +BR(xt,yt+1)],

where the last inequality follows from the Pythagorean Theorem for Bregman divergences
(see Bregman, 1967): since xt+1 is the Bregman projection of yt+1 on the convex set K,
and x? ∈ K, we have BR(x?,xt+1) ≤ BR(x?,yt+1). Summing over all iterations, and using
the non-negativity of the Bregman divergence, we get

T∑
t=1

ĝt · (xt − x?) ≤ 1

η
[BR(x?,x1)−BR(x?,xT+1)] +

1

η

T∑
t=1

BR(xt,yt+1)]

≤ 1

η
BR(x?,x1) +

1

η

T∑
t=1

BR(xt,yt+1). (6)

We proceed to bound BR(xt,yt+1). By the definition of Bregman divergence, we get

BR(xt,yt+1) +BR(yt+1,xt) = (∇R(xt)−∇R(yt+1)) · (xt − yt+1)

= ηĝt · (xt − yt+1)

≤ 1

2
η2‖ĝt‖2? +

1

2
‖xt − yt+1‖2.

The last inequality uses the fact that since ‖ · ‖ and ‖ · ‖? are dual norms, we have

w · v ≤ ‖w‖?‖v‖ ≤
1

2
‖w‖2? +

1

2
‖v‖2.

Thus, by our assumption BR(x,y) ≥ 1
2‖x− y‖2, we have

BR(xt,yt+1) ≤
1

2
η2‖ĝt‖2? +

1

2
‖xt − yt+1‖2 −BR(yt+1,xt) ≤

η2

2
‖ĝt‖2?.

Plugging this bound into (6), we get the required bound.
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Lemma 7 Starting from an arbitrary point x1 ∈ K, apply T iterations of the update

yt+1 = ∇R?(∇R(xt)− ηĝt),

xt+1 = arg min
x∈K

{BR(x,yt+1)} ,

where ĝt is an unbiased estimator for a subgradient gt of F at xt satisfying assumption 3a.
Then for any point x? ∈ K, we have

1

T
E

[
T∑
t=1

F (xt)

]
− F (x?) ≤ ηG2

2
+
BR(x?,x1)

ηT
.

By convexity of F , we have the same bound for E[F (x̄)]− F (x?), where x̄ = 1
T

∑T
t=1 xt.

Proof For a random variable X measurable w.r.t. the randomness until round t, let

Et−1[X] denote its expectation conditioned on the randomness until round t − 1. By the
convexity of F , we get

F (xt)− F (x?) ≤ gt · (xt − x?) = E
t−1

[ĝt · (xt − x?)],

since Et−1[ĝt] = gt and Et−1[xt] = xt. Taking expectations of the inequality, we get that

E[F (xt)]− F (x?) ≤ E[ĝt · (xt − x?)].

Summing up over all t = 1, 2, . . . , T , and taking the expectation on both sides of the in-
equality in Lemma 6, we get the required bound.

Define Vk = G2

2k−2λ
and ∆k = F (xk1) − F (x?). The choice of initial parameters T1 = 4

and η1 = 1
λ was specified in Theorem 5, and by definition Tk = T12

k−1 and ηk = η12
−(k−1).

Using Lemma 7 we prove the following key lemma:

Lemma 8 For any k, we have E[∆k] ≤ Vk.

Proof We prove this by induction on k. The claim is true for k = 1 since ∆k ≤ 2G2

λ by
Lemma 4. Assume that E[∆k] ≤ Vk for some k ≥ 1 and now we prove it for k + 1. For a
random variable X measurable w.r.t. the randomness defined up to epoch k + 1, let Ek[X]
denote its expectation conditioned on all the randomness up to epoch k. By Lemma 7 we
have

E
k
[F (xk+1

1 )]− F (x?) ≤ ηkG
2

2
+
BR(x?,xk1)

ηkTk

≤ ηkG
2

2
+

∆k

ηkTkλ
,

since ∆k = F (xk1)− F (x?) ≥ λBR(x?,xk1) by λ-strong convexity of F with respect to BR.
Hence, we get

E[∆k+1] ≤
ηkG

2

2
+

E[∆k]

ηkTkλ
≤ ηkG

2

2
+

Vk
ηkTkλ

=
η1G

2

2k
+

Vk
η1T1λ

= Vk+1,
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as required. The second inequality uses the induction hypothesis, and the last two equali-
ties use the definition of Vk, the equalities Tk = T12

k−1 and ηk = η12
−(k−1), and the initial

values T1 = 4 and η1 = 1
λ .

We can now prove our main theorem:

Proof [Proof of Theorem 5.] The number of epochs made are given by the largest value of
k satisfying

∑k
i=1 Ti ≤ T , i.e.,

k∑
i=1

2i−1T1 = (2k − 1)T1 ≤ T.

This value is k† = blog2(
T
T1

+1)c. The final point output by the algorithm is xk
†+1

1 . Applying

Lemma 8 to k† + 1 we get

E[F (xk
†+1

1 )]− F (x?) = E[∆k†+1] ≤ Vk†+1 =
G2

2k†−1λ
≤ 4T1G

2

λT
=

16G2

λT
,

as claimed. The while loop in the algorithm ensures that the total number of gradient
updates is naturally bounded by T .

3.1 A Randomized Stopping Variant

In this section we describe a pure stochastic gradient descent algorithm with random step
sizes that has the same (expected) rate of convergence.

Our main theorem of this section is:

Theorem 9 Set the parameters T1 = 4 and η1 = 1
λ in the Random-Step-GD algorithm.

The final point xt returned by the algorithm has the property that

E[F (xt)]− F (x?) ≤ 16G2

λT

where the expectation is taken over the gradient estimates as well as the internal random-
ization of the algorithm.

Proof The proof of this theorem is on the same lines as before. In particular, we divide up
the entire time period into (possibly overlapping) epochs. For k = 1, 2, . . ., epoch k consists
of the following sequence of Tk rounds: {Bk, Bk + 1, . . . , Bk + Tk − 1}. Note that Bk+1 is
a uniformly random time in the above sequence. The behavior of the algorithm in rounds
Bk, Bk + 1, . . . , Bk+1 − 1 can be simulated by the following thought-experiment: starting
with xBk , run Tk iterations of stochastic mirror descent, i.e.,

∇R(yt+1) = ∇R(xt)− ηkĝt,

xt+1 = arg min
x∈K

{BR(x,yt+1)} ,

2499



Hazan and Kale

Algorithm 2 Random-Step-GD

1: Input: parameters η1, T1 and total time T .
2: Initialize x1 ∈ K arbitrarily, and set k = 1, B1 = 1, B2 ∈ {1, 2, . . . , T1} uniformly at

random.
3: for t = 1, 2, . . . do
4: if t = Bk+1 then
5: Set k ← k + 1.
6: Set Tk ← 2Tk−1 and ηk ← ηk−1/2.
7: Set Bk+1 ∈ {Bk, Bk + 1, . . . , Bk + Tk − 1} uniformly at random.
8: if Bk+1 > T then
9: Break for loop.

10: end if
11: end if
12: Query the gradient oracle at xt to obtain ĝt.
13: Update

yt+1 = ∇R?(∇R(xt)− ηkĝt)

xt+1 = arg min
x∈K

{BR(x,yt+1)}

14: end for
15: return xt.

for t = Bk, . . . , Bk + Tk − 1, and return xBk+1
. Conditioning on xBk−1

, and taking ex-
pectations, since Bk+1 was chosen uniformly at random from a sequence of Tk rounds, we
get

E[F (xBk+1
)] =

1

Tk

Bk+Tk−1∑
t=Bk

E[F (xt)].

Now, by Lemma 7, we conclude that

E[F (xBk+1
)]− F (x?) ≤ ηkG

2

2
+
BR(x?,xBk)

ηkTk
. (7)

Now, just as before, we define Vk = G2

2k−2λ
and ∆k = F (xBk)− F (x?). Recall the choice of

initial parameters T1 = 4 and η1 = 1
λ as specified in Theorem 9. Now, arguing exactly as

in Lemma 8

Lemma 10 For any k, we have E[∆k] ≤ Vk.

Proof We prove this by induction on k. The claim is true for k = 1 since ∆k ≤ 2G2

λ by
Lemma 4. Assume that E[∆k] ≤ Vk for some k ≥ 1 and now we prove it for k + 1. For a
random variable X measurable w.r.t. the randomness defined up to epoch k + 1, let Ek[X]
denote its expectation conditioned on all the randomness up to epoch k. By Lemma 7 we
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have

E
k
[F (xk+1

1 )]− F (x?) ≤ ηkG
2

2
+
BR(x?,xk1)

ηkTk

≤ ηkG
2

2
+

∆k

ηkTkλ
,

since ∆k = F (xk1) − F (x?) ≥ λBR(x?,xk1) by λ-strong convexity of F with respect to R.
Hence, we get

E[∆k+1] ≤
ηkG

2

2
+

E[∆k]

ηkTkλ
≤ ηkG

2

2
+

Vk
ηkTkλ

=
η1G

2

2k
+

Vk
η1T1λ

= Vk+1,

as required. As before, the second inequality above uses the induction hypothesis, and the
last two equalities use the definition of Vk, the equalities Tk = T12

k−1 and ηk = η12
−(k−1),

and the initial values T1 = 4 and η1 = 1
λ .

Now just as in the proof of Theorem 5, since we output xt = xB
k†+1

, where k†, the

number of epochs, is at least4 blog2(
T
T1

+ 1)c, we conclude that E[F (xt)]−F (x?) ≤ 16G2

λT as
required.

4. High Probability Bounds

While Epoch-GD algorithm has a O( 1
T ) rate of convergence, this bound is only on the

expected excess cost of the final solution. In applications we usually need the rate of
convergence to hold with high probability. Markov’s inequality immediately implies that
with probability 1−δ, the actual excess cost is at most a factor of 1

δ times the stated bound.
While this guarantee might be acceptable for not too small values of δ, it becomes useless
when δ gets really small.

There are two ways of remedying this. The easy way applies if it is possible to evaluate
F efficiently at any given point. Then we can divide the budget of T gradient updates
into ` = log2(1/δ) consecutive intervals of T

` rounds each, and run independent copies of
Epoch-GD in each. Finally, we take the ` solutions obtained, and output the best one
(i.e., the one with the minimum F value). Applying Markov’s inequality to every run
of Epoch-GD, with probability at least 1/2, we obtain a point with excess cost at most
64G2`
λT = 64G2 log2(1/δ)

λT , and so with probability at least 1 − 2−` = 1 − δ, the best point has

excess cost at most 64G2 log2(1/δ)
λT . This finishes the description of the easy way to obtain

high probability bounds.

The easy way fails if it is not possible to evaluate F efficiently at any given point. For this
situation, we now describe how using essentially the same algorithm with slightly different
parameters, we can get a high probability guarantee on the quality of the solution. To prove

4. Here we have an inequality rather than an equality as in the previous algorithm since we may have more
epochs due to the random early stopping of epochs.
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the high probability bound, we need to make the stronger assumption 3b, i.e., for all points

x ∈ K, the stochastic subgradient ĝ output by the oracle satisfies E[exp(‖ĝ‖
2
?

G2 )] ≤ e.
The only differences in the new algorithm, dubbed Epoch-GD-Proj, are as follows.

The algorithm takes a new parameter, D1. The update in line 7 requires a projection onto
a smaller set, and becomes

ykt+1 = ∇R?(∇R(xkt )− ηkĝt),

xkt+1 = arg min
x∈K∩B(xk1 ,Dk)

{
BR(x,ykt+1)

}
. (8)

Here B(x, D) = {y : ‖y − x‖ ≤ D} denotes the ball of radius D around the point x, and
Dk is computed in the algorithm. The update in line 10 now becomes:

Set Tk+1 ← 2Tk, ηk+1 ← ηk/2, and Dk+1 ← Dk/
√

2.

Since the intersection of two convex sets is also a convex set, the above projection can be
computed via a convex program.5 A completely analogous version of Random-Step-GD
is an easy extension; it enjoys the same high probability bound as given below. We prove
the following high probability result, which in turn directly implies Theorem 3.

Theorem 11 Given δ > 0 for success probability 1− δ, set δ̃ = δ
k†

for k† = blog2(
T
450 + 1)c.

Set the parameters T1 = 450, η1 = 1
3λ , and D1 = 2G

√
log(2/δ̃)

λ in the Epoch-GD-Proj

algorithm. The final point xk1 returned by the algorithm has the property that with probability
at least 1− δ, we have

F (xk1)− F (x?) ≤ 1800G2 log(2/δ̃)

λT
.

The total number of gradient updates is at most T .

The following lemma is analogous to Lemma 7, but provides a high probability guaran-
tee.

Lemma 12 For any given x? ∈ K, let D be an upper bound on ‖x1 − x?‖. Apply T
iterations of the update

yt+1 = ∇R?(∇R(xt)− ηĝt),

xt+1 = arg min
x∈K∩B(x1,D)

{BR(x,yt+1)} .

5. It was suggested to us by a referee that in practice, computing xkt+1 by taking a Bregman projection on
K ∩B′(xk1 , Dk), where B′(x, r) = {y : BR(y,x) ≤ D2/2} is the “Bregman ball of radius D around the
point x”, might be more efficient than a projection on K ∩ B(xk1 , Dk). This depends on the application,
but it is easy to see that all the proofs (and thus the high-probability guarantees) go through simply
because the Bregman balls are a subset of the norm ‖ · ‖ balls, i.e., B′(x, D) ⊆ B(x, D), by the strong-
convexity of R w.r.t. the norm ‖ · ‖. We prefer to leave the update in terms of the norm ‖ · ‖ balls
since generally speaking projections on larger sets are easier; the specific choice can be tailored to the
application.
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where ĝt is an unbiased estimator for the subgradient of F at xt satisfying assumption 3b.
Then for any δ ∈ (0, 1), with probability at least 1− δ we have

1

T

T∑
t=1

F (xt)− F (x?) ≤ ηG2 log(2/δ)

2
+
BR(x?,x1)

ηT
+

4GD
√

3 log(2/δ)√
T

.

By the convexity of F , the same bound also holds for F (x̄)− F (x?), where x̄ = 1
T

∑T
t=1 xt.

Proof First, note that since the oracle uses independent randomness in every call to it,
we conclude that that for all t, ĝt is independent of ĝ1, . . . , ĝt−1 given xt, and thus by
assumption 3b we have

E
t

[
exp

(
‖ĝt‖2?
G2

)]
= E

[
exp

(
‖ĝt‖2?
G2

)∣∣∣xt] ≤ exp(1). (9)

The proof proceeds on similar lines as that of Lemma 7, except that we use high-
probability bounds rather than expected bounds. Using the same notation as in the proof
of Lemma 7, let Et−1[ĝt] = gt, a subgradient of F at xt. We now need to bound

∑T
t=1 ĝt ·

(xt − x?) in terms of
∑T

t=1 gt · (xt − x?), and
∑T

t=1 ‖ĝt‖2? in terms of G2T .
As before, Et−1[ĝt · (xt−x?)] = gt · (xt−x?), and thus the following defines a martingale

difference sequence:
Xt := gt · (xt − x?)− ĝt · (xt − x?).

Note that ‖gt‖? = ‖Et−1[ĝt]‖? ≤ Et−1[‖ĝt‖?] ≤ G, and so we can bound |Xt| as follows:

|Xt| ≤ ‖gt‖?‖xt − x?‖+ ‖ĝt‖?‖xt − x?‖ ≤ 2GD + 2D‖ĝt‖?,

where the last inequality uses the fact that since x?,xt ∈ B(x1, D), we have ‖xt − x?‖ ≤
‖xt − x1‖+ ‖x1 − x?‖ ≤ 2D. This implies that

E
t

[
exp

(
X2
t

16G2D2

)]
≤ E

t

[
exp

(
4D2(2G2+2‖ĝt‖2?)

16G2D2

)]
≤ exp(12)

√
E
t

[
exp

(
‖ĝt‖2?
G2

)]
≤ exp(1),

where the second inequality follows by Jensen’s inequality and the inequality (a + b)2 ≤
2a2 + 2b2, and the last by (9).

By Lemma 14, with probability at least 1−δ/2, we have
∑T

t=1Xt ≤ 4GD
√

3 log(2/δ)T ,
which implies that

1

T

T∑
t=1

F (xt)−F (x?) ≤ 1

T

T∑
t=1

gt ·(xt−x?)−
1

T

T∑
t=1

ĝt ·(xt−x?) ≤
4GD

√
3 log(2/δ)√
T

, (10)

where the first inequality follows by convexity of F .

Next, consider E[exp(
∑T
t=1 ‖ĝt‖2?
G2 )]. We can upper bound this as follows:

E
[
exp

(∑T
t=1 ‖ĝt‖2?
G2

)]
= E

[
E
T

[
exp

(∑T
t=1 ‖ĝt‖2?
G2

)]]
= E

[
exp

(∑T−1
t=1 ‖ĝt‖2?
G2

)
E
T

[
exp

(
‖ĝT ‖2?
G2

)]]
≤ E

[
exp

(∑T−1
t=1 ‖ĝt‖2?
G2

)
· exp(1)

]
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by (9). Continuing inductively, we conclude that E[exp(
∑T
t=1 ‖ĝt‖2?
G2 )] ≤ exp(T ), which implies

(via Markov’s inequality) that with probability at least 1− δ/2, we have

T∑
t=1

‖ĝt‖2? ≤ G2T log(2/δ). (11)

Then, by using Lemma 6 and inequalities (10) and (11), we get the claimed bound.

We now prove the analogue of Lemma 8. In this case, the result holds with high
probability. As before, define Vk = G2

2k−2λ
and ∆k = F (xk1) − F (x?). Recall the choice of

initial parameters T1 = 450 and η1 = 1
3λ as specified in Theorem 3.

Lemma 13 For any k, with probability (1− δ̃)k−1 we have ∆k ≤ Vk log(2/δ̃).

Proof For notational convenience, in the following we define:

L := log(2/δ̃).

We prove the lemma by induction on k. The claim is true for k = 1 since ∆k ≤ 2G2L
λ by

Lemma 4. Assume that ∆k ≤ VkL for some k ≥ 1 with probability at least (1 − δ̃)k−1
and now we prove the corresponding statement for k + 1. We condition on the event that
∆k ≤ VkL. Since ∆k ≥ λ

2‖x
k
1 − x?‖2 by λ-strong convexity, this conditioning implies that

‖xk1 − x?‖ ≤
√

2VkL/λ = Dk. So Lemma 12 applies with D = Dk and hence we have with
probability at least 1− δ̃,

∆k+1 = F (xk+1
1 )− F (x?)

≤ ηkG
2L

2
+
BR(x?,xk1)

ηkTk
+ 10G

√
VkL

λTk
(by Lemma 12)

≤ ηkG
2L

2
+

∆k

ηkTk
+ 10G

√
VkL

λTk
(by λ-strong convexity of F )

≤ ηkG
2L

2
+

VkL

ηkTkλ
+ 10G

√
VkL

λTk
(by induction hypothesis)

=
η1G

2L

2k
+

VkL

η1T1λ
+ 10G

√
VkL

λT12k−1
(by definition of Tk, ηk)

=
VkL

12
+
VkL

150
+
Vk
√
L

3
(using values of T1, η1, Vk)

≤ VkL

2
= Vk+1L.

Factoring in the conditioned event, which happens with probability at least (1 − δ̃)k−1,
overall, we get that ∆k+1 ≤ Vk+1 with probability at least (1− δ̃)k.
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We can now prove our high probability theorem:

Proof [Theorem 11] Proceeding exactly as in the proof of Theorem 1, we get that final

epoch is k† = blog2(
T
T1

+ 1)c. The final point output is xk
†+1

1 . By Lemma 13, we have with

probability at least (1− δ̃)k† that

F (xk
†+1

1 )− F (x?) = ∆k†+1 ≤ Vk†+1 log(2/δ̃)

=
G2 log(2/δ̃)

2k†−1λ
≤ 4T1G

2 log(2/δ̃)

λT
=

1800G2 log(2/δ̃)

λT
,

as claimed. Since δ̃ = δ
k†

, and hence (1 − δ̃)k† ≥ 1 − δ as needed. The while loop in the
algorithm ensures that the total number of gradient updates is bounded by T .

In the analysis, we used the following well-known martingale inequality, a restatement
of Lemma 2 of Lan et al. (2012). Here, Et[·] denotes the expectation at time t conditioned
on all the randomness till time t− 1.

Lemma 14 Let X1, . . . , XT be a martingale difference sequence, i.e., Et[Xt] = 0 for all t.

Suppose that for some values σt, for t = 1, 2, . . . , T , we have Et[exp(
X2
t

σ2
t

)] ≤ exp(1). Then

with probability at least 1− δ, we have

T∑
t=1

Xt ≤

√√√√3 log(1/δ)

T∑
t=1

σ2t .

5. Lower Bounds on Stochastic Strongly Convex Optimization

In this section we prove Theorem 2 and show that any algorithm (deterministic or ran-
domized) for online stochastic strongly-convex optimization must have Ω(log(T )) regret on
some distribution. We start by proving a Ω(log T ) lower bound for the case when the cost
functions are 1-strongly convex with respect to the Euclidean norm and the gradient oracle
is 1-bounded, and fine tune these parameters in the next subsection by way of reduction.

In our analysis, we need the following standard lemma, which we reprove here for
completeness. Here, for two distributions P, P ′ defined on the same probability space,
dTV (P, P ′) is the total variation distance, i.e.

dTV (P, P ′) = sup
A
|P (A)− P ′(A)|

where the supremum ranges over all events A in the probability space.
Let Bp be the Bernoulli distribution on {0, 1} with probability of obtaining 1 equal to p.

Let Bn
p denote the product measure on {0, 1}n induced by taking n independent Bernoulli

trials according to Bp (thus, B1
p = Bp).

Lemma 15 Let p, p′ ∈ [14 ,
3
4 ] such that |p′ − p| ≤ 1/8. Then

dTV (Bn
p , B

n
p′) ≤

1

2

√
(p′ − p)2n.
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Proof Pinsker’s inequality says that dTV (Bn
p , B

n
p′) ≤

√
1
2RE(Bn

p ‖Bn
p′), where RE(Bn

p ‖Bn
p′) =

EX∼Bnp [ln
Bnp (X)

Bn
p′ (X) ] is the relative entropy between Bn

p and Bn
p′ . To bound RE(Bn

p ‖Bn
p′), note

that the additivity of the relative entropy for product measures implies that

RE(Bn
p ‖Bn

p′) = nRE(Bp‖Bp′) = n

[
p log

(
p

p′

)
+ (1− p) log

(
1− p
1− p′

)]
. (12)

Without loss of generality, assume that p′ ≥ p, and let p′ = p+ε, where 0 ≤ ε ≤ 1/8. Using
the Taylor series expansion of log(1 + x), we get the following bound

p log

(
p

p′

)
+ (1− p) log

(
1− p
1− p′

)
=
∞∑
i=1

[
(−1)i

pi−1
+

1

(1− p)i−1

]
εi ≤

∞∑
i=2

4i−1εi ≤ ε2

2
,

for ε ≤ 1/8. Plugging this (12) and using Pinsker’s inequality, we get the stated bound.

We now turn to showing our lower bound on expected regret. We consider the following
online stochastic strongly-convex optimization setting: the domain is K = [0, 1]. For every
p ∈ [14 ,

3
4 ], define a distribution over strongly-convex cost functions parameterized by p as

follows: choose X ∈ {0, 1} from Bp, and return the cost function

f(x) = (x−X)2.

With some abuse of notation, we use Bp to denote this distribution over cost functions.
Under distribution Bp, the expected cost function F is

F (x) := E[f(x)] = p(x− 1)2 + (1− p)x2 = x2 + 2px+ p = (x− p)2 + cp,

where cp = p−p2. The optimal point is therefore x? = p, with expected cost cp. The regret
for playing a point x (i.e., excess cost over the minimal expected cost) is

F (x)− F (x?) = (x− p)2 + cp − cp = (x− p)2.

Now let A be a deterministic6 algorithm for online stochastic strongly-convex optimiza-
tion. Since the cost functions until time t are specified by a bit string X ∈ {0, 1}t−1 (i.e.,
the cost function at time t is (x−Xt)

2), we can interpret the algorithm as a function that
takes a variable length bit string, and produces a point in [0, 1], i.e., with some abuse of
notation,

A : {0, 1}≤T −→ [0, 1],

where {0, 1}≤T is the set of all bit strings of length up to T .
Now suppose the cost functions are drawn from Bp. Fix a round t. Let X be the

t − 1 bit string specifying the cost functions so far. Note that X has distribution Bt−1
p .

For notational convenience, denote by Prp[·] and Ep[·] the probability of an event and the
expectation of a random variable when the cost functions are drawn from Bp, and since
these are defined by the bit string X, they are computed over the product measure Bt−1

p .

6. We will remove the deterministic requirement shortly and allow randomized algorithms.

2506



Optimal Stochastic Strongly-Convex Optimization

Let the point played by A at time t be xt = A(X). The regret (conditioned on the
choice of X) in round t is then

regrett := (A(X)− p)2,

and thus the expected (over the choice of X) regret of A in round t is Ep[regrett] =

Ep[(A(X)− p)2].
We now show that for any round t, for two distributions over cost functions Bp and Bp′

that are close (in terms of |p− p′|), but not too close, the regret of A on at least one of the
two distributions must be large.

Lemma 16 Fix a round t. Let ε ≤ 1
8
√
t

be a parameter. Let p, p′ ∈ [14 ,
3
4 ] such that

2ε ≤ |p− p′| ≤ 4ε. Then we have

E
p
[regrett] + E

p′
[regrett] ≥

1

4
ε2.

Proof Assume without loss of generality that p′ ≥ p + 2ε. Let X and X ′ be (t − 1)-bit
vectors parameterizing the cost functions drawn from Bt−1

p and Bt−1
p′ respectively. Then

E
p
[regrett] + E

p′
[regrett] = E

p
[(A(X)− p)2] + E

p′
[(A(X ′)− p′)2].

Now suppose the stated bound does not hold. Then by Markov’s inequality, we have

Pr
p

[(A(X)− p)2 < ε2] ≥ 3/4,

or in other words,
Pr
p

[A(X) < p+ ε] ≥ 3/4. (13)

Similarly, we can show that

Pr
p′

[A(X ′) > p+ ε] ≥ 3/4, (14)

since p′ ≥ p+ 2ε. Now define the event

A := {Y ∈ {0, 1}t−1 : A(Y ) > p+ ε}.

Now (13) implies that Prp(A) < 1/4 and (14) implies that Prp′(A) ≥ 3/4. But then by
Lemma 15 we have

1

2
< |Pr

p
(A)− Pr

p′
(A)| ≤ dTV (Bt−1

p , Bt−1
p′ ) ≤ 1

2

√
(p′ − p)2(t− 1)

≤ 1

2

√
16ε2(t− 1) ≤ 1

4
,

a contradiction.

We now show how to remove the deterministic requirement on A:
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Corollary 17 The bound of Lemma 16 holds even if A is randomized:

E
p,R

[regrett] + E
p′,R

[regrett] ≥
1

4
ε2,

where Ep,R[·] denotes the expectation computed over the random seed R of the algorithm as
well as the randomness in the cost functions.

Proof Fixing the random seedR ofA, we get a deterministic algorithm, and then Lemma 16
gives the following bound on the sum of the conditional expected regrets:

E
p
[regrett|R] + E

p′
[regrett|R] ≥ 1

4
ε2.

Now taking expectations over the random seed R, we get the desired bound.

Thus, from now on we allow A to be randomized. We now show the desired lower bound
on the expected regret:

Theorem 18 The expected regret for algorithm A is at least Ω(log(T )).

Proof We prove this by showing that there is one value of p ∈ [14 ,
3
4 ] such that regret of A

when cost functions are drawn from Bp is at least Ω(log(T )).
We assume that T is of the form 16 + 162 + · · · 16k = 1

15(16k+1− 16) for some integer k:
if it isn’t, we ignore all rounds t > T ′, where T ′ = 1

15(16k
?+1 − 16) for k? = blog16(15T +

16)− 1c, and show that in the first T ′ rounds the algorithm can be made to have Ω(log(T ))
regret. We now divide the time periods t = 1, 2, . . . , T ′ into consecutive epochs of length
16, 162, . . . , 16k

?
. Thus, epoch k, denoted Ek, has length 16k, and consists of the time periods

t = 1
15(16k − 16) + 1, . . . , 1

15(16k+1 − 16). We prove the following lemma momentarily:

Lemma 19 There exists a collection of nested intervals, [14 ,
3
4 ] ⊇ I1 ⊇ I2 ⊇ I3 ⊇ · · · , such

that interval Ik corresponds to epoch k, with the property that Ik has length 4−(k+3), and
for every p ∈ Ik, for at least half the rounds t in epoch k, algorithm A has Ep,R[regrett] ≥
1
8 · 16−(k+3).

As a consequence of this lemma, we get that there is a value of p ∈
⋂
k Ik such that in

every epoch k, the total regret is∑
t∈Ek

1

8
· 16−(k+3) ≥ 1

2
16k · 1

8
· 16−(k+3) =

1

164
.

Thus, the regret in every epoch is Ω(1). Since there are k? = Θ(log(T )) epochs total, the
regret of the algorithm is at least Ω(log(T )).

We now turn to prove Lemma 19.
Proof [Lemma 19] We build the nested collection of intervals iteratively as follows. For
notational convenience, define I0 to be some arbitrary interval of length 4−3 inside [14 ,

3
4 ].

Suppose for some k ≥ 0 we have found the interval Ik = [a, a + 4−(k+3)]. We want to find
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the interval Ik+1 now. For this, divide up Ik into 4 equal quarters of length ε = 4−(k+4), and
consider the first and fourth quarters, viz. L = [a, a+ 4−(k+4)] and R = [a+ 3 · 4−(k+4), a+
4−(k+3)]. We now show that one of L or R is a valid choice for Ik+1, and so the construction
can proceed.

Suppose L is not a valid choice for Ik+1, because there is some point p ∈ L such that for
more than half the rounds t in Ek+1, we have Ep,R[regrett] < 16−(k+1). Then we show that
R is a valid choice for Ik+1 as follows. Let H = {t ∈ Ek+1 : Ep,R[regrett] <

1
8 · 16−(k+4)}.

Now, we claim that for all p′ ∈ R, and all t ∈ H, we must have Ep′,R[regrett] >
1
8 · 16−(k+4),

which would imply that R is a valid choice for Ik+1, since by assumption, |H| ≥ 1
2 |Ek+1|.

To show this we apply Lemma 16. Fix any p′ ∈ R and t ∈ H. First, note that
ε = 4−(k+4) ≤ 1

8
√
t
, since t ≤ 16k+2. Next, we have p′ − p ≥ 2ε (since we excluded the

middle two quarters of Ik), and |p− p′| ≤ 4ε (since Ik has length 4−(k+3)). Then Lemma 16
implies that

E
p,R

[regrett] + E
p′,R

[regrett] ≥
1

4
· 16−(k+4),

which implies that Ep′,R[regrett] ≥ 1
8 ·16−(k+4) since Ep,R[regrett] <

1
8 ·16−(k+4), as required.

5.1 Dependence on the Gradient Bound and on Strong Convexity

A simple corollary of the previous proof gives us tight lower bounds in terms of the natural
parameters of the problem: the strong-convexity parameter λ and the upper bound on the
norm of the subgradients G. The following Corollary implies Theorem 2.

Corollary 20 For any algorithm A, there is distribution over λ-strongly convex cost func-
tions over a bounded domain K ⊂ R with gradients bounded in norm by G such that the

expected regret of A is Ω
(
G2 log(T )

λ

)
.

Proof The online convex optimization setting we design is very similar: let λ,G ≥ 0 be
given parameters. The domain is K = [0, Gλ ]. In round t, we choose Xt ∈ {0, 1} from Bp,
and return

ft(x) =
λ

2

(
x− G

λ
Xt

)2

as the cost function. Notice that the cost functions are always λ-strongly convex, and in
addition, for any x ∈ K, the gradient of the cost function at x is bounded in norm by G.

Denote x′ = λx
G to be the scaled decision x, mapping it from K to [0, 1]. The expected

cost when playing x ∈ K is given by

E[ft(x)] = E
X∼Bp

[
λ

2

(
x− G

λ
Xt

)2
]

=
G2

2λ
E[(x′ −Xt)

2]. (15)

Given an algorithm A for this online convex optimization instance, we derive another algo-
rithm, A′, which plays points x′ ∈ K′ = [0, 1] and receives the cost function (x′ −Xt)

2 in
round t (i.e., the setting considered in Section 5). When A plays xt in round t and obtains
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cost function λ
2

(
x− G

λXt

)2
, the algorithm A′ plays the point x′t = λ

Gxt and receives the
cost function (x′ −Xt)

2.

The optimum point for the setting of A is G
λ p, with expected cost G2

2λ times the expected

cost for the optimum point p for the setting of A′. By equation (15), the cost of A is G2

2λ

times that of A′. Hence, the regret of A is G2

2λ times that of A′.
By Theorem 18, there is a value of p such that the expected regret of A′ is Ω(log T ),

and hence the expected regret of A is Ω
(
G2 log(T )

λ

)
, as required.

6. Conclusions

We have given an algorithm for stochastic strongly-convex optimization with an optimal
rate of convergence O( 1

T ). The Epoch-GD algorithm has an appealing feature of returning
the average of the most recent points (rather than all points visited by the algorithm as in
previous approaches). This is an intuitive feature which, as demonstrated by Rakhlin et al.
(2012), works well in practice for important applications such as support vector machine
training.

Our analysis deviates from the common template of designing a regret minimization
algorithm and then using online-to-batch conversion. In fact, we show that the latter
approach is inherently suboptimal by our new lower bound on the regret of online algorithms
for stochastic cost functions. This combination of results formally shows that the batch
stochastic setting is strictly easier than its online counterpart, giving us tighter bounds.

A few questions remain open. The high-probability bound algorithm Epoch-GD-Proj
has an extra factor of O(log log(T )) in its convergence rate. Is it possible to devise an
algorithm that has O( 1

T ) convergence rate with high probability? We believe the answer is
yes; the O(log log(T )) is just an artifact of the analysis. In fact, as we mention in Section 4,
if it is possible to evaluate F efficiently at any given point, then this dependence can be
removed. Also, our lower bound proof is somewhat involved. Are there easier information
theoretic arguments that give similar lower bounds?
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