
Journal of Machine Learning Research 15 (2014) 1461-1492 Submitted 2/13; Revised 12/13; Published 4/14

Training Highly Multiclass Classifiers

Maya R. Gupta mayagupta@google.com
Samy Bengio bengio@google.com
Google Inc.
1600 Amphitheatre Pkwy
Mountain View, CA 94301, USA

Jason Weston jaseweston@gmail.com

Google Inc.

76 9th Avenue,

New York, NY 10011 USA

Editor: Koby Crammer

Abstract

Classification problems with thousands or more classes often have a large range of class-
confusabilities, and we show that the more-confusable classes add more noise to the em-
pirical loss that is minimized during training. We propose an online solution that reduces
the effect of highly confusable classes in training the classifier parameters, and focuses the
training on pairs of classes that are easier to differentiate at any given time in the training.
We also show that the adagrad method, recently proposed for automatically decreasing
step sizes for convex stochastic gradient descent, can also be profitably applied to the non-
convex joint training of supervised dimensionality reduction and linear classifiers as done
in Wsabie. Experiments on ImageNet benchmark data sets and proprietary image recogni-
tion problems with 15,000 to 97,000 classes show substantial gains in classification accuracy
compared to one-vs-all linear SVMs and Wsabie.

Keywords: large-scale, classification, multiclass, online learning, stochastic gradient

1. Introduction

Problems with many classes abound: from classifying a description of a flower as one of the
over 300,000 known flowering plants (Paton et al., 2008), to classifying a whistled tune as
one of the over 30 million recorded songs (Eck, 2013). Many practical multiclass problems
are labelling images, for example face recognition, or tagging locations in vacation photos.
In practice, the more classes considered, the greater the chance that some classes will be
easy to separate, but that some classes will be highly confusable.

When training a discriminative multi-class classifier, the true goal is to minimize ex-
pected error on future samples, but in practice we minimize empirical error on samples we
already have. In this paper, we show that classes that are more confusable add more noise
to the empirical loss. To address this, we propose approximating the expected error with
a different empirical loss we term the empirical class-confusion loss. For the large-scale
online training, we show that an online empirical class-confusion loss can be implemented
for stochastic gradient descent by simply ignoring stochastic gradients corresponding to a
repeated confusion between classes. This proposed strategy also automatically implements

c©2014 Maya R. Gupta, Samy Bengio, and Jason Weston.

Gupta, Bengio, and Weston

a form of curriculum learning, that is, of learning to distinguish easy classes before focusing
on learning to distinguish hard classes (Bengio et al., 2009).

In this paper, we focus on classifiers that use a linear discriminant or a single prototypical
feature vector to represent each class. Linear classifiers are a popular approach to highly
multiclass problems because they are efficient in terms of memory and inference and can
provide good performance (Perronnin et al., 2012; Lin et al., 2011; Sanchez and Perronnin,
2011). Class prototypes offer similar memory/efficiency advantages. The last layer of a
deep belief network classifier is often linear or soft-max discriminant functions (Bengio,
2009), and the proposed ideas for adapting online loss functions should be applicable in
that context as well.

We apply the proposed loss function adaptation to the multiclass linear classifier called
Wsabie (Weston et al., 2011). We also simplify Wsabie’s weighting of stochastic gradients,
and employ a recent advance in automatic step-size adaptation called adagrad (Duchi et al.,
2011). The resulting proposed Wsabie++ classifier almost doubles the classification accuracy
on benchmark Imagenet data sets compared to Wsabie, and shows substantial gains over
one-vs-all SVMs.

The rest of the article is as follows. After establishing notation in Section 2, we explain
in Section 3 how different class confusabilities can distort the standard empirical loss. We
then review loss functions for jointly training multiclass linear classifiers in Section 4, and
stochastic gradient descent variants for large-scale learning in Section 5. In Section 6, we
propose a practical online solution to adapt the empirical loss to account for the variance of
class confusability. We describe our adagrad implementation in Section 7. Experiments are
reported on benchmark and proprietary image classification data sets with 15,000-97,000
classes in Section 8 and 9. We conclude with some notes about the key issues and unresolved
questions.

2. Notation And Assumptions

We take as given a set of training data {(xt,Yt)} for t = 1, . . . , n, where xt ∈ Rd is a feature
vector and Yt ⊂ {1, 2, . . . , G} is the subset of the G class labels that are known to be correct
labels for xt. For example, an image might be represented by set of features xt and have
known labels Yt = {dolphin, ocean, Half Moon Bay}. We assume a discriminant function
f(x;βg) has been chosen with class-specific parameters βg for each class with g = 1, . . . , G.
The class discriminant functions are used to classify a test sample x as the class label that
solves

arg max
g
f(x;βg). (1)

Most of this paper applies equally well to “learning to rank,” in which case the output might
be a top-ranked or ranked-and-thresholded list of classes for a test sample x. For simplicity,
we restrict our discussion and metrics to the classification paradigm given by (1).

Many of the ideas in this paper can be applied to any choice of discriminant function
f(x, βg), but in this paper we focus on efficiency in terms of test-time and memory, and
so we focus on class discriminants that are parameterized by a d-dimensional vector per
class. Two such functions are: the inner product f(x;βg) = βTg x, and the squared `2
norm f(x;βg) = −(βg − x)T (βg − x). We also refer to these as linear discriminants and

1462

Training Highly Multiclass Classifiers

Euclidean distance discriminants, respectively. For example, one-vs-all linear SVMs use a
linear discriminant, where the βg are each trained to maximize the margin between samples
from the gth class and all samples from all other classes. The nearest means classifier
(Hastie et al., 2001) uses an Euclidean distance discriminant where each class prototype βg
is set to be the mean of all the training samples labelled with class g. Both the linear and
nearest-prototype functions produce linear decision boundaries between classes. And with
either the linear or Euclidean discriminants, the classifier has a total of G× d parameters,
and testing as per (1) scales as O(Gd).

To reduce memory and test time, and also as a regularizer, it may be useful for the clas-
sifier to include a dimensionality reduction matrix (sometimes called an embedding matrix)
W ∈ Rm×d, and then use linear or Euclidean discriminants in the reduced dimensionality
space, for example f(x;W,βg) = βTg Wx or f(x;W,βg) = −(βg − x)TW (βg − x).

3. The Problem with a Large Variance in Class Confusability

The underlying goal when discriminatively training a classifier is to minimize expected
classification error, but this goal is often approximated by the empirical classification errors
on a given data set. In this section, we show that the expected error does not count
errors between confusable classes (like dolphin and porpoise) the same as errors between
separable classes (like cat and dolphin), whereas the empirical error counts all errors
equally. Consequently, more confusable classes add more noise to the standard empirical
error approximation of the expected error, and this confusable-class noise can adversely
affect training.

Then in Section 6, we propose addressing this issue by changing the way we measure
empirical loss to reduce the impact of errors between more-confusable classes.

3.1 Expected Classification Error Depends on Class Confusability

Define a classifier c as a map from an input feature vector x to a class such that c : Rd →
1, 2, . . . , G. Let I be the indicator function, and assume there exists a joint probability
distribution PX,Y on the random feature vector X ∈ Rd and class Y ∈ {1, 2, . . . , G}. Then
the expected classification error of classifier c is:

EX,Y [IY 6=c(X)] = EX
[
EY |X [IY 6=c(X)]

]
(2)

= EX
[
PY |X(Y 6= c(X))

]
because I is a Bernoulli random variable (3)

≈ 1

n

n∑
t=1

PY |xt(Y 6= c(xt)), law of large numbers approximation (4)

≈ 1

n

n∑
t=1

Iyt 6=c(xt), (5)

where the approximation in (4) replaces the expectation with an average over n samples,
an approximation that is asymptotically correct as n → ∞ by the law of large numbers
(LLN). The final approximation given in (5) produces the standard empirical error.

1463

Gupta, Bengio, and Weston

Equations (3) and (4) show that the expected error depends on the probability that
a given feature vector xt has corresponding random class label Yt equal to the classifier’s
decision c(xt). For example, suppose that sample xt is equally likely to be class 1 or class
2, but no other class. If the classifier labels xt as c(xt) = 1, one should add PY |xt(Y 6=
(c(xt) = 1)) = 1/2 to the approximate error given by (4). On the other hand, suppose that
for another sample xj , the probability of class 1 is .99 and the probability of class 3 is .01.
Then if the classifier calls c(xj) = 1 we should add PY |xt(Y 6= (c(xt) = 1)) = .01 to the
loss, whereas if the classifier calls c(xj) = 3 we should add PY |xt(Y 6= (c(xt) = 1)) = .99
to the loss. This relative weighting based on class confusions is in contrast to the standard
empirical loss given in (5) that simply counts all errors equally.

One can interpret the standard empirical loss given in (5) as the maximum likeli-
hood approximation to (2) that estimates PY |xt given the training sample pair (xt, yt) as

P̂Y |xt(yt) = 1 and P̂Y |xt(g) = 0 for all other classes g. This maximum likelihood estimate
converges asymptotically to (4), but for a finite number of training samples may produce a
poor approximation. For binary classifiers, the approximation (5) may be quite good. We
argue that (5) is generally a worse approximation as the number of classes increases. The
key issue is that while the one-or-zero error approximation in (5) asymptotically converges to
PY |xt , it converges more slowly when classes are more confusable, and thus more-confusable
classes add more “noise” to the approximation than less-confusable classes, biasing the
empirical loss to overfit the noise of the more confusable class confusions.

Let us characterize this difference in noise. For any feature vector x and classifier c the
true class label Y is a random variable, and thus the indicator IY 6=c(xt) in (5) is a random
indicator with a binomial distribution with parameter p = PY |xt(Y 6= c(xt)). The variance
of the random indicator IY 6=c(xt) is p(1− p), and thus the more confusable the classes, the
more variance there will be in the corresponding samples’ contribution to the empirical loss.

Beyond noting the variance of the empirical errors is quadratic in p, it is not straightfor-
ward to formally characterize the distribution of the empirical loss for binomials with differ-
ent p for finite n (see for example Brown et al., 2001). However we can emphasize this point
with a histogram of simulated empirical errors in Figure 1. The figure shows histograms of
1000 different simulations of the empirical error, calculated by averaging either 10 random
samples (top) or 100 random samples (bottom) that either have p = PY |xt(Y 6= c(xt)) = 0.5
(left) or p = PY |xt(Y 6= c(xt)) = 0.01 (right).

The left-hand side of Figure 1 corresponds to samples x that are equally likely to be
one of two classes, and so even the Bayes classifier is wrong half the time, such that p =
PY |xt(Y 6= c(xt)) = 0.5. The empirical error of such samples will eventually converge to
the true error 0.5, but we see (top left) that the empirical error of ten such samples varies
greatly! Even one hundred such samples (bottom left) are often a full .1 away from their
converged value. This is in contrast to the right-hand examples corresponding to samples
xt that are easily classified such that p = PY |xt(Y 6= c(xt)) = 0.01. Their empirical error is
generally much closer to the correct .01. Thus the more-confusable classes add more noise
to the standard empirical loss approximation (5).

in the special case that the Bayes error is zero and the classifier c is the Bayes classifier
the standard empirical loss approximation (5) is exact. For practical classification problems
with many classes, we argue that at least some classes will be very confusable, and thus the
Bayes error will not be zero, and (5) can be a dangerous approximation to use for training.

1464

Training Highly Multiclass Classifiers

P (classification error) = .5 P (classification error) = .01

10 Samples 10 Samples

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

Fr
eq

ue
nc

y

Empirical Error
0 0.2 0.4 0.6 0.8 1

0

200

400

600

800

1000

Fr
eq

ue
nc

y

Empirical Error

100 Samples 100 Samples

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

Fr
eq

ue
nc

y

Empirical Error
0 0.2 0.4 0.6 0.8 1

0

50

100

150

200

250

300

350

400

Fr
eq

ue
nc

y

Empirical Error

Figure 1: Histograms of the empirical error of 10 random samples (top) or 100 random
samples (bottom). As the number of samples averaged grows, the empirical error
will converge to the true probability of an error, either .5 (left) or .01 (right). But
given a finite sample, the empirical error may be quite noisy, and when the true
error is high (left) the empirical error can be much noisier than when the true
error is low (right).

1465

Gupta, Bengio, and Weston

Empirical errors: 10 Empirical errors: 9

Figure 2: Two classifiers and the same draw of random training samples from four classes.
Dotted lines correspond to the Bayes decision boundaries, and indicate that class
1 and class 2 are indistinguishable (same Bayes decision regions). Solid lines cor-
respond to the classifier decision boundaries, determined by which class prototype
β1, β2, β3, or β4 is closest. The two figures differ in the placement of β1, which
produces different classifier decision boundaries. In this case, because of the ran-
domness of the given training samples, the empirical error is higher for the left
classifier than the right classifier, but the left classifier is closer to the optimal
Bayes classifier.

Figure 2 shows an example of empirical error being overfit to noise between confusable
classes. The figure compares two classifiers. Each classifier uses a Euclidean discriminant
function, that is, the gth class is represented by a prototype vector {βg}, and a feature
vector is classified as the nearest prototype with respect to Euclidean distance. Thus the
decision boundaries are formed by the Voronoi diagram denoted with the thick lines, and
the decision boundary between any two classes is linear.

The two classifiers in Figure 2 differ only in the placement of β1. One sees that decision
boundaries produced are not independent of each other: the right classifier has moved β1
up to reduce empirical errors between class 1 and class 2, but this also changes the decision
boundary between classes 1 and 3, and incurs a new empirical error of a class 3 sample.
The left classifier in Figure 2 is actually closer to the Bayes decision boundaries (shown by
the dotted lines), and would have lower error on a test set (on average).

If the feature dimension is high enough, then as the number of classes G grows, the
number of decision boundaries between classes can grow at a worst-case rate of G2, and yet
the ability of these efficient classifiers to describe decision boundaries is fixed at Gd degrees
of freedom. And with high-dimensional feature spaces, many classes are next to each other.
This interdependence of the pairwise class decision boundaries is why simply minimizing
the total empirical error is a bad strategy: it is too sensitive to the empirical error noise of
the more-confusable classes.

1466

Training Highly Multiclass Classifiers

3.2 Two Factors We Mostly Ignore In This Discussion

Throughout this paper we ignore the dependence of PY |x(Y 6= c(x)) on the particular feature
vector x, and focus instead on how confusable a particular class y = c(X) is averaged over
X. For example, pictures of porpoises may on average be confused with pictures of dolphins,
even though a particular image of a porpoise may be more or less confusable.

Also, we have thus far ignored the fact that discriminative training usually makes a
further approximation of (5) by replacing the indicator by a convex approximation like the
hinge loss. Such convex relaxations do not avoid the issues described in the previous section,
though they may help. For example, the hinge loss increases the weight of an error that
is made farther from the decision boundary. To the extent that classes are less confusable
farther away from the decision boundary, the hinge loss may be a better approximation
than the indicator to the probabilistic weighting of (4). However, if the features are high-
dimensional, the distribution of distances from the decision boundary may be less variable
than one would expect from two-dimensional intuition (see for example Hall and Marron,
2005).

3.3 A Different Approximation for the Empirical Loss

We argued above that when computing the empirical test error, approximating PY |xt(Y 6=
c(xt)) by 1 if yt = c(xt) and by 0 otherwise adds preferentially more label noise from more
confusable classes.

Here we propose a different approximation for PY |xt(Y 6= c(xt)). As usual, if c(xt) = yt,
we approximate PY |xt(Y 6= c(xt)) by 0. But if c(xt) 6= yt, then we use the empirical
probability that a training sample that has label yt is not classified as c(xt):

PY |xt(Y 6= c(xt)) ≈ EX|Y=yt [P (c(X) 6= c(xt)] (6)

≈


n∑
τ=1

Iyτ=ytIc(xτ)6=c(xt)∑n
τ=1 Iyτ=yt

 Iyt 6=c(xt). (7)

This approximation depends on how consistently feature vectors with training label yt
are classified as class c(xt), and counts common class-confusions less. For example, consider
the right-hand classifier c(x) in Figure 2. There is just one training sample labeled 3 that
is incorrectly classified as class 1. The cost of that error according to (7) is 10/11, because
there are eleven class 3 examples, and ten of those are classified as class 3. On the other
hand, the cost of incorrectly labeling a sample of class 1 as a sample of class 2 would be
only 7/11, because seven of the eleven class 1 samples are not labeled as class 2.

Thus this approximation generally has the desired effect of counting confusions between
confusable classes relatively less than confusions between easy-to-separate classes. This
approximation is more exact for “good” classifiers c(x) that are more similar to the Bayes
classifier, and more exact if the feature vectors X are equally predictive for each class label
so that averaging over X in (6) is a good approximation for most realizations xt.

One could implement this approximation in a sequential process: first train a classifier,
then compute the empirical class-confusion probability matrix, and then re-train a classifier

1467

Gupta, Bengio, and Weston

using the approximation (7) for the empirical loss. Shamir and Dekel (2010) proposed a
related but more extreme two-step approach for highly multi-class problems: first train a
classifier on all classes, and then delete classes that are poorly estimated by the classifier.

To be more practical, we propose continuously evolving the classifier to ignore the cur-
rently highly-confusable classes by implementing (6) in an online fashion with SGD. This
simple variant can be interpreted as implementing curriculum learning (Bengio et al., 2009),
a topic we discuss further in Section 6.2.1. But before detailing the proposed simple on-
line strategy in Section 6, we need to review related work in loss functions for multi-class
classifiers.

4. Related Work in Loss Functions for Multiclass Classifiers

In this section, we review loss functions for multiclass classifiers, and discuss recent work
adapting such loss functions to the online setting for large-scale learning.

One of the most popular classifiers for highly multiclass learning is one-vs-all linear
SVMs, which have only O(Gd) parameters to learn and store, and O(Gd) time needed
for testing. A clear advantage of one-vs-all is that the G class discriminant functions
{fg(x)} can be trained independently. An alternate parallelizable approach is to train all
G2 one-vs-one SVMs, and let them vote for the best class (also known as round-robin and
all-vs-all). Binary classifiers can also be combined using error-correcting code approaches
(Dietterich and Bakiri, 1995; Allwein et al., 2000; Crammer and Singer, 2002). A well-
regarded experimental study of multiclass classification approaches by Rifkin and Klatau
(2004) showed that one-vs-all SVMs performed “just as well” on a set of ten benchmark
data sets with 4-49 classes as one-vs-one or error-correcting code approaches.

A number of researchers have independently extended the two-class SVM optimization
problem to a joint multiclass optimization problem that maximizes pairwise margins subject
to the training samples being correctly classified, with respect to pairwise slack variables
(Vapnik, 1998; Weston and Watkins, 1998, 1999; Bredensteiner and Bennet, 1999).1 These
extensions have been shown to be essentially equivalent quadratic programming problems
(Guermeur, 2002). The minimized empirical loss can be stated as the sum of the pairwise
errors:

Lpairwise({βg}) =
n∑
t=1

1

|Yt|
∑
y+∈Yt

1

|YCt |
∑

y−∈YCt

|b− f(xt;βy+) + f(xt;βy−)|+, (8)

where | · |+ is short-hand for max(0, ·), b is a margin parameter, YCt is the complement set
of Yt, and we added normalizers to account for the case that a given xt may have more than
one positive label such that |Yt| > 1.

Crammer and Singer (2001) instead suggested taking the maximum hinge loss over all
the negative classes:

Lmax loss({βg}) =

n∑
t=1

1

|Yt|
∑
y+∈Yt

max
y−∈YCt

|b− f(xt;βy+) + f(xt;βy−)|+. (9)

1. See also the work of Herbrich et al. (2000) for a related pairwise loss function for ranking rather than
classification.

1468

Training Highly Multiclass Classifiers

This maximum hinge-loss is sometimes called multiclass SVM, and can be derived from a
margin-bound (Mohri et al., 2012). Daniely et al. (2012) theoretically compared multiclass
SVM with one-vs-all, one-vs-one, tree-based linear classifiers and error-correcting output
code linear classifiers. They showed that the hypothesis class of multiclass SVM contains
that of one-vs-all and tree-classifiers, which strictly contain the hypothesis class of one-vs-
one classifiers. Thus the potential performance with multiclass SVM is larger. However
they also showed that the approximation error of one-vs-one is smallest, with multiclass
SVM next smallest.

Statnikov et al. (2005) compared eight multiclass classifiers including that of Weston
and Watkins (1999) and Crammer and Singer (2001) on nine cancer classification problems
with 3 to 26 classes and less than 400 samples per problem. On these small-scale data sets,
they found the Crammer and Singer (2001) classifier was best (or tied) on 2/3 of the data
sets, and the pairwise loss given in (8) performed almost as well.

Lee et al. (2004) prove in their Lemma 2 that previous approaches to multiclass SVMs
are not guaranteed to be asymptotically consistent. For more on consistency of multiclass
classification loss functions, see Rifkin and Klatau (2004), Tewari and Bartlett (2007), Zhang
(2004), and Mroueh et al. (2012). Lee et al. (2004) proposed a multiclass loss function that
is consistent. They force the class discriminants to sum to zero such that

∑
g f(x;βg) = 0

for all x, and define the loss:

Ltotal loss({βg}) =

n∑
t=1

∑
y−∈YCt

|f(xt;βy−)− 1

G− 1
|+. (10)

This loss function jointly trains the class discriminants so that the total sum of wrong class
discriminants for each training sample is small. Minimizing this loss can be expressed as a
constrained quadratic program. The experiments of Lee et al. (2004) on a few small data
sets did not show much difference between the performance of (10) and (8).

5. Online Loss Functions for Training Large-scale Multiclass Classifiers

If there are a large number of training samples n, then computing the loss for each candidate
set of classifier parameters becomes computationally prohibitive. The usual solution is to
minimize the loss in an online fashion with stochastic gradient descent, but exactly how
to sample the stochastic gradients becomes a key issue. Next, we review two stochastic
gradient approaches that correspond to different loss functions: AUC sampling (Grangier
and Bengio, 2008) and the WARP sampling used in the Wsabie classifier (Weston et al.,
2011).

5.1 AUC Sampling

For a large number of training samples n, Grangier and Bengio (2008) proposed optimizing
(8) by sequentially uniformly sampling from each of the three sums in (8):

1. draw one training sample xt,

2. draw one correct class y+ from Yt,

1469

Gupta, Bengio, and Weston

3. draw one incorrect class y− from YCt ,

4. compute the corresponding stochastic gradient of the loss in (8),

5. update the classifier parameters.

This sampling strategy, referred to as area under the curve (AUC) sampling, is inefficient
because most randomly drawn incorrect class samples will have zero hinge loss and thus
not produce an update to the classifier.

5.2 WARP Sampling

The weighted approximately ranked pairwise (WARP) sampling was introduced by Weston
et al. (2011) to make the stochastic gradient sampling more efficient than AUC sampling,
and was evolved from the weighted pairwise classification loss of Usunier et al. (2009).
Unlike AUC sampling, WARP sampling focuses on sampling from negative classes that
produce non-zero stochastic gradients for a given training example.

To explain WARP sampling, we first define the WARP loss:

LWARP({βg}) =

n∑
t=1

1

|Yt|
∑
y+∈Yt

1

|Vt,y+ |
∑

yv∈Vt,y+

w(y+) |b− f(xt;βy+) + f(xt;βyv)|+,

(11)

where w(y+) is a weight on the correct label, and Vt,y+ is the set of violating classes defined:

Vt,y+ = {yv s.t. |b− f(xt;βy+) + f(xt;βyv)|+ > 0}. (12)

As in Usunier et al. (2009), Weston et al. (2011) suggest using a weight function w(y+)
that is an increasing function of the number of violating classes. Because the number
of violating classes defines the rank of the correct class y+, they denote the number of
violating classes for a training sample with training class y+ as r(y+). They suggest using
the truncated harmonic series for the weight function,

w(y+) =

r(y+)∑
j=1

1

j
. (13)

Weston et al. (2011) proposed WARP sampling which sequentially uniformly samples
from each of the three sums in (11):

1. draw one training sample xt,

2. draw one correct class y+ from Yt,

3. draw one violating class yv from Vt,y+ if one exists,

4. compute the corresponding stochastic gradient of the loss in (11),

5. update the classifier parameters.

1470

Training Highly Multiclass Classifiers

To sample a violating class from Vt,y+ , the negative classes in YCt are uniformly randomly
sampled until a class that satisfies the violation constraint (12) is found, or the number of
allowed such trials (generally set to be G) is exhausted. The rank r(y+) needed to calculate
the weight in (13) is estimated to be (G − 1) divided by the number of negative classes
y− ∈ Yt that had to be tried before finding a violating class yv from Vt,y+ .

5.3 Some Notes Comparing AUC and WARP Loss

We note that WARP sampling is more likely than AUC sampling to update the parameters
of a training sample’s positive class y+ if y+ has few violating classes, that is if (xt, yt)
is already highly-ranked by (1). Specifically, suppose a training pair (xt, yt) is randomly
sampled, and suppose H > 0 of the G classes are violators such that their hinge-loss is
non-zero with respect to (x, y+). WARP sampling will draw random classes until it finds
a violator and makes an update, but AUC will only make an update if the one random
class it draws happens to be a violator, so only H/(G − 1) of the time. By definition, the
higher-ranked the correct class yt is for xt, the smaller the number of violating classes H,
and the less likely AUC sampling will update the classifier to learn from (xt, yt).

In this sense, WARP sampling is more focused on fixing class parameters that are almost
right already, whereas AUC sampling is more focused on improving class parameters that
are very wrong. At test time, classifiers choose only the highest-ranked class discriminant
as a class label, and thus the fact that AUC sampling updates more often on lower-ranked
classes is likely the key reason that WARP sampling performs so much better in practice
(see the experiments of Weston et al. (2011) and the experiments in this paper). Even in
ranking, it is usually only the top ranked classes that are of interest. However, the WARP
weight w(y+) given in (13) partly counteracts this difference by assigning greater weights
(equivalently a larger step-size to the stochastic gradient) if the correct class has many
violators, as then its rank is lower. In this paper, one of the proposals we make is to use
constant weights w(y+) = 1, so the training is even more focused on improving classes that
are already highly-ranked.

AUC sampling is also inefficient because so many of the random samples result in a zero
gradient. In fact, we note that the probability that AUC sampling will update the classifier
decreases if there are more classes. Specifically, suppose for a given training sample pair
(xt, yt) there are H classes that violate it, and that there are G classes in total. Then the
probability that AUC sampling updates the classifier for (xt, yt) is H/(G−1), which linearly
decreases as the number of classes G is increased.

5.4 Online Versions of Other Multiclass Losses

WARP sampling implements an online version of the pairwise loss given in (8) (Weston
et al., 2011). One can also interpret the WARP loss sampling as an online approximation of
the maximum hinge loss given in (9), where the maximum violating class is approximated
by the sampled violating class. This interpretation does not call for a rank-based weighting
w(y+), and in fact we found that setting w(y+) = 1 improved accuracy by roughly 20% on a
large-scale image annotation task (see Table 6). A better approximation of (9) would require

1471

Gupta, Bengio, and Weston

sampling multiple violating classes and then taking the class with the worst discriminant,
we did not try this due to the expected time needed to find multiple violating classes.
Further, we hypothesize that choosing the class with the largest violation as the violating
class could actually perform poorly for practical highly multiclass problems like Imagenet
because the worst discriminant may belong to a class that is a missing correct label, rather
than an incorrect label.

An online version of the loss proposed by Lee et al. (2004) and given in (10) would
be more challenging to implement because the G class discriminants are required to be
normalized; we do not know of any such experiments.

5.5 The Wsabie Classifier

Weston et al. (2011) combined the WARP sampling with online learning of a supervised
linear dimensionality reduction. They learn an embedding matrix W ∈ Rm×d that maps a
given d-dimensional feature vector x to an m-dimensional “embedded” vector Wx ∈ Rm,
where m ≤ d, and then the G class-specific discriminants of dimension m are trained to
separate classes in the embedding space. Weston et al. (2011) referred to this combination
as the Wsabie classifier. This changes the WARP loss given in (11) to the non-convex
Wsabie loss, defined:

LWsabie(W, {βg}) =
n∑
t=1

∑
y+∈Yt

∑
yv∈Vt,y+

w(y+) |b− f(Wxt;βy+) + f(Wxt;βyv)|+.

Adding the embedding matrix W changes the number of parameters from Gd to Gm+
md. For a large number of classes G and a small embedding dimension m (the case of
interest here) this reduces the overall parameters, and so the addition of the embedding
matrix W acts as a regularizer, reduces memory, and reduces testing time.

6. Online Adaptation of the Empirical Loss to Reduce Impact of Highly
Confusable Classes

In this section, we present a simple and memory-efficient online implementation of the
empirical class-confusion loss we proposed in Section 3.3 that reduces the impact of highly
confusable classes on the standard empirical loss. First, we describe the batch variant of
this proposal and quantify its effect. Then in Section 6.2 we describe a sampling version.
In Section 6.3, we propose a simple extension that experimentally increases the accuracy
of the resulting classifier, without using additional memory. We show the proposed online
strategy works well in practice in Section 9.

6.1 Reducing the Effect of Highly Confusable Classes By Ignoring Last
Violators

We introduce the key idea of a last violator class with a simple example before a formal
definition. Suppose during online training the hundredth training sample x100 has label
y100 = tiger, and that the last training sample we saw labelled tiger was x5. And
suppose lion was a violating class for that training sample pair (x5, tiger), that is |1 −

1472

Training Highly Multiclass Classifiers

f(x5; θtiger) + f(x5; θlion)|+ > 0. Then for sample (x100, tiger) we call the class lion the
last violator class.

Formally, we call class vt,y+ a last violator for the training sample pair (xt, y
+) if xτ

was the last training sample for which y+ was the sampled positive class and vt,y+ was a
violator for (xτ , y

+), that is, vt,y+ ∈ Vτ,y+ . The set of violators Vτ,y+ becomes the set of

last violators of (xt, y
+), which we denote Ṽt,y+ .

In order to decrease the effect of highly confusable classes on training the classifier,
we propose to ignore losses for any violator class that was also a last violator class. The
reasoning is that if the last violator class and a current violator class are the same, it
indicates that the class yt and that violator class are consistently confused (for example
tiger and lion). And if two classes are consistently confused, we would like to reduce
their impact on the empirical loss, as discussed in Section 3.

For example, say sequential training samples that were labelled cat had the following
violating classes:

dog and pig, dog and pig, none, dog, dog, none, dog, pig.

The proposed approach ignores any violator that was also a last violator:

dog and pig, ��dog and ��pig, none, dog, ��dog, none, dog, pig.

Mathematically, to ignore last violators we simply add an indicator function I to the
loss function. For example, ignoring last violators with the WARP loss from (11) can be
written:

Lproposed({θg}) =

n∑
t=1

∑
y+∈Yt

∑
yv∈Vt,y+

w(y+) |b− f(xt; θy+) + f(xt; θyv)|+ Iyv 6∈Ṽt,y+ .

(14)

That is, instead of forming one estimate of the correct empirical loss as we proposed in
Section 3.3, here we approximate the correct empirical loss as the average of the series of
Bernoulli random variables represented by the extra indicator in (14). In fact, the proposal
to ignore last violators implements the proposed approximation (7): the probability that an
error is not-counted is the probability that the violating class is confused with the training
class:

Proposition 1: Suppose there are n samples labelled class g, and each such sample has
probability p of being classified as class h. Then the expected number of losses summed in
(11) is np, but the expected number of losses summed in (14) is (n− 1)p(1− p) + p.

This reduction of the empirical error from np to np(1− p) is the same as in the earlier
proposal (6), where in Proposition 1 the probability 1− p is the same as the expectation in
(6).

1473

Gupta, Bengio, and Weston

6.2 Ignoring Sampled Last Violators for Online Learning

Building on the WARP sampling proposed by Weston et al. (2011) and reviewed in Section
5.2, we propose an online sampling implementation of (14), where for each class y+ we store
one sampled last violator and only update the classifier if the current violator is not the
same as the last violator. Specifically,

1. draw one training sample xt,

2. draw one correct class y+ from Yt,

3. if there is no last violator vt,y+ or if vt,y+ exists but is not a violator for (xt, y
+), then

draw and store one violating class yv from Vy+ and

(a) compute the corresponding stochastic gradient of the loss in (8)

(b) update the parameters.

Table 1 re-visits the same example as earlier, and illustrates for eight sequential training
examples whose training label was cat what the last violator class is, whether the last
violator is a current violator (in which case the current error is ignored), or if not ignored,
which of the current violators is randomly sampled for the classifier update.

Throughout the training, the state of the sampled last violator for any class y+ can be
viewed as a Markov chain. We illustrate this for the class y+ and two possible violating
classes g and h in Figure 3.

In the experiments to follow, we couple the proposed online empirical class-confusion
loss sampling strategy with an embedding matrix as in the Wsabie algorithm for efficiency
and regularization, and refer to this as Wsabie++. A complete description of Wsabie++ is
given in Table 3, including the adagrad stepsize updates described in the next section. The
memory needed to implement this discounting is O(G) because only one last violator class
is stored for each of the G classes.

Set of Cat Violators Cat’s LV Cat’s LV Violates? New Violator Sampled?

1: dog and pig none - dog

2: dog and pig dog yes ignored
3: dog dog yes ignored
4: dog and pig dog yes ignored
5: pig dog no pig

6: no violators pig no none
7: dog none - dog

8: dog dog yes ignored

Table 1: Example of ignoring sampled last violators for eight sequential samples (one per
row) whose training label is cat.

1474

Training Highly Multiclass Classifiers

Figure 3: In the proposed sampling strategy for the online empirical class-confusion loss,
the state of the last violator (LV) for a class y+ can be interpreted as a Markov
chain where a transition occurs for each training sample. The figure illustrates the
case where there are just two possible violating classes, class g and class h, which
violate samples of class y+ with probability pg and ph respectively. Then the last
violator for class y+ is always in one of three possible states: no last violator,
class h is the last violator, or class g is the last violator. Solid lines indicate a
violation that is counted; dotted lines indicate a violation that is ignored. The
three states have stationary distribution:

P (No LV) =
1

Z
,

P (LV = g) =
1

Z

pg(2 + ph − pgph)

2(pg − 1)(pgph − 1)
,

P (LV = h) =
1

Z

ph(2 + pg − pgph)

2(ph − 1)(pgph − 1)
,

where Z is the normalizer that makes the stationary distribution sum to 1.

1475

Gupta, Bengio, and Weston

True Class Last Violator Class

tiger → lion

lion → cat

cat → kitten

kitten → panther

panther → cat

Table 2: Example chain of five classes and their sampled last violator.

6.2.1 Curriculum Learning

We have primarily motivated ignoring last violators as a better approximation for the ex-
pected classification error. However, because this approach is online, it has a second practi-
cal effect of changing the distribution of classifier updates as the classifier improves during
training. Consider the classifier at some fixed point during training. At that point, classes
that are better separated from all other classes are less likely to have a last violator stored,
and thus more likely to be trained on. This increases the chance that the classifier first
learns to separate easy-to-separate classes. At each point in time, the classifier is less likely
to be updated to separate classes it finds most confusable. Bengio et al. (2009) have argued
that this kind of easy-to-hard learning is natural and useful, particularly when optimizing
non-convex loss functions as is the case when one jointly learns an embedding matrix W
for efficiency and regularization.

6.3 Extending the Discounting Loss to Multiple Last Violators

Table 2 shows an example of five classes and what their last violator class might be at
some point in the online training. For example, Table 2 suggests that tiger and lion are
highly confusable, and that lion and cat are highly confusable, and thus we suspect that
tiger and cat may also be highly confusable. To further reduce the impact of these sets
of highly confusable classes, we extend the above approach to ignoring a training sample if
it is currently violated by its last violator class’s last violator class, and so on. The longer
the chain of last violators we choose to ignore, the more training samples are ignored, and
the ignored training samples are preferentially those belonging to clusters of classes that
are highly-confusable with each other.

Formally, let v2t,y+ denote the last violator of the last violator of y+, that is v2t,y+ =

vt,vt,y+ . For the example given in Table 2, if y+ is tiger, then its last violator is vt,y+ =

lion, and v2t,y+ = cat. More generally, let vQ
t,y+

be the Qth-order last violator, for example

v3t,tiger = kitten.

Let ṼQ
t,y+

be the set of last violators up through order Q for positive class y+ and the

tth sample. We extend (14) to ignore this larger set of likely highly-confusable classes:

Lproposed-Q({θg}) =

n∑
t=1

∑
y+∈Yt

∑
yv∈Vt,y+

|b− f(xt; y
+) + f(xt; y

v)|+ I
yv 6∈ṼQ

t,y+
. (15)

1476

Training Highly Multiclass Classifiers

To use (15) in an online setting, each time a training sample and its positive class are
drawn, we check if any q-th order last violator vq

t,y+
for any q ≤ Q is a current violator, and

if so, we ignore that training sample and move directly to the next training sample without
updating the classifier parameters.

Table 3 gives the complete proposed sampling and updating algorithm for Euclidean
discriminant functions, including the adaptive adagrad step-size explained in Section 7
which follows. For Euclidean discriminant functions we did not find (experimentally) that
we needed any constraints or additional regularizers on W or {βg}, though if desired a
regularization step can be added.

7. Adagrad For Learning Rate

Convergence speed of stochastic gradient methods is sensitive to the choice of stepsizes.
Recently, Duchi et al. (2011) proposed a parameter-dependent learning rate for stochastic
gradient methods. They proved that their approach has strong theoretical regret guarantees
for convex objective functions, and experimentally it produced better results than compa-
rable methods such as regularized dual averaging (Xiao, 2010) and the passive-aggressive
method (Crammer et al., 2006). In our experiments, we applied adagrad both to the convex
training of the one-vs-all SVMs and AUC sampling, as well as to the non-convex Wsabie++

training. Inspired by our preliminary results using adagrad for non-convex optimization,
Dean et al. (2012) also tried adagrad for non-convex training of a deep belief network, and
also found it produced substantial improvements in practice.

The main idea behind adagrad is that each parameter gets its own stepsize, and each
time a parameter is updated its stepsize is decreased to be proportional to the running sum
of the magnitude of all previous updates. For simplicity, we limit our description to the case
where the parameters being optimized are unconstrained, which is how we implemented it.
For memory and computational efficiency, Duchi et al. (2011) applying adagrad separately
for each parameter (as opposed to modeling correlations between parameters).

We applied adagrad to adapt the stepsize for the G classifier discriminants {βg} and
the m × d embedding matrix W . We found that we could save memory without affecting
experimental performance by averaging the adagrad learning rate over the embedding di-
mensions such that we keep track of one scalar adagrad weight per class. That is, let ∆g,τ

denote the stochastic gradient for βg at time τ , then we update βg as follows:

βg,t+1 = βg,t − η

(
t∑

τ=0

(
∆T
τ,g∆τ,g

d

))−1/2
∆g,τ . (16)

Analogously, we found it experimentally effective and more memory efficient to keep track
of one averaged scalar adagrad weight for each of the m rows of the embedding matrix W .

There are two main effects to using adagrad. First, suppose there are two classes that are
updated equally often, then the class with larger stochastic gradients {∆τ} will experience
a faster-decaying learning rate. Second, and we believe the more relevant issue for our
use, is that some classes are updated frequently, and some classes rarely. Suppose that
all stochastic gradients {∆τ} have the same magnitude, then the classes that are updated
more rarely experience relatively larger updates. In our experiments the second effect was

1477

Gupta, Bengio, and Weston

Model:
Training Data Pairs: (xt,Yt) for t = 1, 2, . . . , n
Embedded Euclidean Discriminant: f(Wx;βg) = −(βg −Wx)T (βg −Wx)

Hyperparameters:
Embedding Dimension: m
Stepsize: λ ∈ R+

Margin: b ∈ R+

Depth of last violator chain: Q ∈ N

Initialize:
Wj,r set randomly to −1 or 1 for j = 1, 2, . . . ,m, r = 1, 2, . . . , d
βg = 0 for all g = 1, 2, . . . , G
αg = 0 for all g = 1, 2, . . . , G
αWj = 0 for all j = 1, 2, . . . ,m
vy+ = empty set for all y+

While Not Converged:
Sample xt uniformly from {x1, . . . , xn}.
Sample y+ uniformly from Yt.
If |b− f(Wxt;βy+) + f(Wxt;βvq

y+
)|+ > 0 for any q = 1, 2, . . . , Q, continue.

Set foundViolator = false.
For count = 1 to G:

Sample y− uniformly from YCt .
If |b− f(Wxt;βy+) + f(Wxt;βy−)|+ > 0,

set foundViolator = true and break.
If foundViolator = false, set vy+ to the empty set and continue.
Set vy+ = y−.
Compute the stochastic gradients:

∆y+ = 2(βy+ −Wxt)
∆y− = −2(βy− −Wxt)
∆W = (βy− − βy+)(Wxt)

T .
Update the adagrad parameters:

αy+ = αy+ + 1
d∆T

y+∆y+

αy− = αy− + 1
d∆T

y−∆y−

αWj = αWj + 1
d∆T

Wj
∆Wj for j = 1, 2, . . . ,m.

Update the classifier parameters:

βy+ = βy+ − λ√
αy+

∆y+

βy− = βy− − λ√
αy−

∆y−

Wj = Wj − λ√
αWj

∆Wj for j = 1, 2, . . . ,m.

Table 3: Wsabie++ training (for Euclidean discriminants).

1478

Training Highly Multiclass Classifiers

predominant, which we tested by setting the learning rate for each parameter proportional
to the inverse square root of the number of times that parameter has been updated. This
“counting adagrad” produced results that were not statistically different using (16). (The
experimental results in this paper are reported using adagrad proper as per (16).)

We use α to refer to the running sum of gradient magnitudes in the complete Wsabie++

algorithm description given in Table 3.

8. Experiments

We first detail the data sets used. Then in Section 8.2 we describe the features. In Section 8.3
we describe the different classifiers compared and how the parameters and hyperparameters
were set.

8.1 Data Sets

Experiments were run with four data sets, as summarized in Table 4 and detailed below.

16k ImageNet 22k ImageNet 21k Web Data 97k Web Data

Number of Classes 15,589 21,841 21,171 96,812
Number of Samples 9 million 14 million 9 million 40 million
Number of Features 1024 479 1024 1024

Table 4: Data sets.

8.1.1 ImageNet Data Sets

ImageNet (Deng et al., 2009) is a large image data set organized according to WordNet
(Fellbaum, 1998). Concepts in WordNet, described by multiple words or word phrases, are
hierarchically organized. ImageNet is a growing image data set that attaches one of these
concepts to each image using a quality-controlled human-verified labeling process.

We used the spring 2010 and fall 2011 releases of the Imagenet data set. The spring 2010
version has around 9M images and 15,589 classes (16k ImageNet). The fall 2011 version
has about 14M images and 21,841 classes (22k ImageNet). For both data sets, we separated
out 10% of the examples for validation, 10% for test, and the remaining 80% was used for
training.

8.1.2 Web Data Sets

We also had access to a large proprietary set of images taken from the web, together with
a noisy annotation based on anonymized users’ click information. We created two data
sets from this corpus that we refer to as 21k Web Data and 97k Web Data. The 21k Web
Data contains about 9M images, divided into 20% for validation, 20% for test, and 60% for
train, and the images are labelled with 21,171 distinct classes. The 97k Web Data contains
about 40M images, divided into 10% for validation, 10% for test, and 80% for train, and
the images are labelled with 96,812 distinct classes.

There are five main differences between the Web Data and ImageNet. First, the types
of labels found in Imagenet are more academic, following the strict structure of WordNet.

1479

Gupta, Bengio, and Weston

In contrast, the Web Data labels are taken from a set of popular queries that were the
input to a general-purpose image search engine, so it includes people, brands, products,
and abstract concepts. Second, the number of images per label in Imagenet is artificially
forced to be somewhat uniform, while the Web Data distribution of number of images per
label is generated by popularity with users, and is thus more exponentially distributed.
Third, because of the popular origins of the Web data sets, classes may be translations of
each other, plural vs. singular concepts, or synonyms (for examples, see Table 7). Thus
we expect more highly-confusable classes for the Web Data than ImageNet. A fourth key
difference is Imagenet disambiguates polysemous labels whereas Web Data does not, for
example, an image labeled palm might look like the palm of a hand or like a palm tree.
The fifth difference is that there may be multiple given positive labels for some of the Web
samples, for example, the same image might be labelled mountain, mountains, Himalaya,
and India.

Lastly, classes may be at different and overlapping precision levels, for example the class
cake and the class wedding cake.

8.2 Features

We do not focus on feature extraction in this work, although features certainly can have a
big impact on performance. For example, Sanchez and Perronnin (2011) recently achieved
a 160% gain in accuracy on the 10k ImageNet datatset by changing the features but not
the classification method.

In this paper we use features, similar to those used in Weston et al. (2011). We first
combined multiple spatial (Grauman and Darrell, 2007) and multiscale color and texton
histograms (Leung and Malik, 1999) for a total of about 5×105 dimensions. The descriptors
are somewhat sparse, with about 50000 non-zero weights per image. Some of the constituent
histograms are normalized and some are not. We then perform kernel PCA (Schoelkopf
et al., 1999) on the combined feature representation using the intersection kernel (Barla
et al., 2003) to produce a 1024-dimensional or 479-dimensional input vector per image (see
Tab. 4), which is then used as the feature vectors for the classifiers.

8.3 Classifiers Compared and Hyperparameters

We experimentally compared the following linear classifiers: nearest means, one-vs-all
SVMs, AUC, Wsabie, and the proposed Wsabie++ classifiers. Table 5 compares these
methods as they were implemented for the experiments.

The nearest means classifier is the most efficient to train of the compared methods as it
only passes over the training samples once and computes the mean of the training feature
vectors for each class (and there are no hyperparameters).

Like the nearest means classifier, we implemented Wsabie++ with Euclidean discrim-
inants (as detailed in Table 3) and as such it can be considered a discriminative nearest
means classifier. Testing with Euclidean discriminants can easily be made faster by ap-
plying exact or approximate fast k-NN methods, where the class prototypes {βg} play the
role of the neighbors. Further, Euclidean discriminants lend themselves more naturally to
visualization than the inner product, as each class is represented by a prototype.

1480

Training Highly Multiclass Classifiers

O
n

e-
v
s-

a
ll

S
V

M
s

1+
:1

-
O

n
e-

v
s-

al
l

S
V

M
s

A
U

C
S

am
p

li
n

g
W

sa
b

ie
W

sa
b

ie
+
+

L
o
ss

F
u

n
ct

io
n

se
p

ar
ab

le
se

p
ar

ab
le

p
ai

rw
is

e
p

ai
rw

is
e

p
ai

rw
is

e

R
eg

u
la

ri
za

ti
o
n

` 2
co

n
st

ra
in

t
` 2

co
n

st
ra

in
t

` 2
co

n
st

ra
in

t
em

b
ed

d
in

g
m

at
ri

x
em

b
ed

d
in

g
m

at
ri

x
` 2

co
n

st
ra

in
t

#
N

eg
at

iv
e

1
ch

os
en

u
si

n
g

1
as

m
an

y
as

m
an

y
E

x
a
m

p
le

s
P

er
va

li
d

at
io

n
se

t
as

n
ee

d
ed

as
n

ee
d

ed
P

os
it

iv
e

E
x
a
m

p
le

to
fi

n
d

to
fi

n
d

in
T

ra
in

in
g

a
v
io

la
to

r
a

v
io

la
to

r

L
ea

rn
in

g
ra

te
a
d

a
g
ra

d
ad

ag
ra

d
ad

ag
ra

d
b

as
ed

on
ad

ag
ra

d
ad

ap
ta

ti
o
n

es
ti

m
at

ed
ra

n
k

E
m

p
ir

ic
al

C
la

ss
n

o
n

o
n

o
n

o
ye

s
C

on
fu

si
on

L
os

s

D
is

cr
im

in
an

t
β
T g
x

β
T g
x

β
T g
x

β
T g
W
x

‖β
g
−
W
x
‖2 2

F
u

n
ct

io
n
f g

(x
)

T
ab

le
5
:

C
o
m

p
a
ri

so
n

o
f

th
e

d
iff

er
en

t
st

o
ch

as
ti

c
gr

ad
ie

n
t

m
et

h
o
d

s
im

p
le

m
en

te
d

in
th

e
ex

p
er

im
en

ts

1481

Gupta, Bengio, and Weston

One-vs-all linear SVMs are the most popular choice for large-scale classifiers due to stud-
ies showing their good performance, their parallelizable training, relatively small memory,
and fast test-time (Rifkin and Klatau, 2004; Deng et al., 2010; Sanchez and Perronnin, 2011;
Perronnin et al., 2012; Lin et al., 2011). Perronnin et al. (2012) highlights the importance
of getting the right balance of negative to positive examples used to train the one-vs-all
linear SVMs. As in their paper, we cross-validate the expected number of negative ex-
amples per positive example; the allowable choices were powers of 2. In contrast, earlier
published results by Weston et al. (2011) that compared Wsabie to one-vs-all SVMs used
one negative example per positive example, analogous to the AUC classifier. We included
this comparison, which we labelled One-vs-all SVMs 1+:1- in the tables.

Both Wsabie and Wsabie++ jointly train an embedding matrixW as described in Section
3.5. The embedding dimension d was chosen on the validation set from the choices d =
{32, 64, 96, 128, 192, 256, 384, 512, 768, 1024} embedding dimensions. In addition, we created
ensemble Wsabie and Wsabie++ classifiers by concatenating bmd c such d-dimensional models
to produce a classifier with a total of m parameters to compare classifiers that require the
same memory and test-time.

All hyperparameters were chosen based on the accuracy on a held-out validation set.
Step-size, margin, and regularization constant hyperparameters were varied by powers of
ten. The order Q of the last violators was varied by powers of 2. Chosen hyperparameters
are recorded in Table 9. Both the pairwise loss and Wsabie classifier are implemented
with standard `2 constraints on the class discriminants (and for Wsabie, on the rows of the
embedding matrix). We did not use any regularization constraints for Wsabie++.

We initialized the Wsabie parameters and SVM parameters uniformly randomly within
the constraint set. We initialize the proposed training by setting all βg to the origin, and all
components of the embedding matrix are equally likely to be −1 or 1. Experiments with dif-
ferent initialization schemes for these different classifiers showed that different (reasonable)
initializations gave very similar results.

With the exception of nearest means, all classifiers were trained online with stochastic
gradients. We also used adagrad for the convex optimizations of both one-vs-all SVMs and
the AUC sampling, which increased the speed of convergence.

Recently, Perronnin et al. (2012) showed good results with one-vs-all SVM classifiers
and the WARP loss where they also cross-validated an early-stopping criterion. Adagrad
reduces step sizes over time, and this removed the need to worry about early stopping. In
fact, we did not see any obvious overfitting with any of the classifier training (validation
set and test set errors were statistically similar). Each algorithm was allowed to train on
up to 100 loops through the entire training set or until the validation set performance had
not changed in 24 hours. Even those runs that ran the entire 100 loops appeared to have
essentially converged. Implemented in C++ without parallelization, all algorithms (except
nearest means) took around one week to train the 16k Imagenet data set, around two weeks
to train the 21k and 22k data sets, and around one month to train the 97k data set. Also
in all cases roughly 80% of the validation accuracy was achieved in roughly the first 20% of
the training time.

Because stochastic gradient descent uses random sampling of the training samples, mul-
tiple runs will produce slightly different results. To address this randomness, we ran five
runs of each classifier for each set of candidate parameters, and reported the test accuracy

1482

Training Highly Multiclass Classifiers

and parameters for the run that had the best accuracy on the validation set. For one-vs-all
SVMs with its convex objective, the five runs usually differed by .1% (absolute), whereas
optimizing the nonconvex objectives of Wsabie and Wsabie++ produced much greater ran-
domness within five runs, as much as .5% (absolute). Cross-validating substantially more
runs of the training would probably produce classifiers with slightly better accuracy, but
cross-validating between too many runs could just lead to overfitting. We did not explore
this issue carefully.

8.4 Metrics

Each classifier outputs the class it considers the one best prediction for a given test sample.
We measure the accuracy of these predictions averaged over all the samples in the test
set. For some data sets, such as the Web data sets, samples may have more than one
correct class, and are counted as correct if the classifier picks any one of the correct classes.
Note that some results published for Imagenet use a slightly different metric: classification
accuracy averaged over the G classes (Deng et al., 2010).

9. Results

We first give some illustrative results showing the effect of the three proposed differences
between Wsabie++ and Wsabie. Then we compare Wsabie++ to four different efficient
classifiers on four large-scale data sets.

9.1 Comparison of Different Aspects of Wsabie++

Wsabie++ as detailed in Table 2 differs from the Wsabie classifier (Weston et al., 2011) in
the following respects:

1. ignores last violators

2. weights all stochastic gradients equally, that is, w(r(y+)) = 1 in (11),

3. uses adagrad to adapt the learning rates,

4. uses Euclidean discriminants and no parameter regularization, rather than linear dis-
criminants and `2 parameter regularization as done in Wsabie.

Table 6 shows how each of these first three differences increases the classification accu-
racy on the 21k Web data set. For the results in this table, the embedding dimension was
fixed at d = 100, but all other classifier parameters were chosen to maximize accuracy on
the validation set.

In addition, for simplicity we used Euclidean discriminants rather than linear discrim-
inants: with Euclidean discriminants we found we did not need any additional parameter
regularization, and it is simpler to apply adagrad when the parameters are unconstrained.

The results show that either adagrad or 10 last violators alone improves accuracy by
35%. Weighting all updates equally (w(r(y+)) = 1) alone also improves accuracy by 10%.
In combination, these changes complement each other, almost doubling the accuracy from
3.7% to 7.1%.

1483

Gupta, Bengio, and Weston

Classifier Test Accuracy

Wsabie (Weston et al., 2011) 3.7%
Wsabie + 10 last violators 5.0%
Wsabie + adagrad 5.0%
Wsabie + w(r(y+)) = 1 in (11) 4.1%
Wsabie + adagrad + 10 last violators 5.9%
Wsabie + adagrad + w(r(y+)) = 1 in (11) 6.0%
Wsabie + adagrad + w(r(y+)) = 1 in (11) + 1 last violator 6.3%
Wsabie + adagrad + w(r(y+)) = 1 in (11) + 10 last violators 7.1%
Wsabie + adagrad + w(r(y+)) = 1 in (11) + 100 last violators 6.8%

Table 6: Effect of the proposed differences compared to Wsabie for a d = 100 dimensional
embedding space on 21k Web Data.

Table 7 gives examples of the classes corresponding to neighboring {βg} in the embedded
feature space after the Wsabie++ training.

Class 1-NN 2-NN 3-NN 4-NN 5-NN

poodle caniche pudel labrador puppies cocker

spaniel

dolphin dauphin delfin dolfinjnen delfiner dolphins

San Diego Puerto Sydney Vancouver Kanada Tripoli

Madero

mountain mountains montagne Everest Alaska Himalaya

router modem switch server lan network

calligraphy fonts Islamic borders quotes network

calligraphy

Table 7: For each of the classes on the left, the table shows the five nearest (in terms of
Euclidean distance) class prototypes {βg} in the proposed discriminatively trained
embedded feature space for 21k Web Data set. Because these classes originated as
web queries, some class names are translations of each other, for example dolphin

and dauphin (French for dolphin). While these may seem like exact synonyms, in
fact different language communities often have slightly different visual notions of
the same concept. Similarly, the classes Obama and President Obama are expected
to be largely overlapping, but their class distributions differ in the formality and
context of the images.

Lastly, we illustrate how the Wsabie++ test accuracy depends on the number of embed-
ding dimensions. These results are for the 21k Web Data set, with the step-size and margin

1484

Training Highly Multiclass Classifiers

parameters chosen using the validation set, and 10 last violators:

Number of Embedding Dimensions: 128 192 256 384 512 768 1024

Wsabie++ Test Accuracy: 7.4% 7.7% 8.3% 7.9% 7.1% 6.7% 6.5%

9.2 Comparison of Different Classifiers

Table 8 compares the accuracy of the different classifiers, where all hyperparameters were
cross-validated. The validated parameter choices are reported in Table 9.2

Wsabie++ was consistently most accurate, followed by the one-vs-all SVMs with the
average number of negative samples per positive sample chosen by validation. The row
labelled Wsabie++ was 2 − 26% more accurate and 2 − 4× more efficient (2 − 4× smaller
model size) than the one-vs-all SVMs because the validated embedding dimension was 192
or 256 dimensions, down from the original 479 or 1024 features.

Like Perronnin et al. (2012), our experiments showed that choosing the hyperparameter
of how many negative samples per positive sample for the one-vs-all SVMs made an im-
pressive difference to its performance. The one-vs-all SVMs 1+:1-, which used a fixed ratio
of one negative sample per positive sample was 2− 4 times worse!

The row labelled Wsabie++ Ensemble is a concatenation of 2-4 Wsabie++ classifiers
trained on different random samplings so that the total number of parameters is roughly
the same as the SVM (the embedding matrices W add slightly to the total storage and
efficiency calculations). With efficiency thus roughly controlled, the accuracy gain increased
slightly to 3− 28%.

The least improvement was seen on the 21k Web Data set. Our best hypothesis as to
why that is that the classifiers are already close to the best performance possible with linear
separators, and so there is little headroom for improvement. Some support for this hypoth-
esis is the tiny gain the ensemble of multiple Wsabie++ classifiers versus the Wsabie++.

One surprise was that Wsabie++ performed almost as well on the 97k Web Data as on
the 21k Web Data set even though there were four times as many classes. We have two
main hypotheses of why this happened. First, there were more training samples in the 97k
Web Data for the classes that were already present in the 21k Web Data. Second, the added
classes had fewer samples but were often quite specific, and the samples from a specific class
can be easier to distinguish than samples from a more generic class. For example, samples
from the more specific class of diamond earrings are easier to distinguish than samples
from the more generic class jewelry. Likewise, samples from the class beer foam are easier
to correctly classify than samples from the class beer.

10. Discussion, Hypotheses and Key Issues

This paper focused on how highly confusable classes can distort the empirical loss used in
discriminative training of multi-class classifiers. We proposed a lightweight online approach
to reduce the effect of highly-confusable classes on the empirical loss, and showed that it can

2. Parameters for step-size and margin were not independent, with larger margins working better with
larger step-sizes. We hypothesize that one of these parameters could be fixed and only the other cross-
validated. We did not see any overfitting: scores on the validation set were statistically similar to scores
on the test sets for all the compared methods.

1485

Gupta, Bengio, and Weston

16k ImageNet 22k ImageNet 21k Web Data 97k Web Data

Nearest Means 4.4% 2.7% 2.6% 2.3%
One-vs-all SVMs 1+:1- 4.1% 3.5% 2.1% 1.6%
One-vs-all SVMs 9.4% 8.2% 8.3% 6.8%
AUC Sampling 4.7% 5.1% 2.8% 3.1%
Wsabie 6.5% 6.6% 4.5% 2.8%
Wsabie Ensemble 8.1% 7.0% 6.0% 3.4%
Wsabie++ 11.2% 10.3% 8.5% 8.2%
Wsabie++ Ensemble 11.9% 10.5% 8.6% 8.3%

Table 8: Image classification test accuracy

substantially increase performance in practice. Experimentally, we also showed that using
adagrad to evolve the learning rates in the stochastic gradient descent is effective despite
the nonconvexity of the loss (due to the joint learning of the linear dimensionality reduction
and linear classifiers).

We argued that when there are many classes it is suboptimal to measure performance by
simply counting errors, because this overemphasizes the noise of highly-confusable classes.
Yet our test error is measured in the standard way: by counting how many samples were
classified incorrectly. A better approach to measuring test error would be subjective judge-
ments of error. In fact, we have verified that for the image classification problems consid-
ered in the experiments, subjects are less critical about confusions of classes they consider
more confusable (for example confusing dolphin and porpoise), but very critical of confu-
sions between classes they do not consider confusable (for example dolphin and Statue of

Liberty). Thus, suppose you had two candidate classifiers, each of which made 100 errors,
but one made all 100 errors between dolphin and porpoise and the other made 100 more
random errors. Standard test error of summing the errors would consider these classifiers
equal, but users would generally prefer the first classifier. Weston et al. (2011) provide one
approach to addressing this issue with a sibling precision measure.

A related issue is that it is known that the experimental data sets used are not tagged
with the complete set of correct class labels for each image. For example, in the 21k Web
Data, an image of a red heart might be labelled love and red, but not happen to be labelled
heart, even though that would be considered a correct label in a subjective evaluation. We
hypothesize that the proposed approach of probabilistically ignoring samples with consistent
confusions helps reduce the impact of such missing positive labels.

We built on WARP, which finds a violating class per each training sample if one ex-
ists. This strategy works much better in practice than the AUC sampling that samples
one positive class and one negative class per training sample. We believe this is because
WARP sampling focuses on improving the parameters of classes that are already quite
good, rather than focusing on parameters for classes that are very confused. Analogously,
and in agreement with results by Perronnin et al. (2012) on very different features, we saw
that sampling one negative sample per positive sample for one-vs-all SVMs performed very
poorly compared to sampling a validated number of negatives per positive. Inspired by these
performance differences due to the choice of negative:positive ratios, we also considered val-
idating a hyperparameter for Wsabie++ that would determine how many negative classes

1486

Training Highly Multiclass Classifiers

Stepsize Margin Embedding Balance # LVs
dimension β

One-vs-all SVM 1+:1-
16k ImageNet .01 .1
21k ImageNet .01 .1
21k Web Data .1 1
97k Web Data .01 .1

One-vs-all SVM
16k ImageNet .01 .1 64
21k ImageNet .01 .1 64
21k Web Data .1 1 64
97k Web Data .01 .1 128

AUC Sampling
16k ImageNet .01 .1
21k ImageNet .01 .1
21k Web Data .001 .01
97k Web Data .001 .01

Wsabie
16k ImageNet .01 .1 128
21k ImageNet .001 .1 128
21k Web Data .001 .1 256
97k Web Data .0001 .1 256

Wsabie++:
16k ImageNet 10 10,000 192 8
21k ImageNet 10 10,000 192 8
21k Web Data 10 10,000 256 8
97k Web Data 10 10,000 256 32

Table 9: Classifier parameters chosen using validation set

to consider for each positive class, rather than the WARP sampling which draws negative
classes until it finds a violator. Preliminary results showed that the validation set chose the
largest parameter choice which was almost the same as the number of classes. Thus that
approach required another hyperparameter but seemed to be doing exactly what WARP
sampling does and appeared to offer no accuracy improvement over WARP sampling.

This research focused on accurate and efficient classification, and not on the issue of
training time. With the exception of nearest means, the methods compared were imple-
mented with stochastic gradient descent for efficient online training to deal with the large
number of training samples n. As implemented, the methods took roughly equally long to
train. However, parallel training of the G one-vs-all SVMs would have been roughly G times
as fast. While not as naturally parallelizable, we have had some success in parallelizing the

1487

Gupta, Bengio, and Weston

WARP sampling strategy across multiple cores and multiple machines, but the details are
outside the scope of this work.

Our experiments were some of the largest image labeling experiments ever performed,
and were carefully implemented and executed. But our experiments were narrow and lim-
ited in the sense that only image labeling problems were considered, and that the feature
derivations were similar and all dense. The presented theory and motivation was not lim-
ited however, and we hypothesize that similar results would hold up for other applications,
different features, and sparser features.

We focused in this paper only on classifiers that use linear (or Euclidean) discriminant
functions because they are popular for large-scale highly multiclass problems due to their
efficiency and reasonably good performance. However, for a given feature set, the best
performance on large data sets such as ImageNet may well be achieved with exact k-NN
(Deng et al., 2010; Weston et al., 2013b) or a more sophisticated lazy classifier (Garcia
et al., 2010), or with a deep network (Krizhevsky et al., 2012; Dean et al., 2012). However,
for many real-life large-scale problems these methods may require infeasible memory and
test-time, and so linear methods are of interest at least for their efficiency, and may be used
to filter candidates to a smaller set for secondary evaluation by a more flexible classifier.
In addition, the last layer of a neural network is often a linear or other high-model-bias
classifier, and the proposed approaches may thus be useful in training a deep network as
well.

Label trees and label partitioning can be even more efficient at inference (Bengio et al.,
2010; Deng et al., 2011; Weston et al., 2013a). We did not take advantage or impose a
hierarchical structure on the classes, which can be a fruitful approach to efficiently imple-
menting highly multiclass classification. Other research in large-scale classification takes
advantage of the natural hierarchy of classes in real-world classification problems such as
labeling images (Deng et al., 2010; Griffin and Perona, 2008; Nister and Stewenius, 2006).
For example, in Web Data one class is wedding cake, which could fit into the broader class
of cake, and the even broader class of food. One problem with leveraging such hierarchies
may be that they are not strict trees; wedding cake also falls under the broader class of
wedding, or there may be no natural hierarchy. Some of the theory and strategy of this
paper should be complementary to such hierarchical approaches.

Acknowledgments

We thank Mouhamadou Cisse, Gal Chechik, Andrew Cotter, Koby Crammer, John Duchi,
Bela Frigyik, and Yoram Singer for helpful discussions.

Appendix: Proof of Proposition 1

Let Zt be a Bernoulli random variable with parameter p that models the event that the tth
sample of class y+ is classified as class h. Then for n trials the expected number of times
a class y+ sample is classified as class h is E[

∑
t Zt] =

∑
tE[Zt] = nE[Zt] = np the Zt are

independent and identically distributed.

Let Ot be another Bernoulli random variable such that Ot = 1 if the tth sample of class
y+ is counted in the loss given by (14), and Ot = 0 otherwise. Note that O1 = Z1, and for

1488

Training Highly Multiclass Classifiers

t > 1, Ot = 1 iff Zt = 1 and Zt−1 = 0. Thus,

E[Ot] = E[Zt = 1 and Zt−1 = 0] = P (Zt = 1, Zt−1 = 0) = P (Zt = 1)P (Zt = 0) = p(1− p)

by the independence of the Bernoulli random variables Zt and Zt−1. Then the expected
number of confusions counted by (14) is E[

∑
tOt] =

∑
tE[Ot] by linearity, which can be

expanded: E[O1] +
∑n

t=2E[Ot] = p+ (n− 1)p(1− p).

References

E. L. Allwein, R. E. Schapire, and Y. Singer. Reducing multiclass to binary: a unifying
approach for margin classifiers. Journal Machine Learning Research, 1:113–141, 2000.

A. Barla, F. Odone, and A. Verri. Histogram intersection kernel for image classification.
Intl. Conf. Image Processing (ICIP), 3:513–516, 2003.

S. Bengio, J. Weston, and D. Grangier. Label embedding trees for large multi-class tasks.
In NIPS, 2010.

Y. Bengio. Learning deep architectures for AI. Foundations and Trends in Machine Learn-
ing, 2(1):1–127, 2009.

Y. Bengio, J. Laouradour, R. Collobert, and J. Weston. Curriculum learning. In ICML,
2009.

E. J. Bredensteiner and K. P. Bennet. Multicategory classification by support vector ma-
chines. Computational Optimization and Applications, 12:53–79, 1999.

L. D. Brown, T. T. Cai, and A. DasGupta. Interval estimation for a binomial proportion.
Statistical Science, 16(2):101–117, 2001.

K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based
vector machines. Journal Machine Learning Research, 2001.

K. Crammer and Y. Singer. On the learnability and design of output codes for multiclass
problems. Machine Learning, 47(2):201–233, 2002.

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive aggres-
sive algorithms. Journal Machine Learning Research, 7:551–585, 2006.

A. Daniely, S. Sabato, and S. Shalev-Shwartz. Multiclass learning approaches: A theoretical
comparison with implications. In NIPS, 2012.

J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M. Ranzato,
A. Senoir, P. Tucker, K. Yang, and A. Ng. Large scale distributed deep networks. In
NIPS, 2012.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hier-
archical Image Database. In IEEE Conf. Computer Vision Pattern Recognition (CVPR),
2009.

1489

Gupta, Bengio, and Weston

J. Deng, A. Berg, K. Li, and L. Fei-Fei. What does classifying more than 10,000 image
categories tell us? In European Conf. Computer Vision (ECCV), 2010.

J. Deng, S. Satheesh, A. C. Berg, and L. Fei-Fei. Fast and balanced: Efficient label tree
learning for large scale object recognition. In NIPS, 2011.

T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting
output codes. Journal Artificial Intelligence Research, 2:264–286, 1995.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal Machine Learning Research, 12:2121–2159, 2011.

D. Eck. Personal communication from Google music expert Douglas Eck. 2013.

C. Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press, 1998.

E. K. Garcia, S. Feldman, M. R. Gupta, and S. Srivastava. Completely lazy learning. IEEE
Trans. Knowledge and Data Engineering, 22(9):1274–1285, 2010.

D. Grangier and S. Bengio. A discriminative kernel-based model to rank images from text
queries. IEEE Trans. Pattern Analysis and Machine Intelligence, 30:1371–1384, 2008.

K. Grauman and T. Darrell. The pyramid match kernel: Efficient learning with sets of
features. Journal Machine Learning Research, 8:725–760, April 2007.

G. Griffin and P. Perona. Learning and using taxonomies for fast visual categorization. In
CVPR, 2008.

Y. Guermeur. Combining discriminant models with new multi-class SVMs. Pattern Analysis
and Applications, 5:168–179, 2002.

P. Hall and J. S. Marron. Geometric representation of high dimension, low sample size data.
J. R. Statst. Soc. B, 67(3):427–444, 2005.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer-
Verlag, New York, 2001.

R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for ordinal
regression. In Advances in Large Margin Classifiers, pages 115–132. MIT Press, 2000.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolu-
tional neural networks. In NIPS, 2012.

Y. Lee, Y. Lin, and G. Wahba. Multicategory support vector machines. Journal American
Statistical Association, 99(465):67–81, 2004.

T. Leung and J. Malik. Recognizing surface using three-dimensional textons. Intl. Conf.
Computer Vision (ICCV), 1999.

Y. Lin, F. Lv, S. Zhu, M. Yang, T. Cour, K. Yu, L. Cao, and T. Huang. Large-scale image
classification: Fast feature extraction and SVM training. In CVPR, 2011.

1490

Training Highly Multiclass Classifiers

M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine Learning. MIT
Press, Cambridge, MA, 2012.

Y. Mroueh, T. Poggio, L. Rosasco, and J-J E. Slotine. Multiclass learning with simplex
coding. In NIPS, 2012.

D. Nister and H. Stewenius. Scalable recognition with a vocabulary tree. In CVPR, 2006.

A. Paton, N. Brummitt, R. Govaerts, K. Harman, S. Hinchcliffe, B. Allkin, and
E. Lughadha. Target 1 of the global strategy for plant conservation: a working list
of all known plant speciesprogress and prospects. Taxon, 57:602–611, 2008.

F. Perronnin, Z. Akata, Z. Harchaoui, and C. Schmid. Towards good practice in large-scale
learning for image classification. In CVPR, 2012.

R. Rifkin and A. Klatau. In defense of one-vs-all classification. Journal Machine Learning
Research, 5:101–141, 2004.

J. Sanchez and F. Perronnin. High-dimensional signature compression for large-scale image
classification. In CVPR, 2011.

B. Schoelkopf, A. J. Smola, and K. R. Müller. Kernel principal component analysis. Ad-
vances in kernel methods: support vector learning, pages 327–352, 1999.

O. Shamir and O. Dekel. Multiclass-multilabel classication with more classes than examples.
In Proc. AISTATS, 2010.

A. Statnikov, C. F. Aliferis, I. Tsamardinos, D. Hardin, and S. Levy. A comprehensive
evaluation of multicategory classification methods for microarray gene expression cancer
diagnosis. Bioinformatics, 21(5):631–643, 2005.

A. Tewari and P. L. Bartlett. On the consistency of multiclass classification methods.
Journal Machine Learning Research, 2007.

N. Usunier, D. Buffoni, and P. Gallinari. Ranking with ordered weighted pairwise classifi-
cation. In ICML, 2009.

V. Vapnik. Statistical Learning Theory. 1998.

J. Weston and C. Watkins. Multi-class support vector machines. Technical Report CSD-
TR-98-04 Dept. Computer Science, Royal Holloway, University London, 1998.

J. Weston and C. Watkins. Support vector machines for multi-class pattern recognition. In
Proc. European Symposium on Artificial Neural Networks, 1999.

J. Weston, S. Bengio, and N. Usunier. Wsabie: Scaling up to large vocabulary image
annotation. In Intl. Joint Conf. Artificial Intelligence, (IJCAI), pages 2764–2770, 2011.

J. Weston, A. Makadia, and H. Yee. Label partitioning for sublinear ranking. In ICML,
2013a.

1491

Gupta, Bengio, and Weston

J. Weston, R. Weiss, and H. Yee. Affinity weighted embedding. In Proc. International Conf.
Learning Representations, 2013b.

L. Xiao. Dual averaging methods for regularized stochastic learning and online optimization.
Microsoft Research Technical Report MSR-TR-2010-23, 2010.

T. Zhang. Statistical analysis of some multi-category large margin classification methods.
Journal Machine Learning Research, 5:1225–1251, 2004.

1492

	Introduction
	Notation And Assumptions
	The Problem with a Large Variance in Class Confusability
	Expected Classification Error Depends on Class Confusability
	Two Factors We Mostly Ignore In This Discussion
	A Different Approximation for the Empirical Loss

	Related Work in Loss Functions for Multiclass Classifiers
	Online Loss Functions for Training Large-scale Multiclass Classifiers
	AUC Sampling
	WARP Sampling
	Some Notes Comparing AUC and WARP Loss
	Online Versions of Other Multiclass Losses
	The Wsabie Classifier

	Online Adaptation of the Empirical Loss to Reduce Impact of Highly Confusable Classes
	Reducing the Effect of Highly Confusable Classes By Ignoring Last Violators
	Ignoring Sampled Last Violators for Online Learning
	Curriculum Learning

	Extending the Discounting Loss to Multiple Last Violators

	Adagrad For Learning Rate
	Experiments
	Data Sets
	ImageNet Data Sets
	Web Data Sets

	Features
	Classifiers Compared and Hyperparameters
	Metrics

	Results
	Comparison of Different Aspects of Wsabie++
	Comparison of Different Classifiers

	Discussion, Hypotheses and Key Issues

