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Abstract

We present a novel multilabel/ranking algorithm working in partial information settings.
The algorithm is based on 2nd-order descent methods, and relies on upper-confidence
bounds to trade-off exploration and exploitation. We analyze this algorithm in a partial
adversarial setting, where covariates can be adversarial, but multilabel probabilities are
ruled by (generalized) linear models. We show O(T 1/2 log T ) regret bounds, which improve
in several ways on the existing results. We test the effectiveness of our upper-confidence
scheme by contrasting against full-information baselines on diverse real-world multilabel
data sets, often obtaining comparable performance.

Keywords: contextual bandits, structured prediction, ranking, online learning, regret
bounds, generalized linear

1. Introduction

Consider a book recommendation system. Given a customer’s profile, the system recom-
mends a few possible books to the user by means of, e.g., a limited number of banners
placed at different positions on a webpage. The system’s goal is to select books that the
user likes and possibly purchases. Typical feedback in such systems is the actual action of
the user or, in particular, what books he has bought/preferred, if any. The system cannot
observe what would have been the user’s actions had other books got recommended, or had
the same book ads been placed in a different order within the webpage.

Such problems are collectively referred to as learning with partial feedback. As opposed
to the full information case, where the system (the learning algorithm) knows the outcome
of each possible response (e.g., the user’s action for each and every possible book recom-
mendation placed in the largest banner ad), in the partial feedback setting the system only
observes the response to very limited options and, specifically, the option that was actually
recommended.

In this and many other examples of this sort, it is reasonable to assume that recom-
mended options are not given the same treatment by the system, e.g., large banners which
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are displayed on top of the page should somehow be more committing as a recommendation
than smaller ones placed elsewhere. Moreover, it is often plausible to interpret the user
feedback as a preference (if any) restricted to the displayed alternatives.

In this paper, we consider instantiations of this problem in the multilabel and learning-
to-rank settings. Learning proceeds in rounds: in round t, the algorithm receives an instance
xt and outputs an ordered subset Ŷt of labels from a finite set of possible labels [K] =
{1, 2, . . . ,K}. Restrictions might apply to the size of Ŷt (due, e.g., to the number of available
slots in the webpage, or to the specifics of the targeted user). The set Ŷt corresponds to the
aforementioned recommendations, and is intended to approximate the true set of preferences
associated with xt. However, the latter set is never observed. In its stead, the algorithm
receives Yt ∩ Ŷt, where Yt ⊆ [K] is a noisy version of the true set of user preferences on xt.
When we are restricted to |Ŷt| = 1 for all t, this becomes a multiclass classification problem
with bandit feedback—see below.

1.1 Related Work

This paper lies at the intersection between online learning with partial feedback and mul-
tilabel classification/ranking. Both fields include a substantial amount of work, so we can
hardly do it justice here. In the sequel, we outline some of the main contributions in the
two fields, with an emphasis on those we believe are the most related to this paper.

A well-known tool for facing the problem of partial feedback in online learning is to
trade off exploration and exploitation through upper confidence bounds. This technique
has been introduced by Lai and Robbins (1985), and can by now be considered a standard
tool. In the so-called bandit setting with contextual information (sometimes called bandits
with side information or bandits with covariates, e.g., Auer 2002; Dani et al. 2008; Filippi
et al. 2010; Crammer and Gentile 2011; Krause and Ong 2011, and references therein) an
online algorithm receives at each time step a context (typically, in the form of a feature
vector x) and is compelled to select an action (e.g., a label), whose goodness is quantified
by a predefined loss function. Full information about the loss function (one that would
perhaps allow to minimize the total loss over the contexts seen so far) is not available. The
specifics of the interaction model determines which pieces of loss will be observed by the
algorithm, e.g., the actual value of the loss on the chosen action, some information on more
profitable directions on the action space, noisy versions thereof, etc. The overall goal is
to compete against classes of functions that map contexts to (expected) losses in a regret
sense, that is, to obtain sublinear cumulative regret bounds.

All these algorithms share the common need to somehow trade off an exploratory atti-
tude for gathering loss information on unchosen directions of the context-action space, and
an exploitatory attitude for choosing actions that are deemed best according to the available
data. For instance, Auer (2002); Dani et al. (2008); Filippi et al. (2010); Abbasi-Yadkori
et al. (2011) work in a finite action space where the mappings context-to-loss for each action
are linear (or generalized linear, as Filippi et al., 2010’s) functions of the features. They all
obtain T 1/2-like regret bounds, where T is the time horizon. This is extended by Krause and
Ong (2011), where the loss function is modeled as a sample from a Gaussian process over
the joint context-action space. We are using a similar (generalized) linear modeling here.
An earlier (but somehow more general) setting that models such mappings by VC-classes
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is considered by Langford and Zhang (2008), where a T 2/3 regret bound has been proven
under i.i.d. assumptions. Linear multiclass classification problems with bandit feedback
are considered by, e.g., Kakade et al. (2008); Crammer and Gentile (2011); Hazan and Kale
(2011), where either T 2/3 or T 1/2 or even logarithmic regret bounds are proven, depending
on the noise model and the underlying loss functions.

All the above papers do not consider structured action spaces, where the learner is
allowed to select sets of actions, which is more suitable to multilabel and ranking problems.
Along these lines are the papers by Hazan and Kale (2009); Streeter et al. (2009); Kale et al.
(2010); Slivkins et al. (2010); Shivaswamy and Joachims (2012); Amin et al. (2011). The
general problem of online minimization of a submodular loss function under both full and
bandit information without covariates is considered by Hazan and Kale (2009), achieving a
regret T 2/3 in the bandit case. Streeter et al. (2009) consider the problem of online learning
of assignments, where at each round an algorithm is requested to assign positions (e.g.,
rankings) to sets of items (e.g., ads) with given constraints on the set of items that can be
placed in each position. Their problem shares similar motivations as ours but, again, the
bandit version of their algorithm does not explicitly take side information into account, and
leads to a T 2/3 regret bound. Another paper with similar goals but a different mathematical
model is by Kale et al. (2010), where the aim is to learn a suitable ordering (an “ordered
slate”) of the available actions. Among other things, the authors prove a T 1/2 regret bound
in the bandit setting with a multiplicative weight updating scheme. Yet, no contextual
information is incorporated. Slivkins et al. (2010) motivate the ability of selecting sets of
actions by a problem of diverse retrieval in large document collections which are meant to
live in a general metric space. In contrast to our paper, that approach does not lead to
strong regret guarantees for specific (e.g., smooth) loss functions. Shivaswamy and Joachims
(2012) use a simple linear model for the hidden utility function of users interacting with
a web system and providing partial feedback in any form that allows the system to make
significant progress in learning this function (this is called an α-informative feedback by the
authors). Under these assumptions, a regret bound of T 1/2 is again provided that depends on
the degree of informativeness of the feedback, as measured by the progress made during the
learning process. It is experimentally argued that this feedback is typically made available
by a user that clicks on relevant URLs out of a list presented by a search engine. Despite
the neatness of the argument, no formal effort is put into relating this information to the
context information at hand or, more generally, to the way data are generated. The recent
paper by Amin et al. (2011) investigates classes of graphical models for contextual bandit
settings that afford richer interaction between contexts and actions leading again to a T 2/3

regret bound.

Finally, further interesting recent works that came to our attention at the time of writing
this extended version of our conference paper (Gentile and Orabona, 2012) are the papers
by Bartók and Szepesvári (2012), by Bartók (2013), and by Agarwal (2013). In Bartók
and Szepesvári (2012), the authors provide sufficient conditions (“local observability”) that
insure rates of the form T 1/2 in partial monitoring games with side information. Partial
monitoring is an attempt to formalize through a unifying language the partial information
settings where the algorithm is observing only partial information about the loss of its
action, in the form of some kind of feedback or “signal”. The results presented by Bartók
and Szepesvári (2012) do not seem to conveniently extend to the structured action space
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setting we are interested in (or, if they do, we do not see it in the current version of their
paper). Moreover, being very general in scope, that paper is missing a tight dependence of
the regret bound on the number of available actions, which can be very large in structured
action spaces. Progress in this directions has very recently been made by Bartók (2013),
where the dependence on the number of actions is replaced by a quantity depending on
the structure of the action space in the locally observable game. Yet, no side information
is considered in that paper. The paper by Agarwal (2013) investigates multiclass selective
sampling settings (similar to Cavallanti et al., 2011; Cesa-Bianchi et al., 2009; Dekel et al.,
2012; Orabona and Cesa-Bianchi, 2011) with essentially the same generalized linear models
as the ones we consider here. As such, that paper is close to ours only from a technical
viewpoint.

The literature on multilabel learning and learning to rank is overwhelming. The wide at-
tention this literature attracts is often motivated by its web-search-engine or recommender-
system applications, and many of the papers are experimental in nature. Relevant references
include the work by Tsoumakas et al. (2011); Furnkranz et al. (2008); Dembczynski et al.
(2012), along with references therein. Moreover, when dealing with multilabel, the typical
assumption is full supervision, an important concern being modeling correlations among
classes. In contrast to that, the specific setting we are considering here need not face such
a modeling issue (Dembczynski et al., 2012). The more recent work by Wang et al. (2012)
reduces any online algorithm working on pairwise loss functions (like a ranking loss) to a
batch algorithm with generalization bound guarantees. But, again, only fully supervised
settings are considered. Other related references are the papers by Herbrich et al. (2000);
Freund et al. (2003), where learning is by pairs of examples. Yet, these approaches need i.i.d.
assumptions on the data, and typically deliver batch learning procedures. Finally, more re-
cent efforts related to proving consistency of pairwise ranking methods are Clémençon et al.
(2005); Cossock and Zhang (2006); Duchi et al. (2010); Buffoni et al. (2011); Lan et al.
(2012) where, unlike this paper, multi-level user ratings are assumed to be available.

To summarize, whereas we are technically closer to the linear modeling approaches by
Auer (2002); Dani et al. (2008); Dekel et al. (2012); Crammer and Gentile (2011); Filippi
et al. (2010); Abbasi-Yadkori et al. (2011); Krause and Ong (2011); Bartók and Szepesvári
(2012); Agarwal (2013), from a motivational standpoint we are perhaps closest to Streeter
et al. (2009); Kale et al. (2010); Shivaswamy and Joachims (2012).

1.2 Our Results

We investigate the multilabel and learning-to-rank problems in a partial feedback scenario
with contextual information, where we assume a probabilistic linear model over the labels,
although the contexts can be chosen by an adaptive adversary. We consider two families of
loss functions, one is a cost-sensitive multilabel loss that generalizes the standard Hamming
loss in several respects, the other is a kind of (unnormalized) ranking loss. In both cases, the
learning algorithm is maintaining a (generalized) linear predictor for the probability that
a given label occurs, the ranking being produced by upper confidence-corrected estimated
probabilities. In such settings, we prove T 1/2 log T cumulative regret bounds, which are
essentially optimal (up to log factors) in some cases. A distinguishing feature of our user
feedback model is that, unlike previous papers (e.g., Hazan and Kale 2009; Streeter et al.
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2009; Abbasi-Yadkori et al. 2011; Krause and Ong 2011), we are not assuming the algorithm
is observing a noisy version of the risk function on the currently selected action. In fact,
when a generalized linear model is adopted, the mapping context-to-risk turns out to be
nonconvex in the parameter space. Furthermore, when operating on structured action
spaces this more traditional form of bandit model does not seem appropriate to capture
the typical user preference feedback. Our approach is based on having the loss decoupled
from the label generating model, the user feedback being a noisy version of the gradient of
a surrogate convex loss associated with the model itself. As a consequence, the algorithm
is not directly dealing with the original loss when making exploration. In this sense, we
are more similar to the multiclass bandit algorithm by Crammer and Gentile (2011). Yet,
our work is a substantial departure from Crammer and Gentile’s (2011) in that we lift their
machinery to nontrivial structured action spaces, and we do so by means of generalized
linear models. On one hand, these extensions pose several extra technical challenges; on
the other, they provide additional modeling power and practical advantage.

Though the emphasis is on theoretical results, we also validate our algorithms on real-
world multilabel data sets under several experimental conditions: data set size, label set
size, loss functions, training mode and performance (online vs. batch), label generation
model (linear vs. logistic). Under all such conditions, our algorithms are contrasted against
the corresponding multilabel/ranking baselines that operate with full information, often
showing (surprisingly enough) comparable prediction performance.

1.3 Structure of the Paper

The paper is organized as follows. In Section 2 we introduce our learning model, our first
loss function, the label generation model, and some preliminary results and notation used
throughout the rest of the paper. In Section 3 we describe our partial feedback algorithm
working under the loss function introduced in Section 2, along with the associated regret
analysis. In Section 4 we show that a very similar machinery applies to ranking with partial
feedback, where the loss function is a kind of pairwise ranking loss (with partial feedback).
Similar regret bounds are then presented that work under additional modeling restrictions.
In Section 5 we provide our experimental comparison. Section 6 gives proof ideas and
technical details. The paper is concluded with Section 7, where possible directions for
future research are mentioned.

2. Model and Preliminaries

We consider a setting where the algorithm receives at time t the side information vector
xt ∈ Rd, is allowed to output a (possibly ordered) subset1 Ŷt ⊆ [K] of the set of possible
labels, then the subset of labels Yt ⊆ [K] associated with xt is generated, and the algorithm
gets as feedback Ŷt ∩ Yt. The loss suffered by the algorithm may take into account several
things: the distance between Yt and Ŷt (both viewed as sets), as well as the cost for playing
Ŷt. The cost c(Ŷt) associated with Ŷt might be given by the sum of costs suffered on
each class i ∈ Ŷt, where we possibly take into account the order in which i occurs within
Ŷt (viewed as an ordered list of labels). Specifically, given constant a ∈ [0, 1] and costs

1. An ordered subset is like a list with no repeated items.
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c = {c(i, s), i = 1, . . . , s, s ∈ [K]}, such that 1 ≥ c(1, s) ≥ c(2, s) ≥ . . . c(s, s) ≥ 0, for all
s ∈ [K], we consider the loss function

`a,c(Yt, Ŷt) = a |Yt \ Ŷt|+ (1− a)
∑

i∈Ŷt\Yt

c(ji, |Ŷt|),

where ji is the position of class i in Ŷt, and c(ji, ·) depends on Ŷt only through its size
|Ŷt|. In the above, the first term accounts for the false negative mistakes, hence there is no
specific ordering of labels therein. The second term collects the loss contribution provided
by all false positive classes, taking into account through the costs c(ji, |Ŷt|) the order in
which labels occur in Ŷt. The constant a serves as weighting the relative importance of
false positive vs. false negative mistakes.2 As a specific example, suppose that K = 10,
the costs c(i, s) are given by c(i, s) = (s − i + 1)/s, i = 1, . . . , s, the algorithm plays the
ordered list Ŷt = (4, 3, 6), but Yt is the (unordered) set {1, 3, 8}. In this case, |Yt \ Ŷt| = 2,
and

∑
i∈Ŷt\Yt c(ji, |Ŷt|) = 3/3 + 1/3, i.e., the cost for mistakenly playing class 4 in the top

slot of Ŷt is more damaging than mistakenly playing class 6 in the third slot. In the special
case when all costs are unitary, there is no longer need to view Ŷt as an ordered collection,
and the above loss reduces to a standard Hamming-like loss between sets Yt and Ŷt, i.e.,
a |Yt \ Ŷt| + (1 − a) |Ŷt \ Yt|. Notice that the partial feedback Ŷt ∩ Yt allows the algorithm
to know which of the chosen classes in Ŷt are good or bad (and to what extent, because of
the selected ordering within Ŷt).

The reader should also observe the asymmetry between the label set Ŷt produced by the
algorithm and the true label set Yt: the algorithm predicts an ordered set of labels, but the
true set of labels is unordered. In fact, it is often the case in, e.g., recommender system
practice, that the user feedback does not contain preference information in the form of an
ordered set of items. Still, in such systems we would like to get back to the user with an
appropriate ranking over the items.

Working with the above loss function makes the algorithm’s output Ŷt become a ranked
list of classes, where ranking is restricted to the deemed relevant classes only. In this sense,
the above problem can be seen as a partial information version of the multilabel ranking
problem (see the work by Furnkranz et al., 2008, and references therein). In a standard
multilabel ranking problem a classifier has to provide for any given instance xt, both a
separation between relevant and irrelevant classes and a ranking of the classes within the
two sets (or, perhaps, over the whole set of classes, as long as ranking is consistent with the
relevance separation). In our setting, instead, ranking applies to the selected classes only,
but the information gathered by the algorithm while training is partial. That is, only a
relevance feedback among the selected classes is observed (the set Yt∩Ŷt), but no supervised
ranking information (e.g., in the form of pairwise preferences) is provided to the algorithm
within this set. Alternatively, we can think of a ranking framework where restrictions on
the size of Ŷt are set by an exogenous (and possibly time-varying) parameter of the problem,
and the algorithm is required to provide a ranking complying with these restrictions. In
this sense, an alternative interpretation of the ranking-sensitive term

∑
i∈Ŷt\Yt c(ji, |Ŷt|) in

`a,c(Yt, Ŷt) is a Discounted Cumulative Gain (DCG) difference between the optimal ranking

2. Parameter a is not redundant here, since the costs c(i, s) have been normalized to [0,1].
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(i.e., the one sorting the |Yt| classes in Yt according to decreasing value of c(i, |Ŷt|)) and
the actual ranking contained in Ŷt, the discounting function being just the coefficients
c(i, |Ŷt|), i = 1, . . . |Ŷt|. DCG is a standard metric for measuring the effectiveness of Web
search engine algorithms (e.g., Jarvelin and Kekalainen, 2002).

Another important concern we would like to address with our loss function `a,c is to
avoid combinatorial explosions due to the exponential number of possible choices for Ŷt.
As we shall see below, this is guaranteed by the chosen structure for costs c(i, s). Another
loss function providing similar guarantees (though with additional modeling restrictions) is
the (pairwise) ranking loss considered in Section 4, where more on the connection to the
ranking setting with partial feedback is given.

The problem arises as to which noise model we should adopt so as to encompass sig-
nificant real-world settings while at the same time affording efficient implementation of
the resulting algorithms. For any subset Yt ⊆ [K], we let (y1,t, . . . , yK,t) ∈ {0, 1}K be the
corresponding indicator vector. Then it is easy to see that

`a,c(Yt, Ŷt) = a
∑
i/∈Ŷt

yi,t + (1− a)
∑
i∈Ŷt

c(ji, |Ŷt|) (1− yi,t)

= a
K∑
i=1

yi,t + (1− a)
∑
i∈Ŷt

(
c(ji, |Ŷt|)−

(
a

1−a + c(ji, |Ŷt|)
)
yi,t

)
.

Moreover, because the first sum does not depend on Ŷt, for the sake of optimizing over Ŷt
(but also for the sake of defining the regret RT—see below) we can equivalently define

`a,c(Yt, Ŷt) = (1− a)
∑
i∈Ŷt

(
c(ji, |Ŷt|)−

(
a

1−a + c(ji, |Ŷt|)
)
yi,t

)
. (1)

Note that the algorithm can evaluate the value of this loss, using the feedback received.
Let Pt(·) be a shorthand for the conditional probability P(· |xt), where the side information
vector xt can in principle be generated by an adaptive adversary as a function of the past.
Then

Pt(y1,t, . . . , yK,t) = P(y1,t, . . . , yK,t |xt).

We will assume that the marginals Pt(yi,t = 1) satisfy3

Pt(yi,t = 1) =
g(−u>i xt)

g(u>i xt) + g(−u>i xt)
, i = 1, . . . ,K, (2)

for some K vectors u1, . . . ,uK ∈ Rd, and a (known) function g : D ⊆ R → R+, that
is the negative derivative of a suitable convex and nonincreasing function. The model is
well defined if u>i x ∈ D for all i and all x ∈ Rd chosen by the adversary. We assume for
the sake of simplicity that ||xt|| = 1 for all t. Notice that here the variables yi,t need not
be conditionally independent. We are only defining a family of allowed joint distributions

3. The reader familiar with generalized linear models will recognize the derivative of the function p(∆) =
g(−∆)

g(∆)+g(−∆)
as the (inverse) link function of the associated canonical exponential family of distributions

(McCullagh and Nelder, 1989).
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Pt(y1,t, . . . , yK,t) through the properties of their marginals Pt(yi,t). A classical result in the
theory of copulas (Sklar, 1959) makes one derive all allowed joint distributions starting from
the corresponding one-dimensional marginals. It is also important to point out the arbitrary
dependence of xt on the past, since the typical scenarios we are modeling here (human
interaction) are producing data sequences which are nonstationary in nature, implying that
traditional statistical inference methods (e.g., empirical risk minimization) should be used
cautiously.

Our algorithm will be based on the loss function L, which is such that the function
g above is equal to the negative derivative of L. For instance, if L is the square loss
L(∆) = (1−∆)2/2, then g(∆) = 1−∆, resulting in Pt(yi,t = 1) = (1 +u>i xt)/2, under the
assumption D = [−1, 1]. If L is the logistic loss L(∆) = ln(1 + e−∆), then g(∆) = 1

e∆+1
,

and Pt(yi,t = 1) = eu
>
i xt/(eu

>
i xt + 1), with domain D = R. Observe that in both cases

Pt(yi,t = 1) is an increasing function of u>i xt. This will be true in general.
Set for brevity ∆i,t = u>i xt. Taking into account (1), this model allows us to write the

(conditional) expected loss of the algorithm playing Ŷt as

Et[`a,c(Yt, Ŷt)] = (1− a)
∑
i∈Ŷt

(
c(ji, |Ŷt|)−

(
a

1−a + c(ji, |Ŷt|)
)
pi,t

)
, (3)

where we introduced the shorthands

pi,t = p(∆i,t), p(∆) =
g(−∆)

g(∆) + g(−∆)
,

and the expectation Et in (3) is w.r.t. the generation of labels Yt, conditioned on both xt,
and all previous x and Y .

A key aspect of this formalization is that the Bayes optimal ordered subset

Y ∗t = argminY=(j1,j2,...,j|Y |)⊆[K]Et[`a,c(Yt, Y )]

can be computed efficiently when knowing ∆1,t, . . . ,∆K,t. This is handled by the next
lemma. In words, this lemma says that, in order to minimize (3), it suffices to try out all
possible sizes s = 0, 1, . . . ,K for Y ∗t and, for each such value, determine the sequence Y ∗s,t
that minimizes (3) over all sequences of size s. In turn, Y ∗s,t can be computed just by sorting
classes i ∈ [K] in decreasing order of pi,t, sequence Y ∗s,t being given by the first s classes in
this sorted list.

Lemma 1 With the notation introduced so far, let pi1,t ≥ pi2,t ≥ . . . piK ,t be the sequence
of pi,t sorted in nonincreasing order. Then we have that

Y ∗t = argmins=0,1,...KEt[`a,c(Yt, Y ∗s,t)],

where Y ∗s,t = (i1, i2, . . . , is), and Y ∗0,t = ∅.

Proof First observe that, for any given size s, the sequence Y ∗s,t must contain the s top-
ranked classes in the sorted order of pi,t. This is because, for any candidate sequence Ys =

{j1, j2, . . . , js}, we have Et[`a,c(Y ∗t , Ys)] = (1− a)
∑

i∈Ys

(
c(ji, s)−

(
a

1−a + c(ji, s)
)
pi,t

)
. If
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there exists i ∈ Ys which is not among the s-top ranked ones, then we could replace class i
in position ji within Ys with class k /∈ Ys such that pk,t > pi,t obtaining a smaller loss.

Next, we show that the optimal ordering within Y ∗s,t is precisely ruled by the nonincreas-
ing order of pi,t. By the sake of contradiction, assume there are i and k in Y ∗s,t such that i
precedes k in Y ∗s,t but pk,t > pi,t. Specifically, let i be in position j1 and k be in position j2
with j1 < j2 and such that c(j1, s) > c(j2, s). Then, disregarding the common (1−a)-factor,
switching the two classes within Y ∗s,t yields an expected loss difference of

c(j1, s)−
(

a
1−a + c(j1, s)

)
pi,t + c(j2, s)−

(
a

1−a + c(j2, s)
)
pk,t

−
(
c(j1, s)−

(
a

1−a + c(j1, s)
)
pk,t

)
−
(
c(j2, s)−

(
a

1−a + c(j2, s)
)
pi,t

)
= (pk,t − pi,t) (c(j1, s)− c(j2, s)) > 0,

since pk,t > pi,t and c(j1, s) > c(j2, s). Hence switching would get a smaller loss which leads
as a consequence to Y ∗s,t = (i1, i2, . . . , is).

Notice the way costs c(i, s) influence the Bayes optimal computation. We see from (3)
that placing class i within Ŷt in position ji is beneficial (i.e., it leads to a reduction of loss)
if and only if pi,t > c(ji, |Ŷt|)/( a

1−a + c(ji, |Ŷt|)). Hence, the higher is the slot ij in Ŷt the

larger should be pi,t in order for this inclusion to be convenient.4

It is Y ∗t above that we interpret as the true set of user preferences on xt. We would like
to compete against Y ∗t in a cumulative regret sense, i.e., we would like to bound

RT =
T∑
t=1

Et[`a,c(Yt, Ŷt)]− Et[`a,c(Yt, Y ∗t )]

with high probability.

We use a similar but largely more general analysis than Crammer and Gentile (2011)’s to
devise an online second-order descent algorithm whose updating rule makes the comparison
vector U = (u1, . . . ,uK) ∈ RdK defined through (2) be Bayes optimal w.r.t. a surrogate
convex loss L(·) such that g(∆) = −L′(∆). Observe that the expected loss function defined
in (3) is, generally speaking, nonconvex in the margins ∆i,t (consider, for instance the
logistic case g(∆) = 1

e∆+1
). Thus, we cannot directly minimize this expected loss.

3. Algorithm and Regret Bounds

In Figure 2 is our bandit algorithm for (ordered) multiple labels. In order to acquaint the
reader with this algorithm, a simplified version of it is first presented (Figure 1) which
applies to the linear model p(∆) = 1+∆

2 , g(∆) = 1 −∆, under the simplifying assumption
||ui|| ≤ 1, for i ∈ [K].

4. Notice that this depends on the actual size of Ŷt, so we cannot decompose this problem into K inde-
pendent problems. The decomposition does occur if the costs c(i, s) are constants, independent of i and
s, the criterion for inclusion becoming pi,t ≥ θ, for some constant threshold θ.
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Parameters:

• Loss parameters a ∈ [0, 1], and cost values c(i, s);

• Confidence level δ ∈ [0, 1].

Initialization: Ai,0 = I ∈ Rd×d, i = 1, . . . ,K, wi,1 = 0 ∈ Rd, i = 1, . . . ,K;

For t = 1, 2 . . . , T :

1. Get instance xt ∈ Rd : ||xt|| = 1;

2. For i ∈ [K], set ∆̂′i,t = x>t w
′
i,t, where

w′i,t =


wi,t if w>i,txt ∈ [−1, 1],

wi,t −
(

w>i,txt−1
x>t A−1

i,t−1xt

)
A−1i,t−1xt if w>i,txt > 1,

wi,t −
(

w>i,txt+1

x>t A−1
i,t−1xt

)
A−1i,t−1xt if w>i,txt < −1;

3. Output

Ŷt = argmin
Y=(j1,j2,...j|Y |)⊆[K]

(∑
i∈Y

(
c(ji, |Y |)−

(
a

1−a + c(ji, |Y |)
)
p̂i,t

))
,

where

p̂i,t =
1 + [∆̂′i,t + εi,t][−1,1]

2
,

ε2i,t = x>t A
−1
i,t−1xt

(
1 + 4 d ln

(
1 +

t− 1

d

)
+ 48 ln

K(t+ 4)

δ

)
;

4. Get feedback Yt ∩ Ŷt;
5. For i ∈ [K], update:

Ai,t = Ai,t−1 + |si,t|xtx
>
t , wi,t+1 = w′i,t −A−1i,t ∇i,t,

where

si,t =


1 if i ∈ Yt ∩ Ŷt,
−1 if i ∈ Ŷt \ Yt = Ŷt \ (Yt ∩ Ŷt),
0 otherwise;

and
∇i,t = (si,t ∆̂′i,t − 1) si,t xt.

Figure 1: The partial feedback algorithm in the (ordered) multiple label setting—the linear
model case.

Both algorithms are based on replacing the unknown model vectors u1, . . . ,uK with
prototype vectors w′1,t, . . . ,w

′
K,t, being w′i,t the time-t approximation to ui, satisfying sim-
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Parameters:

• Loss parameters a ∈ [0, 1], and cost values c(i, s);

• Interval D = [−R,R], function g : D → R;

• Confidence level δ ∈ [0, 1], and norm upper bound U > 0.

Initialization: Ai,0 = I ∈ Rd×d, i = 1, . . . ,K, wi,1 = 0 ∈ Rd, i = 1, . . . ,K;

For t = 1, 2 . . . , T :

1. Get instance xt ∈ Rd : ||xt|| = 1;

2. For i ∈ [K], set ∆̂′i,t = x>t w
′
i,t, where

w′i,t =


wi,t if w>i,txt ∈ [−R,R],

wi,t −
(

w>i,txt−R
x>t A−1

i,t−1xt

)
A−1i,t−1xt if w>i,txt > R,

wi,t −
(

w>i,txt+R

x>t A−1
i,t−1xt

)
A−1i,t−1xt if w>i,txt < −R;

3. Output

Ŷt = argmin
Y=(j1,j2,...j|Y |)⊆[K]

(∑
i∈Y

(
c(ji, |Y |)−

(
a

1−a + c(ji, |Y |)
)
p̂i,t

))
,

where

p̂i,t = p
(

[∆̂′i,t + εi,t]D

)
=

g
(
−[∆̂′i,t + εi,t]D

)
g
(

[∆̂′i,t + εi,t]D

)
+ g

(
−[∆̂′i,t + εi,t]D

) ,
ε2i,t = x>t A

−1
i,t−1xt

(
U2 +

d c′L
(c′′L)2

ln

(
1 +

t− 1

d

)
+

12

c′′L

(
c′L
c′′L

+ 3L(−R)

)
ln
K(t+ 4)

δ

)
;

4. Get feedback Yt ∩ Ŷt;
5. For i ∈ [K], update:

Ai,t = Ai,t−1 + |si,t|xtx
>
t , wi,t+1 = w′i,t −

1

c′′L
A−1i,t ∇i,t,

where

si,t =


1 if i ∈ Yt ∩ Ŷt,
−1 if i ∈ Ŷt \ Yt = Ŷt \ (Yt ∩ Ŷt),
0 otherwise;

and
∇i,t = ∇wL(si,t w

>xt)|w=w′i,t
= −g(si,t ∆̂′i,t) si,t xt.

Figure 2: The partial feedback algorithm in the (ordered) multiple label setting—the gen-
eralized linear model case.

2461



Gentile and Orabona

ilar constraints we set for the ui vectors. For the sake of brevity, we let ∆̂′i,t = x>t w
′
i,t, and

∆i,t = u>i xt, i ∈ [K].

The algorithms use ∆̂′i,t as proxies for the underlying ∆i,t according to the (upper

confidence) approximation scheme ∆i,t ≈ [∆̂′i,t + εi,t]D, where εi,t ≥ 0 is a suitable upper-
confidence level for class i at time t, and [·]D denotes the clipping-to-D operation: if D =
[−R,R], then

[x]D =


R if x > R

x if −R ≤ x ≤ R
−R if x < −R.

The algorithms’ prediction at time t has the same form as the computation of the Bayes
optimal sequence Y ∗t , where we replace the true (and unknown) pi,t = p(∆i,t) with the
corresponding upper confidence proxy

p̂i,t = p([∆̂′i,t + εi,t]D),

being

Ŷt = argmin
Y=(j1,j2,...j|Y |)⊆[K]

(∑
i∈Y

(
c(ji, |Y |)−

(
a

1−a + c(ji, |Y |)
)
p̂i,t

))
.

Computing Ŷt above can be done by mimicking the computation of the Bayes optimal
ordered subset Y ∗t (just replace pi,t by p̂i,t). From a computational viewpoint, this essentially
amounts to sorting classes i ∈ [K] in decreasing value of p̂i,t, i.e., order of K logK running
time per prediction. Thus the algorithms are producing a ranked list of relevant classes
based on upper-confidence-corrected scores p̂i,t. Class i is deemed relevant and ranked high

among the relevant ones when either ∆̂′i,t is a good approximation to ∆i,t and pi,t is large,
or when the algorithms are not very confident on their own approximation about i (that is,
the upper confidence level εi,t is large).

Specifically, the algorithm in Figure 1 receives in input the loss parameters a and c(i, s),
and the desired confidence level δ, and maintains both K positive definite matrices Ai,t of
dimension d (initially set to the d × d identity matrix), and K weight vectors wi,t ∈ Rd
(initially set to the zero vector). At each time step t, upon receiving the d-dimensional
instance vector xt the algorithm uses the weight vectors wi,t to compute the prediction
vectors w′i,t. These vectors can easily be seen as the result of projecting wi,t onto interval
[−1, 1] w.r.t. the distance function di,t−1, i.e.,

w′i,t = argmin
w∈Rd :w>xt∈[−1,1]

di,t−1(w,wi,t), i ∈ [K],

where

di,t−1(u,w) = (u−w)>Ai,t−1 (u−w).

Vectors w′i,t are then used to produce prediction values ∆̂′i,t involved in the upper-confidence

calculation of the predicted ordered subset Ŷt ⊆ [K]. Next, the feedback Yt∩ Ŷt is observed,
and the algorithm in Figure 1 promotes all classes i ∈ Yt ∩ Ŷt (sign si,t = 1), demotes all
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classes i ∈ Ŷt \ Yt (sign si,t = −1), and leaves all remaining classes i /∈ Ŷt unchanged (sign
si,t = 0). Promotion of class i on xt implies that if the new vector xt+1 is close to xt then
i will be ranked higher on xt+1. The update w′i,t → wi,t+1 is based on the gradients ∇i,t of

the square loss function L(∆) = (1−∆)2/2. On the other hand, the update Ai,t−1 → Ai,t
uses the rank-one matrix5 xtx

>
t . The matrix Ai,t−1 is used to calculate the upper confidence

level on each prediction. Matrix Ai,t−1 is the empirical covariance matrix of the samples
on which we received some feedback, either positive (si,t = 1) or negative (si,t = −1), and
is used in the expression for the confidence ε2i,t involving the quadratic form x>t A

−1
i,t−1xt.

Notice that ε2i,t will be small when the current sample xt is in the span of the previous
samples on which we received feedback, and will be large otherwise. In both the update of
w′i,t and the one involving Ai,t−1, the reader should observe the role played by the signs si,t.

The algorithm contained in Figure 2 is just a more general version of the one in Figure
1, where we also receive in input the specifics of the generalized linear model through the
model function g(·) and the associated margin domain D = [−R,R], and the norm upper
bound U , such that ‖ui‖ ≤ U for all i ∈ [K]. The update w′i,t → wi,t+1 in Figure 2 is
based on the gradients ∇i,t of a loss function L(·) satisfying L′(∆) = −g(∆). On the other
hand, the update Ai,t−1 → Ai,t uses again the rank-one matrix xtx

>
t . The constants c′L

and c′′L occurring in the expression for ε2i,t in Figure 2 are related to smoothness properties

of L(·). In particular, ε2i,t in Figure 1 is obtained from ε2i,t in Figure 2 by setting R = 1,

L(−R) = L(−1) = 0, along with c′L = 4 and c′′L = 1, as explained in the next theorem.6

Theorem 2 Let L : D = [−R,R] ⊆ R → R+ be a C2(D) convex and nonincreasing
function of its argument, (u1, . . . ,uK) ∈ RdK be defined in (2) with g(∆) = −L′(∆) for all
∆ ∈ D, and such that ‖ui‖ ≤ U for all i ∈ [K]. Assume there are positive constants cL, c′L
and c′′L such that

i. L′(∆)L′′(−∆)+L′′(∆)L′(−∆)
(L′(∆)+L′(−∆))2 ≥ −cL,

ii. (L′(∆))2 ≤ c′L,

iii. L′′(∆) ≥ c′′L

simultaneously hold for all ∆ ∈ D. Then the cumulative regret RT of the algorithm in
Figure 2 satisfies, with probability at least 1− δ,

RT = O

(
(1− a) cLK

√
T C d ln

(
1 +

T

d

))
,

where

C = O

(
U2 +

d c′L
(c′′L)2

ln

(
1 +

T

d

)
+

(
c′L

(c′′L)2
+
L(−R)

c′′L

)
ln
KT

δ

)
.

5. The rank-one update is based on xtx
>
t rather than ∇i,t∇>i,t, as in , e.g., the paper by Hazan et al. (2007).

This is due to technical reasons that will be made clear in Section 6. This feature tells this algorithm
slightly apart from the Online Newton step algorithm (Hazan et al., 2007), which is the starting point
of our analysis. The very same comment applies to the algorithm in Figure 2.

6. The proof is given in Section 6.
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It is easy to see that when L(·) is the square loss L(∆) = (1 −∆)2/2 and D = [−1, 1], we
have cL = 1/2, c′L = 4 and c′′L = 1; when L(·) is the logistic loss L(∆) = ln(1 + e−∆) and

D = [−R,R], we have cL = 1/4, c′L ≤ 1 and c′′L = 1
2(1+cosh(R)) , where cosh(x) = ex+e−x

2 .
The following remarks are in order at this point.

Remark 3 A drawback of Theorem 2 is that, in order to properly set the upper confidence
levels εi,t, we assume prior knowledge of the norm upper bound U . Because this information
is often unavailable, we present here a simple modification to the algorithm that copes with
this limitation, similar to the one proposed in Orabona and Cesa-Bianchi (2011). We change
the definition of ε2i,t in Figure 2 to

ε2i,t = max

{
x>A−1

i,t−1x

(
2 d c′L
(c′′L)2

ln

(
1 +

t− 1

d

)
+

12

c′′L

(
c′L
c′′L

+ 3L(−R)

)
ln
K(t+ 4)

δ

)
, 4R2

}
,

that is, we substitute U2 by
d c′L

(c′′L)2 ln
(
1 + t−1

d

)
, and cap the maximal value of ε2i,t to 4R2.

This immediately leads to the following result.7

Theorem 4 With the same assumptions and notation as in Theorem 2, if we replace ε2i,t
as explained above we have that, with probability at least 1− δ, RT satisfies

RT = O

(
(1− a) cLK

√
T C d ln

(
1 +

T

d

)
+ (1− a) cLKRd

(
exp

(
(c′′L)2 U2

c′L d

)
− 1

))
.

Remark 5 From a computational standpoint, the most demanding operation in Figure 2
is computing the upper confidence levels εi,t involving the inverse matrices A−1

i,t−1, i ∈ [K].
Note that the matrices can be safely inverted because they are full rank, being initialized
with identity matrices. The matrix inversion can be done incrementally in O(K d2) time
per round. This can be hardly practical if both d and K are large. In practice (as explained,
e.g., by Crammer and Gentile, 2011), one can use an approximated version of the algorithm
which maintains diagonal matrices Ai,t instead of full ones. All the steps remain the same
except Step 5 of Algorithm 2 where one defines the rth diagonal element of matrix Ai,t as
(Ai,t)r,r = (Ai,t−1)r,r +x2

r,t, being xt = (x1,t, x2,t, . . . , xr,t, . . . , xK,t)
>. The resulting running

time per round (including prediction and update) becomes O(dK +K logK). In fact, when
a limitation on the size of Ŷt is given, the running time may be further reduced, see Remark
8.

4. On Ranking with Partial Feedback

As Lemma 1 points out, when the cost values c(i, s) in the loss function `a,c are strictly
decreasing i.e., c(1, s) > c(2, s) > . . . > c(s, s), for all s ∈ [K], then the Bayes optimal
ordered sequence Y ∗t on xt is unique can be obtained by sorting classes in decreasing values
of pi,t, and then decide on a cutoff point8 induced by the loss parameters, so as to tell relevant

classes apart from irrelevant ones. In turn, because p(∆) = g(−∆)
g(∆)+g(−∆) is increasing in ∆,

7. The proof is deferred to Section 6.
8. This is called the zero point by Furnkranz et al. (2008).
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this ordering corresponds to sorting classes in decreasing values of ∆i,t. Now, if parameter
a in `a,c is very close9 to 1, then |Y ∗t | = K, and the algorithm itself will produce ordered
subsets Ŷt such that |Ŷt| = K. Moreover, it does so by receiving full feedback on the
relevant classes at time t (since Yt ∩ Ŷt = Yt). As is customary (e.g., Dembczynski et al.
2012), one can view any multilabel assignment Y = (y1, . . . , yK) ∈ {0, 1}K as a ranking
among the K classes in the most natural way: i precedes j if and only if yi > yj . The
(unnormalized) ranking loss function `rank(Y, f) between the multilabel Y and a ranking
function f : Rd → RK , representing degrees of class relevance sorted in a decreasing order
fj1(xt) ≥ fj2(xt) ≥ . . . ≥ fjK (xt) ≥ 0, counts the number of class pairs that disagree in the
two rankings:

`rank(Y, f) =
∑

i,j∈[K] : yi>yj

(
{fi(xt) < fj(xt)}+ 1

2 {fi(xt) = fj(xt)}
)
,

where {. . .} is the indicator function of the predicate at argument. As pointed out by
Dembczynski et al. (2012), the ranking function f(xt) = (p1,t, . . . , pK,t) is also Bayes optimal
w.r.t. `rank(Y, f), no matter if the class labels yi are conditionally independent or not. Hence
we can use the algorithm in Figure 2 with a close to 1 for tackling ranking problems derived
from multilabel ones, when the measure of choice is `rank and the feedback is full.

We now consider a partial information version of the above ranking problem. Suppose
that at each time t, the environment discloses both xt and a maximal size St for the ordered
subset Ŷt = (j1, j2, . . . , j|Ŷt|) (both xt and St can be chosen adaptively by an adversary).
Here St might be the number of available slots in a webpage or the maximal number of
URLs returned by a search engine in response to query xt. Then it is plausible to compete
in a regret sense against the best time-t offline ranking of the form

f∗(xt) = f∗(xt;St) = (f∗1 (xt), f
∗
2 (xt), . . . , f

∗
K(xt)),

where the number of strictly positive f∗i (xt) values is at most St. Further, the ranking loss
could be reasonably restricted to count the number of class pairs disagreeing within Ŷt plus
a quantity related to the number of false negative mistakes. If Ŷt is the sequence of length
St associated with a ranking function f , we consider the loss function `p−rank,t (“partial
information `rank at time t”)

`p−rank,t(Y, f) =
∑

i,j∈Ŷt : yi>yj

(
{fi(xt) < fj(xt)}+ 1

2 {fi(xt) = fj(xt)}
)

+ St |Yt \ Ŷt|.

In this loss function, the factor St multiplying |Yt\Ŷt| serves as balancing the contribution of
the double sum

∑
i,j∈Ŷt : yi>yj

(potentially involving a quadratic number of terms) with the

contribution of false negative mistakes |Yt\Ŷt|. As for loss `a,c, we can rewrite `p−rank,t(Y, f)
as

`p−rank,t(Y, f) =
∑

i,j∈Ŷt : yi>yj

(
{fi(xt) < fj(xt)}+ 1

2 {fi(xt) = fj(xt)}
)
−St |Yt∩ Ŷt|+St |Yt|,

9. If a = 1, the algorithm only cares about false negative mistakes, the best strategy being always predicting
Ŷt = [K]. Unsurprisingly, this yields zero regret in both Theorems 2 and 4.
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where the first two terms can be calculated by the algorithm, and the last one does not
depend on Ŷt. For convenience, we will interchangeably use the notations `p−rank,t(Y, f) and

`p−rank,t(Y, Ŷt), whenever it is clear from the surrounding context that Ŷt is the sequence
corresponding to f .

The next lemma10 is the ranking counterpart to Lemma 1. It shows that the Bayes
optimal ranking for `p−rank,t is given by

f∗(xt;St) = (p′1,t, p
′
2,t, . . . , p

′
K,t),

where p′j,t = pj,t if pj,t is among the St largest values in the sequence (p1,t, . . . , pK,t), and
0 otherwise. That is, f∗(xt;St) is the function that ranks classes according to decreasing
values of pi,t and cuts off exactly at position St. This is in contrast to what happens for loss
`a,c, where, depending on the cost parameters c(i, s), the cut off point can even be smaller
than the total number of available slots—see Lemma 1 and surrounding comments. In
order for this result to go through, we need to restrict model (2) to the case of conditionally
independent classes, i.e., to the case when

Pt(y1,t, . . . , yK,t) =
∏
i∈[K]

pi,t . (4)

This is a significant departure from the full information setting, where the Bayes optimal
ranking only depends on the marginal distribution values pi,t (Dembczynski et al., 2012).
Due to the interaction between the two terms in the definition of `p−rank,t, the Bayes optimal
ranking for `p−rank,t turns out to depend on both marginal and pairwise correlation values of
the joint class distribution. Assumption (4) may be avoided by maintaining O(K2) upper
confidence values εi,j , one for each pair (i, j), i < j, leading to an extra computational
burden which can become prohibitive even in the presence of a moderate number of classes
K.

Lemma 6 With the notation introduced so far, let the joint distribution Pt(y1,t, . . . , yK,t)
factorize as in (4). Then f∗(xt;St) introduced above satisfies

f∗(xt;St) = argmin
Y=(i1,i2,...ih) ,h≤St

Et[`p−rank,t(Yt, Y )].

If we add to the argmin of our algorithm (Step 3 in Figure 2) the further constraint |Y | ≤ St
(notice that the resulting computation is still about sorting classes according to decreasing
values of p̂i,t), we are defining a partial information ranking algorithm that ranks classes

according to decreasing values of p̂i,t up to position St (i.e., |Ŷt| = St). Let f̂(xt, St) be the
resulting ranking. We can then define the cumulative regret RT w.r.t. `p−rank,t as

RT =

T∑
t=1

Et[`p−rank,t(Yt, f̂(xt, St))]− Et[`p−rank,t(Yt, f∗(xt, St)], (5)

that is, the extent to which the conditional `p−rank,t-risk of f̂(xt, St) exceeds the one of the
Bayes optimal ranking f∗(xt;St), accumulated over time.

We have the following ranking counterpart to Theorem 2.

10. We postpone its lengthy proof to Section 6.
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Theorem 7 With the same assumptions and notation as in Theorem 2, combined with the
independence assumption (4), let the cumulative regret RT w.r.t. `p−rank,t be defined as in
(5). Then, with probability at least 1 − δ, we have that the algorithm in Figure 2 working
with a→ 1 and strictly decreasing cost values c(i, s) (i.e., the algorithm computing in round
t the ranking function f̂(xt, St)) achieves

RT = O

(
cL

√
S K T C d ln

(
1 +

T

d

))
,

where S = maxt=1,...,T St.

The proof (see Section 6) is very similar to the one of Theorem 2. This suggests that, to
some extent, we are decoupling the label generating model from the loss function ` under
consideration.

Remark 8 As is typical in many multilabel classification settings, the number of classes K
can be very large and/or have an inner structure (e.g., a hierarchical or DAG-like structure).
It is often the case that in such a large label space, many classes are relatively rare. This
has lead researchers to consider methods that are specifically tailored to leverage the label
sparsity of the chosen classifier (e.g., Hsu et al. 2009 and references therein) and/or the
specific structure of the set of labels (e.g., Cesa-Bianchi et al. 2006a; Bi and Kwok 2011,
and references therein). Though our algorithm is not designed to exploit the label structure,
we would like to stress that the restriction |Ŷt| ≤ St ≤ S in Theorem 7 allows us to replace
the linear dependence on the total number of classes K (which is often much larger than S)
by
√
SK. It is very easy to see that this restriction would bring similar benefits to Theorem

2.

In fact, the above restriction is not only beneficial from a “statistical” point of view,
but also from a computational one. As is by now standard, algorithms like the one in
Figure 2 can easily be cast in dual variables (i.e., in a RKHS). This comes with at least two
consequences:

1. We can depart from the (generalized) linear modeling assumption (2), and allow for
more general nonlinear dependencies of pi,t on the input vectors xt, possibly resorting
to the universal approximation properties of Gaussian RKHS (e.g., Steinwart, 2002).

2. We can maintain a dual variable representation for margins ∆̂′i,t and quadratic forms

x>t A
−1
i,t−1xt, so that computing each one of them takes O(N2

i,t−1) inner products, where
Ni,t is the number of times class i has been updated up to time t, each inner product
being O(d). Now, each of the (at most St ≤ S) updates is O(N2

i,t−1). Hence, the overall

running time in round t is coarsely overapproximated by O(d
∑

i∈[K]N
2
i,T +K logK).

From
∑

i∈[K]Ni,T ≤ ST , we see that when S is small compared to K, then Ni,t−1 tends

to be small as well. For instance, if S ≤
√
K this leads to a running time per round

of the form SdT 2, which can be smaller than the bound Kd2 mentioned in Remark 5.

Finally, observe that one can also combine Theorem 7 with the argument contained in
Remark 1.
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Task Train+Test d K Avg Avg + std 95% 99%

Mediamill 30,993+12,914 120 101 5 7 8 10
Sony 16,452+16,519 98 632 38 44 48 52
Yeast 1,500+917 103 14 5 6 7 8

Table 1: Main statistics related to the three data sets used in our experiments. The last
four columns give information on the distribution of the number of labels per
instance. “Avg” denotes the (rounded) average number of labels over the training
examples, and “Avg+std” gives the average augmented by one unit of standard
deviation. So, for instance, in the Mediamill data set, the average number of labels
per instance in the training set is 5, with a standard deviation of 2. The columns
tagged “95%” and “99%” give an idea of the quantiles of this distribution. E.g.,
on Mediamill, 95% of the training examples have at most 8 classes (out of 101),
on the Sony data set, 99% of the training examples have at most 52 classes (out
of 632).

5. Experiments

The experiments we report here are meant to validate the exploration-exploitation tradeoff
implemented by our algorithm along different axes: data set size, label set size, loss function,
label generation model, training mode of operation, and restrictions on the total number of
classes predicted. Moreover, we explicitly tested the effectiveness of ranking classes based
on upper confidence-corrected probability estimates.

5.1 Data Sets

We used three diverse multilabel data sets, intended to represent different real-world condi-
tions. The first one, called Mediamill, was introduced in a video annotation challenge (Snoek
et al., 2006). It comprises 30, 993 training samples and 12, 914 test ones. The number of
features d is 120, and the number of classes K is 101. The second data set is the music
annotated Sony CSL Paris data set (Pachet and Roy, 2009), made up of 16, 452 training
samples and 16,519 test samples, each sample being described by d = 98 features. The
number of classes K is 632, which is significantly larger than Mediamill’s. The third one is
the smaller Yeast data set (Elisseeff and Weston, 2002), made up of 1, 500 training samples,
917 test samples, with d = 103 and K = 14. In all cases, the feature vectors have been
normalized to unit Euclidean norm. Table 1 summarizes relevant statistics about these data
sets. This table also gives an idea of the distribution of the number of classes per instance.

5.2 Parameter Setting and Loss Measures

For the practical implementation of the algorithm in Figure 2, we simplified the formula
for ε2i,t. This is justified by the fact that the actual constants in the definition of ε2i,t are
artifacts of our high-probability upper bounds. Hence, we used

ε2i,t = αx>t A
−1
i,t−1xt log(t+ 1),
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where α is a parameter that we found by cross-validation on each data set across the range
α = 2−8, 2−7, . . . , 27, 28, for each choice of the label-generation model, loss setting, and
value of S—see below. We have considered two different loss functions L, the square loss
and the logistic loss (denoted by “Log Loss” in our plots). Correspondingly, the two label-
generation models we tested are the linear model Pt(yi,t = 1) = (1 + u>i xt)/2 with domain

D = [−1, 1], and the logistic model Pt(yi,t = 1) = eu
>
i xt/(eu

>
i xt + 1). In the logistic case, it

makes sense in practice not to place any restrictions on the margin domain D, so that we set
R =∞. Again, because our upper bounding analysis would yield as a consequence c′′L = 0,
we instead set c′′L to a small positive constant, specifically c′′L = 0.1, with no special attention
to its fine-tuning. The setting of the cost function c(i, s) depends on the task at hand, and
we decided to evaluate two possible settings. The first one, denoted by “decreasing” is
c(i, s) = s−i+1

s , i = 1, . . . , s, the second one, denoted by “constant”, is c(i, s) = 1, for all
i and s. In all experiments with `a,c, the a parameter was set to 0.5 (so that `a,c with
constant c reduces to half the Hamming loss). In the decreasing c scenario, we evaluated
the performance of the algorithm on the loss `a,c that the algorithm is minimizing, but also
its ability to produce meaningful (partial) rankings through `p−rank,t. In the constant c
scenario, we only evaluated the Hamming loss, its natural loss function.

As is typical of multilabel problems, the label density of our data sets, i.e., the average
fraction of labels associated with the examples, is quite small. Hence, it is clearly beneficial
to our learning algorithm to bias its inference process so as to produce short ranked lists
Ŷt. We did so by imposing, for all t, an upper bound St = S on |Ŷt|. For each of the three
data sets, we tried out the four different values of S reported in the last four columns of
Table 1: the average number of labels; the average plus one standard deviation, the number
of labels that covers 95% of the examples, and the number of labels that covers 99% of the
examples, all figures only referring to the corresponding training sets.

5.3 Baselines

As a baseline, we considered a full information version of Algorithm 2, denoted by “Full
Info”, that receives after each prediction the full array of true labels Yt for each sam-
ple. Comparing to full information algorithms stresses the effectiveness of the explo-
ration/exploitation rule above and beyond the details of underlying generalized linear pre-
dictor. We also compared against the random predictor (denoted by “Random”) that simply
outputs at time t a ranked list Ŷt made up of S labels chosen (and ranked) at random. Fi-
nally, an interesting ranking baseline which targets the ranking ability of our algorithm is
one that lets our partial feedback algorithm select which classes to include in Ŷt, and then
shuffles them at random within Ŷt to produce the ranked list. This baseline we only used
with the ranking loss `p−rank,t, and is denoted by “Shuffled” in our plots.

5.4 Results

Our results are summarized in Figures 3, 4, and 5. The top row of each figure shows the
results in the online setting, while the bottom row is for the batch setting. Each column
corresponds to a different data set. In both the online and batch cases, the algorithms were
fed with the training set in a sequential fashion, sweeping over it only once.
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The plots report online or batch loss measures as a function of S,11 averaged over 5
random permutation of the training sequence. Specifically, whereas the online measure of
performance (“Final Average ... Loss”) is the cumulative loss accumulated during training,
divided by the number of samples in the training set, the batch measure (“Test ...”) is
simply the average loss over the test set achieved by the last solution produced by train-
ing. For the partial-feedback algorithms (“Square Loss”, “Log Loss” and, in the ranking
case, also “Square Loss Shuffled” and ”Log Loss Shuffled”), only the best α-cross-validated
performances are shown. Moreover, in the ranking experiments, because of the explicit de-
pendence of `p−rank,t on S, we instead considered the scaled version of the loss `p−rank,t/S.
Notice that the theoretical results contained in Section 4 still apply to this scaled loss
function.

The first thing to observe from the evidence we collected is that performance in the batch
setting closely follows the one in the online setting, across all the data sets, conditions and
losses. In a sense, this is to be expected, since the order of samples in the training set is
randomly shuffled.

The optimal value of S that allows us to best balance exploration and the exploitation
of the algorithm seems to be depending on the particular data set and task at hand. So, for
instance, on Mediamill with Hamming loss, this value is S = 8, corresponding to the 95%
coverage of the training set, while on Yeast it is the average value S = 5, covering around
50% of the training examples. When the loss is `a,c, the best value of S clearly depends
on the costs c. In the ranking case, performance increases as S gets larger, but this is very
likely to be due to the scaling factor 1/S in the loss we plotted. Notice that, from our
theoretical analysis in Section 3, the algorithm (e.g., in the special case on Hamming loss)
should in principle be able to determine the best size of Ŷt at each round, so that setting
St = K for all t is still a fair choice. Yet, this conservative setting makes the algorithm
face an unnecessarily large action space (of size K!), and correspondingly a harder inference
problem, rather than the substantially smaller space (of size K(K−1)(K−2) . . . (K−S+1))
obtained by setting St = S. This is evinced by the fact that all plots (regarding both partial
and full information algorithms) in Figure 4 tend to be increasing with S. For the very
sake of this inference, the fact that all algorithms see the examples only once seems to be
a severe limitation.12

The performance of our partial information algorithms are always pretty close to those
of the corresponding full information algorithms. This empirically validates the explo-
ration/exploitation scheme we used. Also, in all cases, all algorithms clearly outperform
the random predictor. In most of the experiments, the linear model (“Square Loss”) seems
to deliver slightly better results in the bandit setting than the logistic model (“Log Loss”),
while the performance of the two models is very similar in the full information case. Ex-
ceptions are the constant and the decreasing cost settings in the batch case on the Yeast
data set (Figure 3, bottom right, and Figure 4, bottom right), where the bandit algorithm
has an even better performance than the full information one. This is perhaps due to the

11. The plots are actually piecewise linear interpolations with knots corresponding to the 4 values of S
mentioned in the main text.

12. Training for a single epoch is a restriction needed to carry out a fair comparison between full and
partial information algorithms: Cycling more than once on a training set may turn a partial information
algorithm into a full information one.
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Figure 3: Experiments with `a,c and decreasing costs.

noise introduced during exploration, that acts as a kind of regularization, improving gener-
alization performance in such a small data set. In general, however, the comparison linear
vs. logistic is somewhat mixed.

In the ranking setting (Figure 5) we also show the performance of our algorithm when the
order of predicted labels is randomly permuted (“Shuffled”). It is shown that, uniformly over
all settings, shuffling causes performance degradation, thereby proving that our algorithm
is indeed learning a meaningful ranking over the labels in the set Ŷt, even without receiving
any ranking feedback within this set from the user.

6. Technical Details

This section contains all proofs missing from the main text, along with ancillary results and
comments.

The algorithm in Figure 2 works by updating through the gradients ∇i,t of a modular

margin-based loss function
∑K

i=1 L(w>i x) associated with the label generation model (2),
i.e., associated with function g, so as to make the parameters (u1, . . . ,uK) ∈ RdK therein
achieve the Bayes optimality condition

(u1, . . . ,uK) = arg min
w1,...,wK :w>i xt∈D

Et

[
K∑
i=1

L(si,tw
>
i xt)

]
, (6)

where Et[·] above is over the generation of Yt in producing the sign value si,t ∈ {−1, 0,+1},
conditioned on the past (in particular, conditioned on Ŷt). The requirement in (6) is akin
to the classical construction of proper scoring rules in the statistical literature (e.g., Savage,
1973).
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Figure 4: Experiments with `a,c and constant costs (Hamming loss).

The above is combined with the ability of the algorithm to guarantee the high probability
convergence of the prototype vectors w′i,t to the corresponding ui (Lemma 13). The rate of
convergence is ruled by the fact that the associated upper confidence values εi,t shrink to
zero as 1√

t
when t grows large. In order for this convergence to take place, it is important to

insure that the algorithm is observing informative feedback (either “correct”, i.e., si,t = 1,
or “mistaken”, i.e., si,t = −1) for each class i contained in the selected Ŷt. This in turn
implies regret bounds for both `a,c (Lemma 11) and `p−rank,t (Lemma 12).

The following lemma faces the problem of hand-crafting a convenient loss function L(·)
such that (6) holds.

Lemma 9 Let w1, . . . ,wK ∈ RdK be arbitrary weight vectors such that w>i xt ∈ D, i ∈ [K],
(u1, . . . ,uK) ∈ RdK be defined in (2), si,t be the updating signs computed by the algorithm
at the end (Step 5) of time t, L : D = [−R,R] ⊆ R → R+ be a convex and differentiable
function of its argument, with g(∆) = −L′(∆). Then for any t we have

Et

[
K∑
i=1

L(si,tw
>
i xt)

]
≥ Et

[
K∑
i=1

L(si,t u
>
i xt)

]
,

i.e., (6) holds.

Proof Let us introduce the shorthands ∆i = u>i xt, ∆̂i = w>i,txt, si = si,t, and pi =

P(yi,t = 1 |xt) = L′(−∆i)
L′(∆i)+L′(−∆i)

= g(−∆i)
g(∆i)+g(−∆i)

. Moreover, let Pt(·) be an abbreviation

for the conditional probability P(· | (y1,x1), . . . , (yt−1,xt−1),xt). Recalling the way si,t is
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Figure 5: Experiments with the ranking loss `p−rank,t. In order to obtain “scale-
independent” results, in this figure we actually used `p−rank,t/S rather than
`p−rank,t itself.

constructed (Figure 2), we can write

Et

[
K∑
i=1

L(si,t ∆̂i)

]
=
∑
i∈Ŷt

(
Pt(si,t = 1)L(∆̂i) + Pt(si,t = −1)L(−∆̂i)

)
+ (K − |Ŷt|)L(0)

=
∑
i∈Ŷt

(
pi L(∆̂i) + (1− pi)L(−∆̂i)

)
+ (K − |Ŷt|)L(0),

For similar reasons,

Et

[
K∑
i=1

L(si,t ∆i)

]
=
∑
i∈Ŷt

(pi L(∆i) + (1− pi)L(−∆i)) + (K − |Ŷt|)L(0).

Since L(·) is convex, so is Et
[∑K

i=1 L(si,t ∆̂i)
]

when viewed as a function of the ∆̂i. We

have that
∂ Et[

∑K
i=1 L(si,t ∆̂i)]
∂∆̂i

= 0 if and only if for all i ∈ Ŷt we have that ∆̂i satisfies

pi =
L′(−∆̂i)

L′(∆̂i) + L′(−∆̂i)
.

Since pi = L′(−∆i)
L′(∆i)+L′(−∆i)

, we have that Et
[∑K

i=1 L(si,t ∆̂i)
]

is minimized when ∆̂i = ∆i for

all i ∈ [K]. The claimed result immediately follows.
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Let now V art(·) be a shorthand for V ar(· | (y1,x1), . . . , (yt−1,xt−1),xt). The following
lemma shows that under additional assumptions on the loss L(·), we can bound the variance
of a difference of losses L(·) by the expectation of this difference. This will be key to proving
the fast rates of convergence contained in the subsequent Lemma 13.

Lemma 10 Let (w′1,t, . . . ,w
′
K,t) ∈ RdK be the weight vectors computed by the algorithm

in Figure 2 at the beginning (Step 2) of time t, si,t be the updating signs computed at the
end (Step 5) of time t, and (u1, . . . ,uK) ∈ RdK be the comparison vectors defined through
(2). Let L : D = [−R,R] ⊆ R → R+ be a C2(D) convex function of its argument, with
g(∆) = −L′(∆) and such that there are positive constants c′L and c′′L with (L′(∆))2 ≤ c′L
and L′′(∆) ≥ c′′L for all ∆ ∈ D. Then for any i ∈ Ŷt

0 ≤ V art
(
L(si,t x

>
t w
′
i,t)− L(si,t u

>
i xt)

)
≤

2c′L
c′′L

Et
[
L(si,t x

>
t w
′
i,t)− L(si,t u

>
i xt)

]
.

Proof Let us introduce the shorthands ∆i = x>t ui, ∆̂i = x>t w
′
i,t, si = si,t, and pi =

P(yi,t = 1 |xt) = L′(−∆i)
L′(∆i)+L′(−∆i)

= g(−∆i)
g(∆i)+g(−∆i)

. Then, for any i ∈ [K],

V art

(
L(si,t x

>
t w
′
i,t)− L(si,t u

>
i xt)

)
≤ Et

((
L(si ∆̂i)− L(si ∆i)

)2
)
≤ c′L (∆̂i −∆i)

2. (7)

Moreover, for any i ∈ Ŷt we can write

Et
[
L(si ∆̂i)− L(si ∆i)

]
= pi (L(∆̂i)− L(∆i)) + (1− pi) (L(−∆̂i)− L(−∆i))

≥ pi
(
L′(∆i)(∆̂i −∆i) +

c′′L
2

(∆̂i −∆i)
2

)
+ (1− pi)

(
L′(−∆i)(∆i − ∆̂) +

c′′L
2

(∆̂i −∆i)
2

)
= pi

c′′L
2

(∆̂i −∆i)
2 + (1− pi)

c′′L
2

(∆̂i −∆i)
2

=
c′′L
2

(∆̂i −∆i)
2, (8)

where the second equality uses the definition of pi. Combining (7) with (8) gives the desired
bound.

We continue by showing a one-step regret bound for our original loss `a,c. The precise
connection to loss L(·) will be established with the help of a later lemma (Lemma 13).

Lemma 11 Let L : D = [−R,R] ⊆ R → R+ be a convex, twice differentiable, and
nonincreasing function of its argument. Let (u1, . . . ,uK) ∈ RdK be defined in (2) with
g(∆) = −L′(∆) for all ∆ ∈ D. Let also cL be a positive constant such that

L′(∆)L′′(−∆) + L′′(∆)L′(−∆)

(L′(∆) + L′(−∆))2
≥ −cL
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holds for all ∆ ∈ D. Finally, let ∆i,t denote u>i xt, and ∆̂′i,t denote x>t w
′
i,t, where w′i,t is

the i-the weight vector computed by the algorithm at the beginning (Step 2) of time t. If
time t is such that |∆i,t − ∆̂′i,t| ≤ εi,t for all i ∈ [K], then

Et[`a,c(Yt, Ŷt)]− Et[`a,c(Yt, Y ∗t )] ≤ 2 (1− a) cL
∑
i∈Ŷt

εi,t.

Proof Recall the shorthand notation p(∆) = g(−∆)
g(∆)+g(−∆) . We can write

Et[`a,c(Yt, Ŷt)]− Et[`a,c(Yt, Y ∗t )]

= (1− a)
∑
i∈Ŷt

(
c(ĵi, |Ŷt|)−

(
a

1−a + c(ĵi, |Ŷt|)
)
p(∆i,t)

)
− (1− a)

∑
i∈Y ∗t

(
c(j∗i , |Y ∗t |)−

(
a

1−a + c(j∗i , |Y ∗t |)
)
p(∆i,t)

)
,

where ĵi denotes the position of class i in Ŷt and j∗i is the position of class i in Y ∗t . Now,

p′(∆) =
−g′(−∆) g(∆)− g′(∆) g(−∆)

(g(∆) + g(−∆))2
=
−L′(∆)L′′(−∆)− L′(−∆)L′′(∆)

(L′(∆) + L′(−∆))2
≥ 0

since g(∆) = −L′(∆), and L(·) is convex and nonincreasing. Hence p(∆) is itself a non-
decreasing function of ∆. Moreover, the extra condition on L involving L′ and L′′ is a
Lipschitz condition on p(∆) via a uniform bound on p′(∆). Hence, from |∆i,t − ∆̂′i,t| ≤ εi,t
and the definition of Ŷt we can write

Et[`a,c(Yt, Ŷt)]− Et[`a,c(Yt, Y ∗t )]

≤ (1− a)
∑
i∈Ŷt

(
c(ĵi, |Ŷt|)−

(
a

1−a + c(ĵi, |Ŷt|)
)
p([∆̂′i,t − εi,t]D)

)
− (1− a)

∑
i∈Y ∗t

(
c(j∗i , |Y ∗t |)−

(
a

1−a + c(j∗i , |Y ∗t |)
)
p([∆̂′i,t + εi,t]D)

)
≤ (1− a)

∑
i∈Ŷt

(
c(ĵi, |Ŷt|)−

(
a

1−a + c(ĵi, |Ŷt|)
)
p([∆̂′i,t − εi,t]D)

)
− (1− a)

∑
i∈Ŷt

(
c(ĵi, |Ŷt|)−

(
a

1−a + c(ĵi, |Ŷt|)
)
p([∆̂′i,t + εi,t]D)

)
= (1− a)

∑
i∈Ŷt

(
c(ĵi, |Ŷt|)

(
p([∆̂′i,t + εi,t]D)− p([∆̂′i,t − εi,t]D)

))
≤ 2 (1− a) cL

∑
i∈Ŷt

εi,t,

the last inequality deriving from c(i, s) ≤ 1 for all i ≤ s ≤ K, and

p([∆̂′i,t + εi,t]D)− p([∆̂′i,t − εi,t]D) ≤ cL
(
[∆̂′i,t + εi,t]D − [∆̂′i,t − εi,t]D

)
≤ 2 cL εi,t.
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Now, we first give a proof of Lemma 6, and then provide a one step regret for the partial
information ranking loss.

Proof [Lemma 6] Recall the notation Pt(·) = P(· |xt), and pi,t = p(∆i,t) =
g(−∆i,t)

g(∆i,t)+g(−∆i,t)
.

For notational convenience, in this proof we drop subscript t from pi,t, St, yi,t, Ŷt, and
`p−rank,t. A simple adaptation of Dembczynski et al. (2012) (proof of Theorem 1 therein)
shows that for a generic sequence â = (â1, . . . , âK) with at most S nonzero values âi and
associated set of indices Ŷ , one has

Et[`p−rank(Yt, â)] =
∑

i,j∈Ŷ , i<j

(r̂i,j + r̂j,i) + S

∑
i∈[K]

pi −
∑
i∈Ŷ

pi


where

r̂i,j = r̂i,j(â) = Pt(yi > yj)
(
{âi < âj}+ 1

2 {âi = âj}
)
.

Moreover, if p∗ denotes the sequence made up of at most S nonzero values taken from
{pi , i ∈ [K]}, where i ranges again in Ŷ , we have

Et[`p−rank(Yt, p∗)] =
∑

i,j∈Ŷ , i<j

(ri,j + rj,i) + S

∑
i∈[K]

pi −
∑
i∈Ŷ

pi


with

ri,j = ri,j(p
∗) = Pt(yi > yj)

(
{pi < pj}+ 1

2 {pi = pj}
)
.

Hence

Et[`p−rank(Yt, â)]− Et[`p−rank(Yt, p∗)] =
∑

i,j∈Ŷ , i<j

(r̂i,j − ri,j + r̂j,i − rj,i) .

Since

Pt(yi > yj)− Pt(yj > yi) = Pt(yi = 1)− Pt(yj = 1) = pi − pj ,

a simple (but lengthy) case analysis reveals that

r̂i,j − ri,j + r̂j,i − rj,i =


1
2 (pi − pj) If âi < âj , pi = pj or âi = âj , pi > pj
1
2 (pj − pi) If âi = âj , pi < pj or âi > âj , pi = pj

pi − pj If âi < âj , pi > pj

pj − pi If âi > âj , pi < pj .

Notice that the above quantity is always nonnegative, and is strictly positive if the pi are all
different. The nonnegativity implies that whatever set of indices Ŷ we select, the best way
to sort them within Ŷ in order to minimize Et[`p−rank(Yt, ·)] is by following the ordering of
the corresponding pi.
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We are left to show that the best choice for Ŷ is to collect the S largest13 values in
{pi , i ∈ [K]}. To this effect, consider again Et[`p−rank(Yt, p∗)] = Et[`p−rank(Yt, Ŷ )], and
introduce the shorthand pi,j = pi pj = pi − Pt(yi > yj). Disregarding the term S

∑
i∈[K] pi,

which is independent of Ŷ , we can write

Et[`p−rank(Yt, Ŷ )] =
∑

i,j∈Ŷ , i<j

Pt(yi > yj)
(
{pi < pj}+ 1

2 {pi = pj}
)

+
∑

i,j∈Ŷ , i<j

Pt(yj > yi)
(
{pj < pi}+ 1

2 {pj = pi}
)
− S

∑
i∈Ŷ

pi

=
∑

i,j∈Ŷ , i<j

(pi − pi,j){pi < pj}+ (pi − pi,j)1
2 {pi = pj}

+
∑

i,j∈Ŷ , i<j

(pj − pi,j){pj < pi}+ (pj − pi,j)1
2 {pj = pi} − S

∑
i∈Ŷ

pi

=
∑

i,j∈Ŷ , i<j

(pi − pj){pi < pj}+ 1
2 (pi − pj) {pi = pj}+ pj − pi,j − S

∑
i∈Ŷ

pi

=
∑

i,j∈Ŷ , i<j

(min{pi, pj} − pipj)− S
∑
i∈Ŷ

pi

which can be finally seen to be equal to

−
∑
i∈Ŷ

(S + 1− ĵi) pi −
∑

i,j∈Ŷ , i<j

pi pj , (9)

where ĵi is the position of class i within Ŷt in decreasing order of pi.
Now, rename the indices in Ŷ as 1, 2, . . . , S, in such a way that p1 > p2 > . . . > pS (so

that ĵi = i), and consider the way to increase (9) by adding to Ŷ item k /∈ Ŷ such that
pS > pk and removing from Ŷ the item in position `. Denote the resulting sequence by Ŷ ′.
From (9), it is not hard to see that

Et[`p−rank(Yt, Ŷ )]− Et[`p−rank(Yt, Ŷ ′)]

= (`− 1) p` +
S∑

i=`+1

pi −
`−1∑
i=1

pi p` −
S∑

i=`+1

p` pi − (S − 1) pk +
S∑

i=1,i 6=`
pi pk − S(p` − pk)

= (`− 1) p` +
S∑

i=`+1

pi − (p` − pk)
S∑

i=1,i 6=`
pi − (S − 1) pk − S(p` − pk)

≤ (S − 1) p` − (p` − pk)
S∑

i=1,i 6=`
pi − (S − 1) pk − S(p` − pk)

= (pk − p`)

1 +
S∑

i=1,i 6=`
pi

 (10)

13. It is at this point that we need the conditional independence assumption over the classes.
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which is smaller than zero since, by assumption, p` > pk. Reversing the direction, if we
maintain a sequence Ŷ of size S, we can always reduce (9) by removing its smallest element
and replacing it with a larger element outside the sequence. We continue until no element
outside the current sequence exists which is larger than the smallest one in the sequence.
Clearly, we end up collecting the S largest elements in {pi , i ∈ [K]}.

Finally, from (9) it is very clear that removing an element from a sequence Ŷ of length
h ≤ S can only increase the value of (9). Since this holds for an arbitrary Ŷ and an arbitrary
h ≤ S, this shows that, no matter which set Ŷ we start off from, we always converge to
the same set containing exactly the S largest elements in {pi , i ∈ [K]}. This concludes the
proof.

Lemma 12 Under the same assumptions and notation as in Lemma 11, combined with
the independence assumption (4), let the Algorithm in Figure 2 be working with a→ 1 and
strictly decreasing cost values c(i, s), i.e., the algorithm is computing in round t the ranking
function f̂(xt;St) defined in Section 4. Let w′i,t be the i-th weight vector computed by this

algorithm at the beginning (Step 2) of time t. If time t is such that |∆i,t − ∆̂′i,t| ≤ εi,t for
all i ∈ [K], then

Et[`rank,t(Yt, f̂(xt;St)]− Et[`rank,t(Yt, f∗(xt;St)] ≤ 4St cL
∑
i∈Ŷt

εi,t.

Proof We use the same notation as in the proof of Lemma 6, where â is now Ŷt, the
sequence produced by ranking f̂(xt;St) operating on p̂i,t. Denote by Y ∗t the sequences
determined by f∗(xt;St), and let ĵi and j∗i be the position of class i in decreasing order of
pi,t within Ŷt and Y ∗t , respectively.

Proceeding as in Lemma 11 and recalling (9) we can write

Et[`p−rank,t(Yt, f̂(xt;St))]− Et[`p−rank,t(Yt, f∗(xt;St)]

=
∑
i∈Y ∗t

(St + 1− j∗i ) pi +
∑

i,j∈Y ∗t , i<j
pi pj −

∑
i∈Ŷt

(St + 1− ĵi) pi −
∑

i,j∈Ŷt, i<j

pi pj

≤
∑
i∈Y ∗t

(St + 1− j∗i ) p([∆̂′i,t + εi,t]D) +
∑

i,j∈Y ∗t , i<j
p([∆̂′i,t + εi,t]D) p([∆̂′j,t + εj,t]D)

−
∑
i∈Ŷt

(St + 1− ĵi) p([∆̂′i,t − εi,t]D)−
∑

i,j∈Ŷt, i<j

p([∆̂′i,t − εi,t]D) p([∆̂′j,t − εj,t]D)

≤
∑
i∈Ŷt

(St + 1− ĵi)
(
p([∆̂′i,t + εi,t]D)− p([∆̂′i,t − εi,t]D)

)
+

∑
i,j∈Ŷt, i<j

(
p([∆̂′i,t + εi,t]D) p([∆̂′j,t + εj,t]D)− p([∆̂′i,t − εi,t]D) p([∆̂′j,t − εj,t]D)

)
.
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This, in turn, can be upper bounded by

2StcL
∑
i∈Ŷt

εi,t +
∑

i,j∈Ŷt, i<j

2cL (εi,t + εj,t) = 2St cL
∑
i∈Ŷt

εi,t + 2 (St − 1) cL
∑
i∈Ŷt

εi,t

< 4St cL
∑
i∈Ŷt

εi,t ,

as claimed.

Lemma 13 Let L : D = [−R,R] ⊆ R → R+ be a C2(D) convex and nonincreasing
function of its argument, (u1, . . . ,uK) ∈ RdK be defined in (2) with g(∆) = −L′(∆) for all
∆ ∈ D, and such that ‖ui‖ ≤ U for all i ∈ [K]. Assume there are positive constants c′L
and c′′L with (L′(∆))2 ≤ c′L and L′′(∆) ≥ c′′L for all ∆ ∈ D. With the notation introduced in
Figure 2, we have that

(x>w′i,t − u>i x)2 ≤ x>A−1
i,t−1x

(
U2 +

d c′L
(c′′L)2

ln

(
1 +

t− 1

d

)
+

12

c′′L

(
c′L
c′′L

+ 3L(−R)

)
ln
K(t+ 4)

δ

)
holds with probability at least 1 − δ for any δ < 1/e, uniformly over i ∈ [K], t = 1, 2, . . . ,
and x ∈ Rd.

Proof For any given class i, the time-t update rule w′i,t → wi,t+1 → w′i,t+1 in Figure 2
allows us to start off from the paper by Hazan et al. (2007) (proof of Theorem 2 therein),
from which one can extract the following inequality

di,t−1(ui,w
′
i,t)

≤ U2 +
1

(c′′L)2

t−1∑
k=1

ri,k −
2

c′′L

t−1∑
k=1

(
∇>i,k(w′i,k − ui)−

c′′L
2

(
si,k x

>
k (w′i,k − ui)

)2
)
, (11)

where we set ri,k = ∇>i,k A
−1
i,k ∇i,k.

We now observe that we can construct a quadratic lower bound to L, using the lower
bound on the second derivative of L. More explicitly, using the Taylor expansion of L, we
have

L(x) ≥ L(y) + L′(y)(x− y) +
c′′L
2

(x− y)2,

for any x, y in D. Hence, setting y = si,k x
>
kw
′
i,k and x = si,k u

>
i xk, we have

L(si,k x
>
kw
′
i,k)− L(si,k u

>
i xk)

≤ L′(si,k x>kw′i,k)(si,kx>kw′i,k − si,k u>i xk)−
c′′L
2

(si,k x
>
kw
′
i,k − si,k u>i xk)2

= ∇>i,k(w′i,k − ui)−
c′′L
2

(
si,k x

>
k (w′i,k − ui)

)2
.
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Plugging back into (11) yields

di,t−1(ui,w
′
i,t) ≤ U2 +

1

(c′′L)2

t−1∑
k=1

ri,k −
2

c′′L

t−1∑
k=1

(
L(si,k x

>
kw
′
i,k)− L(si,k u

>
i xk)

)
. (12)

We now borrow a proof technique from Dekel et al. (2012) (see also the papers by Crammer
and Gentile 2011; Abbasi-Yadkori et al. 2011 and references therein). Define

Li,k = L(si,k x
>
kw
′
i,k)− L(si,k u

>
i xk),

and L′i,k = Ek[Li,k]−Li,k. Notice that the sequence of random variables L′i,1, L′i,2, . . . , forms

a martingale difference sequence such that, for any i ∈ Ŷk:

i. Ek[Li,k] ≥ 0, by Lemma 10 (or Lemma 9);

ii. |L′i,k| ≤ 2L(−R), since L(·) is nonincreasing over D, and si,k x
>
kw
′
i,k, si,k u

>
i xk ∈ D;

iii. V ark(L
′
i,k) = V ark(Li,k) ≤

2c′L
c′′L

Ek[Li,k] (again, because of Lemma 10).

On the other hand, when i /∈ Ŷk then si,k = 0, and the above three properties are trivially
satisfied. Under the above conditions, we are in a position to apply any fast concentration
result for bounded martingale difference sequences. For instance, setting for brevity B =
B(t, δ) = 3 ln K(t+4)

δ , a result contained in the paper by Kakade and Tewari (2009) allows
us derive the inequality

t−1∑
k=1

Ek[Li,k]−
t−1∑
k=1

Li,k ≥ max


√√√√8c′L

c′′L
B

t−1∑
k=1

Ek[Li,k], 6L(−R)B

 ,

that holds with probability at most δ
Kt(t+1) for any t ≥ 1. We use the inequality

√
cb ≤

1
2(c+ b) with c =

4c′L
c′′L

B, and b = 2
∑t−1

k=1 Ek[Li,k], and simplify. This gives

−
t−1∑
k=1

Li,k ≤
(

2c′L
c′′L

+ 6L(−R)

)
B

with probability at least 1− δ
Kt(t+1) . Using the Cauchy-Schwarz inequality

(x>w′i,t − u>i x)2 ≤ x>A−1
i,t−1 x di,t−1(ui,w

′
i,t)

holding for any x ∈ Rd, and replacing back into (12) allows us to conclude that

(x>w′i,t − u>i x)2 ≤ x>A−1
i,t−1x

(
U2 +

1

(c′′L)2

t−1∑
k=1

ri,k +
12

c′′L

(
c′L
c′′L

+ 3L(−R)

)
ln
K(t+ 4)

δ

)
(13)

holds with probability at least 1− δ
Kt(t+1) , uniformly over x ∈ Rd.
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The bounds on
∑t−1

k=1 ri,k can be obtained in a standard way. Applying known inequal-
ities (Azoury and Warmuth, 2001; Cesa-Bianchi et al., 2002, 2009; Cavallanti et al., 2011;
Hazan et al., 2007; Dekel et al., 2012), and using the fact that ∇i,k = L′(si,k x

>
kw
′
i,k) si,kxk

we have

t−1∑
k=1

ri,k =

t−1∑
k=1

|si,j | (L′(si,k x>kw′i,k))2 x>k A
−1
i,kxk ≤ c

′
L

t−1∑
k=1

|si,k|x>k A−1
i,kxk

≤ c′L
t−1∑
k=1

ln
|Ai,k|
|Ai,k−1|

= c′L ln
|Ai,t−1|
|Ai,0|

≤ d c′L ln

(
1 +

t− 1

d

)
.

Combining as in (13) and stratifying over t = 1, 2, . . ., and i ∈ [K] concludes the proof.

We are now ready to put all pieces together.
Proof [Theorem 2] From Lemma 11 and Lemma 13, we see that with probability at least
1− δ,

RT ≤ 2 (1− a) cL

T∑
t=1

∑
i∈Ŷt

εi,t , (14)

when ε2i,t is the one given in Figure 2. We continue by proving a pointwise upper bound on

the sum in the RHS. More in detail, we will find an upper bound on
∑T

t=1

∑
i∈Ŷt ε

2
i,t, and

then derive a resulting upper bound on the RHS of (14).
From Lemma 13 and the update rule (Step 5) of the algorithm we can write14

ε2i,t ≤ C x>t A
−1
i,t−1xt = C

x>t (Ai,t−1 + |si,t|xtx>t )−1xt

1− |si,t|x>t (Ai,t−1 + |si,t|xtx>t )−1xt

= C
x>t A

−1
i,t xt

1− |si,t|x>t (Ai,t−1 + |si,t|xtx>t )−1xt

≤ C
x>t A

−1
i,t xt

1− |si,t|x>t (A0 + |si,t|xtx>t )−1xt
= C

x>t A
−1
i,t xt

1− 1
2

= 2C x>t A
−1
i,t xt.

Hence, if we set ri,t = x>t A
−1
i,t xt and proceed as in the proof of Lemma 13, we end up with

the upper bound
∑T

t=1 ε
2
i,t ≤ 2C d ln

(
1 + T

d

)
, holding for all i ∈ [K]. Denoting by M the

quantity 2C d ln
(
1 + T

d

)
, we conclude from (14) that

RT ≤ 2 (1− a) cL max

∑
i∈[K]

T∑
t=1

εi,t

∣∣∣ T∑
t=1

ε2i,t ≤M, i ∈ [K]

 = 2 (1− a) cLK
√
T M,

as claimed.

14. It is in this chain of inequalities that we exploit the rank-one update of Ai,t−1 based on xtx
>
t rather

than ∇i,t∇>i,t. Here we need to lower bound the eigenvalue of the rank-one matrix used in the update.
Using the ∇i,t∇>i,t (as in the worst-case analysis by Hazan et al. 2007), the lower bound would be zero.

This is due to the presence of the multiplicative factor g(si,t∆̂
′
i,t) (Step 5 in Figure 2) which can be

arbitrarily small.
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Proof [Theorem 4] As we said, we change the definition of ε2i,t in the Algorithm in Figure
2 to

ε2i,t =

max

{
x>A−1

i,t−1x

(
2 d c′L
(c′′L)2

ln

(
1 +

t− 1

d

)
+

12

c′′L

(
c′L
c′′L

+ 3L(−R)

)
ln
K(t+ 4)

δ

)
, 4R2

}
.

First, notice that the 4R2 cap seamlessly applies, since (x>w′i,t − u>i x)2 in Lemma 13

is bounded by 4R2 anyway. With this modification, we have that Theorem 2 only holds

for t such that
d c′L

(c′′L)2 ln
(
1 + t−1

d

)
≥ U2, i.e., for t ≥ d

(
exp

(
(c′′L)2 U2

c′L d

)
− 1
)

+ 1, while for

t < d
(

exp
(

(c′′L)2 U2

c′L d

)
− 1
)

+ 1 we have in the worst-case scenario the maximum amount of

regret at each step. From Lemma 11 we see that this maximum amount (the cap on ε2i,t is

needed here) can be bounded by 4 (1− a) cL |Ŷt|R ≤ 4 (1− a) cLKR.

Proof [Theorem 7] We start from the one step-regret delivered by Lemma 12, and proceed
as in the proof of Theorem 2. This yields

RT ≤ 4 cL

T∑
t=1

St
∑
i∈Ŷt

εi,t ≤ 4S cL

T∑
t=1

∑
i∈Ŷt

εi,t ≤ 4S cL

T∑
t=1

∑
i∈[K]

εi,t = 4S cL
∑
i∈[K]

T∑
t=1

εi,t ,

with probability at least 1− δ, where ε2i,t is the one given in Figure 2. Let M be as in the

proof of Theorem 2. We have that
∑T

t=1 ε
2
i,t ≤ M . If Ni,T denotes the total number of

times class i occurs in Ŷt, this implies
∑T

t=1 εi,t ≤
√
Ni,T M for all i ∈ [K]. Moreover, from∑

i∈[K]Ni,T ≤ ST we can write

RT ≤ 4S cL
∑
i∈K]

√
Ni,T M ≤ 4 cL

√
M SK T ,

as claimed.

7. Conclusions and Open Questions

In this paper, we have used generalized linear models to formalize the exploration-exploitation
tradeoff in a multilabel/ranking setting with partial feedback, providing T 1/2-like regret
bounds under semi-adversarial settings. Our analysis decouples the multilabel/ranking loss
at hand from the label-generation model, improving in various ways on the existing lit-
erature. Thanks to the usage of calibrated score values p̂i,t, our algorithm is capable of
automatically inferring where to split the ranking between relevant and nonrelevant classes
(Furnkranz et al., 2008), the split depending on the loss function under consideration. We
considered two partial-feedback loss functions: `a,c and `p−rank,t. The former can be seen
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as a Discounted Cumulative Gain difference, the latter a version of the standard (unnor-
malized) ranking loss, both being restricted to the chosen ranked list Ŷt. These two losses
are inherently different: whereas `p−rank,t has a pairwise component, `a,c does not; whereas
the Bayes optimal Y ∗t w.r.t. `p−rank,t has the maximal allowed length, the Bayes optimal
Y ∗t w.r.t. `a,c need not be full length; whereas Bayes optimality solely based on pi,t does
not require conditional independence assumptions when the loss is `a,c, such condition is
needed when the loss is `p−rank,t. Yet, both losses depend in a similar fashion on the classes

contained in Ŷt, as well as on the way such classes are ranked within Ŷt.

We have investigated the practically important case when Ŷt has to satisfy length con-
straints |Ŷt| ≤ St, which is a typical prior knowledge in the presence of large multilabel
action spaces. When St ≤ S for all t, our regret bounds turn the linear dependence on K
into a linear dependence on

√
SK.

Finally, we have presented experiments aimed at validating our upper-confidence-based
ranking scheme against several real-world conditions and modeling assumptions.

There are many directions along which this work could be extended. In what follows,
we briefly mention three of them.

• Multilabel and ranking algorithms are usually evaluated using an array of loss mea-
sures, including 0/1, Average Precision, F-measure, AUC, normalized ranking losses,
etc. It would be nice to extend the theory contained in this paper to such measures.
However, many of these losses are likely to require modeling pairwise correlations
among classes.

• In the case when St ≤ S, we showed regret bounds of the form
√
SK
√
T . Is it possible

to modify our theoretical arguments (possibly combining with the compressed sensing
machinery used by Hsu et al. 2009) so as to obtain the information-theoretic bound
(S logK)

√
T , instead? Clearly enough, it would be most interesting to do so via

computationally efficient algorithms.

• As a broader goal, it would be interesting to extend this theory to other practically
relevant structured action spaces. For instance, an interesting extension is to the
case when class labels yi,t are not binary, but real valued. Such values can in fact
be the results of click aggregations over time. In this case, we may want to interpret
Yt as a ranked list as well, and come up with appropriate (partial-information) losses
between pairs of such lists. Another interesting extension is to (multilabel) hierarchical
classification. To this effect, the Bayes optimality arguments developed by Cesa-
Bianchi et al. (2006a,b) may be of some relevance.
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