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Abstract

In this paper, we propose an approach for learning regression models efficiently in an
environment where multiple features and data-points are added incrementally in a multi-
step process. At each step, any finite number of features maybe added and hence, the
setting is not amenable to low rank updates. We show that our approach is not only
efficient and optimal for ordinary least squares, weighted least squares, generalized least
squares and ridge regression, but also more generally for generalized linear models and lasso
regression that use iterated re-weighted least squares for maximum likelihood estimation.
Our approach instantiated to linear settings has close relations to the partitioned matrix
inversion mechanism based on Schur’s complement. For arbitrary regression methods, even
a relaxation of the approach is no worse than using the model from the previous step or using
a model that learns on the additional features and optimizes the residual of the model at
the previous step. Such problems are commonplace in complex manufacturing operations
consisting of hundreds of steps, where multiple measurements are taken at each step to
monitor the quality of the final product. Accurately predicting if the finished product will
meet specifications at each or, at least, important intermediate steps can be extremely
useful in enhancing productivity. We further validate our claims through experiments on
synthetic and real industrial data sets.

Keywords: linear regression, logistic regressions, lasso, group lasso, feature selection,
manufacturing

1. Introduction

Complex manufacturing is a multi-billion dollar industry, which encompasses diverse do-
mains ranging from semiconductor to pharmaceutical to consumer and snack products.
Each of these industries undertake complex operations that consist of hundreds of steps
from the beginning to the very end when the final product is produced. In each of these
steps, multiple measurements are made to monitor the process. Thus, every product has an
incremental history of measurements accumulated over time. The hope is that the final fin-
ished product will meet the necessary specifications. However, in each of these industries,
there are millions (to even billions) of dollars of losses every year because of out-of-spec
products. It would thus be extremely useful if one could efficiently utilize the accrued in-
termediate measurements or features to accurately predict the quality of the final product.
For example, in the semiconductor industry, wafers—which are a collection of chips—travel
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together in groups called lots through hundreds of processing steps with thousands of mea-
surements being accrued as the wafers reach the end. At this point, the quality of the wafers
is determined by either checking their speed or power. It can be extremely useful if one
could, at least at critical intermediate steps, provide an accurate estimate of the final speed
so as to possibly take corrective actions or avoid further processing.

In particular, the data flows through K steps as groups of data-points or a batch with
the target becoming available almost simultaneously for each member of the group at the
very end. We want to efficiently build a model at each step based on this data so as to
estimate the performance of forthcoming batches at these steps. There are multiple such
batches that flow through the processing steps and hence, we also want to update our model
at each step based on recently acquired data. Therefore, in our problem, both features and
data-points are added as batches move through the process and as new batches are created.
The notation used throughout the paper is given in Table 1 and an illustration of our
problem setting is shown in Figure 1.

The methods we propose for incremental updates with new feature additions are by
no means constrained only to manufacturing. They also are applicable to feature selection
algorithms such as least angle regression (Efron et al., 2004), the homotopy method for lasso
(Tibshirani and Taylor, 2011), or orthogonal matching pursuit (Hastie et al., 2009). These
feature selection methods must efficiently update the model whenever a new feature is added.
The most common approach is to keep a QR factorization of the regression matrix. This
factorization can be updated with every new feature added using either Givens rotations
or Householder reflections, which are both computationally efficient and numerically stable
(Golub and Loan, 1996).

The problem we study differs from the typical feature selection setting in two important
aspects. First, while most feature selection methods add one feature at a time, our method
is more suitable when many features are to be added at a time. Second, the QR factorization
can only be used with linear regressors, while our method also works with generalized linear
models. As a result, our methods can also be applied in more sophisticated settings, such
as to efficiently update regression models in non-linear group variable selection techniques
(Lozano et al., 2009, 2011).

Our method when instantiated to the linear regression case, where we minimize a least
squares objective, is closely related to the partitioned matrix inverse mechanism based on
Schur’s complement (Boyd and Vandenberghe, 2004). Although both absolve the need for
computing matrix inverses over the entire currently available feature set, our procedure has
an intuitive explanation. Moreover, our method is a meta-technique applicable to any base
regression method, and as you will see later, is an essential component in optimally updating
generalized linear models such as logistic regression, which as we know are non-linear.

In the rest of the paper, we first formally define our problem. We then propose a novel
algorithm, which we show to be optimal for generalized least squares and ridge regression.
We discuss its relation to the partitioned matrix inversion mechanism. We provide an
extension of our algorithm, which is efficient and optimal for generalized linear models.
We provide a relaxation of our algorithm, which can be used to efficiently update other
regression techniques and whose performance is no worse than using the model from the
previous step or using a model that learns on the additional features and optimizes the
residual of the model at the previous step.
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Term/Symbol Description

Step/Epoch The instant when new features become available.

Batch A set of data points that move through all the steps.

di Number of features accumulated till (and including) step i.

Xb
i ,xbi Input data from batch b with di and (di − di−1) features respectively.

M b
i ,mb

i Model built on the first di features with all the data till batch b

and only data in batch b respectively.

Y b Outputs corresponding to batch b.

Ŷ p
q ,Rp

q Matrix of predictions and the matrix of residuals respectively,

obtained by regressing inputs q on columns of p.

Table 1: The notation used in the paper. In much of the paper we drop the batch b from
the superscript since, we propose methods for efficient updates to models with
feature additions that are applicable to any batch.
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1 · · · M1

i · · · M1
K

...
...
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Figure 1: Process where features and data-points are added, with new models being learned
at each step.

2. Problem Statement

Before describing the problem statement, we will introduce some notation. Let K denote
the number of steps in the process. Let di denote the number of features Fi = {f1, ..., fdi}
present at step i. It is important to note that Fi ⊃ Fi−1,∀i ∈ {2, ...,K} which implies
di > di−1,∀i ∈ {2, ...,K}. There are multiple batches that flow through the K steps and
we denote the size of one such batch b, by Nb. Based on a particular learning algorithm,
we denote the model learned at step i trained on data from batch b, by mb

i (local model).
Let M b

i (global model) denote the model based on all the data accumulated till batch b in
step i. For efficiency reasons, though we may not learn from scratch in step i using all the
available data, M b

i is obtained by potentially learning over a sample of size
∑b

j=1Nj . Thus,
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mb
i is a local model learned over just recent data, while M b

i is the model we will use to
predict the outcomes of the data points in the (b+ 1)th batch when they reach step i. Note
that for batch 1, the local and global models are the same, i.e., m1

i = M1
i ,∀i ∈ {1, ...,K}.

A pictorial representation of the process with notation is shown in Figure 1.
Let Xb

i (Nb × di matrix) and xbi (Nb × (di − di−1) matrix) denote all the input data
available1 in step i batch b and the input data for only the additional features in step
i batch b, i.e., {fdi−1+1, ..., fdi} respectively. Let Y b denote the final outcomes or target

in batch b. Let Ŷ p
q and Rpq denote the matrix of predictions and the matrix of residuals

respectively, obtained by regressing inputs q on columns of p based on a chosen regression
technique. Thus, if p is a matrix, each of its columns is considered a target and q is regressed
separately on each of them. Consequently, Ŷ Y

Xb
i

and RY
Xb

i
are the predictions and residuals

of the model mb
i respectively. Let Ij denote an identity matrix of rank j.

Given our dual goal of efficiently learning with i) new features and ii) with new data
points being added, we address each of these issues in isolation. With this, we have the
following two problems that we need to tackle:

I During any batch b of the K step process, given a model at step i ∈ {1, ...,K−1} learned
over di features {f1, ..., fdi} and a sample size Nb, how do we update this model at step
i + 1 with di+1 features {f1, ..., fdi , ..., fdi+1

} such that the resultant model is (a) no
less accurate than the model at step i? (b) no less accurate than the composite model
which consists of the model learned using only the additional features {fdi+1, ..., fdi+1

}
on the residuals of the model at step i? and (c) more efficient to learn than learning
from scratch over all the features available at step i+ 1 i.e., {f1, ..., fdi+1

}?

II At any step i in the K step process, given the model M b
i and the model mb+1

i , how do
we efficiently obtain the model M b+1

i ?

Though not completely solved, there has been extensive work to handle Question II
(Blum, 1996; Smale and Yao, 2005; Bottou and Cun, 2003). We thus focus our attention
on question I. Given this and for simplicity of notation, from here on, we do not refer to
the batch any more; that is, we drop b from the notation, since the methods we describe
are applicable to any batch in the process.

3. Methodology

In this section, we first suggest a meta-algorithm to successfully tackle question I. We then
show that not only can this algorithm be realized efficiently for ordinary least squares,
weighted least squares, generalized least squares and ridge regression, but it is also optimal
for these techniques. We also show that the algorithm can be used as a core function
to efficiently and optimally solve iterated re-weighted least squares procedures, which are
used to find the maximum likelihood estimates for Generalized Linear Models (McCullagh
and Nelder, 1990) and sometimes even Lasso (Tibshirani, 1994). For arbitrary regression
algorithms, it can be shown that even a relaxation of our technique results in a positive
response to questions I(a), I(b) and I(c). We refer to the optimal model in any step that

1. This includes the constant term.
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Algorithm 1 Proposed meta-algorithm—which can be embedded as a core function in
other algorithms—to update model built in step i during the next step i + 1. ζi are other
regression algorithm specific parameters.

Input: mi, R
Y
Xi

, Xi+1, Y and ζi.

Output: mi+1, R
Y
Xi+1

and ζi+1

Compute R
xi+1

Xi
{Use Xi to predict columns of xi+1 and compute the residual matrix.}

Regress R
xi+1

Xi
on RYXi

→ m̄i+1 {Regressing the residuals outputs the model on the right.}

Regress Xi on Y − Ŷ
RY

Xi

R
xi+1
Xi

→ m̂i {Regressing the input of step i with the previous residual

yields the model on the right.}
mi+1 = (m̂i; m̄i+1) {Composing these models, i.e., for example concatenating their pa-
rameter vectors, gives the final model.}
if i+ 1 == K then
{If i+ 1 is the last step.}
Return mi+1

else
Return mi+1, R

Y
Xi+1

and ζi+1

end if

is learned from scratch by method Standard. We refer to the model that learns on the
additional features and optimizes the residue of a model at the previous step by method
AFOR.

Algorithm 1 can be described as follows: First, we find the portion of the target that
was not modeled by the regression algorithm (residuals) in the previous step. We then try
to find the additional information that the new features in the current step contain. Using
this additional information we fit to the residuals in the previous step. The residuals from
this model are subtracted from the original target and the features in the previous step are
fit to this modified target. The final model is a composition of these two latter models.

Loosely speaking, the intuition behind Algorithm 1 is to find what additional benefit
the new features bring us in predicting the portion of the target that was not modeled
by the previously available set of features, and after the removal of their effect, we focus
on modeling this new modified target using the previously available set of features. This
procedure thus uses the old and new set of features to model, as much as possible, the
parts of the target that are not explained by the other, resulting in significantly reduced
redundancy in the final model.

We now see how effectively this method can be applied to different regression algorithms.
A comparison of the different approaches using different regression methods is shown in
Table 2. The computational complexity of each algorithm depends on the method used
to invert the matrices. The most suitable method depends on the size and sparsity of
the matrix (Golub and Loan, 1996; Saad, 1997). The fastest known algorithms have a time
complexity ofO(d2.3) but are generally not useful in practice because of a large multiplicative
constant (Coppersmith and Winograd, 1990).
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OLS WLS GLS Ridge IRLS (for GLM and Lasso)

Efficiency, Optimality

Our Method (di+1 − di)× (di+1 − di) inverse, Optimal Smaller problem size, Optimal

Standard di+1 × di+1 inverse, Optimal Optimal

AFOR (di+1 − di)× (di+1 − di) inverse, Sub-optimal Sub-optimal

Table 2: Comparison of three meta-approaches across different regression algorithms in step
i+ 1. Standard denotes learning from scratch.

3.1 Generalized Least Squares and Ridge Regression

In least squares regression (Hastie et al., 2009), we minimize a quadratic loss function
wherein each datapoint may be weighted or unweighted (i.e., equi-weighted). Based on the
weighting scheme, we have the following three variants with each successive variant being a
generalization of the ones before. Ordinary Least Squares (OLS) is the unweighted variant.
Weighted Least Squares (WLS) is the variant, where the weight matrix is diagonal. Gener-
alized Least Squares (GLS) is the most general variant, wherein we have a full weight matrix
W . Ridge regression on the other hand is regularized OLS with a quadratic penalty (Hoerl
and Kennard, 1970).

We now instantiate Algorithm 1 for GLS with a quadratic penalty. We could refer to
this method as Generalized Ridge (GR) regression. Eliminating the penalty term or setting
W to the identity matrix in GR would give us instantiations for GLS and ridge regression
respectively.

The objective function minimized in step i for GR is

Qgr = (Y −Xiβi)
TW (Y −Xiβi) + λβi

Tβi,

where βi is the parameter vector we wish to estimate2 and λ > 0 is the regularization
parameter. The optimal βi is given by mi = (Xi

TWXi + λIdi)
−1Xi

TWY , where Idi is a
di × di identity matrix. To estimate βi+1 we use Algorithm 1 as follows:

• Rxi+1

Xi
= (IN −Hi)xi+1. Here ζi = Hi = Xi(Xi

TWXi + λIdi)
−1Xi

TW .

• m̄i+1 = (xi+1
TW (IN−Hi)xi+1+λI(di+1−di))

−1xi+1
T (IN−Hi)Y . This is a consequence

of the fact that Hi is idempotent.

• m̂i = (Xi
TWXi+λIdi)

−1Xi
TW (Y−xi+1m̄i+1) = mi−αim̄i+1, where αi = (Xi

TWXi+
λIdi)

−1Xi
TWxi+1.

• mi+1 = (m̂i; m̄i+1). Now mi+1 can be immediately used to obtain predictions for new
batches whose target is currently unknown and have reached step i+ 1.

• If i + 1 < K, then return mi+1, R
Y
Xi+1

and Hi+1. Here Hi+1—which also deter-

mines (Xi+1
TWXi+1 + λIdi+1

)−1—can be computed from (Xi
TWXi + λIdi)

−1 and

2. For simplicity of notation assume the data has zero intercept or the constant term is included in Xi.
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(xi+1
TW (IN − Hi)xi+1 + λI(di+1−di))

−1 using standard partitioned matrix inversion
property with only matrix multiplications but no more inversions (Boyd and Vanden-
berghe, 2004).

Let us now see why this method is more efficient than performing regression from scratch
in step i+1. If we performed regression from scratch we would have had to invert a di+1×di+1

matrix. In our case however, we have to invert only a (di+1 − di) × (di+1 − di) matrix in
step i + 1. The reason for this is that (Xi

TWXi + λIdi)
−1, which is a di × di matrix, is

already available from step i. Moreover, our method is also more efficient at obtaining
the current step model than applying the partitioned matrix inversion property based on
Schur’s complement directly, because although no more inversions are required by it there
are many more matrix multiplications that have to be performed.

For instance, based on Schur’s complement and the partitioned matrix inversion mech-
anism we would compute the optimal estimate for βi+1 denoted by βopti+1 as follows

βopti+1 =

[
Xi

TWXi + λIdi Xi
TWxi+1

xTi+1WXi xTi+1Wxi+1 + λI(di+1−di)

]−1(
Xi

T

xTi+1

)
Y

=

[
A−1 +A−1UC−1V A−1 −A−1UC−1

−C−1V A−1 C−1

](
Xi

T

xTi+1

)
Y

, (1)

where A = Xi
TWXi+λIdi , U = Xi

TWxi+1, V = xTi+1WXi and C = xTi+1W (IN−Hi)xi+1+
λI(di+1−di). Here C is the Schur’s complement.

It turns out that our estimate mi+1 = βopti+1 and is thus optimal for GR regression as
seen below.

Theorem 1 If we use GR regression in our process, then in any step i + 1, where i ∈
1, ...,K − 1, mi+1 is the optimal GR estimator.

Proof Equation (1) can be expanded and rewritten as follows

βopti+1 =

[
A−1 +A−1Xi

TWxi+1C
−1xTi+1WXiA

−1 −A−1Xi
TWxi+1C

−1

−C−1xTi+1WXiA
−1 C−1

](
Xi

T

xTi+1

)
Y

=

(
A−1Xi

TW (Y −A−1Xi
TWxi+1

TC−1xi+1
T (IN −Hi)Y )

C−1xi+1
T (IN −Hi)Y

)
=

(
(Xi

TWXi + λIdi)
−1Xi

TW (Y − xi+1m̄i+1)
(xi+1

TW (IN −Hi)xi+1 + λI(di+1−di))
−1xi+1

T (IN −Hi)Y

)
=

(
m̂i

m̄i+1

)
= mi+1

.

Remark 1 The result in Theorem 1 implies that using Algorithm 1, we get efficient and
optimal estimates for OLS, WLS, GLS and ridge regression in step i+ 1.
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Algorithm 2 Method to update model built using IRLS in step i during the next step
i+ 1, using Algorithm 1.

Input: mi or βi, R
z
ti
i
Xi

, Xi+1, Y , ztii , Hti
i , W ti

i , εD ∈ (0, 1] and εβ ≥ 0.

Output: mi+1 or βi+1, R
z
ti+1
i+1

Xi+1
and H

ti+1

i+1

Run Algorithm 1 with inputs mi, R
z
ti
i
Xi

, Xi+1, z
ti
i , Hti

i and W ti
i

if P [Di+1 > −2(L(mi+1|Xi+1, Y )− L)] ≤ εD then
{Checking deviance, where L is the max possible log-likelihood value.}
z
ti+1

i+1 = ztii+1, W
ti+1

i+1 = W ti
i

else if maxj∈{1,...,di}|mi+1(j)−mi(j)| ≤ εβ then

Let m̂i+1 = (mi+1(1), ...,mi+1(di))
T

Run IRLS only on xi+1 from this point onward with m̂i+1 fixed
Let m̄i+1 be the optimal solution of the above IRLS run
mi+1 = (m̂i+1; m̄i+1)

else

Run IRLS using output from Algorithm 1 i.e., mi+1, R
z
ti
i+1

Xi+1
and Hti

i+1

end if

Return mi+1, R
z
ti+1
i+1

Xi+1
and H

ti+1

i+1

W 1
1 , z

1
1 , Xi W 1

1 , z
1
1 , Xi+1

W ti
i , z

ti
i , Xi W ti

i , z
ti
i , Xi+1

standard after

ti iterations

Algorithm 1

Taylor approx.

after ti itera-

tions

Figure 2: The figure shows where Algorithm 1 can be used to efficiently transform the
optimal solution in step i to a solution in step i+ 1.

3.2 Generalized Linear Models and Lasso using IRLS

Generalized Linear Models (GLMs) assume that the target is generated from certain specific
distributions belonging to the exponential family. Normal, Poisson, binomial, gamma and
exponential are some of the distributions that are considered. The target is related to
a linear combination of the inputs through a linear or non-linear function called the link
function. Formally, if we learned a GLM in step i, we would have the following relationship

E[Y ] = Ŷ Y
Xi

= g−1(Xiβi),

where g(.) is the link function. For a normal distribution g(.) is identity and the resultant
regression method is just OLS. For a binomial g(.) is the logit function and if values of the
target lie in [0, 1], then the resultant regression method is logistic regression.
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Lasso (Tibshirani, 1994) is L1 regularized OLS. It is usually used to solve under-
determined systems of equations, where we have more features than data points. The
idea here is to avoid over-fitting and choose features that are truly predictive. Formally, a
lasso in step i would minimize the following objective

QL = (Y −Xiβi)
T (Y −Xiβi) + λ|βi|1.

3.2.1 Iteratively Re-weighted Least Squares

Both of the above classes of regression methods can be solved using iterative procedures.
Iteratively Re-weighted Least Squares (IRLS) is a popular technique used to find the max-
imum likelihood estimates (MLE) for GLMs. Although there are other preferred methods
to solve lasso, IRLS is still an effective method in this context. IRLS usually uses Newton
Raphson updates, where the updated predictions at each iteration determine the weight
matrix and the target in the next iteration. In particular, if W

tj
i and z

tj
i are the weight

matrix and target in step i, and in the tthj iteration respectively, then the weight matrix
is a N × N diagonal matrix whose diagonal elements correspond to the reciprocal of the
variances computed from predictions in the previous iteration (tj − 1). z

tj
i on the other

hand is given by Xiβ
tj−1
i +W

tj
i (Y − Ŷ z

tj−1

i
Xi

).
On the left hand portion of Figure 2, we see that in step i if we run IRLS, we get

the optimal solution after ti iterations. This optimal solution corresponds to an optimal
weight matrix W ti

i and an optimal target z
tj
i . Using this weight matrix and target we can

efficiently obtain the corresponding WLS solution in step i + 1 using Algorithm 1. This
solution relates to performing IRLS in step i + 1, where at each iteration we approximate
(zeroth order) the predictions around R

xi+1

Xi
xi+1 using Taylor expansion

Ŷ
z
tj
i+1

Xi+1
= Ŷ

z
tj
i

Xi
+R

xi+1

Xi
xi+1s(Xi+1, z

tj
i+1),

where s(.) is a function denoting higher order terms. Hence, at each iteration if we take
the zeroth order approximation, then the WLS problem solved has the same weight matrix
and target as that solved in step i at the same iteration. This is depicted on the right hand
side of Figure 2.

3.2.2 Understanding Algorithm 2

In Algorithm 2, we first use Algorithm 1 to find the optimal solution in the current step
i + 1 of the WLS problem at iteration ti in step i. The weight matrix and target in this
WLS problem correspond to the optimal IRLS solution in step i. We then check to see if
the probability of deviance Di+1 (McCullagh and Nelder, 1990) being greater than twice
the difference between the max possible log-likelihood value (i.e., if Ŷ Y

Xi+1
= Y ) and the

log-likelihood of the current solution is less than a small constant εD. Deviance is a statistic
that measures goodness of fit. For any step i, Di = −2(L(mi|Xi, Y )−L), where mi denotes
a corresponding optimal model. Asymptotically, Di has a χ2 distribution with N − di
degrees of freedom. Using this fact we can compute the required probability in Algorithm
2 and check for the specified condition. A small value of the probability indicates that we
are already near an optimal solution and hence, we have a satisfactory solution.
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If this condition is not satisfied, we then check to see what is the maximum change in the
di parameter values going from the optimal IRLS solution in step i to our current solution
in step i+ 1. If the maximum change is small, i.e., ≤ εβ, we fix these parameters and only
run IRLS on the remaining set. A small change in the previous step parameters indicates
that the new set of features in step i + 1 are practically orthogonal to step i features and
hence, the previous step parameters will change little as we approach the optimal solution
in the current step.

If neither of the above conditions are satisfied we simply run IRLS, starting at the
current solution.

3.2.3 Analysis

It is easy to see that if the first condition in Algorithm 2 is satisfied, then we have reached our
desired solution and hence, this is definitely more efficient than starting from the beginning.
The question is, are we doing better in the other two cases, namely, when only the second
condition is satisfied or when neither condition is satisfied? The latter scenario is probably
worse since, we are solving at each iteration a WLS problem with di+1 features rather than
di+1 − di features. We cannot claim for certain that these two scenarios are more efficient
than learning afresh in step i+ 1, but the following two results along with experiments on
real industrial data lead us to strongly believe that this is the case.

As the log-likelihood of the predictions increases after each iteration in step i, the vari-
ances and hence, the weight matrix approach the true weight matrix. Hence, the optimal
weight matrix in step i represents the variances much more accurately than starting with
the default, which is uniform weights.

Remark 2 Using the optimal weight matrix and target of step i as a starting point for step
i+ 1 has a higher log-likelihood solution than starting with the defaults, i.e., uniform weight
matrix and the original target (Pregibon, 1981; Wang, 1987; McCullagh and Nelder, 1990).

Based on Remark 2, one might ask, does starting from a higher likelihood point guar-
antee us faster convergence or fewer iterations? Loosely speaking, in the proposition that
follows, we show that better initialization leads to no worse a solution after the same number
of iterations.

Proposition 1 When using IRLS, if two feasible points β1 and β2 are in the neighborhood
of the same local optimum γ of a log-likelihood function where the Hessians exist and the
first partial derivatives are non-zero, with L(β1|X,Y ) ≥ L(β2|X,Y ), then a tight upper
bound on the distance of the solutions starting at each of these points to γ after t iterations
has the following relationship, ηt(β1) ≤ ηt(β2), where ηt(.) is a function that takes as input
the starting point and outputs the required upper bound on the distance at iteration t.

Proof Let γ be the root of the log-likelihood function L(.). The log-likelihood is always
conditioned on inputs and outputs but for notational conciseness we do not repeatedly write
this here. Let βtj denote the solution of IRLS at iteration t starting from the initial point
βj . Thus, by Taylor expansion starting from β1 at iteration t we have

L(γ) = L(βt1) +5L(βt1)
T (γ − βt1) +

1

2
(γ − βt1)TF (βt1)(γ − βt1),
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where 5 denotes the gradient and F (.) denotes the hessian. Since, γ is the root of the
above function and after pre-multiplying by the inverse of the Jacobian at βt1 we have

γ − βt1 + J−1(βt1)L(βt1) = −1

2
J−1(βt1)(γ − βtj)TF (βt1)(γ − βt1)

γ − βt+1
1 = −1

2
J−1(βt1)(γ − βtj)TF (βt1)(γ − βt1)

,

since, βt+1
1 = βt1 − J−1(βt1)L(βt1). Now if we take norm on both sides we get

|γ − βt+1
1 | = 1

2
|J−1(βt1)F (βt1)||γ − βt1|2.

Let ∆t
1 = |γ − βt1|. Thus

∆t+1
1 =

1

2
|J−1(βt1)F (βt1)|∆t

1
2
.

Let Nj denote the neighborhood around γ such that Nj = {β|L(β) ≥ L(βj)}. Let
uj = supβ∈Nj

1
2 |J
−1(β)F (β)|. We thus have

∆t+1
1 ≤ u1∆t

1
2

≤ ut1∆1
1
2

= ηt+1(β1)
,

where ηt+1(β1) = ut1∆
1
1
2
. Similarly, if we started at β2 we would have

∆t+1
2 ≤ ηt+1(β2).

Now if L(β1) ≥ L(β2), then N1 ⊂ N2 and hence, u1 ≤ u2. Moreover, ∆1
1 ≤ ∆1

2. Based
on these two facts we would have

ηt+1(β1) ≤ ηt+1(β2).

The assumptions in Proposition 1 about local Hessians and the Jacobian matrix are stan-
dard assumptions used in proving convergence of Newton-Raphson’s method (Luenberger,
1984). These are not additional assumptions that we make.

Based on Remark 2 and Proposition 1, we can say that starting from the optimal weight
matrix and target of the previous step i will lead to fewer iterations in the current step i+1,
which means faster convergence.

Note that our suggested technique is also more efficient than doing a warm start in
the current step using the optimal weight matrix and target from the previous step. This
is because even in the worst case where none of the conditions are satisfied, finding the
solution of the corresponding WLS problem in the current step is, as discussed before, more
efficient using Algorithm 1 rather than learning from scratch.
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3.3 Other Regression Techniques

In the previous sections, we showed that using Algorithm 1 just by itself or using it as
a core function in other algorithms can lead to optimally and efficiently solving regression
problems that use a rich class of regression techniques. This naturally implies that questions
I(a), I(b) and I(c) in Section 2 have been answered positively for these cases. In this section,
we try to answer these questions for arbitrary linear or non-linear regression algorithms.

If we again use Algorithm 1 for an arbitrary regression algorithm, it may very well
provide accurate predictions but is likely to be inefficient. The most expensive computation
in Algorithm 1 would be computing the residual of fitting Xi onto each column of xi+1. This
could potentially lead to running the chosen regression algorithm di+1− di times. We want
to save on these computations and therefore, we relax Algorithm 1, where we simply fit
xi+1 to RYXi

rather than fitting R
xi+1

Xi
to RYXi

. Let us refer to this new version of Algorithm

1 by Algorithm 1(r). Let us now see if Algorithm 1(r) also results in a positive response to
questions I(a), I(b) and I(c).

Let us denote the error or residual of the optimal model built in step i (previous step)
by δprev. If AFOR optimizes the residual of this model—which leads to the best AFOR
model—based on xi+1, then we denote its error by δbstAFOR. Let the error of our relaxed
method be denoted by δ1(r) . With this, we have the following result,

Proposition 2 Algorithm 1(r) in step i+ 1 is no less accurate than the model in step i and
AFOR in step i+ 1, i.e., δ1(r) ≤ δbstAFOR ≤ δprev.

Proof We have δprev = RYXi
and δbstAFOR = R

RY
Xi

xi+1 . Thus, δbstAFOR can be written as,

δbstAFOR = R
δprev
xi+1 . Since in AFOR we optimize the residual of the model at the previous

step, we have
δprev ≥ δbstAFOR.

In our relaxed method, we first fit xi+1 to RYXi
. We then fit Xi to Y (r) = Y − Ŷ

RY
Xi

xi+1 and

whose error maybe denoted by δ1(r) = RY
(r)

Xi
. Thus, δ1(r) can be written as, δ1(r) = R

δbstAFOR
Xi

and since we optimize the residual of AFOR we have

δbstAFOR ≥ δ1(r) .

Proposition 2 implies a positive response to questions I(a) and I(b). It is also easy to
see that Algorithm 1(r) is more efficient than learning over the whole space and hence, we
also have a positive response for I(c). If we further relax Algorithm 1 to exclude fitting Xi

to Y (r), then our method is reduced to AFOR.

4. Addressing Question II

In the previous sections we provided techniques to update an existing model based on a
new set of available features. In this section, we want to tackle the complimentary problem
of updating a model in a particular step based on a new batch.
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Figure 3: Total training time for OLS summed over the three steps for the different methods
with different number of features d added at each step.

There are numerous works in online learning (Blum, 1996; Smale and Yao, 2005; Bottou
and Cun, 2003), where existing models are updated using stochastic techniques in time
proportional to the newly added information. A common update procedure for many para-
metric models is to perform additive updates. Thus, in step i and based on the data up
until batch b, if we have a model Mi and we learn a model based on batch b+ 1, mb+1

i , then
the model based on data up until batch b+ 1 would be given by

M b+1
i = M b

i + ν(mb+1
i −M b

i ),

where νb ∈ [0, 1] is the learning rate when batch b+ 1 becomes available. It is reasonable to
make νb a function of Nb+1 and S =

∑b
j=1Nj , where the learning rate is higher when mb+1

i

is obtained by learning over a relatively larger data set. For example, νb =
Nb+1

Sb+1
. Other

possible updates are multiplicative updates (Arora et al., 2005), where the original model
M b
i can be updated based on its error in relation to the error of mb+1

i .

5. Experiments

In this section, we empirically validate our claims through synthetic and real data experi-
ments.

5.1 Synthetic Experiments

We consider the setting where we have three feature subsets or steps (i.e., K = 3) each
of d dimensions. We generate data from a 3d + 1 dimensional Gaussian, where the first d
dimensions make up the first representation X1, the next d make up the next representation
X2, while the remaining but the last make up the third representation X3. The final
dimension corresponds to the target. We set the variances of each of the variables to 1.
Since we want to model a realistic scenario, where the correlation between the target and
the features is low and non-uniform, we set the correlation of the target with the features in
the a) first representation to 0.1, b) second representation to 0.2 and c) third representation
to 0.3. The other off-diagonal entries in the correlation matrix are set to 0.5. With this
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Figure 4: Average log-likelihood of the final model for the different methods with different
number of features d added at each step for OLS.
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Figure 5: Total training time summed over the three steps for the different methods with
different number of features d added at each step for logistic regression.
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Figure 6: Average log-likelihood of the final model for the different methods with different
number of features d added at each step for logistic regression.
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correlation matrix and the mean set to zero we generate 100 data sets of 10000 points for
each of the three values of d, namely: a) d = 100, b) d = 500 and c) d = 1000.

We compare the performance of our algorithms with a) learning from scratch i.e., stan-
dard, b) AFOR and c) QR decomposition based updates using Givens rotations (Stewart,
2001; Golub and Loan, 1996) or warm starting (QR and WS), for two regression methods
namely, OLS regression and logistic regression (εβ = εD = 0.1). QR decomposition (Stew-
art, 2001) is only efficient in the OLS case since for logistic regression we have to perform
the decomposition—not simply update—at every step as the optimal weight matrix and
target keep changing. Thus, we use QR only for OLS, while warm starts are only applicable
for logistic regression. For logistic regression, we discretize the target where we insert a
value of 1 if the target has value ≥ 0, otherwise we insert a 0. We perform 10-fold cross
validation and report the total training time summed over the three steps and the average
test likelihood of the final model for each value of d with a 95% confidence interval.

In Figure 3, we see that the standard method takes significantly more time than the
other methods. Our method is almost as fast as AFOR which is very promising and much
faster than QR based updates. The performance gain of our method compared to the other
optimal methods improves as d increases. In Figure 4, we see that AFOR is significantly
worse in terms of accuracy than the other methods which are all optimal. In Figure 5, we
see a similar trend as in the OLS case. However, the speedup of our method is greater and
for the case with the highest d, our method is even faster than AFOR. A possible reason
for this is that in one or more steps the updating using Algorithm 1 is much better than
starting from the default even with just the added features. Here again, as seen in Figure
6, AFOR has much lower accuracy than the other methods that are optimal.

5.2 Real Data Experiments

We evaluate our methods on two real industrial data sets obtained from diverse domains.
The first experiment is on a chip production data set obtained from the semiconductor
industry. In this empirical study we compare the different updating strategies mentioned
in this paper to learn a regression model. In the second experiment, we consider a finance
data set, where we want to find which sources of information (or feature sets) are predictive
of the final revenue. In this case, we run LogitGOMP (Lozano et al., 2011) to select the
feature sets. When a feature set is selected, we update the current model using the different
updating strategies. We then compare the runs of LogitGOMP based on these different
strategies. Through this experiment we show that our method can also be effectively used
to speed up sophisticated group variable selection techniques in real world settings. In both
the experiments we add another straw man, which learns only on the features available at
the particular step. We refer to this method, which learns only on the additional features
as AF.

5.3 Regression in Chip Manufacturing

We first provide some background of the chip manufacturing process and describe the
general setup. We then discuss the major takeaways from the conducted experiments.
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Figure 7: Test set accuracy of the methods in classifying wafers as in spec or out of spec at
the respective steps for OLS.
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Figure 8: Test set accuracy of the methods in classifying wafers as in spec or out of spec at
the respective steps for logistic regression.
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Figure 9: Training set accuracy of the different methods in classifying wafers as in spec or
out of spec at the respective steps for OLS.
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Step 2 Step 3

Time Ltr(.) Ltst(.) Time Ltr(.) Ltst(.)
Our Method 20.6 -1991.8 -2156.2 17.8 -1742.1 -1895.5

Standard 100.1 -1991.8 -2156.2 145.9 -1742.1 -1895.5

AFOR 20.4 -2693.4 -3482.5 17.5 -2176.7 -3285.2

AF 20.2 -3793.7 -4755.5 17.4 -3893.7 -4712.3

QR 72.3 -1991.8 -2156.2 67.5 -1742.1 -1895.5

Table 3: Average time (in sec.) the least squares methods take to train in each of the
steps, the average training log-likelihood value Ltr(.) in the respective steps and
the average test log-likelihood value Ltst(.) in the respective steps.

Step 2 Step 3

Time Ltr(.) Ltst(.) Time Ltr(.) Ltst(.)
Our Method 216.2 -0.5 -1.7 385.7 -0.1 -1.2

Standard 2085.8 -0.5 -1.7 3960.9 -0.1 -1.2

AFOR 206.2 -8.9 -12.8 374.7 -7.3 -11.4

AF 206.2 -20.9 -22.8 374.4 -27.3 -31.4

WS 556.7 -0.5 -1.7 791.2 -0.1 -1.2

Table 4: Average time (in sec.) the logistic regression approaches take to train in each of
the steps, the average training log-likelihood value Ltr(.) in the respective steps
and the average test log-likelihood value Ltst(.) in the respective steps.

5.3.1 Setup

We consider a real semiconductor process of microprocessor or chip production. In our
data, a single data point is a wafer, which is a group of chips, and measurements which
correspond to input features that are made on this wafer throughout its production. The
target that is used to evaluate the quality of the wafer, in this case, is the speed of the
wafer, which is the median of the speeds of its chips. Speed is usually used to diagnose
the health of a wafer and needs to be within specifications. A slow wafer is undesirable
for obvious reasons, but a fast wafer is also bad since it consumes too much power and
can lead to overheating. The wafer speed prediction problem is quite challenging since the
measurements are noisy and the speeds vary considerably from wafer to wafer relative to
the spec. The wafers indicated as out of spec are usually discarded to save time and money
in downstream processing. In some cases, they are re-routed for corrective action. In some
isolated cases, wafers that are not too far out of spec may even be processed further and
queued for low-end products. It takes a few months to produce a wafer as it goes through
many complex high precision steps. Though the overall processing time maybe in the order
of months, as each process takes a significant amount of time, the wafers move from one
step to the next within a few minutes. It is thus important that we quickly estimate the
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Figure 10: Training set accuracy of the methods in classifying wafers as in spec or out of
spec at the respective steps for logistic regression.

speed after measurements from the finished step become available if we are to take any of
the previously mentioned remedial actions.

We consider three critical steps in the manufacturing process with our data spanning
over three batches. The first is the wafer polishing step referred to as chemical-mechanical
planarization. Here the wafer is smoothed with removal of unnecessary material. During
this step, various pressures—viz. condition head pressure, head zone pressures, etc.—and
torques are measured indicating the amount of force the wafer is subjected to. The second
step we consider is the etching step, where any remaining abnormalities in the photo-
resistance on the wafer are removed by plasma ashing. Here the quantity and temperature
of the plasma are controlled among other things and corresponding temperatures, pressures
and concentrations are measured. The third and final step we consider is the rapid thermal
processing step. In this step the electrical properties such as the material dielectric are
altered. To alter the electrical properties, the wafer is subjected to sudden temperature
ramps at tightly controlled pressures and chemical flows. Hence, here ramp up temperatures,
ramp up rates, cool-down rates and various pressures and flows are measured.

By the time the wafer reaches the first step, 2287 measurements are taken. By the
second step we have 3317 measurements. Finally we have 4284 measurements by the third
step. Each of the three batches have 8926 wafers. In each of the steps, we train over the
first batch and test over the second. We then train over the second batch and test over the
third. We report the average training time and the average train and test log-likelihoods3

for each step in Tables 3 and 4.

In this experiment, we compare the performance of our algorithms with a) learning from
scratch, i.e., standard, b) AFOR, c) AF and d) QR decomposition based updates (Stewart,
2001) or warm starting (QR and WS), for two regression methods, namely, OLS regression
and logistic regression (εβ = εD = 0.1) as in the synthetic case. The metric we use to
evaluate the approaches is the time it takes for the local models to find the solution and the
corresponding log-likelihood value at the solution. The higher the log-likelihood and the
less time it takes to get to it, the better the method. For logistic regression, we discretize

3. We do not report the confidence intervals since, the variances are insignificant.
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Approaches Time Ltr(.) Ltst(.)
Our Method 2.2 ± 0.1 -561.3 ± 1.1 -782.2 ± 1.3

Standard 10.4 ± 0.2 -561.3 ± 1.1 -782.2 ± 1.3

AFOR 2.9 ± 0.1 -605.2 ± 1.3 -841.6 ± 1.9

AF 2.8 ± 0.1 -1605.2 ± 1.8 -1841.6 ± 2.1

WS 7.8 ± 0.2 -561.3 ± 1.1 -782.2 ± 1.3

Table 5: Average running time (in seconds) of LogitGOMP, the average training log-
likelihood value Ltr(.) and the average test log-likelihood value Ltst(.) with a 95%
confidence interval.

the target based on specifications to denote either within spec by 1 or out of spec by 0. In
all the three batches, roughly 20% of the wafers are out of spec.

5.3.2 Observations

In Tables 3 and 4, we see the results for step 2 and step 3 across the three batches. We do
not show step 1 since we have to learn from scratch for all the models. The results show
that our methods are optimal and significantly more efficient than the standard method.
Our methods are also more efficient than QR and WS. AF and AFOR are efficient since
they learn only on the additional features but are sub-optimal. Our methods are almost as
efficient as AF and AFOR, which is very encouraging.

In Figures 7, 8, 9 and 10 we observe the test and training set accuracy in classifying
wafers as within spec or out of spec based on the predictions obtained from OLS and
logistic regression. The OLS predictions of the wafer speed are easily categorized into the
two classes by considering the acceptable speed range given in the specification. In all the
four figures we see that our method, which is optimal, performs significantly better than
AFOR and AF as new features become available, even though it has comparable running
time to both of them, as is seen in Tables 3 and 4. The poor performance of AF and AFOR
indicates that the features across the various steps are correlated and are required to build
an accurate predictive model.

5.4 Group Feature Selection in Finance

We consider a financial data set which is composed of three sources of information. Each
of the three sources spans over two years and the data we have is at a weekly level. Thus,
the number of data points is 104. The first source contains aging information of different
deals, that is, how much time the different deals were in different financial stages before
they were either won or lost. There are 105 features in this group. The second source is
competitive information about different size bids made and how many of those were won.
There are 21 features that characterize this group. The third source has information about
important product launches over this two year period. There are five important product
lines leading to five features. We want to find which of these groups have a significant
effect in determining the revenue. Given that we run LogitGOMP, which learns a logistic
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regression model, we normalize the revenue, our target, using the sum over the two year
period. We divide the data into 8 quarters and perform 8-fold cross-validation as predicting
an entire quarter is of more interest than predicting randomly scattered weeks.

Table 5 shows that our method (εβ = εD = 0.1) is almost 5 times faster than the
standard method and about 3.5 times faster than WS. Interestingly, it is also faster than
AF and AFOR. The reason for this is that, in the second step, condition two in Algorithm
2 is satisfied and we have the optimal weight matrix and target from the previous update
step in LogitGOMP, which is a better starting point than starting from the default during
updates.

6. Discussion

It is important to note that the problem addressed in this paper is somewhat complimentary
to stagewise learning. Stagewise learning mainly addresses the problem of feature selection,
where coefficients are estimated for one feature at a time. Forward selection (Weisberg,
1980) and least angle regression (Efron et al., 2004) are examples of stagewise learning
techniques. On the other hand, ours is a meta-learning technique—not limited to any
particular regression algorithm—that considers all new features simultaneously with the
final goal of learning a predictive model accurately and efficiently.

Our methods are also more general than the incremental feature learning method based
on autoencoders to update an existing model(Zhou et al., 2012). This method makes the
strong assumption of bounded input and output and the number of features considered
at each step is a free parameter. The method is somewhat similar to AFOR as only new
features are used to optimize the residual of the model learned over old features. Moreover,
our methods are also more general than QR decomposition (Stewart, 2001), which is mainly
used for efficient updates in OLS problems.

In the future, it would be interesting to update an existing model simultaneously based
on added features and data points rather than doing it sequentially. One may be able to
merge the ideas in this paper with the vast online learning literature. However, the main
challenge in developing such a method would be guaranteeing accuracy while maintaining
efficiency.
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