
Journal of Machine Learning Research 15 (2014) 809-883 Submitted 5/13; Revised 11/13; Published 3/14

Policy Evaluation with Temporal Differences:
A Survey and Comparison

Christoph Dann cdann@cdann.de
Gerhard Neumann geri@robot-learning.de
Technische Universität Darmstadt
Karolinenplatz 5
64289 Darmstadt, Germany

Jan Peters∗ mail@jan-peters.net
Max Planck Institute for Intelligent Systems
Spemannstraße 38
72076 Tübingen, Germany

Editor: Peter Dayan

Abstract
Policy evaluation is an essential step in most reinforcement learning approaches. It yields
a value function, the quality assessment of states for a given policy, which can be used in
a policy improvement step. Since the late 1980s, this research area has been dominated by
temporal-difference (TD) methods due to their data-efficiency. However, core issues such as
stability guarantees in the off-policy scenario, improved sample efficiency and probabilistic
treatment of the uncertainty in the estimates have only been tackled recently, which has
led to a large number of new approaches.

This paper aims at making these new developments accessible in a concise overview,
with foci on underlying cost functions, the off-policy scenario as well as on regularization in
high dimensional feature spaces. By presenting the first extensive, systematic comparative
evaluations comparing TD, LSTD, LSPE, FPKF, the residual-gradient algorithm, Bellman
residual minimization, GTD, GTD2 and TDC, we shed light on the strengths and weak-
nesses of the methods. Moreover, we present alternative versions of LSTD and LSPE with
drastically improved off-policy performance.
Keywords: temporal differences, policy evaluation, value function estimation, reinforce-
ment learning

1. Introduction

Policy evaluation estimates a value function that predicts the accumulated rewards an agent
following a fixed policy will receive after being in a particular state. A policy prescribes
the agent’s action in each state. As value functions point to future success, they are im-
portant in many applications. For example, they can provide failure probabilities in large
telecommunication networks (Frank et al., 2008), taxi-out times at big airports (Balakr-
ishna et al., 2010) or the importance of different board configurations in the game Go
(Silver et al., 2007). Such value functions are particularly crucial in many reinforcement

∗. Also at Technische Universität Darmstadt, Karolinenplatz 5, Darmstadt, Germany.

c©2014 Christoph Dann, Gerhard Neumann and Jan Peters.



Dann, Neumann and Peters

learning methods for learning control policies as one of the two building blocks constituting
policy iteration. In policy iteration, an optimal policy is obtained by iterating between the
value prediction for states (and sometimes actions) given the agent’s current policy, that is,
policy evaluation, and improving the policy such that it maximizes the value of all states
predicted by the current value function, that is, policy improvement. Policy-iteration-based
reinforcement learning has yielded impressive applications in robot soccer (Riedmiller and
Gabel, 2007), elevator control (Crites and Barto, 1998) and game-playing such as Check-
ers (Samuel, 1959), Backgammon (Tesauro, 1994) and Go (Gelly and Silver, 2008). For
sufficiently accurate value function estimates, policy iteration frequently converges to the
optimal policy. Hence, a reliable and precise estimator of the value function for a given
policy is essential in reinforcement learning and helpful in many applications.

However, obtaining accurate value function estimates is not a straightforward supervised
learning problem. Creating sufficient data for obtaining the value function by regression
would require a large number of roll-outs (state-action-reward sequences) in order to acquire
the accumulated reward for each considered state. As the variance of the accumulated
reward frequently grows with the time horizon, exhaustive number of data points would be
required. To circumvent this issue, the idea of bootstrapping has been proposed, that is,
the current estimate of the value function is used to generate the target values for learning
a new estimate of the value function. In expectation, the sum of the current reward and the
discounted value of the next state should match the value of the current state. Hence, their
difference becomes an error signal for the value function estimator. The resulting approaches
are called temporal-difference methods from their introduction in Sutton (1988). Temporal-
difference methods have received a tremendous attention in the last three decades and had
a number of important successes including the ones mentioned in the previous paragraph.

While temporal-difference methods have been successful, they have not been under-
stood well for a long time (Tsitsiklis and van Roy, 1997; Schoknecht, 2002), they were
data-inefficient (Bradtke and Barto, 1996) , and were not stable if used with function ap-
proximation in the off-policy case (Baird, 1995). In the off-policy scenario, the value function
is estimated from a data set that was generated from another policy than the one we want
to evaluate, which is crucial for data re-use in policy iteration. Recently, there has been
a large number of substantial advances both in our understanding of temporal-difference
methods as well as in the design of novel estimators that can deal with the problems above.
These methods are currently scattered over the literature and usually only compared to the
most similar methods. In this survey paper, we attempt at presenting the state of the art
combined with a more comprehensive comparison.

This survey has two major contributions. First, we are going to present a principled
and structured overview on the classic as well as the recent temporal-difference methods de-
rived from general insights. Second, we are comparing these methods in several meaningful
scenarios. This comprehensive experimental study reveals the strengths and weaknesses of
temporal-difference methods in different problem settings. These insights on the behavior
of current methods can be used to design improvements which overcome previous limita-
tions as exemplified by the alternative off-policy reweighting strategy for LSTD and LSPE
proposed in this paper. The remainder of this paper is structured as follows: Sections 1.1
and 1.2 introduce the required background for this paper on Markov decision processes and
value functions. As the paper aims at complementing the literature, especially the book

810



Policy Evaluation with Temporal Differences

s1 s2

Figure 1: Stationary Distributions for Different Policies. The MDP has deterministic tran-
sitions depending on the state (1 or 2) and the action (solid or dashed) illustrated
by the arrows. Taking for example the dashed action in state 1 moves the agent
always to state 2. A policy which always chooses the solid action leaves the
agent always in state 1, that is, dsolid = [1, 0]T , while the dashed counterpart
makes the agent alternate between the two states (ddashed = [1

2 ,
1
2 ]T ). If the agent

takes the solid action with probability α, the steady state distribution is given by
dα = [1

2 + 1
2α,

1
2 −

1
2α]T .

by Sutton and Barto (1998), we illustrate the concept of temporal-difference methods for
policy evaluation already in Section 1.2. In Section 2, we present a structured overview
of current policy evaluation methods based on temporal differences. This overview starts
out by presenting the core objective functions that underlie the various different temporal-
difference-based value function methods. We show how different algorithms can be designed
by using different optimization techniques, such as stochastic gradient descent, least-squares
methods or even Bayesian formulation, resulting in a large variety of algorithms. Further-
more, we illustrate how these objectives can be augmented by regularization to cope with
overabundant features. We present important extensions of temporal-difference learning in-
cluding eligibility traces and importance reweighting for more data-efficiency and estimation
from off-policy samples. As Section 2 characterizes methods in terms of design decisions,
it also sheds light on new combinations not yet contributed to the literature. In Section 3,
we first present a series of benchmark tasks that are being used for comparative evalua-
tions. We focus particularly on the robustness of the different methods in different scenarios
(e.g., on-policy vs. off-policy, continuous vs. discrete states, number of features) and for
different parameter settings (i.e., the open parameters of the algorithms such as learning
rates, eligibility traces, etc). Subsequently, a series of important insights gained from the
experimental evaluation is presented including experimental validation of known results as
well as new ones which are important for applying value-function estimation techniques in
practice. The paper is concluded in Section 4 with a short summary and an outlook on the
potential future developments in value-function estimation with temporal differences.

1.1 Notation and Background on Markov Decision Processes

The learning agent’s task is modeled as a Markov decision process (MDP)M = (S,A,P, R).
At each discrete time step t = 0, 1, 2 . . . , the system is in a state st ∈ S and the agent chooses
an action at ∈ A. The state of the next time step is then determined by the transition
model P : S × A × S → R, that is, P(st+1|at, st) is the conditional probability (density)
for transitioning from st to st+1 with action at. After each transition, the agent receives a
reward rt = R(st, at) specified by the deterministic reward function R : S × A → R. We
distinguish between discrete systems and continuous systems. While continuous systems

811



Dann, Neumann and Peters

Policy Evaluation:
Estimate the Value Function V π

Policy Improvement:
Update the Policy π

Figure 2: Policy Iteration Algorithm

have infinitely many states (and actions), discrete systems are usually restricted to a finite
number of states. For notational simplicity, we mostly treat S and A to be finite sets in the
remainder of this paper. Nevertheless, the analysis presented in this paper often generalizes
to continuous/infinite state-spaces.

The behavior of the learning agent within the environment, that is, the action-selection
strategy given the current state, is denoted by a policy π. A stochastic policy π : S×A → R
defines a probability distribution over actions given a state st. The agent samples from π to
select its actions. Stochasticity of the policy promotes state exploration, a key component
of robust policy learning. However, in certain cases a deterministic policy can be easier to
handle. Such a policy can be treated as a deterministic function π : S → A with at = π(st).

While we also consider episodic Markov decision processes in examples and experiments,
we concentrate on ergodic MDPs for the formal part to keep the theoretical analysis concise.
Ergodic Markov decision processes do not terminate and the agent can interact with its
environment for an infinite time. Their underlying stochastic processes have to be ergodic,
which, in highly simplified terms, means that every state can be reached from all others
within a finite amount of time steps (for details and exact definitions see for example the
work of Rosenblatt, 1971). If these assumptions hold, there exists a stationary distribution
dπ over S with dπ(s′) =

∑
s,a P(s′|s, a)π(a|s)dπ(s). This distribution yields the probability

of the process being in state s when following policy π, that is, sampled states from the MDP
with policy π are identically distributed samples from dπ. While they are not (necessarily)
independently drawn, ergodicity ensures that the strong law of large numbers still holds.
Formally, MDPs do not need to have unique limiting distributions. Instead, a distribution
defined as dπ(s) = Eπ,P

[∑∞
t=0 1{st=s}

]
would suffice in most cases. For fixed policies π, we

can rewrite the definition dπ more concisely as dπ(s) = EPπ
[
dπ(s)

]
, where Pπ denotes the

state transition distribution

Pπ(st+1|st) =
∑
at

P(st+1|at, st)π(at|st).

Marginalizing out the action reduces the MDP to a Markov chain. Even though the actions
are marginalized out, the policy affects Pπ and, thus, the stationary distribution is highly
dependent on π. See Figure 1 for an example.

Reinforcement learning aims at finding a policy that maximizes the expected (total dis-
counted) future reward

J(π) = EP,π
[ ∞∑
t=0

γtrt

]
.

812



Policy Evaluation with Temporal Differences

The discount factor γ ∈ [0, 1) controls the considered timespan or planning horizon. Small
discount factors emphasize earlier rewards while rewards in the future are becoming less
relevant with time.

A common family of iterative reinforcement learning algorithms for finding the optimal
policy is policy iteration. Policy iteration algorithms alternate between a policy evaluation
and a policy improvement step (see Figure 2). In the policy evaluation step, the value
function V π : S → R for the current policy is estimated. The value function corresponds to
the expected accumulated future reward

V π(s) = EP,π
[ ∞∑
t=0

γtrt

∣∣∣∣ s0 = s

]
, (1)

given that the process started in state s, and that the actions are chosen according to policy
π. Hence, the value function evaluates the policy in each state. It allows the subsequent
policy improvement step to obtain a policy which chooses actions that move the agent most
likely in states with the highest values.

1.2 Problem Statement: Efficient Value Function Estimation

This paper discusses different approaches to estimate the value function in Equation (1)
while observing the agent interacting with its environment. More formally, the problem of
value-function estimation can be defined as follows:

The value function of a target policy πG and a given MDP M is estimated based on
the data set D = {(st, at, rt; t = 1 . . . tf ), (st, at, rt; t = 1 . . . tf ), . . . } sampled from the
MDP M and a behavior policy πB. The data set D may consist of one or more roll-
outs (st, at, rt; t = 1 . . . tf ). We distinguish between on-policy estimation (πB = πG) and
off-policy estimation (πB 6= πG). The latter scenario is particularly appealing for policy
iteration, as we can re-use samples from previous policy evaluation iterations for the current
value function.

To illustrate major challenges of value-function estimation we consider a classic 2D grid-
world example shown in Figure 3, a simple benchmark task often used in reinforcement
learning. To estimate the value of the agent’s position, we have to compute the expectation
in Equation (1). We can approximate this value directly with Monte-Carlo methods, that is,
take the average of the accumulated reward computed for several roll-outs starting from this
position (Sutton and Barto, 1998, Chapter 5). However, the variance of the accumulated
reward will be huge as the stochasticity of each time-step often adds up in the accumulated
rewards. For example one roll-out may yield a high reward as the agent always moves in
the directions prescribed by the policy, while another roll-out may yield very low reward as
the agent basically performs a random walk due to the transition probabilities of the MDP.
Hence, even if we have a model of the MDP to simulate the agent until future rewards
are sufficiently discounted, the value estimate of Monte-Carlo methods is typically highly
inaccurate in any reasonable limit of roll-outs.

The crux is the dependency of the state value on future rewards, and subsequently on the
state after many time-steps. The problem simplifies with decreasing discount factor γ and
reduces to standard supervised learning for γ = 0 (estimate immediate reward E[rt|st = s]).
Bootstrapping is an approach to circumvent the problems of long-time dependencies using

813



Dann, Neumann and Peters

a recursive formulation of the value function. This recursion can be obtained by comparing
Equation (1) for two successive time-steps t and t+ 1

V π(s) = EP,π
[
r(st, at) + γV π(st+1)

∣∣∣∣st = s

]
. (2)

This so-called Bellman equation1 holds true for arbitrary MDPsM, discount factors γ and
policies π. This basic insight allows us to update the value estimate of the current state based
on the observed reward rt and the value estimate for the successor state st+1. In the long run,
the estimate is changed such that the difference of the values of temporally subsequent states
(temporal difference) matches the observed rewards in expectation. This bootstrapping
approach is the foundation for efficient value-function estimation with temporal-difference
methods, as it drastically reduces the variance of the estimator. Yet, it may also introduce
a bias (cf. Section 2.1).

To simplify notation we will write V π as am = |S| dimensional vector V π which contains
V π(si) at position i for a fixed order s1, s2, . . . sm of the states. Using the same notation
for the rewards, that is, Rπ ∈ Rm with Rπ

i = Eπ
[
r(si, a)

]
, the Bellman equation can be

rewritten as
V π = Rπ + γPπV π =: T πV π. (3)

Here, the transition matrix Pπ ∈ Rm×m of policy π contains the state transitions probabili-
ties P πij =

∑
a P(si|sj , a)π(a|sj). As we can see, the Bellman equation specifies a fixpoint of

an affine transformation T π : Rm → Rm of V π (Bellman operator). We will omit the policy
superscripts in unambiguous cases for notational simplicity.

The depicted world in Figure 3 consists of 15 × 15 = 225 states, that is, we have to
estimate 225 values. Yet, such a small world can only be used for highly simplified tasks.
More realistic settings (such as street navigation) require much finer and larger grids or have
to allow arbitrary continuous positions s ∈ R2. This requirement illustrates another inherent
problem of value estimation, the curse of dimensionality, that is, the number of states |S|
increases exponentially with the number of state variables. For example, if there are several
moving objects in our grid world, the number of states |S| explodes. In a 15 × 15 grid
world with one agent and 9 moving objects, we have to estimate (15 × 15)10 ≈ 323 values.
Thus, we almost always need to resort to approximation techniques for the value function.
The simplest and most common approach is a linear parametrization with parameter vector
θ ∈ Rn, that is,

V (s) ≈ Vθ(s) = θTφ(s),

where φ(s) defines features of the state s.
The feature function φ : S → Rn reduces the number of parameters which we need to

estimate from m to n with n� m but comes at the price of less precision. Hence, the choice
of a feature representation is always a trade-off between compactness and expressiveness,
where the latter means that there exists a Vθ that is close to V for all states.

Estimation techniques for alternative parametrizations of V exist, such as non-linear
function approximation (e.g.„ see non-linear versions of GTD and TDC, Maei, 2011, Chap-
ter 6) or automatically built representations (cf. Section 2.3). However, defining non-linear

1. Bellman would not have claimed this equation but rather the principle of optimality (source: personal
correspondence with Bellman’s former collaborators).

814



Policy Evaluation with Temporal Differences

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14
1.5

0.0

1.5

3.0

4.5

6.0

7.5

9.0

Figure 3: Classic 2D Grid-World Example: The agent obtains a positive reward (10) when
it reaches the goal and negative (−2) ones when it goes through water ≈. The
agent always chooses a direction (up, right, down left) that points towards the
goal . With probability 0.8 the agent moves in that direction and with 0.2 in a
random direction. We are interested in the value V (s) of each possible position
(state) of the agent with a discount of γ = 0.99. The value V (s) is shown as an
overlay.

function approximations by hand requires domain knowledge to an extent that is usually not
available and the learning problem typically becomes non-convex, that is, the estimator may
get stuck in local, but not global, optima. Therefore, this paper focuses on more commonly
used linear function approximation.

After having identified temporal differences and function approximation as the key in-
gredients for efficient policy evaluation, we can concentrate on important properties of value
function estimators. In robotics and many other fields, the data gathering process is very
costly and time consuming. In such cases, algorithms need to be data efficient and yield
accurate estimates already after few observations. In other applications, accurate models of
the learning environment are available and observations can be generated efficiently by sim-
ulation. Hence, the focus is shifted to efficiency in terms of computation time. Computation
time is also a limiting factor in online and real-time learning, which require to update the
value estimations after each observation within a limited time frame.

2. Overview of Temporal-Difference Methods

Value estimation can be cast as an optimization problem, and, in fact, most temporal-
difference methods are direct applications of optimization techniques. Hence, their charac-
teristics are largely determined by (1) the chosen objective or cost function, and (2) how this
function is optimized. We start by discussing different optimization objectives in Section 2.1
that build the basis of most theoretical results and define the quality of the value estimates

815



Dann, Neumann and Peters

after enough observations. In Section 2.2, we introduce temporal-difference methods by
grouping them according to the employed optimization technique as algorithms within a
group share similar convergence speed and computational demands. To avoid cluttered no-
tation and to put the focus on their intrinsic characteristics, we present the algorithms in
their basic form and omit eligibility traces and importance weights for the off-policy case
here (these are discussed in Section 2.4). Complete versions of the algorithms with available
extensions can be found in Appendix C.

Reliable value estimates are the result of fruitful interplay between expressive feature de-
scriptors φ and suitable estimation algorithms. Yet, choosing appropriate feature functions
poses a hard problem when insufficient domain knowledge is available. Several approaches
have been proposed to simplify the generation and handling of features for temporal-difference
methods. We review these recent efforts in Section 2.3. Finally, in Section 2.4, we discuss
two important extensions applicable to most methods. The first extension are eligibility
traces, which reduce bootstrapping and may increase convergence speed. Subsequently, we
discuss importance reweighting for off-policy value-function estimation.

2.1 Objective Functions

We are interested in estimating parameters θ that yield a value function V θ as close as
possible to the true value function V π. This goal directly corresponds to minimizing the
mean squared error (MSE)

MSE(θ) = ‖Vθ − V π‖2D =
m∑
i=1

dπ(si)[Vθ(si)− V π(si)]2

= [Vθ − V π]TD[Vθ − V π]. (4)

The weight matrix D = diag[dπ(s1), dπ(s2), . . . , dπ(sm)] has the entries of the stationary
distribution dπ on the diagonal and weights each error according to its probability. The true
value function V π can be obtained by Monte-Carlo estimates, that is, performing roll-outs
with the current policy and collecting the long-term reward. However, the Monte-Carlo
estimate of V π requires a lot of samples as it suffers from a high variance.

The high variance can be reduced by eliminating the true value function V π from the
cost function. To do so, we can use bootstrapping (Sutton and Barto, 1998), where V π is
approximated by a one-step prediction based on the approximated value-function. Hence,
we minimize the squared difference between the two sides of the Bellman equation (3) which
corresponds to minimizing

MSBE(θ) = ‖Vθ − TVθ‖2D. (5)

This objective, called the mean squared Bellman error, can be reformulated in terms of
expectations using Equation (2)

MSBE(θ) =
n∑
i=1

dπ(si)[Vθ(si)− EP,π[r(st, at) + γVθ(st+1)|π, st = si]]2

= Ed
[(
Vθ(s)− EP,π[r(st, at) + γVθ(st+1)|π, st = s]

)2]
, (6)

where the outer expectation is taken with respect to the stationary distribution dπ and the
inner one with respect to the state dynamics P of the MDP and the policy π. Let δt denote

816



Policy Evaluation with Temporal Differences

HφVθ

ΠT√
MSPBE(θ)

ΠTVθ

T
√ M

SB
E(θ

)

TVθ

Π

Figure 4: MSBE compares the current value estimate V θ to the T -transformed one TVθ.
In contrast, MSPBE is a distance in the space of parameterized functions Hφ and
always smaller or equal than MSBE, as Π is an orthogonal projection. Figure
adopted from Lagoudakis and Parr (2003).

the temporal-difference (TD) error which is given by the error in the Bellman equation for
time step t

δt = r(st, at) + γVθ(st+1)− Vθ(st) = rt + (γφt+1 − φt)Tθ, (7)

with φt = φ(st). Equation (6) can then be written concisely as MSBE(θ) = Ed[EP,π[δt|st]2].
Using the second form of δt from Equation (7) to formulate the MSBE error as

MSBE(θ) = Ed
[((

EP,π[γφt+1|st]− φt
)T
θ + EP,π[rt|st]

)2
]

makes apparent that the MSBE objective corresponds to a linear least-squares regression
model with inputs γEP,π[φt+1|st] − φt and outputs −EP,π[rt|st]. However, we actually
cannot observe the inputs but only noisy samples γφt+1 − φt. The least-squares regression
model does not account for this noise in the input variables, known as error-in-variables
situation (Bradtke and Barto, 1996). As we will discuss in Section 2.2.1, this deficiency
requires that two independent samples of st+1 need to be drawn when being in state st,
also known as the double-sampling problem (Baird, 1995). Hence, samples generated by a
single roll-out cannot be used directly without introducing a bias. This bias corresponds to
minimizing the mean squared temporal-difference error (Maei, 2011)

MSTDE(θ) = Ed,P,π[δ2
t ] = Ed[EP,π[δ2

t |st]]. (8)

The square is now inside the expectation. This cost function has a different optimum than
the MSBE and, hence, minimizing it results in a different value function estimate.

Another possibility to avoid the optimization problems connected to the MSBE is instead
to minimize the distance of the projected Bellman operator, also called the mean squared
projected Bellman error (MSPBE). The Bellman operator in Equation (3) is independent
of the feature representation, and, hence, TV θ may not be representable using the given
features. The MSPBE only yields the error which is representable with the given features

817



Dann, Neumann and Peters

and neglects the error orthogonal to the feature representation. Most prominent temporal-
difference methods such as TD learning (Sutton, 1988), LSTD (Bradtke and Barto, 1996),
GTD (Sutton et al., 2008) and TDC (Sutton et al., 2009) either directly minimize the
MSPBE or converge to the same fixpoint (Tsitsiklis and van Roy, 1997; Sutton et al., 2008,
2009). The MSPBE is given by the squared distance between V θ and the representable
function ΠTV θ that is closest to TV θ

MSPBE(θ) = ‖Vθ −ΠTVθ‖2D, (9)

where Π is a projection operator which projects arbitrary value functions onto the space of
representable functions Hφ. For linear function approximation, the projection Π has the
closed form

ΠV = min
Vθ∈Hφ

‖Vθ − V ‖2D = Φ(ΦTDΦ)−1ΦTDV ,

where Φ = [φ(s1),φ(s2), . . .φ(sm)]T ∈ Rm×n is the feature matrix consisting of rows with
features of every state.

An illustration of the differences between the cost function can be found in Figure 4. The
MSBE compares a parameterized value function V θ against TV θ (see the dotted distance
in Figure 4), which may lie outside the space of parameterized functions Hφ. The MSPBE
first projects TV θ on the set of representable functions and, subsequently, calculates the
error (solid distance).

Example 1 For a simple example of the different distance functions, consider an MDP of
two states and one action. The transition probabilities of the MDP and policy are uniform,
that is,

P π =
1

2

[
1 1
1 1

]
.

The agent receives reward r1 = −0.8 in the first state and r2 = 1.2 in the second state.
With a discount factor of γ = 0.8 the true value function is then given by V π = (I −
γP π)−1[−0.8 1.2]T = [0 2]T . If we only use a single constant feature φ(s) = 1, ∀s ∈ S, the
feature matrix is Φ = [1 1]T and the parametrization V θ = [1 1]Tθ assigns the same value
to all states. Hence, the true value function V π cannot be represented by any parameter,
that is, MSE(θ) > 0 ∀θ. In addition, γP πV θ is always a vector with equal components
and subsequently TV θ = [−0.8 1.2]T +γP πV θ has entries different from each other and the
MSBE is always greater 0. One can easily verify that the projection is a simple average-

operator Π = 1
2

[
1 1
1 1

]
and that θ = 1 satisfies V θ −ΠTVθ = 0, that is, MSPBE(θ) = 0.

The MSPBE circumvents the optimization problems connected to the MSBE, but instead
loses the direct connection to the original MSE, the quantity we truly want to minimize. As
shown by Sutton et al. (2009), the MSPBE can also be written as

MSPBE(θ) = ‖Vθ − TVθ‖2U = ‖ΦTD(Vθ − TVθ)‖2(ΦTDΦ)−1 , (10)

with U = DΦ(ΦTDΦ)−1ΦTD. A derivation of this formulation is given in Appendix A.
This formulation reveals two important insights for understanding the MSPBE. First, the

818



Policy Evaluation with Temporal Differences

MSPBE still measures the MSBE, just the metric is now defined as U instead ofD. Second,
the minimum of the MSPBE is reached if and only if

ΦTD(Vθ − TVθ) = Ed,P,π[δtφt] = 0. (11)

This condition means that there is no correlation between the temporal-difference error δt
and the feature vector φ(st). Many algorithms, such as TD learning and LSTD have been
shown to minimize the MSPBE as their fixpoints satisfy Ed,P,π[δtφt] = 0.

The insight that the fixpoint of TD learning has the property Ed,P,π[δtφt] = 0 has also
motivated the norm of the expected TD update

NEU(θ) = ‖ΦTD(Vθ − TVθ)‖22 = Ed,P,π[δtφt]
TEd,P,π[δtφt] (12)

as an alternative objective function. It shares the same minimum as the MSPBE but has
a different shape, and therefore yields different optimization properties such as speed of
convergence.

Many algorithms solve the problem of finding the minimum of the MSPBE indirectly
by solving a nested optimization problem (Antos et al., 2008; Farahmand et al., 2008)
consisting of the minimization of the operator error (OPE) and the fixed-point error (FPE).
The problem is given by

θ = arg min
θ′

OPE(θ′,ω) = arg min
θ′
‖V θ′ − TV ω‖2D and (13)

ω = arg min
ω′

FPE(θ,ω′) = arg min
ω′
‖V θ − V ω′‖2D = arg min

ω′
‖Φ(θ − ω′)‖2D. (14)

Minimizing the MSPBE is split into two problems where we maintain two estimates of
the parameters ω and θ. In the operator problem, we try to approximate the Bellman
operator applied to the value function Vω with Vθ. In the fixpoint problem, we reduce the
distance between both parameter estimates ω and θ. Many algorithms solve this problem
by alternating between improving the operator and fixed-point error.

To see that the FPE-OPE solution indeed minimizes the MSPBE, we first look at the op-
timality conditions of the error functions. By considering the first order optimality criterion
of the OPE

0 = ∇θ OPE(θ,ω) = ΦTD(Φθ − γΦ′ω −R) =
ω=θ

ΦTD(V θ − TV θ)

and using optimality in the fixpoint problem (ω = θ), we see that solving the nested OPE-
FPE problem (13) – (14) indeed corresponds to minimizing the MSPBE from Equation (11).
Note that the optimal value of the operator error is equal to the MSBE value due to ω = θ
and OPE(ω,ω) = ‖V ω − TV ω‖2D = MSBE(ω). Yet, the problem does not corresponds to
minimizing the MSBE as only one of the parameter vectors can change at a time. The OPE-
FPE formulation is particularly appealing as it does not suffer from the double-sampling
problem.

2.1.1 Fixpoint Discussion

Most temporal-difference methods for value estimation converge either to the minimum of
MSBE or MSPBE. Thus, the properties of both functions as well as their relation to each

819



Dann, Neumann and Peters

other and the mean squared error have been examined thoroughly by Schoknecht (2002)
and Scherrer (2010) and in parts by Bach and Moulines (2011), Lazaric et al. (2010), Sutton
et al. (2009) and Li (2008).

In the following, we summarize the most important results for both cost functions. First,
MSBE and MSPBE are quadratic functions that are strongly convex if the features are
linearly independent, that is, rank(Φ) = m. Linearly independent features are a necessary
assumption for the convergence of most temporal-difference methods. Convexity of the cost
function guarantees that optimization techniques such as gradient descent do not get stuck
in a non-global minimum. Second, the MSBE is larger than the MSPBE for any fixed θ as

MSBE(θ) = MSPBE(θ) + ‖TVθ −ΠTVθ‖2D,

where ‖TVθ − ΠTVθ‖2D is the projection error (dashed distance in Figure 4). As Π is
an orthogonal projection, this insight follows directly from the Pythagorean theorem (cf.
Figure 4).

In addition, Williams and Baird (1993) as well as Scherrer (2010) have derived a bound
on the MSE by the MSBE

MSE(θ) ≤
√
C(d)

1− γ
MSBE(θ), with C(d) = max

si,sj

∑
aP (sj |si, a)π(a|si)

dπ(si)
(15)

where C(d) is a constant concentration coefficient depending on π and P. The numerator
contains the average probability of transitioning from si to sj while the denominator is the
probability of the stationary distribution at state si. The term C(d) becomes minimal if
the transitions of the MDP are uniform. For the MSPBE no such general bound exists,
as the MSPBE only considers part of the MSBE and ignores the projection error. Under
mild conditions, the optimal value of MSPBE is always 0, while optima of MSE and MSBE
may have larger values (see Example 1). Bertsekas and Tsitsiklis (1996) and Scherrer (2010)
provide an example, where the projection error is arbitrarily large, and the MSE value of
the MSPBE optimum is therefore unbounded as well.

MSBE and MSPBE solutions (also referred to as fixpoints, as they satisfy Vθ = TVθ
and Vθ = ΠTVθ respectively) have been characterized as different projections of the true
value function V onto the space of representable functions Hφ by Schoknecht (2002) and
Scherrer (2010). These results imply that, if V π ∈ Hφ, that is, there exist parameters
for the true value function, algorithms optimizing MSPBE or MSBE converge to the true
solution. If V π cannot be represented, the optima of MSBE and MSPBE are different
in general. The natural question, which objective yield better solutions in terms of MSE
value, is addressed by Scherrer (2010). The minimum of MSPBE often has a lower mean
squared error, however, the solution may get unstable and may yield estimates arbitrarily far
away from the true solution V π. Scherrer (2010) illustrated this effect by an example MDP
with unstable MSPBE solutions for certain settings of the discount factor γ. On the other
hand, the MSBE has been observed to have higher variance in its estimate and is therefore
harder to minimize than the MSPBE even if we solve the double-sampling problem (see
Section 3.2). While the bound in Equation (15) gives a quality guarantee for the MSBE
solution, in practice, it may be too loose for many MDPs as shown in Section 3. In addition,
the MSPBE was observed to result in control policies of higher quality, if used as objective

820



Policy Evaluation with Temporal Differences

MSE

MSEt

Monte-Carlo
GPTD
KTD

MSTDE

MSTDEt

BRM w/o DS
RG w/o DS

MSBE

MSBEt

BRM w. DS
RG w. DS

MSPBE

MSPBEt

LSTD
TDC
GTD2

OPE/FPE

OPEt/FPEt

LSPE
TD

FPKF

NEU

NEUt

GTD

Figure 5: Relations between cost functions and temporal-difference learning algorithms. The
methods are listed below the sample-based objective function, which they mini-
mize at timestep t, denoted by the subscript t. The basic idea of temporal dif-
ference learning is to optimize for a different (potentially biased) objective func-
tion instead of the MSE directly, since its sample-based approximation MSEt at
timestep t converges very slowly to the MSE (due to the large sample variance).
The MSPBE, OPE/FPE and NEU objectives (blue shaded) share the same fixed-
point and their algorithms converge therefore to the same solution, but possibly
at different pace.

functions in a policy iteration loop (Lagoudakis and Parr, 2003). For these reasons the
MSPBE is typically preferred. While MSBE and MSPBE have been studied in detail, the
quality of the MSTDE cost function and its exact relation to the MSBE are still open
questions.

Figure 5 provides a visual overview of the important cost functions and their respective
algorithms which are introduced in the following section.

2.2 Algorithm Design

In the following discussion, we will categorize temporal-difference methods as a combina-
tion of cost functions and optimization techniques. While we introduced the former in the
previous section, we now focus on the optimization techniques. Temporal-difference meth-
ods for value function estimation rely either on gradient-based approaches, least-squares
minimization techniques or probabilistic models to minimize the respective cost function.
Each optimization approach and the consequent family of temporal-difference methods is
presented in Sections 2.2.1, 2.2.2 and 2.2.3. We do not give the complete derivation for every
method but instead aim for providing their key ingredients and highlighting similarities and
difference between the families. Table 1 lists all algorithms presented in this section along
with their most important properties.

821



Dann, Neumann and Peters

Fixpoint Runtime
Complexity

Eligibility
Traces

Off-Policy
Convergence

Idea

TD MSPBE O(n) TD(λ) no bootstrapped
SGD of MSE

GTD MSPBE O(n) - yes SGD of NEU

GTD2 MSPBE O(n) GTD2(λ) yes SGD of MSPBE

TDC MSPBE O(n) GTD(λ)/TDC(λ) yes SGD of MSPBE

RG MSBE /
MSTDE

O(n) gBRM(λ) yes SGD of MSBE

BRM MSBE /
MSTDE

O(n2) BRM(λ) yes ∇MSBE = 0

LSTD MSPBE O(n2) LSTD(λ) yes ∇MSPBE = 0

LSPE MSPBE O(n2) LSPE(λ) yes recursive LS Min.

FPKF MSPBE O(n2) FPKF(λ) ? recursive LS Min.

KTD MSE O(n2) - no
Parameter Track-
ing by Kalman
Filtering

GPTD MSE O(n2) GPTD(λ) no Gaussian Process
on V

Table 1: Overview of Temporal-Difference Methods. The methods can divided into gradient-
based approaches, least-squares methods and probabilistic models (from top to
bottom, separated by horizontal lines). The prior beliefs in probabilistic models
acts as a regularization of the cost function. The fixpoint of the residual-gradient
algorithm (RG) and Bellman residual minimization (BRM) depends on whether
independent second samples for successor states are used or not. The convergence
analysis of FPKF for off-policy estimation is still an open problem (Scherrer and
Geist, 2011; Geist and Scherrer, 2013).

2.2.1 Gradient-Based Approaches

One family of temporal-difference methods relies on stochastic gradient descent (SGD) to
optimize their cost function. This optimization technique is directly based on stochastic
approximation going back to Robbins and Monro (1951).

Stochastic gradient descent is typically applied to functions of the form f(θ) =
Ep(x)[g(x;θ)], where the expectation is usually approximated by samples and the distri-
bution p(x) is independent of θ. The parameter update in gradient descent follows the
negative gradient, that is,

θk+1 = θk − αk∇f(θk) = θk − αkEp(x)[∇g(x;θk)],

822



Policy Evaluation with Temporal Differences

where αk denotes a step-size. While in ordinary gradient descent, also denoted as batch
gradient descent, the gradient is calculated using all samples, stochastic gradient descent
only evaluates the gradient for one sample x̃

θk+1 = θk − αk∇g(x̃;θk) with x̃ ∼ p(x).

Stochastic updates are guaranteed to converge to a local minimum of f under the mild
stochastic approximation conditions (Robbins and Monro, 1951) such that the step-sizes
αk ≥ 0 satisfy

∞∑
k=0

αk =∞,
∞∑
k=0

α2
k <∞.

All cost functions in Section 2.1 are expectations with respect to the stationary state
distribution dπ. Additionally, observations arrive sequentially in online learning, and there-
fore, stochastic gradient descent is particularly appealing as it requires only one sample per
update. Stochastic gradient temporal-difference methods update the parameter estimate θt
after each observed transition from the current state st to the next state st+1 with action at
and reward rt.

Temporal-Difference Learning. Learning signals similar to temporal differences have been
used before, for example by Samuel (1959), but the general concept was first introduced
by Sutton (1988) with the temporal-difference (TD) learning algorithm. It is considered
to be the first use of temporal differences for value-function estimation. Sometimes, also
subsequent approaches are referred to as TD learning algorithms. To avoid ambiguity, we
use the term TD learning only for the first algorithm presented by Sutton (1988) and denote
all other approaches with temporal-difference methods.

The idea behind TD learning is to minimize the MSE where we use TVθt as approxima-
tion for the true value function V π. Minimizing this function ‖V θ − TV θt‖2D w.r.t. θ by
stochastic gradient descent yields the update rule of TD learning in its basic form

θt+1 = θt + αt[rt + γVθt(st+1)− Vθt(st)]φt = θt + αtδtφt. (16)

As the target values TV θt change over time (TV θ0 ,TV θ1 ,TV θ2 , . . . ), TD learning does
not perform stochastic gradient descent on a well-defined objective function. Thus, general
stochastic approximation results are not applicable and in fact several issues emerge from
the function change. TD learning as in Equation (16) is only guaranteed to converge if
the stationary state distribution dπ is used as sampling distribution, that is, on-policy esti-
mation. If the value function is estimated from off-policy samples, we can easily construct
scenarios where TD learning diverges (Baird, 1995). For a more detailed discussion of the
off-policy case we refer to Section 2.4.2. In addition, Tsitsiklis and van Roy (1997) have
shown that the TD learning algorithm can diverge for non-linear function approximation.

TD learning can be understood more clearly as minimization of the nested optimization
problem introduced in Equations (13) and (14). More precisely, TD learning first optimizes
the fixpoint problem from Equation (14) by setting ω = θt and then performs a stochastic
gradient step on the operator problem from Equation (13). Hence, we can already conclude
that the convergence point of TD learning is given by

V θ = ΠT πV θ,

823



Dann, Neumann and Peters

which is the minimum of the MSPBE objective in Equation (9).
As the results in Section 3 show, the performance of TD learning depends on good

step-sizes αt. Hutter and Legg (2007) aim at overcoming the need for optimizing this hyper-
parameter. They re-derived TD learning by formulating the least-squares value-function
estimate as an incremental update, which yielded automatically adapting learning rates for
tabular feature representations. Dabney and Barto (2012) extended this approach to arbi-
trary features and additionally proposed another adapting step-size scheme which ensures
that the value estimates do not increase the temporal-difference errors δ0, δ1, . . . , δt ob-
served in previous timesteps. Autostep (Mahmood et al., 2012), a learning-rate adaptation
approach for incremental learning algorithms based on stochastic gradient, yields individual
step-sizes for each feature which may boost learning speed. It relies on a meta-step-size
but works well for a wide range of step lengths which makes specifying the meta-parameter
easier than the step-size for TD learning directly.

Residual-Gradient Algorithm. The residual-gradient (RG) algorithm (Baird, 1995) mini-
mizes the mean squared Bellman error (MSBE) directly by stochastic gradient descent. Its
update rule in the most basic form is given by

θt+1 =θt + αt[rt + γVθt(st+1)− Vθt(st)](φt − γφt+1)

=θt + αtδt(φt − γφt+1).

The difference compared to TD learning is that the gradient of Vθt(st+1) with respect to θt
is also incorporated into the update.

Unfortunately, RG methods suffer from the double-sampling problem mentioned in Sec-
tion 2.1. Consider the gradient of the MSBE, in Equation (5), given by

2Ed
[(
Vθ(s)− Eπ,P [r(st, at) + γφ(st+1)Tθ|st = s]

)(
φ(s)− γEπ,P [φ(st+1)|st = s]

)]
. (17)

The outer expectation is computed over the steady state distribution and can be replaced
by a single term in stochastic gradient. Both inner expectations are taken over the joint
of the policy π and the transition distribution P of the MDP. Multiplying out the brackets
yields γ2E[φt+1]E[φt+1]Tθ besides other terms. If we replace both expectations with the
current observation φt+1, we obtain a biased estimator since

φt+1φ
T
t+1 ≈

Stoch. Approx.
E[φt+1φ

T
t+1|st] = E[φt+1|st]E[φt+1|st]T + Cov[φt+1,φt+1].

Hence, updating the parameters only with the current sample is biased by the covariances
Cov[φt+1,φt+1] and Cov[rt,φt+1] with respect to P and π. While this effect can be neglected
for deterministic MDPs and policies (since Cov[φt+1,φt+1] = 0,Cov[rt,φt+1] = 0), the
residual-gradient algorithm does not converge to a minimizer of the MSBE for stochastic
MDPs. It has been shown by Maei (2011) that the residual-gradient algorithm converges to
a fixed point of the mean squared TD error2 defined in Equation (8) instead. Alternatively,

2. A different characterization of the RG fixpoint was derived by Schoknecht (2002).

824



Policy Evaluation with Temporal Differences

each inner expectation in Equation (17) can be replaced by independently drawn samples
a′t, r

′
t, s
′
t+1 and a′′t , r′′t , s′′t+1 of the transition

θt+1 = θt + αt[r
′
t + γVθt(s

′
t+1)− Vθt(st)](φt − γφ′′t+1).

With double samples, the residual-gradient algorithm indeed convergences to a fixpoint of
the MSBE. However, a second sample is only available, if the model of the MDPs is known
or a previously observed transition from the same state is reused. While there have been
efforts to avoid the double-sampling problem for other approaches such as the projected
fixpoint methods or Bellman residual minimization (Farahmand et al., 2008), it is still an
open question whether the bias of the residual-gradient algorithm with single samples can
be removed by similar techniques.

Projected-Fixpoint Methods. The key idea of the projected fixpoint algorithms is to mini-
mize the MSPBE directly by stochastic gradient descent (Sutton et al., 2009) and, therefore,
overcome the issue of TD learning which alters the objective function between descent steps.

Sutton et al. (2009) proposed two different stochastic gradient descent techniques. The
derivation starts by writing the MSPBE in a different form given by

MSPBE(θ) = E[δtφt]
TE[φtφ

T
t ]−1E[δtφt]. (18)

The proof of this equation is provided in Appendix A, Equation (43). We can write the
gradient of Equation (18) as

∇MSPBE(θ) = −2E[(φt − γφt+1)φTt ]E[φtφ
T
t ]−1E[δtφt] (19)

= −2E[δtφt] + 2γE[φt+1φ
T
t ]E[φtφ

T
t ]−1E[δtφt]. (20)

The gradient contains a product of expectations of φt+1 and δt in both forms (Equation 19
and 20). As both terms depend on the transition distribution of the MDP, minimizing
Equation (18) with stochastic gradient descent again requires two independently drawn
samples, as in the residual-gradient algorithm. To circumvent this limitation, a long-term
quasi-stationary estimate w of

E[φtφ
T
t ]−1E[δtφt] = (ΦTDΦ)−1ΦTD(TVθ − Vθ) (21)

is calculated. To obtain an iterative update for w, we realize that the right side of Equa-
tion (21) is the solution to the following least-squares problem

J(w) = ‖ΦTw − (TV θ − V θ)‖22.

This least-squares problem can also be solved by stochastic gradient descent with the update
rule

wt+1 = wt + βt(δt − φTt wt)φt,

and the step-size βt. Inserting the estimate wt into Equation (19) and Equation (20) allows
us to rewrite the gradient with a single expectation

∇MSPBE(θ) = −2E[(φt − γφt+1)φt]
Twt (22)

= −2E[δtφt] + 2γE[φt+1φ
T
t ]wt. (23)

825



Dann, Neumann and Peters

Minimizing with the gradient of the form of Equation (22) is called the GTD2 (gradient
temporal-difference learning 2) algorithm with update rule

θt+1 =θt + αt(φt − γφt+1)φTt wt,

and using the form of Equation (23) yields the TDC (temporal-difference learning with
gradient correction) algorithm (Sutton et al., 2009)

θt+1 =θt + αt(δtφt − γ(φTt wt)φt+1).

As θ and w are updated at the same time, the choice of step-sizes αt and βt are critical for
convergence (see also our experiments in Section. 3). Both methods can be understood as
a nested version of stochastic gradient descent optimization. TDC is similar to TD learn-
ing, but with an additional term to adjust the TD update to approximate the real gradient
of MSPBE. The right side of Figure 7 shows this corrections and compares both stochas-
tic approximations to descent following the true gradient. Both algorithms minimize the
MSPBE but show different speeds of convergence, as we will also illustrate in the discussion
of experimental results in Section 3.

The predecessor of the GTD2 algorithm is the GTD algorithm (Sutton et al., 2008). It
minimizes the NEU cost function from Equation (12) by stochastic gradient descent. The
gradient of NEU is given by

∇NEU(θ) = −2E[(φt − γφt+1)φTt ]E[δtφt].

One of the two expectations needs to be estimated by a quasi-stationary estimate in analogy
to the other projected fixpoint methods. Hence, the term E[δtφt] is replaced by u which is
updated incrementally by

ut+1 = ut + βt(φ
T
t δt − ut) = (1− βt)ut + βtφ

T
t δt.

The updates for θ of GTD are then given by

θt+1 = θt + αt(φt − γφt+1)φTt ut.

The update rule for GTD is similar to GTD2 but the quasi stationary estimates w and u
are different. While GTD2 searches for the best linear approximation φTt w of E[δt], GTD
tries to approximate E[δtφt] with u. As shown by Sutton et al. (2009) and our experiments,
GTD2 converges faster and should be preferred over GTD.

All gradient-based temporal-difference methods only require sums and products of vec-
tors of length n to update the parameters. Thus, they run in O(n) time per update. The
initial value of θ has a tremendous influence on the convergence speed of gradient-based
methods. While other approaches such as LSTD do not require an initial values, the gra-
dient based approaches can benefit from good parameter guesses, which are available in
numerous applications. For example, the parameter vector learned in previous steps of
policy iteration can be used as initial guesses to speed up learning. Fixed-Point Kalman
Filtering (FPKF) proposed by Choi and Roy (2006) is a descent method, that has a close re-
lationship to TD learning. Yet, as it is motivated by least-squares minimization, we present
it in the next section.

826



Policy Evaluation with Temporal Differences

s1start s2 s3 s4 s5 s6 s7

[
0

1

]
φ(si) =

[
1
6
5
6

][
2
6
4
6

][
3
6
3
6

][
4
6
2
6

][
5
6
1
6

][
1

0

]
0.5 -3

0.5 -3

0.5 -3

0.5 -3

0.5 -3

0.5 -3

0.5 -3

0.5 -3

0.5 -3

0.5 -3

1 -2 1 0

-2 0-12V = -10 -8 -6 -4

Figure 6: 7-State Boyan Chain MDP from Boyan (2002). Each transition is specified by a
probability (left number) and a reward (right number). There are no actions to
chose for the agent. The features are linearly increasing / decreasing from left
to right and are capable of representing the true value function with parameters
θ = [−12, 0]T .

−80 −60 −40 −20 0 20 40 60
θ1

−60

−40

−20

0

20

40

θ 2

TD(0)

TDC

Batch GD ∇MSE 5

10

15

20

25

30

35

40

45

50

M
S
E

−80 −60 −40 −20 0 20 40 60
θ1

−60

−40

−20

0

20

40

θ 2

TD(0)

TDC

Batch GD ∇MSPBE

0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

12.0

M
S
P
B
E

Figure 7: Comparison of Gradient Descent and TD learning for the MDP of Figure 6 with
γ = 1: The left plot shows the mean squared error. Ideally, we want to find
parameters that minimize this objective, however, TD(0) and TDC only find a
minimum of the MSPBE (Eq. 9, right plot). The dashed lines show the parameter
iterates of batch gradient descent of the respective cost functions. Stochastic
gradient methods such as TD and TDC are slower since they can only update θ1

for samples from the beginning of an episode and θ2 for samples from the end (cf.
the features from Figure 6). Comparison of both plots shows, that a fixpoint of
MSPBE can give arbitrarily bad results for MSE, as the problem is not discounted
and the guarantees of Section 2.1 do not hold. The MSPBE and MSBE measures
only compare the difference of the value of a state and its successor’s value. Hence,
all parameters which yield differences of 2 and arbitrary value of the terminal state
are optimal.

827



Dann, Neumann and Peters

2.2.2 Least-Squares Approaches

Least-squares approaches use all previously observed transitions to determine either the value
function directly in one step or an update of the value function. All considered objective
functions (cf. Section 2.1) have the form of a standard linear regression problem

‖y −Xθ‖2U = (y −Xθ)TU(y −Xθ),

with respect to the (semi-)norm induced by a positive semi-definite matrix U ∈ Rk×k.
While the targets are denoted by y ∈ Rk, X ∈ Rk×n is the matrix consisting of rows of
basis vectors. Setting the gradient of the objective function with respect to θ to 0 yields the
closed-form least-squares solution

θ∗ = (XTUX)−1XTUy.

Least-Squares Temporal-Difference Learning. The most prominent least-squares method for
policy evaluation is least-squares temporal-difference (LSTD) learning (Bradtke and Barto,
1996; Boyan, 2002). LSTD uses the MSPBE as objective function. The least-squares solution
of the MSPBE from Equation (10) is given by

θ = (ΦTD(Φ− γPΦ))︸ ︷︷ ︸
A

−1
ΦTDR︸ ︷︷ ︸

b

. (24)

During the derivation of this solution (see Appendix A) many terms cancel out, including
the ones which are connected to the double-sampling problem—in contrast to the analytical
solution for minimizing the MSBE shown in Equation (31). Alternatively, LSTD can be
derived by considering the analytical solution of the OPE problem from the OPE–FPE
formulation (Equations 13 and 14) given by

θ =(ΦTDΦ)−1ΦTD(R+ γPΦω)

=
ω=θ

(ΦTD(Φ− γPΦ))−1ΦTDR.

The LSTD solution in the second line is obtained by inserting the solution of the FPE
problem, ω = θ, into the first line and re-ordering the terms.

LSTD explicitly estimates A = ΦTD(Φ− γPΦ) and b = ΦTDR and then determines
θ = A−1b robustly (for example with singular value decomposition). The estimates At, bt
at time t can be computed iteratively by

At+1 = At + φt[φt − γφt+1]T , (25)
bt+1 = bt + φtrt, (26)

and converge to A, b (Nedic and Bertsekas, 2003) for t → ∞. For calculating θt we need
to invert a n× n matrix. This computational cost can be reduced from O(n3) to O(n2) by
updating A−1

t directly and maintaining an estimate θt = A−1
t bt (Nedic and Bertsekas, 2003;

Yu, 2010). The direct update of A−1
t can be derived using the Sherman-Morrison formula

(At + uvT )−1 = A−1
t −

A−1
t uv

TA−1
t

1 + vTA−1
t u

(27)

828



Policy Evaluation with Temporal Differences

with vectors u := φt and v := φt−γφt+1. The resulting recursive LSTD algorithm is listed
in Appendix C in a more general form with eligibility traces and off-policy weights (for the
basic form set λ = 0 and ρt = 1).

An initial guess A−1
0 has to be chosen by hand. A−1

0 corresponds to the prior belief of
A−1 and is ideally the inverse of the null-matrix. In practice, the choice A−1

0 = εI with
ε� 0 works well. Small values for ε act as a regularizer on θ.

Interestingly, LSTD has a model-based reinforcement learning interpretation. For lookup
table representations, the matrix At contains an empirical model of the transition probabil-
ities. To see that, we write At and bt as

At = N −C = N(I − γP̂ ), bt = NR̂,

where N is a diagonal matrix containing the state visit counts up to time step t. The
elements Cij of matrix C contain the number of times a transition from state i to state j has
been observed. The matrix P̂ = γ−1N−1C denotes the estimated transition probabilities
and R̂i denotes the average observed reward when being in state i. Note that, in this case,
the LSTD solution

θ∗ =
(
N
(
I − γP̂

))−1
NR̂ =

(
I − γP̂

)−1
R̂

exactly corresponds to model based policy evaluation with an estimated model. For approx-
imate feature spaces, the equivalence to model-based estimation is lost, but the intuition
remains the same. A more detailed analysis of this connection can be found in the work of
Boyan (2002) and Parr et al. (2008)

Least-Squares Policy Evaluation. The least-squares policy evaluation (LSPE) algorithm
proposed by Nedic and Bertsekas (2003) shares similarities with TD learning and the LSTD
method as it combines the idea of least-squares solutions and gradient descent steps. This
procedure can again be formalized with the nested OPE-FPE problem from Equations (13)
and (14). First, LSPE solves the operator problem

θt+1 = arg min
θ
‖Φθ − TΦωt‖2D (28)

in closed form with the least-squares solution. Then, it decreases the fixpoint error by
performing a step in the direction of the new θt+1

ωt+1 = ωt + αt(θt+1 − ωt), (29)

where αt ∈ (0, 1] is a predefined step size. The vector ωt is the output of the algorithm at
time-step t, that is, the parameter estimate for the value function. In practice, the step-sizes
are large in comparison to stochastic gradient approaches and can often be set to 1.

The solution of the LSPE problem from Equation (28) is given by

θt+1 = (ΦTDΦ)−1︸ ︷︷ ︸
M

ΦTD(R+ γΦ′ωt), (30)

829



Dann, Neumann and Peters

where Φ′ is the matrix containing the features of the successor states, that is, Φ′ = P πΦ.
The current estimateM t of (ΦTDΦ)−1 can again be updated recursively with the Sherman-
Morrison formula from Equation (27) similar to before, which yields the update rule of
LSPE summarized in Algorithm 7 in Appendix C. As LSPE solves the nested OPE-FPE
problem, it also converges to the MSPBE fixpoint (Nedic and Bertsekas, 2003). Hence,
LSPE and LSTD find the same solution, but LSPE calculates the value function recursively
using least-squares solutions of the OPE problem while LSTD acquires the value function
directly by solving both, OPE and FPE, problems in closed form. LSPE allows adapting
the step-sizes αt of the updates and using prior knowledge for the initial estimate of ω0,
which serves as a form of regularization. Therefore, LSPE does not aim for the minimum
of the MSPBE approximated by samples up to the current timestep, it instead refines the
previous estimates. Such behavior may avoid numerical issues of LSTD and is less prone to
over-fitting.

Fixed-Point Kalman Filtering. Kalman filtering is a well known second-order alternative
to stochastic gradient descent. Choi and Roy (2006) applied the Kalman filter to temporal-
difference learning, which resulted in the Fixed-Point Kalman Filtering (FPKF) algorithm.

As in TD learning, FPKF solves the nested optimization problem from Equations (13)
and (14) and hence finds the minimum of the MSPBE objective function. However, instead
of stochastic gradient descent, FPKF performs a second order update by multiplying the
standard TD learning update with the inverse of the HessianHt of the operator error given in
Equation (13). FPKF can therefore be also understood as an approximate Newton-method
on the OPE problem. The Hessian Ht is given by the second derivative of the OPE

Ht =
1

t

t∑
i=1

φiφ
T
i .

Note that the Hessian is calculated from the whole data set i = 1, . . . , t up to the current
time step and does not depend on the parameters θ. The update rule of FPKF is thus given
by

θt+1 = θt + αtH
−1
t φtδt.

This update rule can also be derived directly from the Kalman filter updates if αt is set to
1/t. See Figure 8 for a graphical model illustrating the Kalman Filter assumptions (e.g., the
definition of the evolution and observation function). For small values of t, the matrix Ht

becomes singular. In this case Ht needs to be regularized or the pseudo-inverse of Ht has
to be used. As FPKF is a second order method, it typically converges with fewer iterations
than TD but comes with additional price of estimating H−1

t . Analogously to the derivation
of LSPE, H−1

t can updated directly in O(n2) which yields the recursive parameter updates
of FPKF shown in Algorithm 9 (adapted from the work of Scherrer and Geist, 2011 and
Geist and Scherrer, 2013).

The step-size αt = 1/t of Kalman filtering basically assumes a stationary regression
problem, where all targets ri + γφTi+1θi are equally important. However, it is beneficial to
give later targets more weight, as the parameter estimates are getting more accurate and
therefore the targets ri + γφTi+1θi are becoming more reliable. Such increased influence of

830



Policy Evaluation with Temporal Differences

θ

γφT1 θ0

+r1

φT1

θ

γφT2 θ1

+r2

φT2

θ

γφT3 θ2

+r3

φT3

θ

γφT4 θ3

+r4

φT4

...

Figure 8: Illustration of the model assumptions of Fixed-Point Kalman Filtering. FPKF
aims at estimating the value of the hidden variable θ assuming a noise-free transi-
tion function (stationary environment, variable is constant over time). The main
idea of FPKF is to use estimates of previous timesteps to compute the outputs
ri + γφTi θi and treat them as fixed and observed in later timesteps. This as-
sumption makes FPKF essentially different from KTD (cf. Figure 9), which only
considers ri as observed.

recent time-steps can be achieved by using a step-size αt which decreases slower than 1/t,
for example, a/(a+ t) for some large a.

Bellman Residual Minimization. Bellman residual minimization (BRM) was one of the first
approaches for approximate policy evaluation proposed by Schweitzer and Seidmann (1985).
It calculates the least-squares solution of the MSBE given by

θ = (∆ΦTD∆Φ)︸ ︷︷ ︸
F

−1
∆ΦTDR︸ ︷︷ ︸

g

, (31)

where ∆Φ = Φ− γP πΦ denotes the difference of the state features and the expected next
state features discounted by γ. Again, the matrices F and g can be estimated by samples,
similar to A and b of LSTD, that is,

F t =
t∑

k=0

(φk − γφ′k+1)(φk − γφ′′k+1)T , gt =
t∑

k=0

(φk − γφ′k+1)r′′k .

However, as the residual-gradient algorithm, BRM suffers from the double-sampling problem
because F t contains the product φk+1φ

T
k+1 of the features of the next state and gt the

product φk+1rk (see Section 2.1 and the discussion of the residual-gradient algorithm in
Section 2.2.1). It therefore minimizes the MSTDE if we use one successor state sample,
that is, set φ′k+1 = φ′′k+1. To converge to a minimum of the MSBE, we have to use two
independent samples s′k+1, r

′
k and s′′k+1 r

′′
k . For this reason, the BRM algorithm can only be

employed for either a finite state space where we can visit each state multiple times or if we
know the model of the MDP. See Algorithm 10 in Appendix C for the recursive update rules
with double samples. For updates with a single sample see Algorithm 11, which already
includes eligibility traces (from Scherrer and Geist, 2011; Geist and Scherrer, 2013, see also
Section 2.4.1). If we compare the least-squares solutions for the MSPBE and the MSBE, we

831



Dann, Neumann and Peters

θ0

∆v0

θ1

∆v1

r1

(φt − γφt+1)θ1+
∆v1 − γ∆v0

θ2

∆v2

r2

(φt − γφt+1)θ2+
∆v2 − γ∆v1

...

...

Figure 9: Graphical Model of Kalman TD learning and Gaussian-process TD learning for
linearly parameterized value functions. Both approaches assume that a Gaussian
process generates the random variables and linear function approximation vt =
θTt φt is used. KTD aims to track the hidden state (blue dashed set of variables) at
each time step given the reward observation generated by the relationship (bend
arrows, in red) of the Bellman equation. While GPTD assumed θ to be constant
over time, that is, θt+1 = θt, KTD allows changing parameters.

can see that the product of ∆ΦT∆Φ cancels out for the MSPBE due to the projection of
the MSBE in the feature space and the MSPBE can subsequently avoid the double-sampling
problem.

2.2.3 Probabilistic Models

While gradient-based and least-squares approaches are motivated directly from an optimiza-
tion point of view, probabilistic methods take a different route. They build a probabilistic
model and infer value function parameters which are most likely, given the observations.
These methods not only yield parameter estimates that optimize a cost function, but also
provide a measure of uncertainty of these estimates. Especially in policy iteration, this
information can be very helpful to decide whether more observations are necessary or the
value function estimate is sufficiently reliable to improve the policy.

Gaussian-process temporal-difference learning (GPTD) by Engel et al. (2003, 2005) as-
sumes that the rewards rt as well as the unknown true values of the observed states
vt = V (st) are random variables generated by a Gaussian process. The Bellman Equa-
tion (2) specifies the relation between the variables

ṽt := vt + ∆vt = rt + γ(vt+1 + ∆vt+1), (32)

where ṽt =
∑∞

k=t γ
k−trt is the future discounted reward of the current state st in the

particular trajectory. The difference between ṽt and the average future discounted reward
vt is denoted by ∆vt and originates from the uncertainty in the system, that is, the policy π
and the state transition dynamics P. Please see Figure 9 for a graphical model illustrating
the dependencies of the random variables. While ∆vt ∼ N (0, σ2) always has mean zero, we
have to set its variances σt a-priori based on our belief of π and P. The covariance Σt of all

832



Policy Evaluation with Temporal Differences

∆vi for i = 1, . . . , t is a band matrix with bandwidth 2 as the noise terms of two subsequent
time steps are correlated.

We consider again a linear approximation of the value function, that is, vt = φTt θ. Prior
knowledge about the parameter θ can be incorporated in the prior p(θ), which acts as a
regularizer and is usually set to N (0, I). GPTD infers the mean and covariance of the
Gaussian distribution of θ given the observations r0, . . . , rt and our beliefs. The mean value
corresponds to the maximum a-posteriori prediction and is equivalent to finding the solution
of the regularized linear regression problem

θt = arg min
θ
‖∆Φtθ − rt‖2Σ−1

t
+ ‖θ‖2, (33)

where rt = [r0, r1, . . . , rt]
T is a vector containing all observed rewards. The matrix ∆Φt =

[∆φ0, . . . ,∆φt]
T is the difference of features of all transitions with ∆φt = φt − γφt+1. The

solution of this problem can be formulated as

θt =
(
∆ΦtΣ

−1
t ∆ΦT

t + I
)−1

∆ΦtΣ
−1
t rt. (34)

At first glance, the solution is similar to the MSBE least-squares solution. However, the
noise terms are often highly correlated and, hence, Σ−1

t is not a diagonal matrix. We can
transform the regression problem in Equation (33) into a standard regularized least-squares
problem with i.i.d. sampled data points by a whitening transformation (for details see
Appendix B). We then see that the whitening transforms the reward vector rt into the vector
of the long term returns Rt where the hth elements corresponds to (Rt)h =

∑t
k=h γ

k−hrk.
Consequently, the mean prediction of GPTD is equivalent to regularized Monte-Carlo value-
function estimation (cf. Section 1.2) and minimizes the MSE from Equation (4) in the limit
of infinite observations. For finite amount of data, the prior on θ compensates the high
variance problem of Monte-Carlo estimation, but may also slow down the learning process.

The quantity in Equation (34) can be computed incrementally without storing ∆Φt

explicitly or inverting a n × n-matrix at every timestep by a recursive algorithm shown in
Algorithm 12. Its full derivation can be found in Appendix 2.1 of Engel (2005). The most
expensive step involves a matrix product of the covariance matrix P t ∈ Rn×n of θt and
∆φt+1. Thus, GPTD has a runtime complexity of O(n2).

Kalman temporal-difference learning (KTD) by Geist and Pietquin (2010) is another
probabilistic model very similar to GPTD. While it is based on the same assumptions of
Gaussian distributed random variables, it approaches the value estimation problem from a
filtering or signal processing perspective. KTD uses a Kalman Filter to track a hidden state,
which changes over time and generates the observed rewards at every timestep. The state
consists of the parameter to estimate θt and the value difference variables ∆vt,∆vt−1 with
∆vt = ṽt − φtθt of the current and last timestep. As in GPTD, the rewards are generated
from this state with Equation (32) resulting in the linear observation function g

rt = g(θt,∆vt,∆vt+1) = [φt − γφt+1]θt + ∆vt − γ∆vt+1.

KTD does not necessarily assume that a unique single parameter θ has created all rewards,
but allows the parameter to change over time (as if the environment is non-stationary).
More precisely, θt+1 ∼ N (θt,Σθ) is modeled as a random walk. As we focus on stationary
environments, we can set Σθ = 0 to enforce constant parameters and faster convergence.

833



Dann, Neumann and Peters

In this case, KTD and GPTD are identical algorithms for linear value function parametriza-
tion (cf. Algorithm 12). The graphical model in Figure 9 illustrates the similar assumptions
of both approaches. Besides KTD’s ability to deal with non-stationary environments, KTD
and GPTD differ mostly in the way they handle value functions that are non-linear in the
feature space. KTD relies on the unscented transform (a deterministic sample approximation
for nonlinear observation functions), while GPTD avoids explicit function parametrization
assumptions with kernels (cf. Section 2.3). Depending on the specific application and avail-
able domain knowledge, either a well-working kernel or a specific nonlinear parametrization
is easier to chose.

Both probabilistic approaches share the benefit of not only providing a parameter esti-
mate but also an uncertainty measure on it. However, as they optimize the mean squared
error similar to Monte Carlo value-function estimation, their estimates may suffer from
higher variance. The long-term memory effect originating from the consideration of all
future rewards also prevents off-policy learning as discussed by Geist and Pietquin (2010,
Section 4.3.2) and Engel (2005).

2.3 Feature Handling

The feature representation φ of the states has a tremendous influence, not only on the qual-
ity of the final value estimate but also on convergence speed. We aim for features that can
represent the true value function accurately and are as concise as possible to reduce compu-
tational costs and the effects of over-fitting. Many commonly used feature functions are only
locally active. Their components are basis functions which have high values in a specific
region of the state space and low ones elsewhere. For example, cerebellar model articulation
controllers (CMAC) cover the state space with multiple overlapping tilings (Albus, 1975),
also known as tile-coding. The feature function consists of binary indicator functions for each
tile. Alternatively, smoother value functions can be obtained with radial basis functions.
Such bases work well in practice, but often only if they are normalized such that ‖φ(s)‖1 = 1
for all states s ∈ S as discussed by Kretchmar and Anderson (1997). The performance of
many algorithms, including the regularization methods discussed in Section 2.3.2, can be
improved by using normalized features with zero mean and unit variance.

Local function approximators are limited to small-scale settings as they suffer from the
curse of dimensionality similar to exact state representations (cf. Section 1.2). When the
number of state dimensions increases, the number of features explodes exponentially and so
does the amount of data required to learn the value function. Therefore, recent work has
focused on facilitating the search for well-working feature functions. These efforts follow two
principled approaches: (1) features are either generated automatically from the observed
data or (2) the learning algorithms are adapted to cope with huge numbers of features
efficiently in terms of data and computation time. We briefly review the advances in both
directions in the following two sections.

2.3.1 Automatic Feature Generation

Kernel-based value function estimators represent the value of a state in terms of the similarity
of that state to previously observed ones, that is, at each time step the similarity to current
state is added as an additional feature. A well chosen kernel, that is, the distance or similarity

834



Policy Evaluation with Temporal Differences

measure, is crucial for the performance of kernel-based approaches, as well as an adequate
sparsification technique to prevent the number of features to grow unboundedly.

GPTD (Engel et al., 2003) and LSTD (Xu et al., 2005, known as Kernelized LSTD,
KLSTD) have been extended to use kernelized value functions. A similar approach was
proposed in the work of Rasmussen and Kuss (2003) where a kernel-based Gaussian process
is used for approximating value functions based on the Bellman Equation (2). This approach,
KLSTD and GPTD were unified in a model-based framework for kernelized value function
approximation by Taylor and Parr (2009). Jung and Polani (2006) introduced an alternative
online algorithm originating from least-squares support-vector machines to obtain the GPTD
value function estimate; however, it is limited to MDPs with deterministic transitions.

An alternative to kernel methods based on spectral learning was presented by Mahade-
van and Maggioni (2007). The authors proposed to build a graph-representation of the MDP
from the observations and chose features based on the eigenvector of the Graph-Laplacian.
Compared to location-based features such as radial basis functions, this graph-based tech-
nique can handle discontinuities in the value-function more accurately. In contrast, Menache
et al. (2005) assumes a fixed class of features, for example, RBFs, and optimizes only the
free parameters (e.g., the basis function widths) by gradient descent or by using the cross-
entropy optimization method (De Boer et al., 2010). Keller et al. (2006) uses neighborhood
component analysis, a dimensionality reduction techniques for labeled data, to project the
high-dimensional state space to a lower dimensional feature representation. They take the
observed Bellman errors from Equation (7) as labels to obtain features that are most ex-
pressive for the value function. The approaches of Parr et al. (2007), Painter-Wakefield
and Parr (2012a) and Geramifard et al. (2013, 2011) are based on the orthogonal matching
principle (Pati et al., 1993) and incrementally add features which have high correlation with
the temporal-difference error. The intuition is that those additional features enable the
algorithms to further reduce the temporal-difference error.

2.3.2 Feature Selection by Regularization

Value function estimators face several challenges when the feature space is high dimensional.
First, the computational costs may become unacceptably large. Second, a large number of
noise-like features deteriorates the estimation quality due to numerical instabilities and,
finally, the amount of samples required for a reliable estimate grows prohibitively. The
issues are particularly severe for least-squares approaches which are computationally more
involved and tend to over-fit when the number of observed transitions is lower than the
dimensionality of the features.

The problem of computational costs for second order methods can be addressed by
calculating the second order updates incrementally. For example, the parameter update of
incremental LSTD (iLSTD proposed by Geramifard et al., 2006a,b) is linear in the total
number of features (O(n) instead of O(n2) for standard LSTD) if only a very small number
of features is non-zero in each state. Most location based features such as CMAC or fixed-
horizon radial basis functions fulfill this condition.

Information theoretic approaches which compress extensive feature representations are
prominent tools in machine learning for reducing the dimensionality of a problem. Yet,
these methods are often computationally very demanding which limits their use in online

835



Dann, Neumann and Peters

Formulation Optimization Technique

LSTD with `2 f(θ) ∝ ‖θ‖22 g(ω) = 0 closed form solution (Bradtke
and Barto, 1996)

LSTD with `2,`2 f(θ) ∝ ‖θ‖22 g(ω) ∝ ‖ω‖22 closed form solution (Hoffman
et al., 2011)

LARS-TD f(θ) ∝ ‖θ‖1 g(ω) = 0 custom LARS–like solver
(Kolter and Ng, 2009)

LC-TD f(θ) ∝ ‖θ‖1 g(ω) = 0 standard LCP solvers (Johns
et al., 2010)

`1-PBR f(θ) = 0 (*) g(ω) ∝ ‖ω‖1 standard Lasso solvers (Geist
and Scherrer, 2011)

LSTD with `2,`1 f(θ) ∝ ‖θ‖22 g(ω) ∝ ‖ω‖1 standard Lasso solvers
(Hoffman et al., 2011)

Laplacian-based
reg. LSTD

f(θ) ∝ ‖LΦtθ‖22 g(ω) = 0 closed form solution (Geist
et al., 2012)

LSTD-`1 min t‖Aθ − b‖22 + µ‖θ‖1 standard Lasso solvers (Pires,
2011)

D-LSTD min ‖θ‖1 s.t. t‖Aθ − b‖∞ ≤ µ standard LP solvers (Geist
et al., 2012)

Table 2: Comparison of Regularization Schemes for LSTD. f and g are the regularization
terms in the nested problem formulation of LSTD (Equations 2.3.2 and 2.3.2).
Parameters µ control the regularization strength. (*) `1-PBR actually assumes
a small `2 regularization on the operator problem if the estimate of ΦTDΦ is
singular, which is usually the case for t < m.

reinforcement learning. Some information theoretic approaches are equivalent to a special
form of regularization. Regularization is a standard way to avoid over-fitting by adding
punishment terms for large parameters θ. The regularization point of view often leads to
computationally cheaper algorithms compared to information theory. Hence, there has been
increasing interest in adding different regularization terms to LSTD and similar algorithms
(cf. Table 2). As in supervised learning, the most common types of regularization terms are
`1 and `2-regularization, which penalize large `1 respective `2 norms of the parameter vector.
While `2-regularization still allows closed form solutions, it becomes problematic when there
are only very few informative features and a high number of noise-like features. Regularizing
with `2-terms usually yields solutions with small but non-zero parameters in each dimension,
which have low quality when there are many noise-like features. `1-regularization on the
other hand prevents closed form solutions, but is known to induce sparsity for the resulting
estimate of θ where only few entries are different from zero. Hence, `1-regularization implic-

836



Policy Evaluation with Temporal Differences

itly performs a feature selection and can cope well with many irrelevant features. Therefore,
it is well suited for cases where the number of features exceeds the number of samples.

Most regularization methods are derived from the nested OPE-FPE optimization formu-
lation of LSTD in Equations (13)–(14) where the regularization term is added either to the
FPE problem, to the OPE problem or in both problems3

θ̂ = arg min
θ
‖V θ − TV ω̂‖2D +

1

t
f(θ) and

ω̂ = arg min
ω
‖Φ(θ̂ − ω)‖2D +

1

t
g(ω).

Using the regularization term f(θ) corresponds to regularization before setting the fixpoint
solution in the OPE problem while enabling g(ω) regularizes after employing the fixpoint
solution. Using an `2-penalty in f(θ), that is, f(θ) = βf‖θ‖22 yields the solution θ̂ = (A+
βf t
−1I)−1b. This form of regularization is often considered as the standard regularization

approach for LSTD, since it is equivalent to initializingM0 = A−1
0 = β−1

f I in the recursive
LSTD algorithm (Algorithm 5). The posterior mean of GPTD also corresponds to LSTD
with an `2-regularization of the operator problem if both algorithms are extended with
eligibility traces (see the next section). In addition to the regularization of the operator
problem, Farahmand et al. (2008) and Hoffman et al. (2011) proposed an `2-penalty for
the fixpoint problem (i.e., g(ω) = βg‖ω‖22). There are still closed-form solutions for both
problems with `2-regularizations. However, the benefits of such regularization in comparison
to just using f(θ) still need to be explored.

Regularization with `1-norm was first used by Kolter and Ng (2009) in the operator
problem, that is, f(θ) = βf‖θ‖1 and g(ω) = 0. They showed that `1-regularization gives
consistently better results than `2 in a policy iteration framework and is computationally
faster for a large number of irrelevant features. Yet, using `1-regularization for the OPE
problem prevents a closed form solution and the resulting optimization problem called Lasso-
TD is non-convex. The least-angle regression algorithm (Efron et al., 2004) could be adapted
to solve this optimization problem which yielded the LARS-TD algorithm (Kolter and Ng,
2009). Johns et al. (2010) started from the Lasso-TD problem but reformulated it as a linear
complementarity problem (Cottle et al., 1992), for which standard solvers can be employed.
Additionally, this linear complementary TD (LC-TD) formulation allows using warm-starts
when the policy changes.4 Ghavamzadeh et al. (2011) showed that the Lasso-TD problem
has a unique fixpoint which means that LC-TD and LARS-TD converge to the same solution.
In addition, Ghavamzadeh et al. (2011) provided bounds on the MSE for this fixpoint.

The `1-Projected-Bellman-Residual (`1-PBR) method (Geist and Scherrer, 2011) puts
the regularization onto the fixpoint problem instead of the operator problem, that is, f(θ) =
0 and g(ω) = βg‖ω‖21. Hoffman et al. (2011) proposed a similar technique but with addi-
tional `2-penalty on the operator problem. Regularizing FPE problem with an `1 norm
allows for a closed form solution of the OPE problem. Using this solution in the regularized
FPE problem reduces to a standard Lasso problem and, hence, a standard Lasso solver

3. For notational simplicity, we slightly abuse notation and use the true OPE and FPE objectives instead
of the sample-approximations at time t.

4. Warm-starts are valuable in policy iteration: The solution of the last policy can be used to substantially
speed-up the computation of the value function for the current policy.

837



Dann, Neumann and Peters

can be employed instead of specialized solution as for the Lasso-TD problem. Furthermore,
Lasso-TD has additional requirements on the A-matrix of LSTD5 which generally only hold
in on-policy learning. Approaches with `1-regularized operator problems do not have this
limitation and only make mild assumptions in off-policy settings. Despite these theoretical
benefits, empirical results indicate comparable performance to the Lasso-TD formulation
and, hence, `1-regularization for the FPE problem is a promising alternative.

Petrik et al. (2010) propose using `1-regularization in the linear program formulation of
dynamic programming for finding the value function. However, their analysis concentrates
on the case where the transition kernel Pπ is known or approximated by multiple samples.
Another family of methods considers the linear system formulation of LSTDAθ = b directly.
Pires (2011) suggests to solve this system approximately with additional `1-regularization

θ̂ = arg min
θ
‖Aθ − b‖22 +

β

t
‖θ‖1.

Again, this problem is a standard convex Lasso problem solvable by standard algorithms
and applicable to off-policy learning. Dantzig-LSTD (D-LSTD, Geist et al., 2012) takes a
similar approach and considers

θ̂ = arg min
θ
‖θ‖1 subject to ‖Aθ − b‖∞ ≤

β

t
.

This optimization problem, a standard linear program, is motivated by the Dantzig selector
of Candes and Tao (2005) and can be solved efficiently. It is also well-defined for off-policy
learning. The aim of this problem is to minimize the sum of all parameters while making
sure that the linear system of LSTD is not violated by more than βt−1 in each dimension.

All regularization approaches so far have treated each parameter dimension equally.
However, it might be helpful to give the parameter components different weights. Johns and
Mahadevan (2009) suggested to use the Laplacian L of the graph-based representation of the
MDP as weights and add βL‖LΦθ‖2D as an additional term to the MSPBE. Investigating
the benefits of other problem-dependent weighted norms are left for future work. The
performance of all regularization schemes strongly depends on the regularization strength
β, which has to be specified by hand, found by cross-validation or set with the method of
Farahmand and Szepesvári (2011).

Instead of regularizing the value-function estimation problem, we could also estimate
the value function directly with LSTD in a lower-dimensional feature space. Ghavamzadeh
et al. (2010) showed in a theoretical analysis that projecting the original high-dimensional
features to a low-dimensional space with a random linear transformation (LSTD with Ran-
dom Projections, LSTD-RP) has the same effect as regularization. However, no empirical
results for this algorithm are given. Alternatively, features can be selected explicitly to
form the lower-dimensional space. Hachiya and Sugiyama (2010) proposed to consider the
conditional mutual information between the rewards and the features of observed states and
provided an efficient approximation scheme to select a good subset as features.

There have also been efforts to regularize Bellman residual minimization. Loth et al.
(2007) added an `1-penalty to the MSBE and proposed a gradient-based technique to find

5. The matrix has to be a P-matrix. P-matrices, a generalization of positive definite matrices, are square
matrices with all of their principal minors positive.

838



Policy Evaluation with Temporal Differences

the minimum incrementally. In contrast, Farahmand et al. (2008) regularized with an `2-
term to obtain the optimum in closed form. Gradient-based TD-algorithms are less prone
to over-fitting than least-squares approaches when few transitions are observed as the norm
of the parameter vector is always limited for a small number of updates. However, if the
observed transitions are re-used by running several sweeps of stochastic gradient updates,
regularization becomes as relevant as for the least-squares approaches. In addition, if a
large number of features are irrelevant for the state value, the gradient and especially its
stochastic approximation becomes less reliable. Therefore, there has been recent interest
in promoting sparseness by adding a soft-threshold shrinkage operator to gradient-based
algorithms (Painter-Wakefield and Parr, 2012b; Meyer et al., 2012) and reformulating the
regularized objective as a convex-concave saddle-point problem (Liu et al., 2012).

Despite the extensive work on regularization schemes for LSTD, many directions still
need to be explored. For example, many feature spaces in practice have an inherent struc-
ture. They may for instance consist of multiple coverings of the input space with radial basis
functions of different widths. There has been work on exploiting such structures with hier-
archical regularization schemes in regression and classification problems (Zhao et al., 2009;
Jenatton et al., 2010). These approaches divide the parameters into groups and order the
groups in a hierarchical structure (e.g., trees), which determines the regularization in each
group. While such schemes have been successfully applied to images and text documents, it
is an open question whether they can be adapted to work online and to which extent policy
evaluation tasks could benefit from hierarchical regularization.

2.4 Important Extensions

In the previous sections, temporal-difference methods have been introduced in their most
basic form to reveal the underlying ideas and avoid cluttered notation. We now introduce
two extensions which are applicable to most methods. First, we briefly discuss eligibility
traces for improving the learning speed by considering the temporal difference of more than
one timestep. Subsequently, importance-reweighting is presented which enables temporal-
difference methods to estimate the value function from off-policy samples. While the aim
of this paper is giving a survey of existing methods, we will also present an alternative
implementation of importance reweighting for LSTD and TDC which considerably decreases
the variance of their estimates. We focus on the purpose and the functionality of eligibility
traces and importance reweighting and, hence, illustrate their actual implementation only
for selected TD methods.

2.4.1 Eligibility Traces

Eligibility traces (e-traces, Sutton, 1988) are an efficient implementation of blending between
TD methods and Monte-Carlo sampling. To understand the purpose of this blending, it is
beneficial to first identify the different sources of errors in TD methods. While we derived the
update rules of the algorithms based on observed samples directly from the underlying cost
functions such as MSE, MSBE or MSPBE, we now make the sample-based approximations
of the objective functions explicit. These approximations at a given timestep t are denoted
by a subscript t, for example, MSEt, MSBEt or MSPBEt (see also Figure 5).

839



Dann, Neumann and Peters

Optimization Error, e.g.

θt 6= arg min MSPBEt(θ)

Objective Bias, e.g.
arg min MSE(θ) 6=
arg min MSPBE(θ)

Sampling Error, e.g.
arg min MSPBEt(θ) 6=
arg min MSPBE(θ)

MC

GPTD, KTD

LSTD, BRM

LSPE, FPKF

TD, GTD, GTD2, TDC, RG

Figure 10: Visualization of Conceptual Error Sources for Policy Evaluation Methods: The
sampling error is always present and accounts for the approximation of the cho-
sen objective function with observed samples. The higher the variance of these
samples the higher the sampling error. If the objective of the method is not di-
rectly the MSE, the method will suffer from the objective bias. The optimization
error is present for methods which do not find the minimum of the approximated
objective function directly, for example, gradient-based approaches. The posi-
tions of the boxes and their overlap with the shaded areas denote the extent, to
which the respective methods suffer from each error source. Note that the actual
amount of each error source is not visualized and varies drastically between differ-
ent MDPs, feature representations, policies and number of time steps. MSPBEt
denotes the approximation of the MSPBE with samples observed at timesteps 1
to t.

Error Decomposition. Leaving numerical issues aside, there are three conceptual sources of
errors as illustrated in Figure 10. Consider for example Monte-Carlo sampling, which does
not rely on temporal differences, but simply takes the observed accumulated reward as a
sample for each state. Hence, at time t, it finds the parameter estimate by computing the
minimum of

MSEt(θ) =
t∑
i=0

(
φTi θ −

t∑
k=i

γk−irk

)2

.

After infinitely many time steps, this sample-based approximation of the MSE converges to
the true error prescribed by Equation (4), which can also be written as

MSE(θ) =

∥∥∥∥∥Φθ −
∞∑
k=0

γkP kR

∥∥∥∥∥
2

D

. (35)

840



Policy Evaluation with Temporal Differences

The difference between the approximation and the true objective function, referred to as
sampling error, is present for all methods. TD methods avoid estimating γkP kR for k > 0
directly by replacing these terms with the value function estimate, that is, use bootstrapping
with the Bellman operator T . As the replaced terms cause the high variance, the sampling
error decreases at the price of a possible increase in the objective bias. This bias denotes the
difference between the minimum of the TD objective function (such as MSPBE or MSBE)
and the true minimum of the MSE. The regularization with priors in GPTD and KTD is
an alternative for reducing the variance at the price of a temporary objective bias. Descent
approaches such as the gradient methods, LSPE or FPKF do not compute the minimum
of the current objective approximation analytically, but only make a step in its direction.
Hence, they suffer from an additional optimization error. Although the errors caused by
each source do not add up, but may counterbalance each other, it is a reasonable goal to
try to minimize the effect of each source.

The magnitude of each type of error depends on the actual MDP, feature representation,
policy and number of observed transitions. For example, the objective bias of MSPBE or
MSBE vanishes for features that allow representing the true value function exactly. On
the other hand, a setup where the MDP and policy are deterministic has zero variance for
γkP kR and hence, introducing a bias with bootstrapping does not pay off. By interpolating
between TD methods and Monte-Carlo estimates, we can often find an algorithm where the
effects of sampling error and objective bias is minimized. The natural way to do so is to
replace γkP kR only for terms k > h in Equation (35), which yields the h-step Bellman
operator

T hV = TT . . . T︸ ︷︷ ︸
h times

V = γhP hV +

h−1∑
k=0

γkP kR.

As it considers the h future rewards, it is also referred to as h-step look-ahead (Sutton and
Barto, 1998). If we used the h-step Bellman operator to redefine the objective functions
(e.g., MSBE or MSPBE), we would need to observe the rewards rt, rt+1, . . . rt+h−1 and state
st+h before we could use st for estimation, that is, approximating T hV (st) with a sample
corresponds to

T hV (st) ≈ γhV (st+h) +
h−1∑
k=0

γkrt+k.

Hence, online estimation is not possible for large h. Eligibility traces circumvent this problem
and allow taking each sample into account immediately.

Eligibility Traces. Eligibility traces rely on the λ-Bellman operator Tλ defined as a weighted
average over all T k

Tλ = (1− λ)

∞∑
k=0

λkT k+1. (36)

The term (1−λ) is a normalization factor which ensures that all weights sum to 1. TD meth-
ods extended with eligibility traces minimize objectives redefined on this average Bellman

841



Dann, Neumann and Peters

operator such as the MSPBEλ objective

MSPBEλ(θ) = ‖Vθ −ΠTλVθ‖2D.

For λ = 0 only T 1 = T is used and, hence, MSPBE0 corresponds to the standard MSPBE.
Only considering T∞ in the objective corresponds to the MSE from Equation (35). Due
to the discount factor γ, there exists a K such that ‖T kV ‖ deviates less than a small
constant from ‖T∞V ‖ for all k > K. For λ = 1, the terms k > K in Equation (36) are
given infinitely more weight than k ≤ K and hence limλ→1 Tλ = T∞. We realize that the
MSPBE1 is equivalent to the MSE.

The basic idea of eligibility traces is to approximate the k-step Bellman operators in the
weighted sum with samples as soon as possible. Thus, at timestep t, state st is used for
T 1, state st−1 for T 2, st−2 for T 3 and so on. The special choice of exponentially decreasing
weights allows storing the previously observed states efficiently as a summed vector, a so-
called eligibility trace.

Implementation for TD Learning. To illustrate the efficient approximation of Tλ and eligi-
bility traces as compact storage of previously observed features, we consider the extension
of the standard TD learning algorithm for multi-step temporal differences. Its extended
update rule is given by

θt+1 = θt + αtδt

t∑
k=0

(λγ)kφt−k. (37)

The parameter λ puts more weight on more recent states. As shown by Sutton and Barto
(1998), the multi-step look-ahead (forward view), that is, considering future rewards in
the Bellman operator, can also be understood as propagating the temporal-difference error
backwards in time (often called the backward view), that is, updating the value of states
observed before. The update in Equation (37) can be implemented efficiently by computing
the sum

∑t
k=0(λγ)kφt−k incrementally. More precisely, the eligibility trace vector zt stores

the past activations of the features and is updated by

zt+1 = φt + λγzt.

Updating the eligibility trace in such a way ensures that zt+1 =
∑t

k=0(λγ)kφt−k for all
timesteps. The update rule of TD learning can then be written more concisely with eligibility
traces as

θt+1 = θt + αtδtzt+1.

The TD learning algorithm with a certain setting of λ is often referred to as TD(λ) where
TD(0) corresponds to the standard TD learning algorithm without eligibility traces.

For λ > 0, the algorithm also updates the value function at states sh with h < t, which
is reasonable, as the value at state st−1 is very likely to change when V (st) changes. In
contrast, TD(0) learning does not reuse its data-points and would need to observe state st−1

again to update the value function at state st−1. Subsequently, st−2 needs to be visited
again to update V (st−2), and so on. Hence, eligibility traces not only allow one to find the
best trade-off between objective bias and sampling error, but also reduce the optimization
error for gradient based approaches.

842



Policy Evaluation with Temporal Differences

0.0 0.2 0.4 0.6 0.8 1.0
λ

0.0

0.2

0.4

0.6

0.8

1.0

re
la

ti
ve

 a
vg

. 
R

M
S

E

0.001

0.100

0.200

0.300

0.400

0.600

0.700

1.000

N
o
is

e

(a) Perfect feature representation. If we can
approximate the value function perfectly, the
bias between MSPBE and MSE is zero, and
hence LSTD(0) should always be preferred.

0.0 0.2 0.4 0.6 0.8 1.0
λ

0.0

0.2

0.4

0.6

0.8

1.0

re
la

ti
ve

 a
vg

. 
R

M
S

E

0.001

0.100

0.200

0.300

0.400

0.600

0.700

1.000

N
o
is

e

(b) Impoverished features. Here, we have to
choose a trade-off between minimizing the vari-
ance of the objective function with LSTD(0)
and minimizing the bias of the objective func-
tion with LSTD(1). The optimal trade-off de-
pends on the amount of noise in the MDP.

Figure 11: Eligibility-Traces implement a trade-off between minimizing the MSE and the
MSPBE: Consider Example 2 for the description of the experimental setting.
Each graph shows the average of the root of MSE (RMSE =

√
MSE) of LSTD(λ)-

estimates over all timesteps. All curves are normalized by subtracting the min-
imum and dividing by the maximum. The plots show which λ settings produce
lowest errors for for varying amount of stochasticity in the system, where we
compare perfect and impoverished features.

Eligibility Traces for Other Algorithms. Most algorithms presented in this paper have been
extended to use eligibility traces (see Table 1 for an overview). LSTD (Boyan, 2002), TDC
(originally named GTD(λ) in Maei, 2011, but here referred to as TDC(λ) for clarity), FPKF
(Scherrer and Geist, 2011; Geist and Scherrer, 2013) and BRM (Scherrer and Geist, 2011;
Geist and Scherrer, 2013) have been extended to use multistep-lookahead with eligibility
traces. LSPE(λ) (Nedic and Bertsekas, 2003) has been formulated with traces from the
beginning. Eligibility traces have also been introduced in GPTD by Engel (2005).6 Recently,
eligibility-traces-versions of GTD2 and the residual-gradient algorithm named GTD2(λ)
and gBRM(λ) (Geist and Scherrer, 2013) have been developed. All the algorithms above
converge to a minimum of the MSPBEλ objective or respectively MSBEλ, which is defined
analogously.

Example 2 We illustrate the benefit of interpolating between MSPBE and MSE in two
experiments using e-traces and LSTD. Consider a discrete 40 state / 40 action MDP where
actions of the agent deterministically determine its next state. In the first experiment, we
use a perfect feature representation, that is, the value function can be estimated perfectly,

6. In contrast to other methods, the basic version without e-traces corresponds to GPTD(1) and not
GPTD(0).

843



Dann, Neumann and Peters

while, in the second experiment, we use an incomplete feature representation by projecting the
states linearly on a random 20-dimensional feature space. In both experiments, we evaluated
the performance of different λ values for different policies. We varied the stochasticity of the
policy, by interpolating between a greedy policy, which visits one state after another, and the
uniform policy, which transitions to each state with equal probability.

In Figure 11a, we can see the results for the perfect feature representation. Here, the
MSPBEλ does not cause any bias and its minimum coincides with the MSE solution. The
plots show the relative MSE values for different λ settings for different levels of stochasticity
in the system controlled by the linear blending coefficient between the greedy and uniform pol-
icy. The results confirm our intuition that using λ = 0 is always optimal for perfect features
as the MSPBE minimization is unbiased. As the policy is the only source of stochasticity in
the system, it behaves deterministically for the greedy policy and the performance is invariant
to the choice of λ.

The picture changes for the imperfect feature representation where the minimization of
the MSPBEλ causes a bias for the MSE (cf. Figure 11b). Setting λ = 1 performs best for the
greedy policy as there is again no variance on the returns, and, hence, we avoid the bias of
the MSPBEλ by directly minimizing the MSE. When gradually increasing the stochasticity of
the policy, the optimal value of λ decreases and finally reaches the value of 0. This example
illustrates that eligibility traces cause significant speed-ups of learning speed for LSTD(λ)
and that the best trade-off between objective bias and sampling error highly depends on the
intrinsic stochasticity of the MDP and policy. Hence, λ should be considered as an additional
hyper-parameter to optimize for each setting.

2.4.2 Generalization to Off-Policy Learning by Importance Reweighting

In previous sections, we aimed at estimating state values V π while observing the agent
following policy π. However, in many applications we want to know V π, but only have
observed samples with actions chosen by a different policy. Estimating the state values of a
different policy than the observed one is referred to as off-policy value-function estimation
(cf. Section 1.2). For instance, we could be following an exploration policy while we want to
know the value function of the optimal greedy policy. In a policy iteration scenario, we can
employ off-policy policy evaluation to re-use data points collected with previous policies.
Hence, off-policy value-function estimation is an important ingredient for efficiently learning
control policies. A different application of off-policy estimation is intra-option learning
(Sutton et al., 1998), where we can use samples from different options to update the value
functions of the single options.

Importance Reweighting. Leveraging temporal-difference methods for off-policy estimation
is based on the idea of importance sampling (cf. Glynn and Iglehart, 1989). Importance
sampling is a well-known variance-reduction technique in statistics. It is used to approximate
the expectation Ep[f(X)] of a function f with input X ∼ p, when we cannot directly sample
from p(X) but have access to samples from another distribution q(X). In this case, the
expectation Ep[f(X)] can be approximated by

Ep[f(X)] = Eq
[
p(X)

q(X)
f(X)

]
≈ 1

M

M∑
i=1

p(xi)

q(xi)
f(xi),

844



Policy Evaluation with Temporal Differences

ρ1 < 1

x1

ρ2 > 1

x2

ρ3 = 1

x3

x ∈ X

P
ro
ba

bi
lit
y
M
as
s

p(x)
q(x)

Figure 12: Importance Reweighting: Samples drawn from q(x) are re-weighted by the im-
portance weight ρ to behave like samples from p(x). Data points x1 in regions,
where q is larger than p occur more frequently in the sample from q than from p
and are down-weighted. In the orthogonal case x2, the weights are larger than
one and give under-represented samples more weight.

where x1, . . . xM are realizations of q. The correctness of this statement in the limitM →∞
can be easily verified by writing out the expectations. Each sample drawn from q is re-
weighted with importance weights ρi = p(xi)/q(xi) to approximate Ep[f(X)]. See Figure 12
for a visualization. The reweighting is only well-defined, if q(X) 6= 0 for all X with non-zero
p(X).

Limitations of Off-Policy Estimation. Similar to on-policy estimation, the following ob-
servation model for off-policy transitions is assumed: the departing state st is distributed
according to the state distribution d′ while the action at is sampled from the behavior policy
πB and the entering state st+1 from the MDP dynamics P. For on-policy value-function es-
timation, behavior and target policy are the same (πG = πB) and d′ matches the stationary
distribution of the MDP with the policy to evaluate, that is, d′ = dπB = dπG . However, if
the policies differ, the state distribution d′ = dπB 6= dπG is not the stationary distribution
according to πG in general. The Example from Section 1.2 in Figure 1 shows such a case.

All approaches to off-policy learning consider the difference of πG and πB for the actions
at but leave the problem of the different stationary distributions unaddressed. Hence, off-
policy value-function estimation does not yield the same result as on-policy estimation with
samples taken from πG, even after convergence. For example, the fixpoint of methods
minimizing the MSPBE in the off-policy case can be written as

MSPBE(θ) = ‖Vθ −ΠT πGVθ‖2DπB
.

Hence, the difference of estimating the values with respect to policy πG from off-policy or
on-policy samples is the norm of the objective function. The distance metric DπG and
DπB may differ substantially and therefore yield different estimates, which may be a critical

845



Dann, Neumann and Peters

limitation of off-policy estimation. In the following, we use d = dπB to avoid cluttered
notation.

In addition, the use of importance reweighting on the policies requires πB(a|s) > 0 for
all a ∈ A and s ∈ S with πG(a|s) > 0. Thus, each possible sample of the target policy
should be observable with the behavior policy. In practice, the behavior policy is often an
exploration policy and we aim for value-function estimation of a greedy policy. In this case,
the restriction πB(a|s) > 0 is not violated.

Let us now discuss specific extensions of TD learning and LSTD for off-policy learning.
While we consider the algorithms without eligibility traces for notational simplicity, the
derivations hold similarly for algorithms with multi-step predictions. In order to investigate
the long-term behavior of algorithms, we have to consider their expected estimates, that
is, their update rules in expectation of a transition (defined by the state distribution, the
policy and the transition distribution).

Off-Policy TD Learning. First, consider TD learning (Algorithm 1) with the expected
parameter update for on-policy learning according to πG given by EπG,P,dπG [δtφ(st)]. The
same updates can be obtained with samples from πB by rewriting

EπG,P,dπG [δtφ(st)] =
∑
st+1

∑
at

∑
st

p(st, at, st+1)δtφ(st)

=
∑
st+1

∑
at

∑
st

P(st+1|st, at)πG(at|st)dπG(st) δtφ(st)

≈
∑
st+1

∑
at

∑
st

P(st+1|st, at)πG(at|st)dπB (st) δtφ(st)

=
∑
st+1

∑
at

∑
st

P(st+1|st, at)πB(at|st)dπB (st)
πG(at|st)
πB(at|st)

δtφ(st)

= EπB ,P,dπB [ρtδtφ(st)].

The expectation w.r.t. the target policy πG turned into the expectation according to the
behavior policy πB by including the importance weight ρt = πG(at|st)/πB(at|st). Hence,
the off-policy update rule of TD learning is given by

θt+1 = θt + αtρtδtφ(st).

Note that on-policy learning can be treated as a special case with πG = πB and ρt = 1 for
all timesteps t. As we will discuss in the following convergence analysis, TD learning might
become unstable in off-policy learning. Other gradient methods have also been extended
with off-policy weights and do not suffer from this drawback. The Algorithm listings in
Appendix C already contain the off-policy weights for all gradient-based and least-squares
algorithms.

Convergence Analysis. TD learning may be unstable, when used with a sampling distri-
bution for the states dπB that differs from the stationary state distribution dπG induced by
the Markov model to evaluate PπG . Consider a batch gradient version of TD learning which

846



Policy Evaluation with Temporal Differences

uses the expected gradient instead of the stochastic one. Results from stochastic approxi-
mation theory guarantee that the TD learning algorithm converges if batch gradient descent
converges and vice versa. In addition, their fixpoints are identical. A batch-gradient step
can be written as

θk+1 =θk + αE[δtφt]

=θk + αE[(rt + γφTt+1θk − φTt θk)φt]
=θk + αΦTD (R+ γP πGΦθk −Φθk)

= (I + αATD)θk + αbTD, (38)

with ATD = ΦTD (γP πG − I) Φ and bTD = ΦTDR.
The iterative update rule of Equation (38) converges if all eigenvalues of the matrix ATD

have only negative real parts (Schoknecht, 2002). It can be shown that if D corresponds
to the stationary distribution which has been generated by P πG this condition is satisfied,
and hence, TD learning converges. However, this property of ATD is lost if D does not
correspond to the stationary distribution, that is, dπB 6= P πGdπB and, hence, convergence
can not be guaranteed for off-policy TD learning. Intuitively, TD learning does not converge
because there is more weight on reducing the error of the value function for the starting states
st of a transition than for the successor states st+1. Hence, the Bellman error in the successor
states might increase, which again affects the estimation of the target values for the next
parameter update. If d = P πGd, the successor states have the same probability of being
updated, and this problem is hence alleviated.

The second order equivalent of batch-gradient TD learning is LSPE. While both methods
can be derived from the same nested optimization problem, LSPE is known to converge for
off-policy policy evaluation. Hence, it is interesting to briefly look at the reason for this
difference. The expected update of LSPE can be obtained from Equations (29) and (30)
and is given by

θk+1 =θk + α(ΦTDΦ)−1ΦTD (R+ γP πGΦθk −Φθk)

= (I + αALSPE)θk + αbLSPE,

with ALSPE = (ΦTDΦ)−1ATD and bLSPE = (ΦTDΦ)−1bTD. We realize that LSPE scales
the TD update with the inverse of a positive definite matrix. This scaling ensures that
the matrix ALSPE stays negative definite and, hence, the update converges (Schoknecht,
2002). More intuitively, the second order term (ΦTDΦ)−1 normalizes the TD update by
the average feature activation, and, hence, overrides the problem that the successor states
st+1 have less probability mass than the starting states st of a transition.

Off-policy LSTD. We will now discuss how to adapt least-squares approaches for off-policy
learning. While we show the off-policy extension for the LSTD algorithm, other methods
follow analogously. LSTD relies on the estimates At and bt from Equations (25) and (26)
to converge to the true values A and b in Equation (24). In expectation, the estimates at

847



Dann, Neumann and Peters

time t can be written as

Ed,πG,P [At] = Ed

[
t∑
i=0

φi
(
φi − γEπG,P

[
φi+1

])T] and

Ed,πG,P [bt] = Ed,πG,P

[
t∑
i=0

φiri

]
.

We realize that the only parts which depend on the policy πG are the terms EπG,P
[
φi+1

]
and Ed,πG,P

[∑t
i=0φiri

]
. If a behavior policy πB is used instead of πG, these parts have to

be re-weighted which results in

Ed,πG,P [At] = Ed

[
t∑
i=0

φi

(
φi − γEπB ,P

[
πG(ai|si)
πB(ai|si)

φi+1

])T]
and

Ed,πG,P [bt] = Ed,πB ,P

[
t∑
i=0

πG(ai|si)
πB(ai|si)

φiri

]
.

For the sample-based implementation, we arrive at the off-policy parameter estimates of
LSTD proposed by Bertsekas and Yu (2009)

At =

t∑
i=0

φi[φi − γρiφi+1]T , bt =

t∑
i=0

φiρiri.

We refer to this off-policy reweighting as Standard Off-Policy Reweighting. Taking eligibility
traces into account and making use of the Sherman-Morrison formula (Equation 27), the
recursive off-policy version of LSTD, shown in Algorithm 5 in Appendix C, can be derived
(Scherrer and Geist, 2011; Geist and Scherrer, 2013).

The φiφ
T
i terms in At are not re-weighted since it is not necessary to add importance

weights to terms which do not depend on the policy for ensuring convergence to the desired
solution. However, as our experiments presented in Section 3.4 show, such an approach
suffers from a severe drawback. To illustrate the reason, consider the effective number of
samples used to calculate the different terms. The effective number of samples for calculating
the first term of At is always t while, for the second term, the effective number is % =

∑t
i ρi.

In expectation, % is equal to t and the expected estimate of A is unbiased. However, for
a specific sample-based realization, % will in general be different from t. As both terms
in At are not normalized by the number of samples used for the estimate, a big part of
the variance in estimating At will just come from the difference of % to t. Despite positive
theoretical analysis of the convergence properties of this reweighting strategy (Bertsekas and
Yu, 2009; Yu, 2010), our experiments reveal that for more complex problems, for example,
in continuous domains, the performance of LSTD with this type of reweighting breaks down
due to the drastically increased variance in At. Instead, the matrix At can be estimated
more robustly by using the importance weight for the whole transition, that is,

At =

t∑
i=0

ρiφi[φi − γφi+1]T , bt =

t∑
i=0

φiρiri.

848



Policy Evaluation with Temporal Differences

A recursive method based on these updates, LSTD Transition Off-Policy Reweighting (LSTD-
TO), is shown in Algorithm 6. Similar reweighting strategies can be formulated for LSPE
which yields LSPE-TO shown in Algorithm 8. To the best of our knowledge, using a
transition-based reweighting for LSTD and LSPE has not been introduced in the literature
so far, but is crucial for the performance of off-policy learning with least-squares methods.

3. Comparison of Temporal-Difference Methods

In this section, we compare the performance and properties of the presented policy eval-
uation methods quantitatively in various experiments. All algorithms were implemented
in Python. The source code for each method and experiment is available at http://
github.com/chrodan/tdlearn. In addition, further supplementary material is available
at http://www.ias.tu-darmstadt.de/Research/PolicyEvaluationSurvey.

In Section 3.1, we present the experimental setting including the benchmark tasks and the
evaluation process. Subsequently, the most important insights gained from the experimental
evaluation are discussed. Section 3.2 focuses on results concerning cost functions, Section 3.3
concerning gradient-based methods and Section 3.4 covers results regarding least-squares
methods.

3.1 Benchmarks

To evaluate the properties of policy evaluation methods under various conditions, we selected
a number of representative benchmark tasks with different specifications. We computed the
algorithms’ predictions with an increasing number of training data points, and compared
their quality with respect to the MSE, MSBE and MSPBE. These experiments are performed
on six different Markov decision processes, three with discrete and three with continuous
state space. Most experiments were performed both with on-policy and off-policy samples.
We also evaluated different feature representations which altogether resulted in the following
12 settings.

1. 14-State Boyan Chain

2. Baird Star Example

3. 400-State Random MDP On-policy

4. 400-State Random MDP Off-policy

5. Linearized Cart-Pole Balancing On-policy Imperfect Features

6. Linearized Cart-Pole Balancing Off-policy Imperfect Features

7. Linearized Cart-Pole Balancing On-policy Perfect Features

8. Linearized Cart-Pole Balancing Off-policy Perfect Features

9. Cart-Pole Swingup On-policy

10. Cart-Pole Swingup Off-policy

849

http://github.com/chrodan/tdlearn
http://github.com/chrodan/tdlearn
http://www.ias.tu-darmstadt.de/Research/PolicyEvaluationSurvey


Dann, Neumann and Peters

2 4 6 8 10 12 14
State

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

F
e
a
tu

re
 A

ct
iv

a
ti

o
n

Figure 13: Feature Activation for the Boyan chain benchmark. The state space is densely
covered with triangle-shaped basis functions.

x

a

ψ

Figure 14: The Cart-Pole System. The pendulum has to be balanced around the peak by
moving the cart.

11. 20-link Linearized Pole Balancing On-policy

12. 20-link Linearized Pole Balancing Off-policy

3.1.1 Boyan’s Chain (Benchmark 1)

The first benchmark MDP is the classic chain example from Boyan (2002). We considered a
chain of 14 states S = {s1, . . . , s14} and one action. Each transition from state si results in
state si+1 or si+2 with equal probability and a reward of −3. If the agent is in the second
last state s13, it always proceeds to the last state with reward −2 and subsequently stays in
this state forever with zero reward. A visualization of a 7-state version of the Boyan chain
is given in Figure 6. We chose a discount factor of γ = 0.95 and four-dimensional feature
description with triangular-shaped basis functions covering the state space (Figure 13). The
true value function, which is linearly decreasing from s1 to s14, can be represented perfectly.

3.1.2 Baird’s Star Example (Benchmark 2)

Baird’s star (Baird, 1995) is a well known example for divergence of TD learning in off-
policy scenarios. It is often referred to as “star” MDP as its states can be ordered as a
star, one central state and six states at the edges, as shown in Figure 15. There are two

850



Policy Evaluation with Temporal Differences

s1 s2
1

1
6

s3

1

1
6s4

1

1
6

s5
1

1
6

s6

1

1
6

s7

1

1
6

Features:

φ(s1) = e1 + 2e7 = [1 0 0 0 0 0 0 2]T

φ(si) = 2ei + [0 0 0 0 0 0 0 1]T

for i = 2 . . . 7

Policies:

πB(· |si) =

{
1
7 for - -
6
7 for —

, for i = 1 . . . 7

πG(· |si) =

{
1 for - -
0 for —

, for i = 1 . . . 7

1

Figure 15: Baird’s Star: 7-State Star MDP, a classic off-policy example problem from Baird
(1995) in which TD learning diverges for all step-sizes. While the label of a
transition denotes its probability, the reward is always zero. The vector ei denotes
the i-th unit vector.

actions. The solid action chooses one of the solid edges with equal probability and the
dashed action always chooses the edge to the central state. We set the discount factor
γ = 0.99 and assume zero reward for each transition. Hence, the true value function is zero
in every state for all policies. The evaluation policy always takes the dashed action, and
hence, goes to the central state. However, the behavior policy, that is, the policy used to
generate the samples, chooses the solid action with probability 6/7. The feature vector has
eight components. For the outside-states si, i = 2, . . . , 7, the i-th entry has value 2 and the
last entry is 1 (cf. Figure 15). All other entries are zero. The central state sets the first
component of φ to 1 and the last component to 2. All other entries are again zero. We used
θ0 = [1 1 1 1 1 1 10 1]T as initial parameter vector for the methods that allow specifying a
start estimate. Although the true value function is zero everywhere, TD-learning is known
to diverge for this initialization of the parameter-vector.

3.1.3 Randomly Sampled MDP (Benchmarks 3 and 4)

To evaluate the prediction in MDPs with more states and of a less constructed nature, we
used a randomly generated discrete MDP with 400 states and 10 actions. The transition
probabilities were distributed uniformly with a small additive constant to ensure ergodicity
of the MDP, that is,

P(s′|a, s) ∝ pass′ + 10−5, pass′ ∼ U [0, 1].

The data-generating policy, the target policy as well as the start distribution are sampled in
a similar manner. The rewards are uniformly distributed, that is, r(si, aj) ∼ U [0, 1]. Each
state is represented by a 201-dimensional feature vector, 200 dimensions which have been
generated by sampling from a uniform distribution and one additional constant feature.
The MDP, the policies and the features are sampled once and then kept fix throughout
all experiments (all independent trials were executed in the same setting). As behavior-
and target-policy were generated independently and differ substantially for Benchmark 4,

851



Dann, Neumann and Peters

the algorithms were tested in a difficult off-policy setting. The discount factor is set to
γ = 0.95.

3.1.4 Linearized Cart-Pole-Balancing (Benchmarks 5- 8)

The Cart-Pole Balancing problem is a well known benchmark task which has been used
for various reinforcement learning algorithms. As we want to know the perfect feature
representation also for a continuous system, we linearized cart-pole dynamics and formulated
the task as a linear system with a quadratic reward function and Gaussian noise. Linear-
Quadratic-Gaussian (LQG) systems are one of the few continuous settings for which we can
compute the true value function exactly. The perfect features for the value function of a
LQG system are all first and second order terms of the state vector s.

Figure 14 visualizes the physical setting of the benchmark. A pole with mass m and
length l is connected to a cart of mass M . It can rotate 360◦ and the cart can move right
and left. The task is to balance the pole upright. The state s = [ψ, ψ̇, x, ẋ]T consists of
the angle of the pendulum ψ, its angular velocity ψ̇, the cart position x and its velocity ẋ.
The action a acts as a horizontal force on the cart. The system dynamics are given by (cf.
Deisenroth, 2010, Appendix C.2 with ψ = θ + π)

ψ̈ =
−3mlψ̇2 sin(ψ) cos(ψ) + 6(M +m)g sin(ψ)− 6(a− bψ̇) cos(ψ)

4l(M +m)− 3ml cos(ψ)
and (39)

ẍ =
−2mlψ̇2 sin(ψ) + 3mg sin(ψ) cos(ψ) + 4a− 4bψ̇

4(M +m)− 3m cos(ψ)
, (40)

where g = 9.81m
s2

and b is a friction coefficient of the cart on the ground (no friction
is assumed between pole and cart). If the pole is initialized at the upright position and
the policy is keeping the pole around this upright position, the system dynamics can be
approximated accurately by linearizing the system at ψ = 0. In this case, the linearization
yields sinψ ≈ ψ, ψ̇2 ≈ 0 and cosψ ≈ 1 and we obtain the linear system

st+1 =


ψt+1

ψ̇t+1

xt+1

ẋt+1

 =


ψt
ψ̇t
xt
ẋt

+ ∆t


ψ̇t

3(M+m)ψ−3a+3bψ̇
4Ml−ml
ẋt

3mgψ+4a−4bψ̇
4M−m

+


0
0
0
z

 ,
where the time difference between two transitions is denoted by ∆t = 0.1s and z is Gaussian
noise on the velocity of the cart with standard deviation 0.01. We set the length of the pole
l to 0.6m, the mass of the cart M to 0.5kg, the mass of the pole m to 0.5kg and the friction
coefficient of b to 0.1N(ms)−1. The reward function is given by

R(s, a) = R(ψ, ψ̇, x, ẋ, a) = −100ψ2 − x2 − 1

10
a2,

that is, deviations from the desired pole position are strongly penalized, while large offsets of
the cart and the magnitude of the current action cause only minor costs. As the transition
model is a Gaussian with a linear mean-function and the reward function is quadratic, the ex-
act value function and optimal policy can be computed by dynamic programming (Bertsekas

852



Policy Evaluation with Temporal Differences

ψ1

ψ2

ψ3

a1

a2

a3

Figure 16: Balancing setup of a 3-link actuated pendulum. Each joint i is actuated by the
signal ai. The state of each joint is denoted by its angle ψi against the vertical
direction. The pole is supposed to be balanced upright, that is, all ψi should be
as close to 0 as possible.

and Tsitsiklis, 1996). It is well known that the features of the true value function are given by
a constant plus all squared terms of the state7 φp(s) = [1, s2

1, s1s2, s1, s3, s1s4, s
2
2, . . . , s

2
4]T ∈

R11. The optimal policy π(a|s) = N (a|βTs, σ2) is linear. The target policy πG is set to the
optimal policy, that is, the gains β are obtained by dynamic programming and the explo-
ration rate σ2 is set to a low noise level. The data-generating policy πB uses the same β
but a higher noise level in the off-policy case.

To additionally compare the algorithms on a approximate feature representation, we used
φa(s) = [1, s2

1, s
2
2, s

2
3, s

2
4]T ∈ R5 as feature vector in Benchmarks 5 and 6. All evaluations

were generated with a discount factor of γ = 0.95.

3.1.5 Linearized 20-link Balancing (Benchmark 11 and 12)

To evaluate the algorithms on systems with higher-dimensional state- and action-spaces,
we considered a 20-link actuated inverted pendulum. Each of the 20 rotational joints are
controlled by motor torques a = [a1, . . . a20]T to keep the pendulum balanced upright. See
Figure 16 for a visualization of a pendulum with 3 links. The difference in the angle to the
upright position of link i is denoted by ψi. The state space is 40 dimensional and consists
of the angles of each joint q = [ψ1, . . . , ψ20]T and the angular velocities q̇ = [ψ̇1, . . . , ψ̇20]T .

The derivation of the linearized system dynamics can be found in the supplementary
material and yields[

qt+1

q̇t+1

]
=

[
I ∆t I

−∆t M−1U I

] [
qt
q̇t

]
+ ∆t

[
0

M−1

]
a + z,

7. The linear terms disappear as we have linearized at s = 0.

853



Dann, Neumann and Peters

where ∆t = 0.1s is the time difference of two time steps and M is the mass matrix in
the upright position. Its entries are computed by M ih = l2(21 −max(i, h))m with length
l = 5m and mass m = 1kg of each link. The matrix U is a diagonal matrix with entries
U ii = −gl(21 − i)m. Each component of z contains Gaussian noise. Again, we used a
quadratic reward function

R(q, q̇,a) = −qTq,

which penalizes deviations from the upright position. The target policy is given by the
optimal policy (obtained by dynamic programming) with Gaussian noise and analogously
the behavior policy but with increased noise level for the off-policy estimation case. A dis-
count factor of γ = 0.95 and a 41-dimensional approximate feature representation φ(q, q̇) =
[ψ2

1, ψ
2
2, . . . , ψ

2
20, ψ̇

2
1, ψ̇

2
2, . . . , ψ̇

2
20, 1]T were used in the experiments.

3.1.6 Cart-Pole Swing-up (Benchmarks 9 and 10)

Besides discrete and linear systems, we also include a non-linear problem, the cart-pole
swing-up task. The non-linear system dynamics from Equations (39) and (40) were used
and the constants were set to the same values as in the linearized task. The reward function
directly rewards the current height of the pole and mildly penalizes offsets of the cart

R(s, a) = R(ψ, ψ̇, x, ẋ, a) = cos(ψ)− 10−5|x|.

We used an approximately optimal policy learned with the PILCO-Framework (Deisenroth
and Rasmussen, 2011) and added Gaussian noise to each action a. The resulting policy
manages to swing-up and balance the pendulum in about 70% of the trials, depending on
the initial pole position which is sampled uniformly. Each episode consists of 200 timesteps
of 0.15s duration. A normalized radial basis function network and an additional constant
feature has been chosen as feature representation. To obtain a compact representation, we
first covered the four-dimensional state space with a grid of basis functions and then removed
all features for which the summed activations were below a certain threshold. Thus, we
omitted unused basis functions which are located in areas of the state space, which are not
visited. The resulting feature vector had 295 dimensions.

3.1.7 Hyper-Parameter Optimization

The behavior of policy evaluation methods can be influenced by adjusting their hyper-
parameters. We set those parameters by performing an exhaustive grid-search in the hyper-
parameter space minimizing the MSBE (for the residual-gradient algorithm and BRM) or
MSPBE. Optimizing for MSBE or MSPBE introduces a slight bias in the choice of the
optimal parameters. For example, smaller value of λ for the eligibility traces are preferred
as small values of λ as the objective bias is not taken into account. However, as opposed to
the MSE, these objectives can be computed without knowledge of the true values, and, hence,
can be evaluated also in practice on a small set of samples. We evaluated the algorithms
for an increasing number of observed time steps and computed a weighted average over the
errors of all considered time steps to obtain a single score per trial. We increased the weights
from 1 for the first to 2 for the last estimate and therefore put emphasis on a good final value
of the estimates but also promoted fast convergence. The scores of three independent trials

854



Policy Evaluation with Temporal Differences

Parameter Evaluated Values

α 2 · 10−4, 5 · 10−4, 10−3, 0.002, . . . , 0.009, 0.01,
0.02, . . . , 0.09, 0.1, 0.2, 0.3, 0.4, 0.5

αLSPE 0.001, 0.01, 0.1, 0.3, 0.5, 0.7, 0.8, 0.9, 1

αFPKF 0.01, 0.1, 0.3, 0.5, 0.8, 1

βFPKF 1, 10, 100, 1000,

τFPKF 0, 500, 1000

µ 10−4, 10−3, 10−2, 0.05, 0.1, 0.5, 1, 2, 4, 8, 16

λ 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

ε 105, 103, 102, 10, 1, 0.1, 0.01

ζ 0.01, 0.02, . . . 0.09, 0.1, 0.2, . . . , 0.9, 1, 5, 10, 30

η 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 1.5

Table 3: Considered values in the grid-search parameter optimization for the algorithms
listed in Table 4.

were averaged to obtain a more stable cost function during hyper-parameter grid-search.
Table 4 provides a listing of all considered algorithms with their hyper-parameters. Each
parameter in Table 4 is evaluated in the grid-search at the values listed in Table 3.

All shown results are averages over 50 independent trials for continuous MDPs or 200
trials for discrete MDPs, if not stated otherwise. For discrete and linear continuous systems,
the MSBE / MSPBE / MSE values were calculated exactly, whereas the stationary state
distribution dπ is approximated by samples. For the non-linear continuous system, also
the expectations inside the MSBE and MSPBE were approximated by samples while the
true value function was estimated by exhaustive Monte-Carlo roll-outs.8 We often used the
square-root of costs to present results in the following, which are denoted by RMSE, RMSBE
or RMSPBE.

3.1.8 Normalization of Features

Two types of features were used in the continuous environments, the squared terms of
the state s in the linear case, and a radial basis function network in the non-linear case.
Both representations were normalized. For the squared terms, we subtracted the mean
feature vector and divided by the standard deviation of the individual features. Hence, each
feature was normalized to have zero-mean and unit variance. For the radial basis function
representation, we always divided the activations of the radial basis functions by their sum,

8. Ten roll-outs were used for each sample of the stationary distribution. We compared the Monte-Carlo
estimates from ten roll-outs against estimates from 20 roll-outs on a small subset of samples but did
not observe significant differences. Due to the high computational effort, we therefore settled for ten
roll-outs per state.

855



Dann, Neumann and Peters

(A) residual-gradient (RG)
algorithm
• constant step-sizes αt = α

(B) RG algorithm with double
samples (RG DS)
• constant step-sizes αt = α

(C) TD(λ) learning
• constant step-sizes αt = α
• bootstrapping trade-off λ

(D) TD learning decreasing
steps
• diminishing step-sizes
αt = ζt−η

(E) GTD
• constant step-sizes αt = α
• second step-size βt = αµ

(F) GTD2
• constant step-sizes αt = α
• second step-size βt = αµ

(G) TDC(λ)
• constant step-sizes αt = α
• second estimate step-size
βt = αµ
• bootstrapping trade-off λ

(H) LSTD(λ)
• `2 regularization ε
• bootstrapping trade-off λ

(I) LSTD(λ)-TO
• `2 regularization ε
• bootstrapping trade-off λ

(J) LSPE(λ)
• constant step-sizes αt = αLSPE
• bootstrapping trade-off λ

(K) LSPE(λ)-TO
• constant step-sizes αt = αLSPE
• bootstrapping trade-off λ

(L) FPKF(λ)
• constant step-sizes

αt =

{
αFPKF

βFPKF
βFPKF+t for τFPKF ≤ t

0 otherwise
• bootstrapping trade-off λ

(M) BRM
• `2 regularization ε
• bootstrapping trade-off λ

(N) BRM with double samples (BRM DS)
• `2 regularization ε

Table 4: Overview of all considered algorithms with their hyper-parameters. As GPTD(λ)
is equivalent to LSTD(λ) with `2 regularization, it is not included explicitly.

that is, the sum of their activations is always 1. Since the feature function includes an
additional constant feature 1, the total activation for each state s is ‖φ(s)‖1 = 2. Features
in discrete settings were not normalized.

3.2 Insights on the Algorithms-Defining Cost Functions

The objective function of the policy evaluation algorithm determines its fixpoint, and, hence,
largely influences the final quality of the predictions. As discussed in Section 2.1, only few
theoretical results such as loose bounds could be derived. Additionally, constructed examples
show that the quality of fixpoints with respect to the mean-squared error highly depends on
the problem setting. Therefore, empirical comparisons of the MSTDE, MSBE and MSPBE
fixpoints for common problems with different challenges are of particular interest.

Message 1 Empirically, the magnitudes of the biases of different objective functions with
respect to the MSE fixpoint are: bias(MSTDE) ≥ bias(MSBE) ≥ bias(MSPBE).

856



Policy Evaluation with Temporal Differences

bias of
MSTDE MSBE MSPBE

1. 14-State Boyan Chain 1.93 0.06 0.10
2. Baird Star Example 0.00 0.00 0.03

3. 400-State Random MDP On-policy 0.06 0.04 0.04
4. 400-State Random MDP Off-policy 0.06 0.08 0.05

5. Lin. Cart-Pole Balancing On-pol. Imp. Feat. 4.52 3.80 2.60
6. Lin. Cart-Pole Balancing Off-pol. Imp. Feat. 4.37 3.82 2.47
7. Lin. Cart-Pole Balancing On-pol. Perf. Feat. 1.92 0.05 0.03
8. Lin. Cart-Pole Balancing Off-pol. Perf. Feat. 1.94 0.13 0.04

9. Cart-Pole Swingup On-policy 3.83 3.82 1.99
10. Cart-Pole Swingup Off-policy 4.28 4.30 2.17

11. 20-link Lin. Pole Balancing On-pol. 7.71 7.45 4.27
12. 20-link Lin. Pole Balancing Off-pol. 0.08 0.08 0.04

Table 5: Mean squared error values of fixpoints of other cost-functions: The fixpoints are
estimated by the prediction of LSTD, BRM or BRM with double samples after
convergence. The MSPBE has the lowest bias in almost all experiments.

Table 5 shows the observed MSE value of each fixpoint for every benchmark problem. We
estimated the MSBE, MSTDE and MSPBE fixpoints by running either the Bellman residual
minimization algorithm with or without double sampling or LSTD until convergence (up to a
certain accuracy, without eligibility traces). While this procedure introduces approximation
errors, which are not entirely neglectable, it still allows us to compare the fixpoints of the
cost functions. We ensured that regularization did not impair with the results by comparing
the fixpoint estimations for different regularization parameters.

The results confirm the findings of Scherrer (2010) on discrete MDPs. The MSPBE
fixpoint yields a lower MSE than the MSBE in all continuous experiments. MSTDE and
MSBE are observed to generate substantially inferior predictions, often with errors almost
twice as big. While the MSTDE usually yields the worst predictions, the difference to the
MSBE depends on the amount of stochasticity in each transition. For example, both are
almost identical on the swing-up task due to low noise in the policy and the MDP. While the
MSPBE and MSBE fixpoints are identical to the MSE fixpoint for experiments with perfect
feature representations (up to numerical issues, Benchmarks 1,2,7,8), the MSTDE fixpoint is
often substantially different (Benchmarks 1,7,8). The problem of a potential dramatic failure
of the MSPBE solution, as sketched by Scherrer (2010), was not encountered throughout all
evaluations.

Message 2 Optimizing for the MSBE instead of MSTDE by using double samples introduces
high variance in the estimate. Particularly, Bellman residual minimization requires stronger
regularization which results in slower convergence than relying on one sample per transition.

The objective function does not only determine the objective bias but also affects the
sampling error (see Figure 10). Using double samples, that is, optimizing for MSBE instead
of MSTDE, decreases the objective bias, however, our experiments show that the second

857



Dann, Neumann and Peters

0 1k 2k 3k 4k 5k 6k 7k 8k
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

√ M
S
B
E

BRM DS
RG DS

RG
BRM

Figure 17: Comparison of double-sampling for BRM and the residual-gradient algorithm in
systems with high variance (4. 400-State Random MDP Off-policy). The error
bars indicating standard deviation of BRM with double-sampling (BRM DS) are
omitted for clarity.

sample per transition is not the only price to pay. To determine whether the sampling error
for the two objectives is different, we compared the online performance of residual-gradient
algorithm (RG) and Bellman residual minimization (BRM) with or without double sampling
(DS). We have observed that double-sampling variants converge significantly slower, that
is, their predictions have higher variance. The effect is particularly present in MDPs with
high variance such as the random discrete MDPs, see Figure 17. Double-sampling algorithms
require stronger regularization and therefore converge slower. Bellman residual minimization
suffers more from this effect than the residual-gradient algorithm.

Message 3 Interpolating between the MSPBE/MSTDE and the MSE with eligibility traces
can improve the performance of policy evaluation.

In Example 2 in Section 2.4.1, we illustrated the benefits of eligibility traces with a specially
tailored MDP for which we could control its stochasticity easily. The question remains
whether the interpolation between the MSE and MSPBE is also useful for noise levels in
MDPs encountered in practice. Is the noise so large that the variance is always the domi-
nant source of error or does reducing the bias with eligibility traces pays off? We therefore
compared the MSE of LSTD(λ) and TD(λ) predictions for different λ values on several
benchmark tasks. Representative results of LSTD, shown in Figure 18b, confirm that eligi-
bility traces are of no use if no bias is present in the MSPBE due to perfect features. The
same holds for systems with large stochasticity such as in the randomly sampled discrete
MDP shown in Figure 18c. Yet, interpolating between the MSPBE and MSE boosts the
performance significantly if the MSPBE introduces a bias due to an imperfect feature repre-
sentation and the variance of the MDP is not too high. Such behavior is shown in Figure 18a,
where we used the approximate features instead of the perfect feature representation.

Similar to LSTD, TD learning can be improved by eligibility traces as shown for the
linearized cart pole balancing benchmark with imperfect features in Figure 19a. Best pre-

858



Policy Evaluation with Temporal Differences

0.0 0.2 0.4 0.6 0.8 1.0
λ

-3.0

-1.65

-0.3

1.05

2.4

3.75

5.1

lo
g(
ǫ)

(a) Cart-Pole Balancing Imp. Feat.
Off-Policy (6.)

0.0 0.2 0.4 0.6 0.8 1.0
λ

(b) Pole Balancing Perf. Feat.
Off-Policy (8.)

0.0 0.2 0.4 0.6 0.8 1.0
λ

(c) Discrete Random MDP
On-Policy (3.)

Figure 18: Hyper-parameter space of LSTD(λ). Each point is the logarithm of the averaged
MSE. Darker colors denote low errors, while white indicates divergence. The
colormaps are log log-normalized, that is, the absolute difference in the dark
regions are smaller than those in the bright areas. The regularization parameter
ε is plotted logarithmically on the vertical axis and the eligibility traces parameter
λ on the horizontal one.

dictions are obtained with 0.1 < λ < 0.5 depending on the step-size α. Yet, different to
LSTD, TD learning also benefits from eligibility traces for perfect features (see Figure 19b).
They speed up learning by reducing the optimization error of gradient-based approaches
(cf. Figure 10) and make the algorithms more robust to the choice of the step-size. These
benefits are also present in systems with high stochasticity as Figure 19c indicates. While
eligibility traces diminishes the prediction quality of LSTD in such highly stochastic systems,
TD learning works best for all λ settings as long as the step-size is set appropriately.

3.2.1 Double Sampling vs. Eligibility Traces

Both, double sampling and eligibility-traces, can be used to reduce the bias of the MSTDE
objective at the price of higher variance. However, which approach works better in practice?
To shed some light on this matter, we compared BRM with and without double sampling
and BRM with eligibility traces. The results for the cart-pole balancing task with imperfect
features (Benchmark 5) are shown in Figure 20. We chose the λ-parameter such that both
approaches have the same convergence speed, that is, comparable variance. The plot shows
that eligibility traces can reduce the bias of the MSTDE more than double sampling at the
same increase of variance.

3.2.2 MSPBE vs. MSE Performance

During our evaluation, we often made the interesting observation that a prediction with
significantly lower MSPBE than another prediction does not necessarily have a significantly
lower MSE. See Figure 21 for such an example, which shows the MSE and MSPBE of
predictions for the randomly sampled discrete MDP (Benchmark 3). The performance of

859



Dann, Neumann and Peters

0.0 0.2 0.4 0.6 0.8 1.0
λ

-4.0

-3.7

-3.4

-3.1

-2.8

-2.5

-2.2

lo
g(
α
)

(a) Cart-Pole Balancing Imperf. Feat. Off-
Policy (6)

0.0 0.2 0.4 0.6 0.8 1.0
λ

-4.0

-3.67

-3.34

-3.01

-2.68

-2.35

-2.02

lo
g(
α
)

(b) Cart-Pole Balancing Perf. Feat. On-Policy
(7)

0.0 0.2 0.4 0.6 0.8 1.0
λ

-4.0

-3.58

-3.16

-2.74

-2.32

-1.9

-1.48

lo
g(
α
)

(c) Discrete Random MDP On-Policy (3)

0.0 0.2 0.4 0.6 0.8 1.0
λ

-3.0

-2.55

-2.1

-1.65

-1.2

-0.75

-0.3

lo
g(
α
)

(d) Boyan Chain (1)

Figure 19: Hyper-parameter space of TD(λ). The color of each point represents the averaged
MSE. Darker colors are denoted to low errors, while white indicates divergence.
The colormaps are log log-normalized, that is, the absolute difference in the dark
regions are smaller than those in the bright areas.

860



Policy Evaluation with Temporal Differences

0.0 500.0 1.0k 1.5k 2.0k 2.5k 3.0k 3.5k 4.0k
Timesteps

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

√ M
S
E

LSTD
BRM DS

BRM(0)
BRM(0.8)

Figure 20: Comparison of bias reduction with double-sampling or eligibility traces for BRM.
Eligibility traces introduce less or equal variance than double-sampling and de-
crease the bias more than double-sampling for linearized cart-pole balancing with
imperfect features. Still, LSTD produces less biased predictions at the same level
of variance.

0 1k 2k 3k 4k 5k 6k 7k 8k
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

√ M
S
P
B
E

400 State Random MDP On-Policy

GTD
TD

TDC
LSTD

RG

0 1k 2k 3k 4k 5k 6k 7k 8k
Timesteps

0

2

4

6

8

10

12

14

√ M
S
E

400 State Random MDP On-Policy

GTD
TD

TDC
LSTD

RG

Figure 21: Difference between MSE- and MSPBE-values of the same predictions on the
random discrete MDP. Differences w.r.t. MSPBE are not always present in the
MSE (see the RG performance).

LSTD and TDC or TD is very different with respect to the MSPBE but they perform
almost identically w.r.t. the MSE. While this observation does not always hold (compare
for example RG and LSTD), we experienced similar effects in many experiments including
continuous MDPs.

3.3 Results on Gradient-based Methods

In this section, we present the most important observations for gradient-based methods.

861



Dann, Neumann and Peters

Message 4 Normalization of the features is crucial for the prediction quality of gradient-
based temporal-difference methods.

Throughout all experiments, we observed that normalizing the feature representation im-
proves, or least does not harm, the performance of all temporal-difference methods. However,
for gradient-based approaches, feature normalization is crucial for a good performance. Fea-
tures can be normalized per time step, for example, all components of the feature vector φt
sum up to one, or per dimension, for example, each feature is shifted and scaled such that it
has mean zero and variance one. Per-time-step normalization is, for example, typically used
in radial basis function networks (see Benchmark 11 and 12) to ensure that each time step
has the same magnitude of activation and consequently all transition samples have the same
weight. As such, its effect resembles that of using natural gradients (Amari, 1998; a discus-
sion of the relation between using the Hessian and natural gradients is provided by Roux
and Fitzgibbon, 2010). Since the gradient varies less for different states with per-time-step
normalization, the actual distribution of states is less important and the estimate becomes
more robust for finitely many samples.

Per-dimension normalization gives each feature comparable importance. Under the as-
sumption that the value function changes similarly fast in each feature dimension, per-
dimension normalization causes the Hessian matrix to become more isotropic. It has there-
fore an effect similar to using the inverse of the Hessian to adjust the gradient as least-squares
methods do. However, least-squares methods still can benefit from such a normalization since
their regularization has more equate effect on all dimensions.

We compared per-dimension normalized (Figure 22a) and unnormalized features (Fig-
ure 22b) for the cart-pole balancing task. The results show that the performance of gradient-
based approaches degrade drastically without normalization. As this benchmark requires
only little regularization, the performance of least-squared methods is not significantly af-
fected by feature normalization. To understand why normalization plays such an important
role for gradient-based methods, consider the MSPBE function in an unnormalized feature
space. It may correspond to a quadratic loss function which is flat along some dimension and
steep in others, that is, its Hessian contains large and small eigenvalues. Hence, the optimal
step-size for gradient descent algorithms can vary significantly per dimension, resulting in
either slow convergence of gradient-based algorithms with small step-sizes or a bias if larger
step-sizes are used, see, for example, TDC in Figure 22b.

Message 5 GTD performs worse than its successors GTD2 and TDC. TDC minimizes the
MSPBE faster than the other gradient-based algorithms GTD, GTD2 and TD learning.

We assessed the ability of the gradient based methods TD learning, GTD, GTD2 and TDC
to minimize the MSPBE. The results are given in Table 6. Each entry corresponds to the
accumulated

√
MSPBE-values of the predictions for all time steps. Low numbers indicate ac-

curate estimates with small number of samples. We observe that the performance of GTD is
always worse than the performance of the other methods except for the Boyan chain (Bench-
mark 1) and the 20-link Pole Balancing Off-policy task (Benchmark 12). GTD2 converged
very slowly in these two experiments. Throughout all tasks, GTD performs significantly
worse than other approaches and yields unreliable results in general, that is, sometimes the

862



Policy Evaluation with Temporal Differences

0 2k 4k 6k 8k 10k 12k 14k
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
√ M

S
P
B
E

GTD2
TDC

LSTD
RG

BRM

(a) Normalized Features.

0 2k 4k 6k 8k 10k 12k 14k
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5

√ M
S
P
B
E

GTD2
TDC

LSTD
RG

BRM

(b) Unnormalized Features.

Figure 22: Comparison for the cart pole balancing task (Benchmark 5) with normalized and
unnormalized features. Differences in the magnitude of features are particularly
harmful for gradient-based approaches.

GTD GTD2 TDC TD
1. 14-State Boyan Chain 58.11 48.65 16.51 16.51
2. Baird Star Example 1504.38 1520.09 1237.70 > 1010

3. 400-State Random MDP On-policy 39.58 31.06 25.90 33.62
4. 400-State Random MDP Off-policy 40.90 38.08 30.50 37.08

5. Lin. Cart-Pole Balancing On-pol. Imp. Feat. 8.56 5.37 3.84 3.84
6. Lin. Cart-Pole Balancing Off-pol. Imp. Feat. 35.86 21.05 13.31 13.31
7. Lin. Cart-Pole Balancing On-pol. Perf. Feat. 10.18 8.07 7.07 7.98
8. Lin. Cart-Pole Balancing Off-pol. Perf. Feat. 20.65 18.40 15.47 19.68

9. Cart-Pole Swingup On-policy 40.21 24.66 23.08 25.60
10. Cart-Pole Swingup Off-policy 41.09 30.44 25.28 30.14

11. 20-link Lin. Pole Balancing On-pol. 21.97 20.24 17.22 18.58
12. 20-link Lin. Pole Balancing Off-pol. 0.39 0.43 0.26 0.30

Table 6: Sum of square root MSPBE for all timesteps of GTD, GTD2, TDC and TD learning
(TD). GTD is observed to always yield the largest error except for Benchmark 2
and 12. TDC outperformed the other methods in all experiments. The values are
obtained after optimizing the hyper-parameters for the individual algorithms.

estimates have a drastically higher error (Benchmark 1, 5, 6). TDC outperformed all other
gradient-based methods in minimizing the MSPBE throughout all tasks.

Message 6 If we optimize the hyper-parameters of TDC, TDC is always at least as good
as TD-learning, but comes at the price of optimizing an additional hyper-parameter. Often,
hyper-parameter optimization yields very small values for the second learning rate β, in which
case TDC reduces to TD-learning.

863



Dann, Neumann and Peters

0.
00

02

0.
00

05

0.
00

1

0.
00

2

0.
00

3

0.
00

4

0.
00

5

0.
00

6

0.
00

7

0.
00

8

0.
00

9
0.

01
0.

02
0.

03
0.

04
0.

05
0.

06
0.

07
0.

08
0.

09 0.
1

0.
2

0.
3

0.
4

0.
5

Stepsize α

0.0001

0.001

0.01

0.05

0.1

0.5

1

2

4

8

16

µ
=
β
/α

(a) Cart-Pole Swingup On-Policy (9)

0.
00

02

0.
00

05

0.
00

1

0.
00

2

0.
00

3

0.
00

4

0.
00

5

0.
00

6

0.
00

7

0.
00

8

0.
00

9
0.

01
0.

02
0.

03
0.

04
0.

05
0.

06
0.

07
0.

08
0.

09 0.
1

0.
2

0.
3

0.
4

0.
5

Stepsize α

0.0001

0.001

0.01

0.05

0.1

0.5

1

2

4

8

16

µ
=
β
/α

(b) Cart-Pole Balancing Off-Policy (6)

0.
00

02

0.
00

05

0.
00

1

0.
00

2

0.
00

3

0.
00

4

0.
00

5

0.
00

6

0.
00

7

0.
00

8

0.
00

9
0.

01
0.

02
0.

03
0.

04
0.

05
0.

06
0.

07
0.

08
0.

09 0.
1

0.
2

0.
3

0.
4

0.
5

Stepsize α

0.0001

0.001

0.01

0.05

0.1

0.5

1

2

4

8

16

µ
=
β
/α

(c) 20-link Pole Balancing Off-Policy (12)

0.
00

02

0.
00

05

0.
00

1

0.
00

2

0.
00

3

0.
00

4

0.
00

5

0.
00

6

0.
00

7

0.
00

8

0.
00

9
0.

01
0.

02
0.

03
0.

04
0.

05
0.

06
0.

07
0.

08
0.

09 0.
1

0.
2

0.
3

0.
4

0.
5

Stepsize α

0.0001

0.001

0.01

0.05

0.1

0.5

1

2

4

8

16

µ
=
β
/α

(d) Baird’s Star Example (2)

Figure 23: Hyper-parameter space of TDC for λ = 0. The primary step-size of TDC is
denoted by α and µ = β/α is the ratio of secondary to primary step-size. Each
point is the logarithm of the averaged MSPBE. Darker colors are denoted to low
errors, while white indicates divergence.

As TDC is identical to TD if we set the second learning rate β for the vector w (or the
ratio µ = β/α) to zero, the performance of TDC is at least as good as that of TD if the
hyper-parameters are optimized. As the results in Table 6 show, the difference of TDC and
TD is negligible in some tasks (Tasks 1, 5, 6). In these cases, the optimal values for the ratio
µ are very small, as the results of the grid-search in Figure 23b indicate, and TDC reduces
to TD.

Large µ values were only observed to yield good performance for the Baird’s Star task
(Benchmark 2) where TD learning always diverged (see Figure 23d). Apart from this ex-
ample, which is specifically tailored to show divergence of TD learning, TD converged in all
off-policy benchmarks. However, even if TD learning converges, the use of the second step-
size can be beneficial in some scenarios (e.g., in Benchmark 3, 4, 8, 9 and 10), as the MSPBE
of the predictions can be reduced significantly. The grid search results of the Swing-up task
shown in Figure 23a as well as the prediction error over time shown in Figure 24b clearly
indicate an advantage of TDC. However, TDC comes at the price that we need to optimize
the second learning rate as an additional hyper-parameter despite that it may have almost
no effect in some problems (see Figure 23c).

864



Policy Evaluation with Temporal Differences

0.0 2k 4k 6k 8k 10k 12k 14k
Timesteps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
√ M

S
P
B
E

TD ց
TD →

TDC →

(a) Cart-pole Balancing With Imperfect Fea-
tures, On-policy. (Benchmark 6). The graphs
of TDC and TD with constant step-sizes are
identical.

0.0 1k 2k 3k 4k 5k 6k 7k 8k
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

√ M
S
P
B
E

TD ց
TD →

TDC →

(b) Discrete Random MDP, On-policy (Bench-
mark 3)

Figure 24: Convergence Speed for TD learning with decreasing (TD ↘) and constant step-
sizes (TD →) and TDC with constant step-sizes (TDC →).

3.3.1 Constant vs. Decreasing Learning Rates

We also evaluated whether using a decreasing learning rate—an assumption on which the
convergence proofs of stochastic gradient-based methods rely—improves the prediction per-
formance for a finite number of time steps. We compared constant learning rates against
exponentially decreasing ones (see C and D in Table 4) for TD learning. In most tasks, no
significant improvements with decreasing rates could be observed. Only for the cart pole
balancing with imperfect features (Benchmark 6) and the discrete random MDP (Bench-
mark 3), we could speed up the convergence to low-error predictions. Figure 24 illustrates
the difference. However, using decreasing learning rates is harder as at least two parameters
per learning rate need to be optimized, which we experienced to have high influence on
the prediction quality, and, hence, we do not recommend to use decreasing step-sizes for a
limited number of observations.

3.3.2 Influence of Hyper-Parameters

We can consider the prediction error of each method as a function of the method’s hyper-
parameters. As Figure 19 and Figure 23 indicate, these functions are smooth, uni-modal
and often even convex for gradient-based algorithms.9 Only parts of the hyper-parameter
spaces are shown, yet, we observed the functions to be well-behaved in general, and, hence,
local optimization strategies for selecting hyper-parameters can be employed successfully.

3.4 Results on Least-Squares Methods

In this section, we present the most important insights from the experimental evaluation of
least-squares methods.

9. The plots in Figure 19 seem non-convex due to the log-scale of the step-size parameter α.

865



Dann, Neumann and Peters

Task GTD GTD2 TD TDC RG RG DS BRM BRM DS LSPE LSTD FPKF
1 7.22 6.89 5.56 0.40 5.56 6.83 2.32 0.26 0.10 0.10 0.79
2 1.74 1.63 0.03 0.03 1.56 2.20 0.00 0.00 0.03 0.03 0.22
3 1.44 1.36 1.05 0.75 5.46 2.32 0.12 1.44 0.09 0.09 4.34
4 1.39 1.97 0.93 1.29 3.10 2.95 0.10 3.20 0.13 0.13 9.72
5 2.37 2.37 3.58 2.51 4.42 3.75 4.52 3.80 2.60 2.60 2.58
6 2.59 2.33 4.37 2.44 4.42 3.88 4.37 3.82 2.47 2.47 2.91
7 5.45 3.12 0.15 1.75 3.14 1.19 0.15 0.15 0.15 0.15 0.24
8 5.43 4.04 1.95 2.10 3.18 1.53 1.95 1.95 0.17 0.17 3.82
9 5.13 3.98 3.83 3.86 4.61 4.60 3.83 3.82 1.97 1.99 2.88
10 5.45 4.85 4.28 3.91 4.71 4.71 4.28 4.30 4.68 2.17 4.28
11 4.29 4.41 7.71 4.75 7.60 7.44 7.71 7.45 4.26 4.27 7.30
12 0.058 0.08 0.077 0.052 0.077 0.075 0.077 0.076 0.043 0.042 0.081

Table 7: Mean squared errors of final predictions. Task names and descriptions associated
with the numbers can be found in Section 3.1. LSPE and LSTD are shown with
transition-based off-policy reweighting (LSPE-TO and LSTD-TO).

Message 7 In general, LSTD and LSPE produce the predictions with lowest errors for
sufficiently many observations.

Table 7 shows the square roots of mean-squared errors (
√
MSE) of the estimate from each

method at the last timestep. The values are the final errors obtained with specific methods
for each benchmark. The best prediction is generated either by LSTD or LSPE for almost
all tasks. In cases where LSPE has the lowest error, LSTD is only marginally worse and
does not depend on a learning rate α to be optimized.

The Star Example of Baird has a true value function of constant 0 and is therefore
not suited to compare least-squares methods. Each least-squares method can yield perfect
results with overly strong regularization. The small difference between the errors of BRM
and LSTD in the second row of Table 7 are caused by numerical issues avoidable by stronger
regularization.

Interestingly, BRM outperforms all other methods in Benchmark 4, the randomly gen-
erated discrete MDP with off-policy samples. The MSTDE has a high bias but at the same
time a low variance which seems to be particularly advantageous here as this benchmark is
highly stochastic. We experienced unexpected results for the cart-pole balancing tasks with
imperfect features (Tasks 5 and 6). Here, the gradient-based approaches perform exceed-
ingly well and GTD even obtains the lowest final MSE value. However, Figure 25 reveals
that the reason for this effect is only an artifact of the optimization error introduced by
gradient methods. The two sources of error, objective bias and optimization error, coun-
terbalance each other in this example. The MSPBE fixpoint has an error of about 2.5
and LSTD converges to it quickly. The gradient methods, however, converge slower due to
their optimization error. Yet, when they approach the MSPBE fixpoint, the estimates pass
through regions with lower MSE. As GTD has not converged for the maximum number of
evaluated observations, it is still in the region with lower MSE. It therefore yields the best

866



Policy Evaluation with Temporal Differences

0 5k 10k 15k 20k 25k 30k
Timesteps

2.0

2.5

3.0

3.5

4.0

√ M
S
E

GTD2
TD ց

TDC
LSTD

Figure 25: Pole Balancing task with impoverished features. Slightly sub-optimal prediction
with respect to the MSPBE yield lowest MSE.

final prediction. However, it would eventually converge to the worse MSPBE fixpoint. Un-
fortunately, we typically do not have knowledge when such a coincidence happens without
actually evaluating the MSE, and, thus, can not exploit this effect. Apart from Tasks 4,
5 and 6, LSTD always yields the lowest or almost the lowest errors, while other methods
perform significantly worse on at least some benchmarks (e.g., Task 10 for LSPE). According
to the results of our experiments, LSTD is a very accurate and reliable method. It is the
method of our choice, although it may behave unstable in some cases, for example, when the
number of observations is less than the number of features or some features are redundant,
that is, linearly dependent.

Message 8 In practice, LSTD and LSPE perform well with off-policy samples only if the
newly introduced transition reweighting (proposed in Section 2.4.2) is used. The variance of
LSTD with standard reweighting makes the algorithm unusable in practice.

In Section 2.4.2, we proposed an off-policy reweighting based on the entire transition as an al-
ternative to the standard off-policy sample reweighting for LSTD and LSPE. Both reweight-
ing strategies converge to the same solution for infinitely many observations. However,
transition reweighting yields much faster convergence as Figure 26 illustrates. Figure 26a
compares the reweighting approaches on the linearized cart-pole problem (Benchmark 6).
Despite strong `2-regularization, LSTD yields very noisy estimates with standard reweight-
ing, rendering the algorithm inapplicable. The variance induced by the standard reweighting
prevents fast convergence, as the variance of 1.0 between different experiment runs indicates.
While the estimates of LSPE with standard reweighting show decreasing error over time (due
to a very small step size chosen by the hyper-parameter optimization), the increasing stan-
dard deviation indicates that the variance of the estimates is problematic. In contrast, LSPE
and LSTD with transition reweighting converge substantially faster and yield good estimates
after already 5,000 time steps. The benefit of transition reweighting is even more salient in
the results of the off-policy cart-pole swing-up task (Benchmark 10) shown in Figure 26b on
a logarithmic scale. The observations are consistent with all off-policy tasks (see Table 8).
The price for using off-policy samples instead of on-policy samples, in terms of convergence

867



Dann, Neumann and Peters

LSPE LSPE-TO LSTD LSTD-TO
4. 400-State Random MDP Off-policy 110.16 21.30 1727.10 15.50

6. Lin. Cart-Pole Balancing Off-pol. Imp. Feat. 22.08 6.88 223.64 6.79
8. Lin. Cart-Pole Balancing Off-pol. Perf. Feat. 15.52 4.38 49.27 3.52

10. Cart-Pole Swingup Off-policy 45.26 32.11 493.18 20.58
12. 20-link Lin. Pole Balancing Off-pol. 0.43 0.24 0.43 0.32

Table 8: Sum of square-roots of MSPBE for all timesteps of LSPE and LSTD with standard
importance reweighting and transition off-policy reweighting (LSPE-TO, LSTD-
TO). The Baird-Star Example (Task 2) is omitted as it is not suited well for
evaluating least-squares approaches since perfect estimates can be achieved with
overly strong regularization.

0 5k 10k 15k 20k 25k 30k
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

√ M
S
P
B
E

LSTD
LSPE

LSPE-TO
LSTD-TO

(a) Cart pole balancing with 5 features, off-
policy (Benchmark 6). The error-bars of LSTD
with standard reweighting are omitted for vis-
ibility.

0 10000 20000 30000 40000 50000 60000
Timesteps

10-1

100

101

102

√ M
S
P
B
E

LSPE
LSPE-TO

LSTD-TO
LSTD

(b) Cart pole swingup, off-policy (Bench-
mark 10) on a logarithmic scale.

Figure 26: Comparison of the standard off-policy reweighting scheme and the transition
reweighting (TO) proposed in this paper.

speed, is similar to other methods if LSTD and LSPE are used with transition reweight-
ing. LSTD and LSPE with transition reweighting obtain the most accurate estimates of all
methods as Table 7 indicates.

Message 9 For a modest number of features, least-squares methods are superior to gradient-
based approaches both in terms of data-efficiency and even CPU-time if we want to reach the
same error level. For a very large number of features (e.g., ≥ 20,000), gradient-based meth-
ods should be preferred as least-squares approaches become prohibitively time- and memory-
consuming.

Except for the artifact in the linearized cart-pole balancing task with imperfect features
(Benchmarks 5 and 6), least-squares methods yield the most accurate final predictions (see
Table 7). However, least-squares approaches may behave very unstable for a small number of

868



Policy Evaluation with Temporal Differences

observations. A strong regularization is usually required if the number of samples is smaller
than the number of features. An example is given in Figure 17 that shows the increase of
the error of BRM predictions for the first 500 samples. However, Figures 22a, 21, 17 and 25
show that least-squares approaches converge much faster than gradient-based methods after
this stage of potential instability. Least-squares methods are therefore more data efficient
than gradient-based methods.

However, the required CPU-time per transition is quadratic in the number of features
instead of linear as for the gradient approaches. Hence, it is also interesting to compare both
approaches from a computational viewpoint with a fixed budget of CPU-time. Figure 27
compares the prediction quality of LSTD and TDC, the best-performing representatives
of both classes, for a given budget of CPU-time. In order to compare the performance
on a task with a vast number of features, we changed the number of dimensions in the
pendulum balancing task from 20 to 100 and used the perfect feature representation of
20101 dimensions.10 LSTD requires more CPU time to converge since TDC can do several
sweeps through the provided transition samples (7000 in total) while LSTD can update the
parameters only a few times due to the high-dimensional features. Yet, TDC converges faster
only up to an error level of approximately 8, both for constant and decreasing step-sizes.
The prediction error of TDC with decreasing step-sizes still decreases, and will eventually
reach the same minimum as the one of LSTD, but very slowly. This observation is consistent
with results on stochastic gradient methods in general (see Sra et al., 2012, Chapter 4.1.2).
Additionally, we evaluated the methods on a 30-link pendulum with a moderate number of
1830 features. The results are shown in Figure 27b. Due to the smaller number of features
LSTD converges faster from the beginning on. However, as the stagnant prediction error up
to second 30 shows, LSTD may still yield unstable results as it has not processed enough
observations to ensure that its At-matrix (cf. Equation 25) is invertible and needs strong
regularization.

Least-squares methods clearly outperform gradient-based approaches for problems with
few features. The quadratic run-time and memory consumption as well as the unstable
behavior with few observations become more problematic for increasing numbers of features
but, as our results show, least-squares methods may still be a good option for up to 20.000
features

3.4.1 Alternative Regularization Approaches

We implemented and evaluated alternative regularization approaches for LSTD in prelimi-
nary experiments, including LARS-TD, LSTD with `2, `1, LSTD-`1 and D-LSTD. However,
we observed no performance gain for our benchmarks in comparison to `2-regularization. We
attribute this result to the fact that most of the features in our benchmarks had sufficient
quality. The sparse solutions produced by alternative regularization schemes had thus no
significant advantage as the noise introduced by active low-quality features in non-sparse
solutions was not large enough. We also did not observe the theoretically derived benefits
of LSTD with random projections (LSTD-RP), which only become important for extremely
many features.

10. The features include the products of all state variables, cf. the features of Benchmark 7.

869



Dann, Neumann and Peters

0 20 40 60 80 100
Runtime in s

0

5

10

15

20

25

30

35

40
√ M

S
E

LSTD
TDC →
TDC ց

(a) 100-link Pole Balancing with 20101 features
(400 dim. state, 20100 squared state features
+ 1 constant dim.)

0 20 40 60 80 100
Runtime in s

0

1

2

3

4

5

6

√ M
S
E

LSTD
TDC →
TDC ց

(b) 30-link Pole Balancing with 1831 features
(60 dim. state, 1830 squared state features +
1 constant dim.)

Figure 27: Comparison of the prediction quality for given CPU times of LSTD and TDC
with constant (TDC →) and decreasing step-sizes (TDC ↘). The methods are
evaluated on multi-link Pole Balancing tasks (in analogy to Benchmark 11) with
perfect feature representations. The methods are provided with a total of 7000
transitions. The results are averages of 10 independent runs executed on a single
core of an i7 Intel CPU.

3.4.2 Dependency on Hyper-Parameters

Most least-squares methods are robust against a poor choice of the hyper-parameters. LSTD
and BRM, in particular, which are controlled only by the regularization parameter ε and
the parameter λ of the eligibility-traces, converge for almost all values (cf. Figure 18).
In contrast, FPKF has four hyper-parameters to optimize, the eligibility-trace parameter
λ; a general scaling factor αFPKF for the step-sizes; βFPKF delaying the decrease of the
step-length and τFPKF which controls the minimum number of observations necessary to
update the estimate. In particular, αFPKF and βFPKF need to be set correctly to prevent
FPKF from diverging as the large white areas in Figure 28a indicate. Also, τFPKF has large
influence on the performance and may cause divergence (Figure 28b). Hence, descent-based
optimization strategies such as block gradient descent (with finite differences) are difficult to
use for hyper-parameter search as choosing an initial hyper-parameter setting that works is
not trivial. On the contrary, LSPE does not rely as much on well-chosen hyper-parameters.
As LSTD and BRM, it has an eligibility-traces parameter λ and a regularization-intensity
ε, but also incorporates a step-size α, which affects the prediction in a similar way as ε, that
is, it controls the amount of learning. Representative results, given in Figure 29, illustrate
that LSPE performs well and stable up to a certain step-size but then diverges. Still, LSTD
does not require any step-size at all and performs similarly or better than LSPE (see also
Message 7).

870



Policy Evaluation with Temporal Differences

-3.0 -2.2 -1.4 -0.6 0.2 1.0
log10(α)

0.0

0.8

1.6

2.4

3.2

4.0

lo
g
1
0
(β

)

(a) Step-size scale αFPKF and length-
decreasing parameter βFPKF

-3.0 -2.2 -1.4 -0.6 0.2 1.0
log10(α)

0
100
200
300
400
500
750

1000
2000

τ
(b) Step-size scale αFPKF and the initial update
delay τFPKF

Figure 28: Hyper-parameter space of FPKF(λ) for Benchmark 5. Each point is the loga-
rithm of the averaged MSE. Darker colors show lower errors, while white indicates
divergence. The color-maps are log-normalized. Each plot shows a slice of the
4-dimensional hyper-parameter space around the setting used in our experiments
(optimal w.r.t. the MSPBE).

-3.0 -2.2 -1.4 -0.6 0.2 1.0
log10(α)

0.0

0.4

0.8

λ

Figure 29: Hyper-parameter space of LSPE(λ) for Benchmark 5. Each point is the logarithm
of the averaged MSE. Darker colors show lower errors, while white indicates di-
vergence. The color-maps are log-normalized. The step-size α has little influence
on the performance, while e-traces may speed-up learning significantly.

871



Dann, Neumann and Peters

4. Conclusion and Outlook

We conclude the paper with a short summary of its main contributions and a brief outlook
on possible directions for future research on temporal-difference methods.

4.1 Conclusion

With this paper, we aimed at giving an exhaustive survey of past and current research
activities on value-function estimation with temporal differences—both from a theoretical
and an empirical point of view. Almost all important methods originated in this area
of research have been presented from a unifying viewpoint of function optimization. The
algorithms have been systematically categorized based on their underlying cost functions
and the employed optimization technique: stochastic gradient descent, analytic least-squares
solutions or a probabilistic problem formulation. We aimed for a concise, yet comprehensive
and coherent presentation to make these algorithms available to novices and practitioners.

In addition, we provide an overview over recent work on feature representations for value
function approximation. These developments aim either at an automatic generation of state
features or at more robust methods that can deal with very large numbers of irrelevant
features. We also have provided a qualitative analysis of conceptual error sources that aids
novices in understanding the effects of eligibility traces which implicitly perform multi-step
look-ahead. Discerning the sources of errors is important for choosing the most suitable
estimation method given a new task at hand and for identifying reasons why a particular
approach might not work. Furthermore, we have discussed the use of importance reweighting
for implementing off-policy value estimation. We have shown that the commonly employed
importance reweighting strategy of least-squares methods such as LSTD and LSPE is un-
suitable for non-trivial tasks due to its high variance. To alleviate this problem, we have
introduced a novel importance reweighting strategy with drastically reduced variance. Our
importance reweighting strategy works well in practice—even where the standard reweight-
ing strategy exhibits strong instabilities and yields unsuitable results.

One of the most important contribution of this paper is that it is one of the first com-
prehensive experimental comparisons of the different value-function estimation methods,
including the recent developments. Their performance was evaluated on 12 different bench-
mark tasks that exhibited different characteristics, including MDPs with continuous and
discrete state spaces as well as on- and off-policy transition samples. Our work also provides
further evidence on relevant future research questions, such as, which objective function has
the lowest bias in practice or which algorithms are preferable in terms of data efficiency or
computational demands. Moreover, the experimental evaluation reveals the behavior and
the limitations of each temporal-difference method in various scenarios. These findings will
hopefully give insights for improving the state of the art in policy evaluation.

4.2 Outlook

Efficient estimation of value functions is a corner stone of reinforcement learning as the
value function is needed in the policy improvement step of the many reinforcement learning
algorithms. Temporal-difference methods have been used since the late 1980s to estimate
the value function of a policy and have since then been an active field of research. In recent

872



Policy Evaluation with Temporal Differences

years, the research concentrated on overcoming the instability of the TD learning method
with off-policy samples, improving the sample efficiency, or value-function estimation in
high-dimensional feature spaces. This research resulted in the development of the current
state of the art, such as LSTD or TD learning with Gradient Correction. In addition, the
theoretical analysis from different view-points has led to a good theoretical understanding
of the foundations of temporal-difference methods.

However, the use of temporal-difference methods has been restricted by several limita-
tions of the methods. In many domains, the assumption of having a compact and informative
feature representation is not realistic. Such features are often difficult to define by hand,
for example, in real world robotic systems, in health care diagnosis or for controlling of
prostheses. We therefore expect the recent efforts of learning the feature representation (cf.
Section 2.3) to continue and increase substantially.

Additionally, the number of samples necessary for learning value functions is still pro-
hibitively large for many real-world scenarios, especially those that involve hardware such as
robots or other complex, expensive equipment. One way for addressing this shortcoming is
to make the learning problem easier by incorporating prior knowledge. Domain knowledge
can usually be incorporated most easily in model-based methods that learn the underlying
forward dynamics of the task. Such models can be used to create samples in simulation with-
out hardware or by directly using dynamic programming with the learned model. Deisenroth
and Rasmussen (2011) successfully learned complex robot control policies by simultaneously
learning a system model and using this model to optimize the policy (direct model-based
policy search). As their work show, it is crucial to include the uncertainty about the learned
model into the actual estimation problem. Value-function estimation methods that can in-
corporate a learned model and its uncertainty efficiently are therefore a promising direction
for future research.

In this paper, we have treated minimizing the mean squared error of a value function
estimate as the ultimate goal. However, in most cases the value function is only an inter-
mediate result used for improving the policy. What counts in the end is not the quality of
the value function approximation but the quality of the policy after the policy improvement
step. Other objective functions might exist that are easier to minimize and do not harm
the convergence properties of policy iteration schemes. Characterizing such objectives can
prospectively lead to algorithms with faster convergence to an optimal or at least viable
policy.

This survey and comparison solely concentrated on policy evaluation. A comprehensive
survey and experimental evaluation of temporal differences in policy iteration which builds
on the results of this paper is left as future work and strongly needed by the reinforcement
learning community.

Acknowledgments

The research leading to these results has received funding from the European Community’s
Framework Programme CompLACS (FP7-ICT-2009-6 Grant.No.270327).

873



Dann, Neumann and Peters

Appendix A. Derivation of Least-Squares Temporal-Difference Learning

The derivation of the LSTD algorithm begins with rewriting the MSPBE from Equation (9)
in terms of a different norm. While this formulation is, strictly speaking, not necessary,
it helps to understand the connection to the TDC, GTD and GTD2 algorithms and let us
derive subsequent steps more concisely

MSPBE(θ) = ‖V θ −ΠT πV θ‖2D
= ‖Π(V θ − T πV θ)‖2D (since V θ is parametrizable)

= [Π(V θ − T πV θ)]TD[Π(V θ − T πV θ)]

= [V θ − T πV θ]TΠTDΠ[V θ − T πV θ]

= [V θ − T πV θ]TDΦ(ΦTDΦ)−1ΦTDΦ(ΦTDΦ)−1ΦTD[V θ − T πV θ]

= [V θ − T πV θ]TDΦ(ΦTDΦ)−1ΦTD[V θ − T πV θ]

= [ΦTD(V θ − T πV θ)]T (ΦTDΦ)−1[ΦTD(V θ − T πV θ)]

= ‖ΦTD(V θ − T πV θ)‖2
(ΦTDΦ)−1 (41)

= ‖Ed,π,P [φtδt]‖2(ΦTDΦ)−1 . (42)

The matrix ΦTDΦ and its inverseM = (ΦTDΦ)−1 are symmetric positive definite matrices
(for independent features and d(s) > 0,∀s ∈ S). Hence, ‖ · ‖M is a norm and θ minimizes
the MSPBE if and only if Ed,π,P [φtδt] = 0. Equation (42) also allows us to rewrite the
MSPBE as a product of expectations

MSPBE(θ) = Ed,π,P [φtδt]
TEd[φtφTt ]−1Ed,π,P [φtδt], (43)

which is the basis for the GTD2 and TDC algorithms. Since Vθ is parameterized linearly,
we can replace T πV θ with

T πV θ = R+ γΦ′θ,

where R ∈ Rn is the expected intermediate reward Ri = Eπ[r(si, a)] in state si and Φ′ =
P πΦ is the matrix containing the expected feature for the successor states, that is, Φ′i =
EP,π[φTt+1|st = si]. Equation (41) can then be written as

MSPBE(θ) = ‖ΦTD(Φθ − γΦ′θ −R)‖2M
= ‖ΦTD[Φ− γΦ′]θ −ΦTDR)‖2M
= ‖ΦTD∆Φθ −ΦTDR)‖2M
= ‖Aθ − b‖2M ,

where ∆Φ = Φ − γΦ′ and b = ΦTDR. The matrix A = ΦTD∆Φ has been shown to
be positive definite and thus invertible (Bertsekas and Tsitsiklis, 1996, Proposition 6.3.3).
Minimizing this MSPBE formulation directly by setting the gradient to 0 yields

θ = (ATMA)−1ATMb = A−1M−1A−TATMb = A−1b = (ΦTD∆Φ)−1ΦTDR.

874



Policy Evaluation with Temporal Differences

Appendix B. Parametric GPTD Whitening Transformation

Equation (32) can also be written in matrix form in terms of the reward, that is,

rt−1 = ΓtV t + nt, Γt =


1 −γ 0 . . . 0
0 1 −γ . . . 0
...

...
0 . . . 0 1 −γ

 ,
where Γt connects the values of subsequent timesteps, rt−1 = [r1, . . . , rt−1] and V t =
[v1 . . . vt]. The noise term nt is now given as nt = Γt∆vt, and hence is distributed as
nt ∼ N (0,Σt), with

Σt = σ2ΓtΓ
T
t = σ2


1 + γ2 −γ 0 . . . 0
−γ 1 + γ2 −γ . . . 0
...

...
0 0 . . . −γ 1 + γ2

 .
We realize that the required whitening transformation is given by

Zt = Γ−1
t =


1 γ γ2 . . . γt

0 1 γ . . . γt−1

...
...

0 0 0 . . . 1

 ,
and hence, we get the following regression problem

Ztrt−1 = ZtΓtV t +Ztnt.

Appendix C. Algorithms

The following pseudo-code listings show the update rules of all discussed temporal-difference
algorithms. These updates are executed for each transition from st to st+1 performing action
at and getting the reward rt.

Algorithm 1 TD(λ) Learning

zt+1 =ρt(φt + λγzt)

θt+1 =θt + αtδtzt+1

Algorithm 2 GTD

θt+1 =θt + αtρt(φt − γφt+1)φTt wt

wt+1 =wt + βtρt(δtφt −wt)

Algorithm 3 GTD2

θt+1 =θt + αtρt(φt − γφt+1)φTt wt

wt+1 =wt + βt(ρtδt − φTt wt)φt

Algorithm 4 TDC(λ)

zt+1 =ρt(φt + λγzt)

θt+1 =θt + αt(δtzt − γ(1− λ)(zTt wt)φt+1)

wt+1 =wt + βt(ρtδtzt − φTt wtφt)

875



Dann, Neumann and Peters

Algorithm 5 recursive LSTD(λ) (Init:
M0 = εI)

∆φt+1 =φt − ρtγφt+1

zt =γλρt−1zt−1 + φt

Kt+1 =
M tzt

1 + ∆φT
t+1M tzt

θt+1 =θt +Kt+1(ρtrt −∆φt+1)Tθt)

M t+1 =M t −Kt+1(MT
t ∆φt+1)T

Algorithm 6 recursive LSTD-TO(λ)
(Init: M0 = εI)

∆φt+1 =φt − γφt+1

zt =γλρt−1zt−1 + φt

Kt+1 =ρt
M tzt

1 + ρt∆φ
T
t+1M tzt

θt+1 =θt +Kt+1(rt −∆φT
t+1θt)

M t+1 =M t −Kt+1(MT
t ∆φt+1)T

Algorithm 7 recursive LSPE(λ) (Init:
N0 = εI,A0 = 0, b0 = 0)

zt =γλρt−1zt−1 + φt

N t+1 =N t −
N tφtφ

T
t N t

1 + (φTt N tφt)

At+1 =At + zt(φt − γρtφt+1))T

bt+1 =bt + ρtrtzt

θt+1 =θt + αtN t(bt −Atθt)

Algorithm 8 recursive LSPE-TO(λ)
(Init: N0 = εI,A0 = 0, b0 = 0)

zt =γλρt−1zt−1 + φt

N t+1 =N t −
N tφtφ

T
t N t

1 + (φTt N tφt)

At+1 =At + ρtzt(φt − γφt+1))T

bt+1 =bt + ρtrtzt

θt+1 =θt + αtN t(bt −Atθt)

Algorithm 9 FPKF(λ) (Init: N0 = 0, Z0 =

0, z0 = 0)

zt =γλρt−1zt−1 + φt

Zt =γλρt−1Zt−1 + φtθ
T
t

N t+1 =N t −
N tφtφ

T
t N t

1 + (φTt N tφt)

θt+1 =θt + αtN t(ztρtrt −Zt(φt − γρtφt+1))

Algorithm 10 recursive BRM with dou-
ble samples (Init: M0 = εI, b0 = 0)

∆φ′t+1 =φt − γφ
′
t+1

∆φ′′t+1 =φt − γφ
′′
t+1

bt+1 =bt +
1

2
ρ′tρ
′′
t (∆φ′′t+1r

′
t + ∆φ′t+1r

′′
t )

M t+1 =M t −
ρ′tρ
′′
tM t∆φ

′
t+1∆φ′′Tt+1M t

1 + ρ′tρ
′′
t ∆φ′Tt+1M t∆φ

′′
t+1

θt+1 =M t+1bt+1

876



Policy Evaluation with Temporal Differences

Algorithm 11 recursive BRM(λ)
(Init: M0 = εI,x0 = 0, y0 = 1, z0 = 0)
Compute auxiliary values:

∆φt+1 =φt − γρtφt+1

pt+1 =
γλρt−1√

yt

U t+1 =
[√
yt∆φt+1 + pt+1xt, pt+1xt

]
V t+1 =

[√
yt∆φt+1 + pt+1xt, −pt+1xt

]T
W t+1 = [

√
ytρtrt + pt+1zt, −pt+1zt]

T

Bt+1 =M tU t+1[I + V t+1M tU t+1]−1

Update traces:

M t+1 =M t −Bt+1V t+1M t

yt+1 =(γλρt)
2yt + 1

xt+1 =(γλρt−1)xt + yt∆φt+1

zt+1 =(γλρt−1)zt + rtρtyt

Update estimate:

θt+1 =θt +Bt+1(W t+1 − V t+1θt)

Algorithm 12 parametric GPTD (Init:
P 0 = I, po = 0, d0 = 0, s−10 = 0)

∆φt+1 =φt − γφt+1

pt+1 =pt
γσ2

t

st
+ P t∆φt+1

dt+1 =dt
γσ2

t

st
+ rt −∆φTt+1θt

st+1 =σ2
t + γ2σ2

t+1 −
γ2σ4

t

st

+

[
pt+1 +

γσ2
t

st
pt

]T
∆φt+1

θt+1 =θt +
1

st+1
pt+1dt+1

P t+1 =P t −
1

st+1
pt+1p

T
t+1

Algorithm 13 Residual-gradient algorithm
without double-samples

θt+1 =θt + αtρtδt(φt − γφt+1)

References

J. S. Albus. A new approach to manipulator control: The cerebellar model articulation con-
troller (CMAC). Journal of Dynamic Systems Measurement and Control, 97(September):
220–227, 1975.

S.-i. Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):
251–276, Feb. 1998.

A. Antos, C. Szepesvári, and R. Munos. Learning near-optimal policies with Bellman-
residual minimization based fitted policy iteration and a single sample path. Machine
Learning, 71(1):89–129, 2008.

F. Bach and E. Moulines. Non-asymptotic analysis of stochastic approximation algorithms
for machine learning. In Advances in Neural Information Processing Systems 24, 2011.

877



Dann, Neumann and Peters

L. Baird. Residual algorithms : Reinforcement learning with function approximation. In
Proceedings of the Twelfth International Conference on Machine Learning, 1995.

P. Balakrishna, R. Ganesan, and L. Sherry. Accuracy of reinforcement learning algorithms for
predicting aircraft taxi-out times: A case-study of Tampa Bay departures. Transportation
Research Part C: Emerging Technologies, 18(6):950–962, 2010.

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, Bel-
mont, Massachusetts, 1996. ISBN 1-886529-10-8.

D. P. Bertsekas and H. Yu. Projected equation methods for approximate solution of large
linear systems. Journal of Computational and Applied Mathematics, 227(1):27–50, 2009.

J. A. Boyan. Technical update: Least-squares temporal difference learning. Machine Learn-
ing, 49(2):233–246, 2002.

S. J. Bradtke and A. G. Barto. Linear least-squares algorithms for temporal difference
learning. Machine Learning, 22(1-3):33–57, 1996.

E. Candes and T. Tao. The Dantzig selector: statistical estimation when p is much larger
than n. The Annals of Statistics, 35(6):2313–2351, 2005.

D. Choi and B. Roy. A generalized Kalman filter for fixed point approximation and efficient
temporal-difference learning. Discrete Event Dynamic Systems, 16(2):207–239, 2006.

R. W. Cottle, J.-S. Pang, and R. E. Stone. The Linear Complementarity Problem. Computer
Science and Scientific Computing. Academic Press, 1992. ISBN 0121923509.

R. H. Crites and A. G. Barto. Elevator group control using multiple reinforcement learning
agents. Machine Learning, 33(2-3):235–262, 1998.

W. Dabney and A. G. Barto. Adaptive step-size for online temporal difference learning. In
Proceedings of the 26th AAAI Conference on Artificial Intelligence, 2012.

P.-T. De Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein. A tutorial on the cross-
entropy method. Annals of Operations Research, (1):19–67, 2010.

M. P. Deisenroth. Efficient Reinforcement Learning using Gaussian Processes. PhD thesis,
Karlsruhe Institute of Technology, 2010.

M. P. Deisenroth and C. E. Rasmussen. PILCO: A model-based and data-efficient approach
to policy search. In Proceedings of the 28th International Conference on Machine Learning,
2011.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. The Annals of
Statistics, 32(2):407–499, 2004.

Y. Engel. Algorithms and Representations for Reinforcement Learning. PhD thesis, Hebrew
University, 2005.

878



Policy Evaluation with Temporal Differences

Y. Engel, S. Mannor, and R. Meir. Bayes meets Bellman: The Gaussian process approach
to temporal difference learning. In Proceedings of the Twentieth International Conference
on Machine Learning, 2003.

Y. Engel, S. Mannor, and R. Meir. Reinforcement learning with Gaussian processes. In
Proceedings of the 22nd International Conference on Machine Learning, 2005.

A.-m. Farahmand and C. Szepesvári. Model selection in reinforcement learning. Machine
Learning, 85(3):299–332, 2011.

A.-m. Farahmand, M. Ghavamzadeh, C. Szepesvári, and S. Mannor. Regularized policy
iteration. In Advances in Neural Information Processing Systems 21, 2008.

J. Frank, S. Mannor, and D. Precup. Reinforcement learning in the presence of rare events.
In Proceedings of the 25th International Conference on Machine Learning, 2008.

M. Geist and O. Pietquin. Kalman temporal differences. Journal of Artificial Intelligence
Research, 39(1):483–532, 2010.

M. Geist and B. Scherrer. l1-penalized projected Bellman residual. In Proceedings of the
Nineth European Workshop on Reinforcement Learning, 2011.

M. Geist and B. Scherrer. Off-policy learning with eligibility traces : A survey. Technical
report, INRIA Lorraine - LORIA, 2013.

M. Geist, B. Scherrer, A. Lazaric, and M. Ghavamzadeh. A Dantzig selector approach
to temporal difference learning. In Proceedings of the 29th International Conference on
Machine Learning, 2012.

S. Gelly and D. Silver. Achieving master level play in 9 x 9 computer go. In Proceedings of
the 23th AAAI Conference on Artificial Intelligence, 2008.

A. Geramifard, M. Bowling, and R. S. Sutton. Incremental least-squares temporal difference
learning. Proceedings of the 21th AAAI Conference on Artificial Intelligence, 2006a.

A. Geramifard, M. Bowling, M. Zinkevich, and R. S. Sutton. iLSTD: Eligibility traces and
convergence analysis. In Advances in Neural Information Processing Systems 19, 2006b.

A. Geramifard, F. Doshi, J. Redding, N. Roy, and J. P. How. Online discovery of feature
dependencies. In Proceedings of the 28th International Conference on Machine Learning,
2011.

A. Geramifard, T. J. Walsh, and J. P. How. Batch-iFDD for representation expansion in
large MDPs. In Conference on Uncertainty in Artificial Intelligence, 2013.

M. Ghavamzadeh, A. Lazaric, O.-A. Maillard, and R. Munos. LSTD with random projec-
tions. In Advances in Neural Information Processing Systems 23, 2010.

M. Ghavamzadeh, A. Lazaric, R. Munos, and M. Hoffman. Finite-sample analysis of Lasso-
TD. In Proceedings of the 28th International Conference on Machine Learning, 2011.

879



Dann, Neumann and Peters

P. W. Glynn and D. L. Iglehart. Importance sampling for stochastic simulations. Manage-
ment Science, 35(11):1367–1392, 1989.

H. Hachiya and M. Sugiyama. Feature selection for reinforcement learning: Evaluating im-
plicit state-reward dependency via conditional mutual information. In European Con-
ference on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases, 2010.

M. Hoffman, A. Lazaric, M. Ghavamzadeh, and R. Munos. Regularized least squares tem-
poral difference learning with nested l2 and l1 penalization. In Proceedings of the Nineth
European Workshop on Reinforcement Learning, 2011.

M. Hutter and S. Legg. Temporal difference updating without a learning rate. In Advances
in Neural Information Processing Systems 20, 2007.

R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for sparse hierarchical
dictionary learning. In Proceedings of the 27th International Conference on Machine
Learning, 2010.

J. Johns and S. Mahadevan. Sparse approximate policy evaluation using graph-based basis
functions. Technical report, University of Massachusetts Amherst, 2009.

J. Johns, C. Painter-Wakefield, and R. Parr. Linear complementarity for regularized policy
evaluation and improvement. In Advances in Neural Information Processing Systems 23,
2010.

T. Jung and D. Polani. Least squares SVM for least squares TD learning. In European
Conference on Artificial Intelligence, 2006.

P. W. Keller, S. Mannor, and D. Precup. Automatic basis function construction for ap-
proximate dynamic programming and reinforcement learning. In Proceedings of the 23rd
International Conference on Machine Learning, 2006.

J. Z. Kolter and A. Y. Ng. Regularization and feature selection in least-squares temporal dif-
ference learning. In Proceedings of the 26th Annual International Conference on Machine
Learning, 2009.

R. M. Kretchmar and C. W. Anderson. Comparison of CMACs and radial basis functions
for kocal function approximators in reinforcement learning. In International Conference
on Neural Networks, 1997.

M. G. Lagoudakis and R. Parr. Least-squares policy iteration. The Journal of Machine
Learning Research, 4(Dec):1107–1149, 2003.

A. Lazaric, M. Ghavamzadeh, and R. Munos. Finite-sample analysis of LSTD. In Proceedings
of the 27th International Conference on Machine Learning, 2010.

L. Li. A worst-case comparison between temporal difference and residual gradient with linear
function approximation. In Proceedings of the 25th International Conference on Machine
Learning, 2008.

880



Policy Evaluation with Temporal Differences

B. Liu, S. Mahadevan, and J. Liu. Regularized off-policy TD-learning. In Advances in
Neural Information Processing Systems 25, 2012.

M. Loth, M. Davy, and P. Preux. Sparse temporal difference learning using LASSO. In IEEE
Symposium on Adaptive Dynamic Programming And Reinforcement Learning, 2007.

H. R. Maei. Gradient Temporal-Difference Learning Algorithms. PhD thesis, University of
Alberta, 2011.

S. Mahadevan and M. Maggioni. Proto-value functions: A Laplacian framework for learning
representation and control in Markov decision processes. Journal of Machine Learning
Research, 8(Oct):2169–2231, 2007.

A. R. Mahmood, R. S. Sutton, T. Degris, and P. M. Pilarski. Tuning-free step-size adap-
tation. In IEEE International Conference on Acoustics, Speech and Signal Processing,
2012.

I. Menache, S. Mannor, and N. Shimkin. Basis function adaptation in temporal difference
reinforcement learning. Annals of Operations Research, 134(1):215–238, 2005.

D. Meyer, H. Shen, and K. Diepold. l1-regularized gradient temporal-difference learning. In
Proceedings of the Tenth European Workshop on Reinforcement Learning, 2012.

A. Nedic and D. P. Bertsekas. Least squares policy evaluation algorithms with linear function
approximation. Discrete Event Dynamic Systems, 13(1-2):79–110, 2003.

C. Painter-Wakefield and R. Parr. Greedy algorithms for sparse reinforcement learning. In
Proceedings of the 29th International Conference on Machine Learning, 2012a.

C. Painter-Wakefield and R. Parr. L1 regularized linear temporal difference learning. Tech-
nical report, Duke University, Durham, NC, 2012b.

R. Parr, C. Painter-Wakefield, L. Li, and M. Littman. Analyzing feature generation for
value-function approximation. In Proceedings of the 24th International Conference on
Machine Learning, 2007.

R. Parr, L. Li, G. Taylor, C. Painter-Wakefield, and M. L. Littman. An analysis of lin-
ear models, linear value-function approximation, and feature selection for reinforcement
learning. In Proceedings of the 25th International Conference on Machine Learning, 2008.

Y. Pati, R. Rezaiifar, and P. Krishnaprasad. Orthogonal matching pursuit: recursive func-
tion approximation with applications to wavelet decomposition. In Proceedings of the 27th
Asilomar Conference on Signals, Systems and Computers, 1993.

M. Petrik, G. Taylor, R. Parr, and S. Zilberstein. Feature selection using regularization in
approximate linear programs for Markov decision processes. In Proceedings of the 27th
International Conference on Machine Learning, 2010.

B. A. Pires. Statistical Analysis of L1-penalized Linear Estimation with Applications. Master
thesis, University of Alberta, 2011.

881



Dann, Neumann and Peters

C. E. Rasmussen and M. Kuss. Gaussian processes in reinforcement learning. In Advances
in Neural Information Processing Systems 16, 2003.

M. Riedmiller and T. Gabel. On experiences in a complex and competitive gaming do-
main: Reinforcement learning meets robocup. In IEEE Symposium on Computational
Intelligence and Games, 2007.

H. Robbins and S. Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, 22(3):400–407, 1951.

M. Rosenblatt. Markov Processes. Structure and Asymptotic Behavior. Springer, 1971. ISBN
978-3642652400.

N. L. Roux and A. Fitzgibbon. A fast natural Newton method. In Proceedings of the 27th
International Conference on Machine Learning, 2010.

A. L. Samuel. Some studies in machine learning using the game of checkers. IBM Journal
of Research and Development, 3(3):210–229, 1959.

B. Scherrer. Should one compute the temporal difference fix point or minimize the Bellman
residual? the unified oblique projection view. In Proceedings of the 27th International
Conference on Machine Learning, 2010.

B. Scherrer and M. Geist. Recursive least-squares learning with eligibility traces. In Pro-
ceedings of the Nineth European Workshop on Reinforcement Learning, 2011.

R. Schoknecht. Optimality of reinforcement learning algorithms with linear function ap-
proximation. In Advances in Neural Information Processing Systems 15, 2002.

P. J. Schweitzer and A. Seidmann. Generalized polynomial approximations in Markovian
decision processes. Journal of Mathematical Analysis and Applications, 110(2):568–582,
1985.

D. Silver, R. Sutton, and M. Müller. Reinforcement learning of local shape in the game of
go. In International Joint Conference on Artificial Intelligence, 2007.

S. Sra, S. Nowozin, and S. J. Wright. Optimization for Machine Learning. MIT Press, 2012.
ISBN 9780262016469.

R. S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning,
3(1):9–44, 1988.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. Adaptive compu-
tation and machine learning. MIT Press, 1998. ISBN 9780262193986.

R. S. Sutton, D. Precup, and S. Singh. Intra-option learning about temporally abstract
actions. In Proceedings of the 15th International Conference on Machine Learning, 1998.

R. S. Sutton, C. Szepesvári, and H. R. Maei. A convergent O(n) algorithm for off-policy
temporal-difference learning with linear function approximation. In Advances in Neural
Information Processing Systems 21, 2008.

882



Policy Evaluation with Temporal Differences

R. S. Sutton, H. R. Maei, D. Precup, S. Bhatnagar, D. Silver, C. Szepesvári, and
E. Wiewiora. Fast gradient-descent methods for temporal-difference learning with lin-
ear function approximation. In Proceedings of the 26th Annual International Conference
on Machine Learning, 2009.

G. Taylor and R. Parr. Kernelized value function approximation for reinforcement learning.
In Proceedings of the 26th Annual International Conference on Machine Learning, 2009.

G. Tesauro. TD-gammon, a self-teaching backgammon program, achieves master-level play.
Neural Computation, 6(2):215–219, 1994.

J. N. Tsitsiklis and B. van Roy. An analysis of temporal-difference learning with function
approximation. IEEE Transactions On Automatic Control, 42(5):674–690, 1997.

R. J. Williams and L. C. Baird. Tight performance bounds on greedy policies based on
imperfect value functions. In Yale Workshop on Adaptive and Learning Systems, 1993.

X. Xu, T. Xie, D. Hu, and X. Lu. Kernel least-squares temporal difference learning. Inter-
national Journal of Information Technology, 11(9):54–63, 2005.

H. Yu. Convergence of least squares temporal difference methods under general conditions.
In Proceedings of the 27th International Conference on Machine Learning, 2010.

P. Zhao, G. Rocha, and B. Yu. The composite absolute penalties family for grouped and
hierarchical variable selection. The Annals of Statistics, 37(6A):3468–3497, 2009.

883


	Introduction
	Notation and Background on Markov Decision Processes
	Problem Statement: Efficient Value Function Estimation

	Overview of Temporal-Difference Methods
	Objective Functions
	Fixpoint Discussion

	Algorithm Design
	Gradient-Based Approaches
	Least-Squares Approaches
	Probabilistic Models

	Feature Handling
	Automatic Feature Generation
	Feature Selection by Regularization 

	Important Extensions
	Eligibility Traces
	Generalization to Off-Policy Learning by Importance Reweighting


	Comparison of Temporal-Difference Methods
	Benchmarks
	Boyan's Chain (Benchmark 1)
	Baird's Star Example (Benchmark 2)
	Randomly Sampled MDP (Benchmarks 3 and 4)
	Linearized Cart-Pole-Balancing (Benchmarks 5- 8)
	Linearized 20-link Balancing (Benchmark 11 and 12)
	Cart-Pole Swing-up (Benchmarks 9 and 10)
	Hyper-Parameter Optimization
	Normalization of Features

	Insights on the Algorithms-Defining Cost Functions
	Double Sampling vs. Eligibility Traces
	MSPBE vs. MSE Performance

	Results on Gradient-based Methods
	Constant vs. Decreasing Learning Rates
	Influence of Hyper-Parameters

	Results on Least-Squares Methods
	Alternative Regularization Approaches
	Dependency on Hyper-Parameters


	Conclusion and Outlook
	Conclusion
	Outlook

	Derivation of Least-Squares Temporal-Difference Learning
	Parametric GPTD Whitening Transformation
	Algorithms

