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Abstract

The hidden Markov model (HMM) is a widely-used generative model that copes with
sequential data, assuming that each observation is conditioned on the state of a hidden
Markov chain. In this paper, we derive a novel algorithm to cluster HMMs based on the
hierarchical EM (HEM) algorithm. The proposed algorithm i) clusters a given collection
of HMMs into groups of HMMs that are similar, in terms of the distributions they repre-
sent, and ii) characterizes each group by a “cluster center”, that is, a novel HMM that is
representative for the group, in a manner that is consistent with the underlying generative
model of the HMM. To cope with intractable inference in the E-step, the HEM algorithm
is formulated as a variational optimization problem, and efficiently solved for the HMM
case by leveraging an appropriate variational approximation. The benefits of the proposed
algorithm, which we call variational HEM (VHEM), are demonstrated on several tasks
involving time-series data, such as hierarchical clustering of motion capture sequences, and
automatic annotation and retrieval of music and of online hand-writing data, showing im-
provements over current methods. In particular, our variational HEM algorithm effectively
leverages large amounts of data when learning annotation models by using an efficient hi-
erarchical estimation procedure, which reduces learning times and memory requirements,
while improving model robustness through better regularization.

Keywords: Hierarchical EM algorithm, clustering, hidden Markov model, hidden Markov
mixture model, variational approximation, time-series classification

1. Introduction

The hidden Markov model (HMM) (Rabiner and Juang, 1993) is a probabilistic model
that assumes a signal is generated by a double embedded stochastic process. A discrete-
time hidden state process, which evolves as a Markov chain, encodes the dynamics of the
signal, while an observation process encodes the appearance of the signal at each time,
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conditioned on the current state. HMMs have been successfully applied to a variety of
fields, including speech recognition (Rabiner and Juang, 1993), music analysis (Qi et al.,
2007) and identification (Batlle et al., 2002), online hand-writing recognition (Nag et al.,
1986), analysis of biological sequences (Krogh et al., 1994), and clustering of time series
data (Jebara et al., 2007; Smyth, 1997; Alon et al., 2003).

This paper is about clustering HMMs. More precisely, we are interested in an algorithm
that, given a collection of HMMs, partitions them into K clusters of “similar” HMMs,
while also learning a representative HMM “cluster center” that concisely and appropriately
represents each cluster. This is similar to standard k-means clustering, except that the data
points are HMMs now instead of vectors in Rd.

Various applications motivate the design of HMM clustering algorithms, ranging from hi-
erarchical clustering of sequential data (e.g., speech or motion sequences modeled by HMMs
as by Jebara et al. 2007), to hierarchical indexing for fast retrieval, to reducing the com-
putational complexity of estimating mixtures of HMMs from large data sets (e.g., semantic
annotation models for music and video)—by clustering HMMs, efficiently estimated from
many small subsets of the data, into a more compact mixture model of all data. However,
there has been little work on HMM clustering and, therefore, its applications.

Existing approaches to clustering HMMs operate directly on the HMM parameter space,
by grouping HMMs according to a suitable pairwise distance defined in terms of the HMM
parameters. However, as HMM parameters lie on a non-linear manifold, a simple application
of the k-means algorithm will not succeed in the task, since it assumes real vectors in a
Euclidean space. In addition, such an approach would have the additional complication that
HMM parameters for a particular generative model are not unique, that is, a permutation
of the states leads to the same generative model. One solution, proposed by Jebara et al.
(2007), first constructs an appropriate similarity matrix between all HMMs that are to be
clustered (e.g., based on the Bhattacharya affinity, which depends non-linearly on the HMM
parameters Jebara et al. 2004; Hershey and Olsen 2008), and then applies spectral clustering.
While this approach has proven successful to group HMMs into similar clusters (Jebara
et al., 2007), it does not directly address the issue of generating HMM cluster centers.
Each cluster can still be represented by choosing one of the given HMMs, for example, the
HMM which the spectral clustering procedure maps the closest to each spectral clustering
center. However, this may be suboptimal for some applications of HMM clustering, for
example in hierarchical estimation of annotation models. Another distance between HMM
distributions suitable for spectral clustering is the KL divergence, which in practice has been
approximated by sampling sequences from one model and computing their log-likelihood
under the other (Juang and Rabiner, 1985; Zhong and Ghosh, 2003; Yin and Yang, 2005).

Instead, in this paper we propose to cluster HMMs directly with respect to the prob-
ability distributions they represent. The probability distributions of the HMMs are used
throughout the whole clustering algorithm, and not only to construct an initial embedding
as Jebara et al. (2007). By clustering the output distributions of the HMMs, marginalized
over the hidden-state distributions, we avoid the issue of multiple equivalent parameteri-
zations of the hidden states. We derive a hierarchical expectation maximization (HEM)
algorithm that, starting from a collection of input HMMs, estimates a smaller mixture
model of HMMs that concisely represents and clusters the input HMMs (i.e., the input
HMM distributions guide the estimation of the output mixture distribution).
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The HEM algorithm is a generalization of the EM algorithm—the EM algorithm can
be considered as a special case of HEM for a mixture of delta functions as input. The
main difference between HEM and EM is in the E-step. While the EM algorithm computes
the sufficient statistics given the observed data, the HEM algorithm calculates the expected
sufficient statistics averaged over all possible observations generated by the input probability
models. Historically, the first HEM algorithm was designed to cluster Gaussian probability
distributions (Vasconcelos and Lippman, 1998). This algorithm starts from a Gaussian
mixture model (GMM) with K(b) components and reduces it to another GMM with fewer
components, where each of the mixture components of the reduced GMM represents, that
is, clusters, a group of the original Gaussian mixture components. More recently, Chan
et al. (2010b) derived an HEM algorithm to cluster dynamic texture (DT) models (i.e.,
linear dynamical systems, LDSs) through their probability distributions. HEM has been
applied successfully to construct GMM hierarchies for efficient image indexing (Vasconcelos,
2001), to cluster video represented by DTs (Chan et al., 2010a), and to estimate GMMs or
DT mixtures (DTMs, that is, LDS mixtures) from large data sets for semantic annotation
of images (Carneiro et al., 2007), video (Chan et al., 2010a) and music (Turnbull et al.,
2008; Coviello et al., 2011). Note that HMMs cannot be clustered by using the original
HEM by Vasconcelos and Lippman (1998). Specifically, the original formulation of HEM
was designed for clustering data points represented by individual Gaussian models. When
clustering HMMs, we are interested in assigning every HMM as a whole to a cluster, and
do not want to treat their individual Gaussian states independently. Even with GMMs (as
opposed to single Gaussians) this is not possible in closed form, since it would need the
expected log likelihood of a mixture.

To extend the HEM framework from clustering Gaussians to clustering HMMs, addi-
tional marginalization over the hidden-state processes is required, as with DTs. However,
while Gaussians and DTs allow tractable inference in the E-step of HEM, this is no longer
the case for HMMs. Therefore, in this work, we derive a variational formulation of the HEM
algorithm (VHEM), and then leverage a variational approximation derived by Hershey et al.
(2007) (which has not been used in a learning context so far) to make the inference in the
E-step tractable. The resulting algorithm not only clusters HMMs, but also learns novel
HMMs that are representative centers of each cluster. The resulting VHEM algorithm can
be generalized to handle other classes of graphical models, for which exact computation
of the E-step in the standard HEM would be intractable, by leveraging similar variational
approximations—for example, any mixtures of continuous exponential family distributions
(e.g., Gaussian) the more general case of HMMs with emission probabilities that are (mix-
tures of) continuous exponential family distributions.

Compared to the spectral clustering algorithm of Jebara et al. (2007), the VHEM algo-
rithm has several advantages that make it suitable for a variety of applications. First, the
VHEM algorithm is capable of both clustering, as well as learning novel cluster centers,
in a manner that is consistent with the underlying generative probabilistic framework. In
addition, since it does not require sampling steps, it is also scalable with low memory re-
quirements. As a consequence, VHEM for HMMs allows for efficient estimation of HMM
mixtures from large data sets using a hierarchical estimation procedure. In particular, in-
termediate HMM mixtures are first estimated in parallel by running the EM algorithm on
small independent portions of the data set. The final model is then estimated from the
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intermediate models using the VHEM algorithm. Because VHEM is based on maximum-
likelihood principles, it drives model estimation towards similar optimal parameter values as
performing maximum-likelihood estimation on the full data set. In addition, by averaging
over all possible observations compatible with the input models in the E-step, VHEM pro-
vides an implicit form of regularization that prevents over-fitting and improves robustness
of the learned models, compared to a direct application of the EM algorithm on the full
data set. Note that, in contrast to Jebara et al. (2007), VHEM does not construct a kernel
embedding, and is therefore expected to be more efficient, especially for large K(b).

In summary, the contributions of this paper are three-fold: i) we derive a variational for-
mulation of the HEM algorithm for clustering HMMs, which generates novel HMM centers
representative of each cluster; ii) we evaluate VHEM on a variety of clustering, annota-
tion, and retrieval problems involving time-series data, showing improvement over current
clustering methods; iii) we demonstrate in experiments that VHEM can effectively learn
HMMs from large sets of data, more efficiently than standard EM, while improving model
robustness through better regularization. With respect to our previous work, the VHEM
algorithm for HMMs was originally proposed by Coviello et al. (2012a)

The remainder of the paper is organized as follows. We review the hidden Markov
model (HMM) and the hidden Markov mixture model (H3M) in Section 2. We present the
derivation of the VHEM-H3M algorithm in Section 3, followed by a discussion in Section
4.boldsymbol Finally, we present experimental results in Sections 5 and 6.

2. The Hidden Markov (Mixture) Model

A hidden Markov model (HMM)M assumes a sequence of τ observations y = {y1, . . . , yτ}
is generated by a double embedded stochastic process, where each observation (or emission)
yt at time t depends on the state of a discrete hidden variable xt, and the sequence of hidden
states x = {x1, . . . , xτ} evolves as a first-order Markov chain. The hidden variables can take
one of S values, {1, . . . , S}, and the evolution of the hidden process is encoded in a state
transition matrix A = [aβ,β′ ]β,β′=1,...,S , where each entry, aβ,β′ = p(xt+1 = β′|xt = β,M),
is the probability of transitioning from state β to state β′, and an initial state distribution
π = [π1, . . . , πS ], where πβ = p(x1 = β|M).

Each state β generates observations according to an emission probability density func-
tion, p(yt|xt = β,M). Here, we assume the emission density is time-invariant, and modeled
as a Gaussian mixture model (GMM) with M components:

p(y|x = β,M) =
M∑
m=1

cβ,mp(y|ζ = m,x = β,M), (1)

where ζ ∼ multinomial(cβ,1, . . . , cβ,M ) is the hidden assignment variable that selects the
mixture component, with cβ,m as the mixture weight of the mth component, and each
component is a multivariate Gaussian distribution,

p(y|ζ = m,x = β,M) = N (y;µβ,m,Σβ,m),

with mean µβ,m and covariance matrix Σβ,m. The HMM is specified by the parameters

M = {π,A, {{cβ,m, µβ,m,Σβ,m}Mm=1}Sβ=1},
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which can be efficiently learned from an observation sequence y with the Baum-Welch
algorithm (Rabiner and Juang, 1993), which is based on maximum likelihood estimation.

The probability distribution of a state sequence x generated by an HMM M is

p(x|M) = p(x1|M)

τ∏
t=2

p(xt|xt−1,M) = πx1

τ∏
t=2

axt−1,xt ,

while the joint likelihood of an observation sequence y and a state sequence x is

p(y,x|M) = p(y|x,M)p(x|M) = p(x1|M)
τ∏
t=2

p(xt|xt−1,M)
τ∏
t=1

p(yt|xt,M).

Finally, the observation likelihood of y is obtained by marginalizing out the state sequence
from the joint likelihood,

p(y|M) =
∑
x

p(y,x|M) =
∑
x

p(y|x,M)p(x|M), (2)

where the summation is over all state sequences of length τ , and can be performed efficiently
using the forward algorithm (Rabiner and Juang, 1993).

A hidden Markov mixture model (H3M) (Smyth, 1997) models a set of observation se-
quences as samples from a group of K hidden Markov models, each associated to a specific
sub-behavior. For a given sequence, an assignment variable z ∼ multinomial(ω1, · · · , ωK)
selects the parameters of one of the K HMMs, where the kth HMM is selected with prob-
ability ωk. Each mixture component is parametrized by

Mz = {πz, Az, {{czβ,m, µzβ,m,Σz
β,m}Mm=1}Sβ=1},

and the H3M is parametrized byM = {ωz,Mz}Kz=1, which can be estimated from a collec-
tion of observation sequences using the EM algorithm (Smyth, 1997; Alon et al., 2003).

To reduce clutter, here we assume that all the HMMs have the same number S of hidden
states and that all emission probabilities have M mixture components. Our derivation could
be easily extended to the more general case though.

3. Clustering Hidden Markov Models

Algorithms for clustering HMMs can serve a wide range of applications, from hierarchical
clustering of sequential data (e.g., speech or motion sequences modeled by HMMs (Jebara
et al., 2007)), to hierarchical indexing for fast retrieval, to reducing the computational
complexity of estimating mixtures of HMMs from large weakly-annotated data sets—by
clustering HMMs, efficiently estimated from many small subsets of the data, into a more
compact mixture model of all data.

In this work we derive a hierarchical EM algorithm for clustering HMMs (HEM-H3M)
with respect to their probability distributions. We approach the problem of clustering
HMMs as reducing an input HMM mixture with a large number of components to a new
mixture with fewer components. Note that different HMMs in the input mixture are allowed
to have different weights (i.e., the mixture weights {ωz}Kz=1 are not necessarily all equal).

701



Coviello, Chan and Lanckriet

One method for estimating the reduced mixture model is to generate samples from the
input mixture, and then perform maximum likelihood estimation, that is, maximize the
log-likelihood of these samples. However, to avoid explicitly generating these samples, we
instead maximize the expectation of the log-likelihood with respect to the input mixture
model, thus averaging over all possible samples from the input mixture model. In this
way, the dependency on the samples is replaced by a marginalization with respect to the
input mixture model. While such marginalization is tractable for Gaussians and DTs,
this is no longer the case for HMMs. Therefore, in this work, we i) derive a variational
formulation of the HEM algorithm (VHEM), and ii) specialize it to the HMM case by
leveraging a variational approximation proposed by Hershey et al. (2007). Note that the
work of Hershey et al. (2007) was proposed as an alternative to MCMC sampling for the
computation of the KL divergence between two HMMs, and has not been used in a learning
context so far.

We present the problem formulation in Section 3.1, and derive the algorithm in Sections
3.2, 3.3 and 3.4.

3.1 Formulation

Let M(b) be a base hidden Markov mixture model with K(b) components. The goal of the
VHEM algorithm is to find a reduced hidden Markov mixture modelM(r) with K(r) < K(b)

(i.e., fewer) components that represents M(b) well. The likelihood of a random sequence
y ∼M(b) is given by

p(y|M(b)) =

K(b)∑
i=1

ω
(b)
i p(y|z(b) = i,M(b)), (3)

where z(b) ∼ multinomial(ω
(b)
1 , · · ·ω(b)

K(b)) is the hidden variable that indexes the mixture

components. p(y|z = i,M(b)) is the likelihood of y under the ith mixture component, as in

(2), and ω
(b)
i is the mixture weight for the ith component. Likewise, the likelihood of the

random sequence y ∼M(r) is

p(y|M(r)) =
K(r)∑
j=1

ω
(r)
j p(y|z(r) = j,M(r)), (4)

where z(r) ∼ multinomial(ω
(r)
1 , · · · , ω(r)

K(r)) is the hidden variable for indexing components

in M(r).

At a high level, the VHEM-H3M algorithm estimates the reduced H3M model M(r) in
(4) from virtual sequences distributed according to the base H3M modelM(b) in (3). From
this estimation procedure, the VHEM algorithm provides:

1. a soft clustering of the original K(b) components into K(r) groups, where cluster
membership is encoded in assignment variables that represent the responsibility of
each reduced mixture component for each base mixture component, that is, ẑi,j =
p(z(r) = j|z(b) = i), for i = 1, . . . ,K(b) and j = 1, . . . ,K(r);
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variables base model (b) reduced model (r)
index for HMM components i j

number of HMM components K(b) K(r)

HMM states β ρ
number of HMM states S S
HMM state sequence β = {β1, · · · , βτ} ρ = {ρ1, · · · , ρτ}
index for component of GMM m `
number of Gaussian components M M

models

H3M M(b) M(r)

HMM component (of H3M) M(b)
i M(r)

j

GMM emission M(b)
i,β M(r)

j,ρ

Gaussian component (of GMM) M(b)
i,β,m M(r)

j,ρ,`

parameters

H3M component weight ω
(b)
i ω

(r)
j

HMM initial state π(b),i π(r),j

HMM state transition matrix A(b),i A(r),j

GMM emission {c(b),i
β,m , µ

(b),i
β,m ,Σ

(b),i
β,m}

M
m=1 {c(r),j

ρ,` , µ
(r),j
ρ,` ,Σ

(r),j
ρ,` }

M
`=1

probability distributions notation short-hand

HMM state sequence (b) p(x = β|z(b) = i,M(b)) p(β|M(b)
i ) = π

(b),i
β

HMM state sequence (r) p(x = ρ|z(r) = j,M(r)) p(ρ|M(r)
j ) = π

(r),j
ρ

HMM observation likelihood (r) p(y|z(r) = j,M(r)) p(y|M(r)
j )

GMM emission likelihood (r) p(yt|xt = ρ,M(r)
j ) p(yt|M(r)

j,ρ)

Gaussian component likelihood (r) p(yt|ζt = `, xt = ρ,M(r)
j ) p(yt|M(r)

j,ρ,`)

expectations
HMM observation sequence (b) Ey|z(b)=i,M(b) [·] EM(b)

i

[·]
GMM emission (b) E

yt|xt=β,M(b)
i

[·] EM(b)
i,β

[·]
Gaussian component (b) E

yt|ζt=m,xt=β,M(b)
i

[·] EM(b)
i,β,m

[·]

expected log-likelihood lower bound variational distribution

EM(b)
i

[log p(Yi|M(r))] LiH3M qi(zi = j) = zij

EM(b)
i

[log p(y|M(r)
j )] Li,jHMM qi,j(ρ|β) = φi,jρ|β

= φi,j1 (ρ1|β1)
∏τ
t=2 φ

i,j
t (ρt|ρt−1, βt)

EM(b)
i,β

[log p(y|M(r)
j,ρ)] L(i,β),(j,ρ)

GMM qi,jβ,ρ(ζ = `|m) = η
(i,β),(j,ρ)
`|m

Table 1: Notation used in the derivation of the VHEM-H3M algorithm.

2. novel cluster centers represented by the individual mixture components of the reduced
model in (4), that is, p(y|z(r) = j,M(r)) for j = 1, . . . ,K(r).

Finally, because we take the expectation over the virtual samples, the estimation is carried
out in an efficient manner that requires only knowledge of the parameters of the base model,
without the need of generating actual virtual samples.
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3.1.1 Notation

We will always use i and j to index the components of the base modelM(b) and the reduced

modelM(r), respectively. To reduce clutter, we will also use the short-hand notationM(b)
i

andM(r)
j to denote the ith component ofM(b) and the jth component ofM(r), respectively.

Hidden states of the HMMs are denoted with β for the base model M(b)
i , and with ρ for

the reduced model M(r)
j .

The GMM emission models for each hidden state are denoted asM(b)
i,β andM(r)

j,ρ . We will
always use m and ` for indexing the individual Gaussian components of the GMM emissions
of the base and reduced models, respectively. The individual Gaussian components are

denoted as M(b)
i,β,m for the base model, and M(r)

j,ρ,` for the reduced model. Finally, we

denote the parameters of ith HMM component of the base mixture model as M(b)
i =

{π(b),i, A(b),i, {{c(b),i
β,m , µ

(b),i
β,m ,Σ

(b),i
β,m}

M
m=1}Sβ=1}, and for the jth HMM in the reduced mixture

as M(r)
j = {π(r),j , A(r),j , {{c(r),j

ρ,` , µ
(r),j
ρ,` ,Σ

(r),j
ρ,` }

M
`=1}Sρ=1}.

When appearing in a probability distribution, the short-hand model notation (e.g.,

M(b)
i ) always implies conditioning on the model being active. For example, we will use

p(y|M(b)
i ) as short-hand for p(y|z(b) = i,M(b)), or p(yt|M(b)

i,β) as short-hand for p(yt|xt =

β, z(b) = i,M(b)). Furthermore, we will use π
(b),i
β as short-hand for the probability of the

state sequence β according to the base HMM component M(b)
i , that is, p(β|M(b)

i ), and

likewise M(r),j
ρ for the reduced HMM component.

Expectations will also use the short-hand model notation to imply conditioning on the
model. In addition, expectations are assumed to be taken with respect to the output variable
(y or yt), unless otherwise specified. For example, we will use EM(b)

i

[·] as short-hand for

Ey|z(b)=i,M(b) [·].
Table 1 summarizes the notation used in the derivation, including the variable names,

model parameters, and short-hand notations for probability distributions and expectations.
The bottom of Table 1 also summarizes the variational lower bound and variational distri-
butions, which will be introduced subsequently.

3.2 Variational HEM Algorithm

To learn the reduced model in (4), we consider a set of N virtual samples, distributed

according to the base model M(b) in (3), such that Ni = Nω
(b)
i samples are drawn from

the ith component. We denote the set of Ni virtual samples for the ith component as

Yi = {y(i,m)}Nim=1, where y(i,m) ∼ M(b)
i , and the entire set of N samples as Y = {Yi}K

(b)

i=1 .
Note that, in this formulation, we are not considering virtual samples {x(i,m),y(i,m)} for

each base component, according to its joint distribution p(x,y|M(b)
i ). The reason is that the

hidden-state space of each base mixture componentM(b)
i may have a different representation

(e.g., the numbering of the hidden states may be permuted between the components). This

mismatch will cause problems when the parameters of M(r)
j are computed from virtual

samples of the hidden states of {M(b)
i }K

(b)

i=1 . Instead, we treat Xi = {x(i,m)}Nim=1 as “missing”
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information, and estimate them in the E-step. The log-likelihood of the virtual samples is

log p(Y |M(r)) =
K(b)∑
i=1

log p(Yi|M(r)), (5)

where, in order to obtain a consistent clustering, we assume the entirety of samples Yi is
assigned to the same component of the reduced model (Vasconcelos and Lippman, 1998).

The original formulation of HEM (Vasconcelos and Lippman, 1998) maximizes (5) with
respect to M(r), and uses the law of large numbers to turn the virtual samples Yi into

an expectation over the base model components M(b)
i . In this paper, we will start with a

different objective function to derive the VHEM algorithm. To estimateM(r), we will max-
imize the average log-likelihood of all possible virtual samples, weighted by their likelihood

of being generated by M(b)
i , that is, the expected log-likelihood of the virtual samples,

J (M(r)) = EM(b)

[
log p(Y |M(r))

]
=

K(b)∑
i=1

EM(b)
i

[
log p(Yi|M(r))

]
, (6)

where the expectation is over the base model components M(b)
i . Maximizing (6) will even-

tually lead to the same estimate as maximizing (5), but allows us to strictly preserve the
variational lower bound, which would otherwise be ruined when applying the law of large
numbers to (5).

A general approach to deal with maximum likelihood estimation in the presence of
hidden variables (which is the case for H3Ms) is the EM algorithm (Dempster et al., 1977).
In the traditional formulation the EM algorithm is presented as an alternation between
an expectation step (E-step) and a maximization step (M-step). In this work, we take a
variational perspective (Neal and Hinton, 1998; Wainwright and Jordan, 2008; Csiszár and
Tusnády, 1984), which views each step as a maximization step. The variational E-step
first obtains a family of lower bounds to the (expected) log-likelihood (i.e., to Equation 6),
indexed by variational parameters, and then optimizes over the variational parameters to
find the tightest bound. The corresponding M-step then maximizes the lower bound (with
the variational parameters fixed) with respect to the model parameters. One advantage of
the variational formulation is that it readily allows for useful extensions to the EM algorithm,
such as replacing a difficult inference in the E-step with a variational approximation. In
practice, this is achieved by restricting the maximization in the variational E-step to a
smaller domain for which the lower bound is tractable.

The EM algorithm with variational E-step is guaranteed to converge (Gunawardana
and Byrne, 2005). Despite the approximation prevents convergence to local maxima of
the data log-likelihood (Gunawardana and Byrne, 2005), the algorithm still performs well
empirically, as shown in Section 5 and Section 6.

3.2.1 Lower Bound to an Expected Log-likelihood

Before proceeding with the derivation of VHEM for H3Ms, we first need to derive a lower-
bound to an expected log-likelihood term, for example, (6). Our derivation starts from
a variational lower-bound to a log-likelihood (as opposed to an expected log-likelihood), a
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standard tool in machine learning (Jordan et al., 1999; Jaakkola, 2000), which we briefly
review next. In all generality, let {O,H} be the observation and hidden variables of a
probabilistic model, respectively, where p(H) is the distribution of the hidden variables,
p(O|H) is the conditional likelihood of the observations, and p(O) =

∑
H p(O|H)p(H) is

the observation likelihood. We can define a variational lower bound to the observation
log-likelihood (Jordan et al., 1999; Jaakkola, 2000):

log p(O) ≥ log p(O)−D(q(H)||p(H|O))

=
∑
H

q(H) log
p(H)p(O|H)

q(H)
,

where p(H|O) is the posterior distribution of H given observation O, and D(p‖q) =∫
p(y) log p(y)

q(y)dy is the Kullback-Leibler (KL) divergence between two distributions, p and

q. We introduce a variational distribution q(H), which approximates the posterior dis-
tribution, where

∑
H q(H) = 1 and q(H) ≥ 0. When the variational distribution equals

the true posterior, q(H) = P (H|O), then the KL divergence is zero, and hence the lower-
bound reaches log p(O). When the true posterior cannot be computed, then typically q is
restricted to some set of approximate posterior distributions Q that are tractable, and the
best lower-bound is obtained by maximizing over q ∈ Q,

log p(O) ≥ max
q∈Q

∑
H

q(H) log
p(H)p(O|H)

q(H)
. (7)

From the standard lower bound in (7), we can now derive a lower bound to an expected
log-likelihood expression. Let Eb[·] be the expectation with respect to O with some dis-
tribution pb(O). Since pb(O) is non-negative, taking the expectation on both sides of (7)
yields,

Eb [log p(O)] ≥ Eb

[
max
q∈Q

∑
H

q(H) log
p(H)p(O|H)

q(H)

]
(8)

≥ max
q∈Q

Eb

[∑
H

q(H) log
p(H)p(O|H)

q(H)

]
(9)

= max
q∈Q

∑
H

q(H)

{
log

p(H)

q(H)
+ Eb [log p(O|H)]

}
, (10)

where (9) follows from Jensen’s inequality (i.e., f(E[x]) ≤ E[f(x)] when f is convex), and
the convexity of the max function. Hence, (10) is a variational lower bound on the expected
log-likelihood, which depends on the family of variational distributions Q.

In (8) we are computing the best lower-bound (7) to log p(O) individually for each value
of the observation variable O, which in general corresponds to different optimal q∗ ∈ Q for
different values of O. Note that the expectation in (8) is not analytically tractable when
p(O) is a mixture model (i.e., it is the expected log-likelihood of a mixture). Hence, we
treat the ensemble of observations O ∼ pb as a whole, and in (9) find a single q∗ ∈ Q for
which the lower bound is best on average. Mathematically, this correspond to using Jensen
inequality to pass from (8) to (9), which shows that the additional approximation makes
the lower-bound looser.
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3.2.2 Variational Lower Bound

We now derive a lower bound to the expected log-likelihood cost function in (6). The
derivation will proceed by successively applying the lower bound from (10) to each expected
log-likelihood term that arises. This will result in a set of nested lower bounds.

A variational lower bound to the expected log-likelihood of the virtual samples in (6) is
obtained by lower bounding each of the expectation terms EM(b)

i

in the sum,

J (M(r)) =
K(b)∑
i=1

EM(b)
i

[
log p(Yi|M(r))

]
≥

K(b)∑
i=1

LiH3M , (11)

where we define three nested lower bounds, corresponding to different model elements (the
H3M, the component HMMs, and the emission GMMs):

EM(b)
i

[log p(Yi|M(r))] ≥ LiH3M , (12)

EM(b)
i

[log p(y|M(r)
j )] ≥ Li,jHMM , (13)

EM(b)
i,β

[log p(y|M(r)
j,ρ)] ≥ L(i,β),(j,ρ)

GMM . (14)

In (12), the first lower bound, LiH3M , is on the expected log-likelihood of an H3M M(r)

with respect to an HMM M(b)
i . Because p(Yi|M(r)) is the likelihood under a mixture of

HMMs, as in (4), where the observation variable is Yi and the hidden variable is zi (the
assignment of Yi to a component of M(r)), its expectation cannot be calculated directly.
Hence, we introduce the variational distribution qi(zi) and apply (10) to (12), yielding the
lower bound (see Appendix A),

LiH3M = max
qi

∑
j

qi(zi = j)

{
log

p(zi = j|M(r))

qi(zi = j)
+NiLi,jHMM

}
. (15)

The lower bound in (15) depends on the second lower bound (Eq. 13), Li,jHMM , which is

on the expected log-likelihood of an HMMM(r)
j , averaged over observation sequences from

a different HMM M(b)
i . Although the data log-likelihood log p(y|M(r)

j ) can be computed
exactly using the forward algorithm (Rabiner and Juang, 1993), calculating its expectation

is not analytically tractable since an observation sequence y from a HMMM(r)
j is essentially

an observation from a mixture model.1

To calculate the lower bound Li,jHMM in (13), we first rewrite the expectation EM(b)
i

in

(13) to explicitly marginalize over the state sequence β ofM(b)
i , and then apply (10) where

the hidden variable is the state sequence ρ of M(r)
j , yielding (see Appendix A)

Li,jHMM =
∑
β

π
(b),i
β max

qi,j

∑
ρ

qi,j(ρ|β)

{
log

p(ρ|M(r)
j )

qi,j(ρ|β)
+
∑
t

L(i,βt),(j,ρt)
GMM

}
, (16)

1. For an observation sequence of length τ , an HMM with S states can be considered as a mixture model
with O(Sτ ) components.
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where we introduce a variational distribution qi,j(ρ|β) on the state sequence ρ, which

depends on a particular sequence β from M(b)
i . As before, (16) depends on another nested

lower bound, L(i,β),(j,ρ)
GMM in (14), which is on the expected log-likelihood of a GMM emission

density M(r)
j,ρ with respect to another GMM M(b)

i,β. This lower bound does not depend on
time, as we have assumed that the emission densities are time-invariant.

Finally, we obtain the lower bound L(i,β),(j,ρ)
GMM for (14), by explicitly marginalizing over

the GMM hidden assignment variable in M(b)
i,β and then applying (10) to the expectation

of the GMM emission distribution p(y|M(r)
j,ρ), yielding (see Appendix A),

L(i,β),(j,ρ)
GMM =

M∑
m=1

c
(b),i
β,m max

qi,jβ,ρ

M∑
ζ=1

qi,jβ,ρ(ζ|m)

{
log

p(ζ|M(r)
j,ρ)

qi,jβ,ρ(ζ|m)
+ EM(b)

i,β,m

[log p(y|M(r)
j,ρ,ζ)]

}
, (17)

where we introduce the variational distribution qi,jβ,ρ(ζ|m), which is conditioned on the obser-

vation y arising from the mth component inM(b)
i,β. In (17), the term EM(b)

i,β,m

[log p(y|M(r)
j,ρ,`)]

is the expected log-likelihood of the Gaussian distributionM(r)
j,ρ,` with respect to the Gaus-

sian M(b)
i,β,m, which has a closed-form solution (see Section 3.3.1).

In summary, we have derived a variational lower bound to the expected log-likelihood of
the virtual samples, which is given by (11). This lower bound is composed of three nested
lower bounds in (15), (16), and (17), corresponding to different model elements (the H3M,
the component HMMs, and the emission GMMs), where qi(zi), q

i,j(ρ|β), and qi,jβ,ρ(ζ|m)
are the corresponding variational distributions. Finally, the variational HEM algorithm for
HMMs consists of two alternating steps:

• (variational E-step) given M(r), calculate the variational distributions
qi,jβ,ρ(ζ|m), qi,j(ρ|β), and qi(zi) for the lower bounds in (17), (16), and (15);

• (M-step) update the model parameters via M(r)∗ = argmaxM(r)

∑K(b)

i=1 LiH3M .

In the following subsections, we derive the E- and M-steps of the algorithm. The entire
procedure is summarized in Algorithm 1.

3.3 Variational E-Step

The variational E-step consists of finding the variational distributions that maximize the
lower bounds in (17), (16), and (15). In particular, given the nesting of the lower bounds,

we proceed by first maximizing the GMM lower bound L(i,β),(j,ρ)
GMM for each pair of emission

GMMs in the base and reduced models. Next, the HMM lower bound Li,jHMM is maximized
for each pair of HMMs in the base and reduced models, followed by maximizing the H3M
lower bound LiH3M for each base HMM. Finally, a set of summary statistics are calculated,
which will be used in the M-step.

3.3.1 Variational Distributions

We first consider the forms of the three variational distributions, as well as the optimal
parameters to maximize the corresponding lower bounds.
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Algorithm 1 VHEM algorithm for H3Ms

1: Input: base H3M M(b) = {ω(b)
i ,M(b)

i }K
(b)

i=1 , number of virtual samples N .

2: Initialize reduced H3M M(r) = {ω(r)
j ,M(r)

j }K
(r)

j=1 .
3: repeat
4: {Variational E-step}
5: Compute optimal variational distributions and variational lower bounds:

6: for each pair of HMMs M(s)
i and M(r)

j

7: for each pair of emission GMMs for state β of M(s)
i and ρ of M(r)

j :

8: Compute optimal variational distributions η̂
(i,β),(j,ρ)
`|m as in (18)

9: Compute optimal lower bound L(i,β),(j,ρ)
GMM to expected log-likelihood as in (22)

10: Compute optimal variational distributions for HMMs as in Appendin B
φ̂i,j1 (ρ1|β1), φ̂i,jt (ρt|ρt−1, βt) for t = τ, . . . , 2

11: Compute optimal lower bound Li,jHMM to expected log-likelihood as in (21)
12: Compute optimal assignment probabilities:

ẑij =
ω

(r)
j exp(Nω

(b)
i L

i,j
HMM )∑

j′ ω
(r)
j′ exp(Nω

(b)
i L

i,j′

HMM )

13: Compute aggregate summary statistics for each pair of HMMs M(s)
i and M(r)

j as in
Section 3.3.3:

ν̂i,j1 (ρ) =

S∑
β=1

νi,j1 (ρ, β), ν̂i,j(ρ, β) =

τ∑
t=1

νi,jt (ρ, β), ξ̂i,j(ρ, ρ′) =

τ∑
t=2

S∑
β=1

ξi,jt (ρ, ρ′, β)

14: {M-step}
15: For each component M(r)

j , recompute parameters using (24)-(28).
16: until convergence

17: Output: reduced H3M {ω(r)
j ,M(a)

j }K
(r)

j=1 .

GMM: For the GMM lower bound L(i,β),(j,ρ)
GMM , we assume each variational distribution

has the form (Hershey et al., 2007)

qi,jβ,ρ(ζ = l|m) = η
(i,β),(j,ρ)
`|m ,

where
∑M

`=1 η
(i,β),(j,ρ)
`|m = 1, and η

(i,β),(j,ρ)
`|m ≥ 0, ∀`. Intuitively, η(i,β),(j,ρ) is the responsibility

matrix between each pair of Gaussian components in the GMMs M(b)
i,β and M(r)

j,ρ , where

η
(i,β),(j,ρ)
`|m represents the probability that an observation from component m of M(b)

i,β cor-

responds to component ` of M(r)
j,ρ . Substituting into (17) and maximizing the variational
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parameters yields (see Appendix B)

η̂
(i,β),(j,ρ)
`|m =

c
(r),j
ρ,` exp

{
EM(b)

i,β,m

[log p(y|M(r)
j,ρ,`)]

}
∑

`′ c
(r),j
ρ,`′ exp

{
EM(b)

i,β,m

[log p(y|M(r)
j,ρ,`′)]

} , (18)

where the expected log-likelihood of a Gaussian M(r)
j,ρ,` with respect to another Gaussian

M(b)
i,β,m is computable in closed-form (Penny and Roberts, 2000),

EM(b)
i,β,m

[log p(y|M(r)
j,ρ,`)] = −d

2
log 2π − 1

2
log
∣∣∣Σ(r),j

ρ,`

∣∣∣− 1

2
tr
(

(Σ
(r),j
ρ,` )−1Σ

(b),i
β,m

)
− 1

2
(µ

(r),j
ρ,` − µ

(b),i
β,m)T (Σ

(r),j
ρ,` )−1(µ

(r),j
ρ,` − µ

(b),i
β,m).

HMM: For the HMM lower bound Li,jHMM , we assume each variational distribution
takes the form of a Markov chain,

qi,j(ρ|β) = φi,j(ρ|β) = φi,j1 (ρ1|β1)

τ∏
t=2

φi,jt (ρt|ρt−1, βt),

where
∑S

ρ1=1 φ
i,j
1 (ρ1|β1) = 1, and

∑S
ρt=1 φ

i,j
t (ρt|ρt−1, βt) = 1, and all the factors are non-

negative. The variational distribution qi,j(ρ|β) represents the probability of the state se-

quence ρ in HMM M(r)
j , when M(r)

j is used to explain the observation sequence generated

by M(b)
i that evolved through state sequence β.

Substituting φi,j into (16), the maximization with respect to φi,jt (ρt|ρt−1, βt) and
φi,j1 (ρ1|β1) is carried out independently for each pair (i, j), and follows (Hershey et al.,
2007). This is further detailed in Appendix B. By separating terms and breaking up the
summation over β and ρ, the optimal φ̂i,jt (ρt|ρt−1, βt) and φ̂i,j1 (ρ1|β1) can be obtained using
an efficient recursive iteration (similar to the forward algorithm).

H3M: For the H3M lower bound LiH3M , we assume variational distributions of the

form qi(zi = j) = zij , where
∑K(r)

j=1 zij = 1, and zij ≥ 0. Substituting zij into (15), and
maximizing variational parameters are obtained as (see Appendix B)

ẑij =
ω

(r)
j exp(NiLi,jHMM )∑
j′ ω

(r)
j′ exp(NiLi,j

′

HMM )
. (19)

Note that in the standard HEM algorithm (Vasconcelos and Lippman, 1998; Chan et al.,
2010a), the assignment probabilities zij are based on the expected log-likelihoods of the

components, (e.g., EM(b)
i

[log p(y|M(r)
j )] for H3Ms). For the variational HEM algorithm,

these expectations are now replaced with their lower bounds (in our case, Li,jHMM ).
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3.3.2 Lower Bound

Substituting the optimal variational distributions into (15), (16), and (17) gives the lower
bounds,

LiH3M =
∑
j

ẑij

{
log

ω
(r)
j

ẑij
+NiLi,jHMM

}
, (20)

Li,jHMM =
∑
β

π
(b),i
β

∑
ρ

φ̂i,j(ρ|β)

{
log

π
(r),j
ρ

φ̂i,j(ρ|β)
+
∑
t

L(i,βt),(j,ρt)
GMM

}
, (21)

L(i,β),(j,ρ)
GMM =

M∑
m=1

c
(b),i
β,m

M∑
`=1

η̂
(i,β),(j,ρ)
`|m

log
c

(r),j
ρ,`

η̂
(i,β),(j,ρ)
`|m

+ EM(b)
i,β,m

[log p(y|M(r)
j,ρ,`)]

 . (22)

The lower bound Li,jHMM requires summing over all sequences β and ρ. This summation

can be computed efficiently along with φ̂i,jt (ρt|ρt−1, βt) and φ̂i,j1 (ρ1|β1) using a recursive
algorithm from Hershey et al. (2007). This is described in Appendix B.

3.3.3 Summary Statistics

After calculating the optimal variational distributions, we calculate the following summary
statistics, which are necessary for the M-step:

νi,j1 (ρ1, β1) = π
(b),i
β1

φ̂i,j1 (ρ1|β1),

ξi,jt (ρt−1, ρt, βt) =

 S∑
βt−1=1

νi,jt−1(ρt−1, βt−1) a
(b),i
βt−1,βt

 φ̂i,jt (ρt|ρt−1, βt), for t = 2, . . . , τ,

νi,jt (ρt, βt) =
S∑

ρt−1=1

ξi,jt (ρt−1, ρt, βt), for t = 2, . . . , τ,

and the aggregate statistics

ν̂i,j1 (ρ) =

S∑
β=1

νi,j1 (ρ, β), (23)

ν̂i,j(ρ, β) =
τ∑
t=1

νi,jt (ρ, β),

ξ̂i,j(ρ, ρ′) =

τ∑
t=2

S∑
β=1

ξi,jt (ρ, ρ′, β).

The statistic ν̂i,j1 (ρ) is the expected number of times that the HMMM(r)
j starts from state

ρ, when modeling sequences generated by M(b)
i . The quantity ν̂i,j(ρ, β) is the expected

number of times that the HMMM(r)
j is in state ρ when the HMMM(b)

i is in state β, when

both HMMs are modeling sequences generated by M(b)
i . Similarly, the quantity ξ̂i,j(ρ, ρ′)
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is the expected number of transitions from state ρ to state ρ′ of the HMM M(r)
j , when

modeling sequences generated by M(b)
i .

3.4 M-Step

In the M-step, the lower bound in (11) is maximized with respect to the parameters M(r),

M(r)∗ = argmax
M(r)

K(b)∑
i=1

LiH3M .

The derivation of the maximization is presented in Appendix C. Each mixture component
of M(r) is updated independently according to

ω
(r)
j

∗
=

∑K(b)

i=1 ẑi,j

K(b)
, (24)

π(r),j
ρ

∗
=

∑K(b)

i=1 ẑi,jω
(b)
i ν̂i,j1 (ρ)∑S

ρ′=1

∑K(b)

i=1 ẑi,jω
(b)
i ν̂i,j1 (ρ′))

, a
(r),j
ρ,ρ′

∗
=

∑K(b)

i=1 ẑi,jω
(b)
i ξ̂i,j(ρ, ρ′)∑S

σ=1

∑K(b)

i=1 ẑi,jω
(b)
i ξ̂i,j(ρ, σ)

, (25)

c
(r),j
ρ,`

∗
=

Ωj,ρ

(
η̂

(i,β),(j,ρ)
`|m

)
∑M

`′=1 Ωj,ρ

(
η̂

(i,β),(j,ρ)
`′|m

) , µ
(r),j
ρ,`

∗
=

Ωj,ρ

(
η

(i,β),(j,ρ)
`|m µ

(b),i
β,m

)
Ωj,ρ

(
η̂

(i,β),(j,ρ)
`|m

) , (26)

Σ
(r),j
ρ,`

∗
=

Ωj,ρ

(
η̂

(i,β),(j,ρ)
`|m

[
Σ

(b),i
β,m + (µ

(b),i
β,m − µ

(r),j
ρ,` )(µ

(b),i
β,m − µ

(r),j
ρ,` )T

])
Ωj,ρ

(
η̂

(i,β),(j,ρ)
`|m

) , (27)

where Ωj,ρ(·) is the weighted sum operator over all base models, HMM states, and GMM
components (i.e., over all tuples (i, β,m)),

Ωj,ρ(f(i, β,m)) =
K(b)∑
i=1

ẑi,jω
(b)
i

S∑
β=1

ν̂i,j(ρ, β)
M∑
m=1

c
(b),i
β,m f(i, β,m). (28)

The terms π
(r),j
ρ and a

(r),j
ρ,ρ′ are elements of the initial state prior and transition matrix, π(r),j

and A(r),j . Note that the covariance matrices of the reduced models in (27) include an
additional outer-product term, which acts to regularize the covariances of the base models.
This regularization effect derives from the E-step, which averages all possible observations
from the base model.

4. Applications and Related Work

In the previous section, we derived the VHEM-H3M algorithm to cluster HMMs. We now
discuss various applications of the algorithm (Section 4.1), and then present some literature
that is related to HMM clustering (Section 4.2).
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4.1 Applications of the VHEM-H3M Algorithm

The proposed VHEM-H3M algorithm clusters HMMs directly through the distributions they
represent, and learns novel HMM cluster centers that compactly represent the structure of
each cluster.

An application of the VHEM-H3M algorithm is in hierarchical clustering of HMMs. In
particular, the VHEM-H3M algorithm is used recursively on the HMM cluster centers, to
produce a bottom-up hierarchy of the input HMMs. Since the cluster centers condense the
structure of the clusters they represent, the VHEM-H3M algorithm can implicitly leverage
rich information on the underlying structure of the clusters, which is expected to impact
positively the quality of the resulting hierarchical clustering.

Another application of VHEM is for efficient estimation of H3Ms from data, by using a
hierarchical estimation procedure to break the learning problem into smaller pieces. First, a
data set is split into small (non-overlapping) portions and intermediate HMMs are learned
for each portion, via standard EM. Then, the final model is estimated from the intermediate
models using the VHEM-H3M algorithm. Because VHEM and standard EM are based on
similar maximum-likelihood principles, it drives model estimation towards similar optimal
parameter values as performing EM estimation directly on the full data set. However,
compared to direct EM estimation, VHEM-H3M is more memory- and time-efficient. First,
it no longer requires storing in memory the entire data set during parameter estimation.
Second, it does not need to evaluate the likelihood of all the samples at each iteration, and
converges to effective estimates in shorter times. Note that even if a parallel implementation
of EM could effectively handle the high memory requirements, a parallel-VHEM will still
require fewer resources than a parallel-EM.

In addition, for the hierarchical procedure, the estimation of the intermediate models
can be easily parallelized, since they are learned independently of each other. Finally, hi-
erarchical estimation allows for efficient model updating when adding new data. Assuming
that the previous intermediate models have been saved, re-estimating the H3M requires
learning the intermediate models of only the new data, followed by running VHEM again.
Since estimation of the intermediate models is typically as computationally intensive as the
VHEM stage, reusing the previous intermediate models will lead to considerable computa-
tional savings when re-estimating the H3M.

In hierarchical estimation (EM on each time-series, VHEM on intermediate models),
VHEM implicitly averages over all possible observations (virtual variations of each time-
series) compatible with the intermediate models. We expect this to regularize estimation,
which may result in models that generalize better (compared to estimating models with
direct EM). Lastly, the “virtual” samples (i.e., sequences), which VHEM implicitly generates
for maximum-likelihood estimation, need not be of the same length as the actual input data
for estimating the intermediate models. Making the virtual sequences relatively short will
positively impact the run time of each VHEM iteration. This may be achieved without loss
of modeling accuracy, as show in Section 6.3.

4.2 Related Work

Jebara et al. (2007)’s approach to clustering HMMs consists of applying spectral clustering
to a probability product kernel (PPK) matrix between HMMs—we will refer to it as PPK-
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SC. In particular, the PPK similarity between two HMMs, M(a) and M(b), is defined as

k(a, b) =

∫
p(y|M(a))λ p(y|M(b))λdy, (29)

where λ is a scalar, and τ is the length of “virtual” sequences. The case λ = 1
2 corresponds

to the Bhattacharyya affinity. While this approach indirectly leverages the probability dis-
tributions represented by the HMMs (i.e., the PPK affinity is computed from the probability
distributions of the HMMs) and has proven successful in grouping HMMs into similar clus-
ters (Jebara et al., 2007), it has several limitations. First, the spectral clustering algorithm
cannot produce novel HMM cluster centers to represent the clusters, which is suboptimal
for several applications of HMM clustering. For example, when implementing hierarchi-
cal clustering in the spectral embedding space (e.g., using hierarchical k-means clustering),
clusters are represented by single points in the embedding space. This may fail to capture
information on the local structure of the clusters that, when using VHEM-H3M, would be
encoded by the novel HMM cluster centers. Hence, we expect VHEM-H3M to produce
better hierarchical clustering than the spectral clustering algorithm, especially at higher
levels of the hierarchy. This is because, when building a new level, VHEM can leverage
more information from the lower levels, as encoded in the HMM cluster centers.

One simple extension of PPK-SC to obtain a HMM cluster center is to select the input
HMM that the spectral clustering algorithm maps closest to the spectral clustering center.
However, with this method, the HMM cluster centers are limited to be one of the existing
input HMMs (i.e., similar to the k-medoids algorithm by Kaufman and Rousseeuw 1987),
instead of the HMMs that optimally condense the structure of the clusters. Therefore,
we expect the novel HMM cluster centers learned by VHEM-H3M to better represent the
clusters. A more involved, “hybrid” solution is to learn the HMM cluster centers with
VHEM-H3M after obtaining clusters with PPK-SC—using the VHEM-H3M algorithm to
summarize all the HMMs within each PPK-SC cluster into a single HMM. However, we
expect our VHEM-H3M algorithm to learn more accurate clustering models, since it jointly
learns the clustering and the HMM centers, by optimizing a single objective function (i.e.,
the lower bound to the expected log-likelihood in Equation 11).

A second drawback of the spectral clustering algorithm is that the construction and the
inversion of the similarity matrix between the input HMMs is a costly operation when their
number is large2 (e.g., see the experiment on H3M density estimation on the music data in
Section 6.1). Therefore, we expect VHEM-H3M to be computationally more efficient than
the spectral clustering algorithm since, by directly operating on the probability distributions
of the HMMs, it does not require the construction of an initial embedding or any costly
matrix operation on large kernel matrices.

Finally, as Jebara et al. (2004) note, the exact computation of (29) cannot be carried
out efficiently, unless λ = 1. For different values of λ,3 Jebara et al. (2004) propose to
approximate k(a, b) with an alternative kernel function that can be efficiently computed;

2. The computational complexity of large spectral clustering problems can be alleviated by means of
numerical techniques for the solutions of eigenfunction problems such as the Nyström method (Nyström,
1930; Fowlkes et al., 2004), or by sampling only part of the similarity matrix and using a sparse eigen-
sonver (Achlioptas et al., 2002).

3. The experimental results in Jebara et al. (2004) and Jebara et al. (2007) suggest to use λ < 1.
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this alternative kernel function, however, is not guaranteed to be invariant to different but
equivalent representations of the hidden state process (Jebara et al., 2004).4 Alternative
approximations for the Bhattacharyya setting (i.e., λ = 1

2) have been proposed by Hershey
and Olsen (2008).

Note that spectral clustering algorithms (similar to the one by Jebara et al. 2007) can be
applied to kernel (similarity) matrices that are based on other affinity scores between HMM
distributions than the PPK similarity of Jebara et al. (2004). Examples can be found in
earlier work on HMM-based clustering of time-series, such as by Juang and Rabiner (1985),
Lyngso et al. (1999), Bahlmann and Burkhardt (2001), Panuccio et al. (2002). In particular,
Juang and Rabiner (1985) propose to approximate the (symmetrised) log-likelihood between
two HMM distributions by computing the log-likelihood of real samples generated by one
model under the other.5 Extensions of the work of Juang and Rabiner (1985) have been
proposed by Zhong and Ghosh (2003) and Yin and Yang (2005). In this work we do not
pursue a comparison of the various similarity functions, but implement spectral clustering
only based on PPK similarity (which Jebara et al. 2007 showed to be superior).

HMMs can also be clustered by sampling a number of time-series from each of the HMMs
in the base mixture, and then applying the EM algorithm for H3Ms (Smyth, 1997), to cluster
the time-series. Despite its simplicity, this approach would suffer from high memory and
time requirements, especially when dealing with a large number of input HMMs. First,
all generated samples need to be stored in memory. Second, evaluating the likelihood of
the generated samples at each iteration is computationally intensive, and prevents the EM
algorithm from converging to effective estimates in acceptable times.6 On the contrary,
VHEM-H3M is more efficient in computation and memory usage, as it replaces a costly
sampling step (along with the associated likelihood computations at each iteration) with an
expectation. An additional problem of EM with sampling is that, with a simple application
of the EM algorithm, time-series generated from the same input HMM can be assigned
to different clusters of the output H3M. As a consequence, the resulting clustering is not
necessary consistent, since in this case the corresponding input HMM may not be clearly
assigned to any single cluster. In our experiments, we circumvent this problem by defining
appropriate constrains on the assignment variables.

The VHEM algorithm is similar in spirit to Bregman-clustering by Banerjee et al. (2005).
Both algorithms base clustering on KL-divergence—the KL divergence and the expected

4. The kernel in (29) is computed by marginalizing out the hidden state variables, that is,∫ (∑
x p(y,x|M

(a))
)λ (∑

x p(y,x|M
(b))
)λ
dy. This can be efficiently solved with the junction tree

algorithm only when λ = 1. For λ 6= 1, Jebara et al. (2004) propose to use an alternative kernel k̃ that
applies the power operation to the terms of the sum rather than the entire sum, where the terms are

joint probabilities p(y,x). I.e., k̃(a, b) =
∫ ∑

x

(
p(y,x|M(a))

)λ ∑
x

(
p(y,x|M(b))

)λ
dy.

5. For two HMM distributions, M(a) and M(b), Juang and Rabiner (1985) consider the affinity L(a, b) =
1
2

[
log p(Yb|M(a)) + p(Ya|M(b))

]
, where Ya and Yb are sets of observation sequences generated fromM(a)

and M(b), respectively.
6. In our experiments, EM on generated samples took two orders of magnitude more time than VHEM.
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log-likelihood differ only for an entropy term that does not affect the clustering.7 The
main differences are: 1) in our setting, the expected log-likelihood (and KL divergence) is
not computable in closed form, and hence VHEM uses an approximation; 2) VHEM-H3M
clusters random processes (i.e., time series models), whereas Bregman-clustering (Banerjee
et al., 2005) is limited to single random variables. Note that the number of virtual observa-
tions N allows to control the peakiness of the assignments ẑi,j . Limiting cases for N →∞
and N = 1 are similar to Bregman hard and soft cluttering, respectively (Goldberger and
Roweis, 2004; Banerjee et al., 2005; Dhillon, 2007).

In the next two sections, we validate the points raised in this discussion through exper-
imental evaluation using the VHEM-H3M algorithm. In particular, we consider clustering
experiments in Section 5, and H3M density estimation for automatic annotation and re-
trieval in Section 6. Each application exploits some of the benefits of VHEM. First, we
show that VHEM-H3M is more accurate in clustering than PPK-SC, in particular at higher
levels of a hierarchical clustering (Section 5.2), and in an experiment with synthetic data
(Section 5.3). Similarly, the annotation and retrieval results in Section 6 favor VHEM-H3M
over PPK-SC and over standard EM, suggesting that VHEM-H3M is more robust and ef-
fective for H3M density estimation. Finally, in all the experiments, the running time of
VHEM-H3M compares favorably with the other HMM clustering algorithms; PPK-SC suf-
fers long delays when the number of input HMMs is large and the standard EM algorithm
is considerably slower. This demonstrates that VHEM-H3M is most efficient for clustering
HMMs.

5. Clustering Experiments

In this section, we present an empirical study of the VHEM-H3M algorithm for clustering
and hierarchical clustering of HMMs. Clustering HMMs consists in partitioning K1 input
HMMs into K2 < K1 groups of similar HMMs. Hierarchical clustering involves organizing
the input HMMs in a multi-level hierarchy with h levels, by applying clustering in a recursive
manner. Each level ` of the hierarchy has K` groups (with K1 > K2 > · · · > Kh−1 > Kh),
and the first level consists of the K1 input HMMs.

We begin with an experiment on hierarchical clustering, where each of the input HMMs
to be clustered is estimated on a sequence of motion capture data (Section 5.2). Then, we
present a simulation study on clustering synthetic HMMs (Section 5.3). First, we provide
an overview of the different algorithms used in this study.

5.1 Clustering Methods

In the clustering experiments, we will compare our VHEM-H3M algorithm with several
other clustering algorithms. The various algorithms are summarized here.

• VHEM-H3M: We clusterK1 input HMMs intoK2 clusters by using the VHEM-H3M
algorithm (on the input HMMs) to learn a H3M with K2 components (as explained

7. We can show that the VHEM algorithm performs clustering based on KL divergence. Letting Di,jHMM =

Li,iHMM −L
i,j
HMM ≈ D(M(b)

i ||M
(r)
j ) be an approximation to the KL using (21), we can rewrite the E-step

as ẑij ∝ ω(r)
j e−Nω

(b)
i D

i,j
HMM . Similarly, the M-step is M̂(r)

j = arg minM(r)
j

∑K(b)

i=1 ω
(b)
i ẑijDi,jHMM .
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in Section 3.1). To build a multi-level hierarchy of HMMs with h levels, we start from
the first level of K1 input HMMs, and recursively use the VHEM-H3M algorithm
h− 1 times. Each new level ` is formed by clustering the K`−1 HMMs at the previous
level into K` < K`−1 groups with the VHEM-H3M algorithm, and using the learned
HMMs as cluster centers at the new level. In our experiments, we set the number of
virtual samples to N = 104K(`−1), a large value that favors “hard” clustering (where
each HMM is univocally assigned to a single cluster), and the length of the virtual
sequences to τ = 10.

• PPK-SC: Jebara et al. (2007) cluster HMMs by calculating a PPK similarity ma-
trix between all HMMs, and then applying spectral clustering. The work in Jebara
et al. (2007) only considered HMMs with single Gaussian emissions, which did not
always give satisfactory results in our experiments. Hence, we extended the method
of Jebara et al. (2007) by allowing GMM emissions, and derived the PPK similarity
for this more general case (Jebara et al., 2004). From preliminary experiments, we
found the best performance for PPK with λ = 1

2 (i.e., Bhattacharyya affinity), and
when integrating over sequences of length τ = 10. Finally, we also extend Jebara
et al. (2007) to construct multi-level hierarchies, by using hierarchical k-means in the
spectral clustering embedding.

• SHEM-H3M: This is a version of HEM-H3M that maximizes the likelihood of actual
samples generated from the input HMMs, as in (5), rather than the expectation of

virtual samples, as in (6). In particular, from each input HMMM(b)
i we sample a set

Yi of Ni = π
(b)
i N observation sequences (for a large value of N). We then estimate

the reduced H3M from the N samples Y = {Yi}K
(b)

i=1 , with the EM-H3M algorithm of
Smyth (1997), which was modified to use a single assignment variable for each sample
set Yi, to obtain a consistent clustering.

In many real-life applications, the goal is to cluster a collection of time series, that is,
observed sequences. Although the input data is not a collection of HMMs in that case,
it can still be clustered with the VHEM-H3M algorithm by first modeling each sequence
as an HMM, and then using the HMMs as input for the VHEM-H3M algorithm. With
time-series data as input, it is also possible to use clustering approaches that do not model
each sequence as a HMM. Hence, in one of the hierarchical motion clustering experiments,
we also compare to the following two algorithms, one that clusters time-series data directly
(Smyth, 1997), and a second one that clusters the time series after modeling each sequence
with a dynamic texture (DT) model (Chan et al., 2010a).

• EM-H3M: The EM algorithm for H3Ms (Smyth, 1997) is applied directly on a col-
lection of time series to learn the clustering and HMM cluster centers, thus bypassing
the intermediate HMM modeling stage. To obtain a hierarchical clustering (with
h ≥ 3 levels), we proceed in a bottom up fashion and build each new level by simply
re-clustering the given time series in a smaller number of clusters using the EM algo-
rithm by Smyth (1997). We extend the algorithm to use a single assignment variable
for each set of sequences Yi that are within the same cluster in the immediately lower
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level of the hierarchy. This modification preserves the hierarchical clustering property
that sequences in a cluster will remain together at the higher levels.

• HEM-DTM: Rather than use HMMs, we consider a clustering model based on linear
dynamical systems, that is, dynamic textures (DTs) (Doretto et al., 2003). Hierar-
chical clustering is performed using the hierarchical EM algorithm for DT mixtures
(HEM-DTM) (Chan et al., 2010a), in an analogous way to VHEM-H3M. The main
difference is that, with HEM-DTM, time-series are modeled as DTs, which have a con-
tinuous state space (a Gauss-Markov model) and unimodal observation model, whereas
VHEM-H3M uses a discrete state space and multimodal observations (GMMs).

We will use several metrics to quantitatively compare the results of different clustering
algorithms. First, we will calculate the Rand-index (Hubert and Arabie, 1985), which
measures the correctness of a proposed clustering against a given ground truth clustering.
Intuitively, this index measures how consistent cluster assignments are with the ground
truth (i.e., whether pairs of items are correctly or incorrectly assigned to the same cluster,
or different clusters). Second, we will consider the log-likelihood, as used by Smyth (1997)
to evaluate a clustering. This measures how well the clustering fits the input data. When
time series are given as input data, we compute the log-likelihood of a clustering as the sum
of the log-likelihoods of each input sequence under the HMM cluster center to which it has
been assigned. When the input data consists of HMMs, we will evaluate the log-likelihood
of a clustering by using the expected log-likelihood of observations generated from an input
HMM under the HMM cluster center to which it is assigned. For PPK-SC, the cluster center
is estimated by running the VHEM-H3M algorithm (with K(r) = 1) on the HMMs assigned
to the cluster.8 Note that the log-likelihood will be particularly appropriate to compare
VHEM-H3M, SHEM-H3M, EM-H3M and HEM-DTM, since they explicitly optimize for it.
However, it may be unfair for PPK-SC, since this method optimizes the PPK similarity and
not the log-likelihood. As a consequence, we also measure the PPK cluster-compactness,
which is more directly related to what PPK-SC optimizes for. The PPK cluster-compactness
is the sum (over all clusters) of the average intra-cluster PPK pair-wise similarity. This
performance metric favors methods that produce clusters with high intra-cluster similarity.

Note that, time series can also be clustered with recourse to similarity measures based on
dynamic time warping (Oates et al., 1999; Keogh and Pazzani, 2000; Keogh and Ratanama-
hatana, 2005) or methods that rely on non-parametric sequence kernels (Leslie et al., 2002;
Campbell, 2003; Kuksa et al., 2008; Cortes et al., 2008), which have shown good perfor-
mance in practice. In this work we focus on the problem of clustering hidden Markov models,
so we do not pursue an empirical evaluation of these methods.

5.2 Hierarchical Motion Clustering

In this experiment we test the VHEM algorithm on hierarchical motion clustering from
motion capture data, that is, time series representing human locomotions and actions. To
hierarchically cluster a collection of time series, we first model each time series with an HMM
and then cluster the HMMs hierarchically. Since each HMM summarizes the appearance

8. Alternatively, we could use as cluster center the HMM mapped the closest to the spectral embedding
cluster center, but this always resulted in lower log-likelihood.
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(a) “Walk” sequence.

(b) “Run” sequence.

Figure 1: Examples of motion capture sequences from the MoCap data set, shown with
stick figures.

and dynamics of the particular motion sequence it represents, the structure encoded in the
hierarchy of HMMs directly applies to the original motion sequences. Jebara et al. (2007)
uses a similar approach to cluster motion sequences, applying PPK-SC to cluster HMMs.
However, they did not extend their study to hierarchies with multiple levels.

5.2.1 Data Sets and Setup

We experiment on two motion capture data sets, the MoCap data set (http://mocap.cs.
cmu.edu/) and the Vicon Physical Action data set (Theodoridis and Hu, 2007; Asuncion and
Newman, 2010). For the MoCap data set, we use 56 motion examples spanning 8 different
classes (“jump”, “run”, “jog”, “walk 1”, “walk 2”, “basket”, “soccer”, and “sit”). Each
example is a sequence of 123-dimensional vectors representing the (x, y, z)-coordinates of 41
body markers tracked spatially through time. Figure 1 illustrates some typical examples.
We built a hierarchy of h = 4 levels. The first level (Level 1) was formed by the K1 = 56
HMMs learned from each individual motion example (with S = 4 hidden states, and M = 2
components for each GMM emission). The next three levels contain K2 = 8, K3 = 4 and
K4 = 2 HMMs. We perform the hierarchical clustering with VHEM-H3M, PPK-SC, EM-
H3M, SHEM-H3M (N ∈ {560, 2800} and τ = 10), and HEM-DTM (state dimension of 7).
The experiments were repeated 10 times for each clustering method, using different random
initializations of the algorithms.

The Vicon Physical Action data set is a collection of 200 motion sequences. Each se-
quence consists of a time series of 27-dimensional vectors representing the (x, y, z)-coordinates
of 9 body markers captured using the Vicon 3D tracker. The data set includes 10 normal
and 10 aggressive activities, performed by each of 10 human subjects a single time. We
build a hierarchy of h = 5 levels, starting with K1 = 200 HMMs (with S = 4 hidden states
and M = 2 components for each GMM emission) at the first level (i.e., one for each motion
sequence), and using K2 = 20, K3 = 8, K4 = 4, and K5 = 2 for the next four levels. The
experiment was repeated 5 times with VHEM-H3M and PPK-SC, using different random
initializations of the algorithms.
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Figure 2: An example of hierarchical clustering of the MoCap data set, with VHEM-H3M
and PPK-SC. Different colors represent different motion classes. Vertical bars
represent clusters, with the colors indicating the proportions of the motion classes
in a cluster, and the numbers on the x-axes representing the clusters’ indexes. At
Level 1 there are 56 clusters, one for each motion sequence. At Levels 2, 3 and 4
there are 8, 4 and 2 HMM clusters, respectively. For VHEM almost all clusters
at Level 2 are populated by examples from a single motion class. The error of
VHEM in clustering a portion of “soccer” with “basket” is probably because
both actions involve a sequence of movement, shot, and pause. Moving up the
hierarchy, the VHEM algorithm clusters similar motions classes together, and at
Level 4 creates a dichotomy between “sit” and the other (more dynamic) motion
classes. PPK-SC also clusters motion sequences well at Level 2, but incorrectly
aggregates “sit” and “soccer”, which have quite different dynamics. At Level 4,
the clustering obtained by PPK-SC is harder to interpret than that by VHEM.

In similar experiments where we varied the number of levels h of the hierarchy and
the number of clusters at each level, we noted similar relative performances of the various
clustering algorithms, on both data sets.

5.2.2 Results on the MoCap Data Set

An example of hierarchical clustering of the MoCap data set with VHEM-H3M is illustrated
in Figure 2 (left). In the first level, each vertical bar represents a motion sequence, with
different colors indicating different ground-truth classes. In the second level, the K2 = 8
HMM clusters are shown with vertical bars, with the colors indicating the proportions
of the motion classes in the cluster. Almost all clusters are populated by examples from
a single motion class (e.g., “run”, “jog”, “jump”), which demonstrates that VHEM can
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Rand-index log-likelihood (×106) PPK cluster-compactness time (s)
Level 2 3 4 2 3 4 2 3 4

VHEM-H3M 0.937 0.811 0.518 -5.361 -5.682 -5.866 0.0075 0.0068 0.0061 30.97
PPK-SC 0.956 0.740 0.393 -5.399 -5.845 -6.068 0.0082 0.0021 0.0008 37.69
SHEM-H3M (560) 0.714 0.359 0.234 -13.632 -69.746 -275.650 0.0062 0.0034 0.0031 843.89
SHEM-H3M (2800) 0.782 0.685 0.480 -14.645 -30.086 -52.227 0.0050 0.0036 0.0030 3849.72
EM-H3M 0.831 0.430 0.340 -5.713 -202.55 -168.90 0.0099 0.0060 0.0056 667.97
HEM-DTM 0.897 0.661 0.412 -7.125 -8.163 -8.532 - - - 121.32

Table 2: Hierarchical clustering of the MoCap data set using VHEM-H3M, PPK-SC,
SHEM-H3M, EM-H3M and HEM-DTM. The number in brackets after SHEM-
H3M represents the number of real samples used. We computed Rand-index, data
log-likelihood and cluster compactness at each level of the hierarchy, and reg-
istered the time (in seconds) to learn the hierarchical structure. Differences in
Rand-index at Levels 2, 3, and 4 are statistically significant based on a paired
t-test with confidence 95%.

group similar motions together. We note an error of VHEM in clustering a portion of the
“soccer” examples with “basket”. This is probably caused by the fact that both types
of actions begin with a stationary phase (e.g., subject focusing on the execution) followed
with a forward movement (note that our “basket” examples correspond to forward dribbles).
Moving up the hierarchy, the VHEM algorithm clusters similar motion classes together (as
indicated by the arrows), for example “walk 1” and “walk 2” are clustered together at
Level 2, and at the highest level (Level 4) it creates a dichotomy between “sit” and the rest
of the motion classes. This is a desirable behavior as the kinetics of the “sit” sequences
(which in the MoCap data set correspond to starting in a standing position, sitting on a
stool, and returning to a standing position) are considerably different from the rest. On
the right of Figure 2, the same experiment is repeated with PPK-SC. PPK-SC clusters
motion sequences properly, but incorrectly aggregates “sit” and “soccer” at Level 2, even
though they have quite different dynamics. Furthermore, the highest level (Level 4) of the
hierarchical clustering produced by PPK-SC is harder to interpret than that of VHEM.

Table 2 presents a quantitative comparison between PPK-SC and VHEM-H3M at each
level of the hierarchy. While VHEM-H3M has lower Rand-index than PPK-SC at Level 2
(0.937 vs. 0.956), VHEM-H3M has higher Rand-index at Level 3 (0.811 vs. 0.740) and Level
4 (0.518 vs. 0.393). In terms of PPK cluster-compactness, we observe similar results. In
particular, VHEM-H3M has higher PPK cluster-compactness than PPK-SC at Level 3 and
4. Overall, keeping in mind that PPK-SC is explicitly driven by PPK-similarity, while the
VHEM-H3M algorithm is not, these results can be considered as strongly in favor of VHEM-
H3M (over PPK-SC). In addition, the data log-likelihood for VHEM-H3M is higher than
that for PPK-SC at each level of the hierarchy. This suggests that the novel HMM cluster
centers learned by VHEM-H3M fit the motion capture data better than the spectral cluster
centers, since they condense information of the entire underlying clusters. This conclusion
is further supported by the results of the density estimation experiments in Sections 6.1
and 6.2. Note that the higher up in the hierarchy, the more clearly this effect is manifested.
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Comparing to other methods (also in Table 2), EM-H3M generally has lower Rand-index
than VHEM-H3M and PPK-SC (consistent with the results from Jebara et al. (2007)).
While EM-H3M directly clusters the original motion sequences, both VHEM-H3M and
PPK-SC implicitly integrate over all possible virtual variations of the original motion se-
quences (according to the intermediate HMM models), which results in more robust cluster-
ing procedures. In addition, EM-H3M has considerably longer running times than VHEM-
H3M and PPK-SC (i.e., roughly 20 times longer) since it needs to evaluate the likelihood
of all training sequences at each iteration, at all levels.

The results in Table 2 favor VHEM-H3M over SHEM-H3M, and empirically validate
the variational approximation that VHEM uses for learning. For example, when using
N = 2800 samples, running SHEM-H3M takes over two orders of magnitude more time
than VHEM-H3M, but still does not achieve performance competitive with VHEM-H3M.
With an efficient closed-form expression for averaging over all possible virtual samples,
VHEM approximates the sufficient statistics of a virtually unlimited number of observation
sequences, without the need of using real samples. This has an additional regularization
effect that improves the robustness of the learned HMM cluster centers. In contrast, SHEM-
H3M uses real samples, and requires a large number of them to learn accurate models, which
results in significantly longer running times.

In Table 2, we also report hierarchical clustering performance for HEM-DTM. VHEM-
H3M consistently outperforms HEM-DTM, both in terms of Rand-index and data log-
likelihood.9 Since both VHEM-H3M and HEM-DTM are based on the hierarchical EM
algorithm for learning the clustering, this indicates that HMM-based clustering models are
more appropriate than DT-based models for the human MoCap data. Note that, while
PPK-SC is also HMM-based, it has a lower Rand-index than HEM-DTM at Level 4. This
further suggests that PPK-SC does not optimally cluster the HMMs.

Finally, to assess stability of the clustering results, starting from the 56 HMMs learned
on the motion examples, in turn we exclude one of them and build a hierarchical clustering of
the remaining ones (h = 4 levels, K1 = 55,K2 = 8,K3 = 4,K4 = 2), using in turn VHEM-
H3M and PPK-SC. We then compute cluster stability as the mean Rand-index between all
possible pairs of clusterings. The experiment is repeated 10 times for both VHEM-H3M and
PPK-SC, using a different random initialization for each trial. The stability of VHEM-H3M
is 0.817, 0.808 and 0.950, at Levels 2, 3 and 4. The stability of PPK-SC is 0.786, 0.837 and
0.924, at Levels 2, 3 and 4. Both methods are fairly stable in terms of Rand-index, with a
slight advantage for VHEM-H3M over PPK-SC (with average across levels of 0.858 versus
0.849).

The experiments were repeated 10 times for each clustering method, using different
random initializations of the algorithms.

Alternatively, we evaluate the out-of-sample generalization of the clusterings discovered
by VHEM-H3M and PPK-SC, by computing the fraction of times the held out HMMs is
assigned10 to the cluster that contains the majority of HMMs from its same ground truth

9. We did not report PPK cluster-compactness for HEM-DTM, since it would not be directly comparable
with the same metric based on HMMs.

10. For VHEM-H3M we use the expected log-likelihood, for PPK-SC we use the out-of-sample extension for
spectral clustering of Bengio et al. (2004).
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Rand-index log-likelihood (×106) PPK cluster-compactness
Level 2 3 4 5 2 3 4 5 2 3 4 5

VHEM-H3M 0.909 0.805 0.610 0.244 -1.494 -3.820 -5.087 -6.172 0.224 0.059 0.020 0.005
PPK-SC 0.900 0.807 0.452 0.092 -3.857 -5.594 -6.163 -6.643 0.324 0.081 0.026 0.008

Table 3: Hierarchical clustering of the Vicon Physical Action data set using VHEM-H3M
and PPK-SC. Performance is measured in terms of Rand-index, data log-likelihood
and PPK cluster-compactness at each level. Differences in Rand-index at Levels 2,
4 and 5 are statistically significant based on a paired t-test with confidence 95%.
The test failed at Level 3.

class. Out of sample generalization of VHEM-H3M and PPK-SC are comparable, registering
an averages of 0.875, respectively, 0.851 across the different levels.

5.2.3 Results on the Vicon Physical Action Data Set

Table 3 presents results using VHEM-H3M and PPK-SC to cluster the Vicon Physical
Action data set. While the two algorithms performs similarly in terms of Rand-index at
lower levels of the hierarchy (i.e., Level 2 and Level 3), at higher levels (i.e., Level 4 and Level
5) VHEM-H3M outperforms PPK-SC. In addition, VHEM-H3M registers higher data log-
likelihood than PPK-SC at each level of the hierarchy. This, again, suggests that by learning
new cluster centers, the VHEM-H3M algorithm retains more information on the clusters’
structure than PPK-SC. Finally, compared to VHEM-H3M, PPK-SC produces clusters that
are more compact in terms of PPK similarity. However, this does not necessarily imply a
better agreement with the ground truth clustering, as evinced by the Rand-index metrics.

5.3 Clustering Synthetic Data

In this experiment, we compare VHEM-H3M and PPK-SC on clustering a synthetic data
set of HMMs.

5.3.1 Data Set and Setup

The synthetic data set of HMMs is generated as follows. Given a set of C HMMs {M(c)}Cc=1,
for each HMM we synthesize a set of K “noisy” versions of the original HMM. Each “noisy”

HMM M̃(c)
k (k = 1, . . .K) is synthesized by generating a random sequence y1:T of length T

fromM(c), corrupting it with Gaussian noise ∼ N (0, σ2
nId), and estimating the parameters

of M̃(c)
k on the corrupted version of y1:T . Note that this procedure adds noise in the

observation space. The number of noisy versions (of each given HMM), K, and the noise
variance, σ2

n, will be varied during the experiments.

The collection of original HMMs was created as follows. Their number was always set
to C = 4, the number of hidden states of the HMMs to S = 3, the emission distributions to
be single, one-dimensional Gaussians (i.e., GMMs with M = 1 component), and the length
of the sequences to T = 100. For all original HMMs M(c), if not otherwise specified, the
initial state probability, the state transition matrix, and the means and variances of the
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emission distributions were fixed as

π(c) =

 1/3
1/3
1/3

 , A(c) =

 0.8 0.1 0.1
0.2 0.8 0
0 0.2 0.8

 ,


µ
(c)
1 = 1

µ
(c)
2 = 2

µ
(c)
3 = 3

σ(c)
ρ

2
= 0.5 ∀ρ, ∀c.

We consider three different experimental settings. In the first setting, experiment (a), the
HMMs M(c) only differ in the means of the emission distributions,

µ
(1)
1 = 1

µ
(1)
2 = 2

µ
(1)
3 = 3

,


µ

(2)
1 = 3

µ
(2)
2 = 2

µ
(2)
3 = 1

,


µ

(3)
1 = 1

µ
(3)
2 = 2

µ
(3)
3 = 2

,


µ

(4)
1 = 1

µ
(4)
2 = 3

µ
(4)
3 = 3

In the second setting, experiment (b), the HMMs differ in the variances of the emission
distributions,

σ(1)
ρ

2
= 0.5, σ(2)

ρ

2
= 0.1, σ(3)

ρ

2
= 1, σ(4)

ρ

2
= 0.05, ∀ρ.

In the last setting, experiment (c), the HMMs differ in the transition matrices,

A(1) =

 0.8 0.1 0.1
0.2 0.8 0
0 0.2 0.8

 A(2) =

 0.2 0.2 0.2
0.4 0.6 0
0 0.4 0.6

 A(3) =

 0.9 0.05 0.05
0.1 0.9 0
0 0.1 0.9

 A(4) =

 0.4 0.3 0.4
0.6 0.4 0
0 0.6 0.4

.
The VHEM-H3M and PPK-SC algorithms are used to cluster the synthesized HMMs,

{{M̃(c)
k }

K
k=1}Cc=1, into C groups, and the quality of the resulting clusterings is measured

with the Rand-index, PPK cluster-compactness, and the expected log-likelihood of the
discovered cluster centers with respect to the original HMMs. The expected log-likelihood
was computed using the lower bound, as in (13), with each of the original HMMs assigned
to the most likely HMM cluster center. The results are averages over 10 trials.

The reader is referred to Appendix E for experiments where the order of the model used
for clustering does not match the order of the true model used for generating the data.

5.3.2 Results

Figure 3 reports the performance metrics when varying the number K ∈ {2, 4, 8, 16, 32} of
noisy versions of each of the original HMMs, and the noise variance σ2

n ∈ {0.1, 0.5, 1}, for
the three experimental settings. (Note that, in each trial, for each class, we first generated
32 noisy HMMs per class, and then, varying K ∈ {4, 8, 16, 32}, we subsampled only K of
them.) For the majority of settings of K and σ2

n, the clustering produced by VHEM-H3M
is superior to the one produced by PPK-SC, for each of the considered metrics (i.e., in the
plots, solid lines are usually above dashed lines of the same color). The only exception is in
experiment (b) where, for low noise variance (i.e., σ2

n = 0.1) PPK-SC is the best in terms of
Rand-index and cluster compactness. It is interesting to note that the gap in performance
between VHEM-H3M and PPK-SC is generally larger at low values of K. We believe this
is because, when only a limited number of input HMMs is available, PPK-SC produces an
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Experiment (a): different emission means.

4 8 16 32
0.5

0.6

0.7

0.8

0.9

1

Noisy HMMs per original HMM

R
a

n
d

−
In

d
e

x

4 8 16 32
−160

−150

−140

−130

−120

−110

Noisy HMMs per original HMM

L
L

 t
o

 o
ri
g

in
a

l 
H

M
M

s

4 8 16 32
3.65

3.7

3.75

3.8

3.85

3.9

3.95

Noisy HMMs per original HMM

C
lu

s
te

r 
c
o

p
m

a
c
tn

e
s
s
 (

P
P

K
)

Experiment (b): different emission variances.
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Experiment (c): different state transition matrices.
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Figure 3: Results on clustering synthetic data with VHEM-H3M and PPK-SC. Performance
is measured in terms of Rand-index, expected log-likelihood and PPK cluster-
compactness.

embedding of lower quality. This does not affect VHEM-H3M, since it clusters in HMM
distribution space and does not use an embedding.

Note that the Rand-Index values for experiment (c) (i.e., different state transition ma-
trices) are superior to the corresponding ones in experiments (a) and (b) (i.e., different
emission distributions) for both VHEM-H3M and PPK-SC. This shows that VHEM-H3M
(and slightly less robustly PPK-SC as well) can cluster dynamics characterized by different
hidden states processes more easily than dynamics that differ only in the emission distri-
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butions. In addition, VHEM-H3M is more robust to noise than PPK-SC, as demonstrated
by the experiments with σ2

n = 1 (blue lines).

These results suggest that, by clustering HMMs directly in distribution space, VHEM-
H3M is generally more robust than PPK-SC, the performance of which instead depends on
the quality of the underlying embedding.

Finally, the results in Figure 3 show only small fluctuations across different values ofK at
each noise value, suggesting stability of the clustering results (relative to the ground truth
clustering) for both VHEM-H3M and PPK-SC, to both subsampling and jittering (i.e.,
addition of noise) (Hennig, 2007). In particular, from the expected log-likelihood values
(central column in Figure 3), we evince that the similarity of the discovered clustering to
the true distribution (i.e., the original HMMs) is not largely affected by the amount of
subsampling, except when only as little as the 12.5% of the data is used (when K = 4).

6. Density Estimation Experiments

In this section, we present an empirical study of VHEM-H3M for density estimation, in
automatic annotation and retrieval of music (Section 6.1) and hand-written digits (Section
6.2).

6.1 Music Annotation and Retrieval

In this experiment, we evaluate VHEM-H3M for estimating annotation models in content-
based music auto-tagging. As a generative time-series model, H3Ms allow to account for
timbre (i.e., through the GMM emission process) as well as longer term temporal dynamics
(i.e., through the HMM hidden state process), when modeling musical signals. Therefore,
in music annotation and retrieval applications, H3Ms are expected to prove more effective
than existing models that do not explicitly account for temporal information (Turnbull
et al., 2008; Mandel and Ellis, 2008; Eck et al., 2008; Hoffman et al., 2009).

6.1.1 Music Data Set

We consider the CAL500 collection from Turnbull et al. (2008), which consists of 502 songs
and provides binary annotations with respect to a vocabulary V of 149 tags, ranging from
genre and instrumentation, to mood and usage. To represent the acoustic content of a song
we extract a time series of audio features Y = {y1, . . . , y|Y|}, by computing the first 13 Mel
frequency cepstral coefficients (MFCCs) (Rabiner and Juang, 1993) over half-overlapping
windows of 46ms of audio signal, augmented with first and second instantaneous derivatives.
The song is then represented as a collection of audio fragments, which are sequences of
T = 125 audio features (approximately 6 seconds of audio), using a dense sampling with
80% overlap.

6.1.2 Music Annotation Models

Automatic music tagging is formulated as a supervised multi-label problem (Carneiro et al.,
2007), where each class is a tag from V. We approach this problem by modeling the audio
content for each tag with a H3M probability distribution. I.e., for each tag, we estimate
an H3M over the audio fragments of the songs in the database that have been associated
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with that tag, using the hierarchical estimation procedure based on VHEM-H3M. More
specifically, the database is first processed at the song level, using the EM algorithm to
learn a H3M with K(s) = 6 components for each song11 from its audio fragments. Then,
for each tag, the song-level H3Ms labeled with that tag are pooled together to form a large
H3M, and the VHEM-H3M algorithm is used to reduce this to a final H3M tag-model with
K = 3 components (τ = 10 and N = NvNtK

(s), where Nv = 1000 and Nt is the number of
training songs for the particular tag).

Given the tag-level models, a song can be represented as a vector of posterior proba-
bilities of each tag (a semantic multinomial, SMN), by extracting features from the song,
computing the likelihood of the features under each tag-level model, and applying Bayes’
rule.12 A test song is annotated with the top-ranking tags in its SMN. To retrieve songs
given a tag query, a collection of songs is ranked by the tag’s probability in their SMNs.

We compare VHEM-H3M with three alternative algorithms for estimating the H3M tag
models: PPK-SC, PPK-SC-hybrid, and EM-H3M.13 For all three alternatives, we use the
same number of mixture components in the tag models (K = 3). For the two PPK-SC
methods, we leverage the work of Jebara et al. (2007) to learn H3M tag models, and use
it in place of the VHEM-H3M algorithm in the second stage of the hierarchical estimation
procedure. We found that it was necessary to implement the PPK-SC approaches with song-
level H3Ms with only K(s) = 1 component (i.e., a single HMM), since the computational
cost for constructing the initial embedding scales poorly with the number of input HMMs.14

PPK-SC first applies spectral clustering to the song-level HMMs and then selects as the
cluster centers the HMMs that map closest to the spectral cluster centers in the spectral
embedding. PPK-SC-hybrid is a hybrid method combining PPK-SC for clustering, and
VHEM-H3M for estimating the cluster centers. Specifically, after spectral clustering, HMM
cluster centers are estimated by applying VHEM-H3M (with K(r) = 1) to the HMMs
assigned to each of the resulting clusters. In other words, PPK-SC and PPK-SC-hybrid use
spectral clustering to summarize a collection of song-level HMMs with a few HMM centers,
forming a H3M tag model. The mixture weight of each HMM component (in the H3M tag
model) is set proportional to the number of HMMs assigned to that cluster.

For EM-H3M, the H3M tag models were estimated directly from the audio fragments
from the relevant songs using the EM-H3M algorithm.15 Empirically, we found that, due

11. Most pop songs have 6 structural parts: intro, verse, chorus, solo, bridge and outro.
12. We compute the likelihood of a song under a tag model as the geometric average of the likelihood of the

individual segments, and further normalized it by the length of the segments to prevent the posteriors
from being too “peaked” (Coviello et al., 2011).

13. For this experiment, we were not able to successfully estimate accurate H3M tag models with SHEM-
H3M. In particular, SHEM-H3M requires generating an appropriately large number of real samples to
produce accurate estimates. However, due to the computational limits of our cluster, we were able
to test SHEM-H3M only using a small number of samples. In preliminary experiments we registered
performance only slightly above chance level and training times still twice longer than for VHEM-H3M.
For a comparison between VHEM-H3M and SHEM-H3M on density estimation, the reader can refer to
the experiment in Section 6.2 on online hand-writing classification and retrieval.

14. Running PPK-SC with K(s) = 2 took 3958 hours in total (about 4 times more than when setting
K(s) = 1), with no improvement in annotation and retrieval performance. A larger K(s) would yield
impractically long learning times.

15. The EM algorithm has been used to estimate HMMs from music data in previous work (Scaringella and
Zoia, 2005; Reed and Lee, 2006).
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to its runtime and RAM requirements, for EM-H3M we must use non-overlapping audio-
fragments and evenly subsample by 73% on average, resulting in 14.5% of the sequences
used by VHEM-H3M. Note that, however, EM-H3M is still using 73% of the actual song
data (just with non-overlapping sequences). We believe this to be a reasonable comparison
between EM and VHEM, as both methods use roughly similar resources (the sub-sampled
EM is still 3 times slower, as reported in Table 4). Based on our projections, running EM
over densely sampled song data would require roughly 9000 hours of CPU time (e.g., more
than 5 weeks when parallelizing the algorithm over 10 processors), as opposed to 630 hours
for VHEM-H3M. This would be extremely cpu-intensive given the computational limits of
our cluster. The VHEM algorithm, on the other hand, can learn from considerable amounts
of data while still maintaining low runtime and memory requirements.16

Finally, we also compare against two state-of-the-art models for music tagging, HEM-
DTM (Coviello et al., 2011), which is based on a different time-series model (mixture of
dynamic textures), and HEM-GMM (Turnbull et al., 2008), which is a bag-of-features model
using GMMs. Both methods use efficient hierarchical estimation based on a HEM algorithm
(Chan et al., 2010a; Vasconcelos and Lippman, 1998) to obtain the tag-level models.17

6.1.3 Performance Metrics

A test song is annotated with the 10 most likely tags, and annotation performance is
measured with the per-tag precision (P), recall (R), and F-score (F), averaged over all tags.
If |wH | is the number of test songs that have the tag w in their ground truth annotations,
|wA| is the number of times an annotation system uses w when automatically tagging a
song, and |wC | is the number of times w is correctly used, then precision, recall and F-score
for the tag w are defined as:

P =
|wC |
|wA|

, R =
|wC |
|wH |

, F = 2
(
(P)−1 + (R)−1

)−1
.

Retrieval is measured by computing per-tag mean average precision (MAP) and precision
at the first k retrieved songs (P@k), for k ∈ {5, 10, 15}. The P@k is the fraction of true
positives in the top-k of the ranking. MAP averages the precision at each point in the
ranking where a song is correctly retrieved. All reported metrics are averages over the
97 tags that have at least 30 examples in CAL500 (11 genre, 14 instrument, 25 acoustic
quality, 6 vocal characteristics, 35 emotion and 6 usage tags), and are the result of 5-fold
cross-validation.

Finally, we also record the total time (in hours) to learn the 97 tag-level H3Ms on the
5 splits of the data. For hierarchical estimation methods (VHEM-H3M and the PPK-SC
approaches), this also includes the time to learn the song-level H3Ms.

16. For example, consider learning a tag-level H3M from 200 songs, which corresponds to over 3GB of audio
fragments. Using the hierarchical estimation procedure, we first model each song (in average, 15MB of
audio fragments) individually as a song-level H3M, and we save the song models (150 KB of memory
each). Then, we pool the 200 song models into a large H3M (in total 30MB of memory), and reduce it
to a smaller tag-level H3M using the VHEM-H3M algorithm.

17. Both auto-taggers operate on audio features extracted over half-overlapping windows of 46ms. HEM-
GMM uses MFCCs with first and second instantaneous derivatives (Turnbull et al., 2008). HEM-DTM
uses 34-bins of Mel-spectral features (Coviello et al., 2011), which are further grouped in audio fragments
of 125 consecutive features.
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annotation retrieval

P R F MAP P@5 P@10 P@15 time (h)

VHEM-H3M 0.446 0.211 0.260 0.440 0.474 0.451 0.435 629.5

PPK-SC 0.299 0.159 0.151 0.347 0.358 0.340 0.329 974.0
PPK-SC-hybrid 0.407 0.200 0.221 0.415 0.439 0.421 0.407 991.7

EM-H3M 0.415 0.214 0.248 0.423 0.440 0.422 0.407 1860.4

HEM-DTM 0.431 0.202 0.252 0.439 0.479 0.454 0.428 -
HEM-GMM 0.374 0.205 0.213 0.417 0.441 0.425 0.416 -

Table 4: Annotation and retrieval performance on CAL500, for VHEM-H3M, PPK-SC,
PPK-SC-hybrid, EM-H3M, HEM-DTM (Coviello et al., 2011) and HEM-GMM
(Turnbull et al., 2008).

6.1.4 Results

In Table 4 we report the performance of the various algorithms for both annotation and
retrieval on the CAL500 data set. Looking at the overall runtime, VHEM-H3M is the most
efficient algorithm for estimating H3M distributions from music data, as it requires only
34% of the runtime of EM-H3M, and 65% of the runtime of PPK-SC. The VHEM-H3M
algorithm capitalizes on the first stage of song-level H3M estimation (about one third of
the total time) by efficiently and effectively using the song-level H3Ms to learn the final tag
models. Note that the runtime of PPK-SC corresponds to setting K(s) = 1. When we set
K(s) = 2, we registered a running time four times longer, with no significant improvement
in performance.

The gain in computational efficiency does not negatively affect the quality of the cor-
responding models. On the contrary, VHEM-H3M achieves better performance than EM-
H3M,18 strongly improving the top of the ranked lists, as evinced by the higher P@k scores.
Relative to EM-H3M, VHEM-H3M has the benefit of regularization, and during learning
can efficiently leverage all the music data condensed in the song H3Ms. VHEM-H3M also
outperforms both PPK-SC approaches on all metrics. PPK-SC discards considerable in-
formation on the clusters’ structure by selecting one of the original HMMs to approximate
each cluster. This significantly affects the accuracy of the resulting annotation models.
VHEM-H3M, on the other hand, generates novel HMM cluster centers to summarize the
clusters. This allows to retain more accurate information in the final annotation models.

PPK-SC-hybrid achieves considerable improvements relative to standard PPK-SC, at
relatively low additional computational costs.19 This further demonstrates that the VHEM-
H3M algorithm can effectively summarize in a smaller model the information contained in
several HMMs. In addition, we observe that VHEM-H3M still outperforms PPK-SC-hybrid,
suggesting that the former produces more accurate cluster centers and density estimates.

18. The differences in performance are statistically significant based on a paired t-test with 95% confidence.
19. In PPK-SC-hybrid, each run of the VHEM-H3M algorithm converges quickly since there is only one

HMM component to be learned, and can benefit from clever initialization (i.e., to the HMM mapped the
closest to the spectral clustering center).
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In fact, VHEM-H3M couples clustering and learning HMM cluster centers, and is entirely
based on maximum likelihood for estimating the H3M annotation models. PPK-SC-hybrid,
on the contrary, separates clustering and parameter estimation, and optimizes them against
two different metrics (i.e., PPK similarity and expected log-likelihood, respectively). As a
consequence, the two phases may be mismatched, and the centers learned with VHEM may
not be the best representatives of the clusters according to PPK affinity.

Finally, VHEM-H3M compares favorably to the auto-taggers based on other generative
models. First, VHEM-H3M outperforms HEM-GMM, which does not model temporal
information in the audio signal, on all metrics. Second, the performances of VHEM-H3M
and HEM-DTM (a continuous-state temporal model) are not statistically different based
on a paired t-test with 95% confidence, except for annotation precision where VHEM-
H3M scores significantly higher. Since HEM-DTM is based on linear dynamic systems
(a continuous-state model), it can model stationary time-series in a linear subspace. In
contrast, VHEM-H3M uses HMMs with discrete states and GMM emissions, and can hence
better adapt to non-stationary time-series on a non-linear manifold. This difference is
illustrated in the experiments: VHEM-H3M outperforms HEM-DTM on the human MoCap
data (see Table 2), which has non-linear dynamics, while the two perform similarly on the
music data (see Table 4), where audio features are often stationary over short time frames.

6.2 On-Line Hand-Writing Data Classification and Retrieval

In this experiment, we investigate the performance of the VHEM-H3M algorithm in es-
timating class-conditional H3M distributions for automatic classification and retrieval of
on-line hand-writing data.

6.2.1 Data Set

We consider the Character Trajectories Data Set (Asuncion and Newman, 2010), which is a
collection of 2858 examples of characters from the same writer, originally compiled to study
handwriting motion primitives (Williams et al., 2006).20 Each example is the trajectory of
one of the 20 different characters that correspond to a single pen-down segment. The data
was captured from a WACOM tablet at 200 Hz, and consists of (x, y)-coordinates and pen
tip force. The data has been numerically differentiated and Gaussian smoothed (Williams
et al., 2006). Half of the data is used for training, with the other half held out for testing.

6.2.2 Classification Models and Setup

From the hand-writing examples in the training set, we estimate a series of class-conditional
H3M distributions, one for each character, using hierarchical estimation with the VHEM-
H3M algorithm. First, for each character, we partition all the relevant training data into
groups of 3 sequences, and learn a HMM (with S = 4 states and M = 1 component for
the GMM emissions) from each group using the Baum-Welch algorithm. Next, we estimate
the class-conditional distribution (classification model) for each character by aggregating all
the relevant HMMs and summarizing them into a H3M with K = 4 components using the

20. Even if we limit this experiment to the data set of Williams et al. (2006), we would like to refer the
interest readers to the data set of Liwicki and Bunke (2005), which is a collection of word trajectories
(as opposed to character trajectories).
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VHEM-H3M algorithm (τ = 10 and N = NvNc, where Nv = 10,21 and Nc is the number of
intermediate models for that character). Using the character-level H3Ms and Bayes’ rule,
for each hand-writing example in the test set we compute the posterior probabilities of
all of the 20 characters. Each example is classified as the character with largest posterior
probability. For retrieval given a query character, examples in the test set are ranked by
the character’s posterior probability.

We repeated the same experiment using PPK-SC or SHEM-H3M (τ = 10, N = 1000) to
estimate the classification models from the intermediate HMMs. Finally, we considered the
EM-H3M algorithm, which directly uses the training sequences to learn the class-conditional
H3M (K = 4).

Since VHEM-H3M, SHEM-H3M and EM-H3M are iterative algorithms, we studied them
when varying the stopping criterion. In particular, the algorithms were terminated when the
relative variation in the value of the objective function between two consecutive iterations
was lower than a threshold ∆LL, which we varied in {10−2, 10−3, 10−4, 10−5}.22

Finally, we measure classification and retrieval performance on the test set using the
classification accuracy, and the average per-tag P@3, P@5 and MAP. We also report the
total training time, which includes the time used to learn the intermediate HMMs. The
experiments consisted of 5 trials with different random initializations of the algorithms.

6.2.3 Results

Table 5 lists the classification and retrieval performance on the test set for the various
methods. Consistent with the experiments on music annotation and retrieval (Section 6.1),
VHEM-H3M performs better than PPK-SC on all metrics. By learning novel HMM cluster
centers, VHEM-H3M estimates H3M distributions that are representative of all the relevant
intermediate HMMs, and hence of all the relevant training sequences. While EM-H3M is the
best in classification (at the price of longer training times), VHEM-H3M performs better in
retrieval, as evinced by the P@3 and P@5 scores. In terms of training time, VHEM-H3M
and PPK-SC are about 5 times faster than EM-H3M. In particular, PPK-SC is the fastest
algorithm, since the small number of input HMMs (i.e., on average 23 per character) allows
to build the spectral clustering embedding efficiently.

The version of HEM based on actual sampling (SHEM-H3M) performs better than
VHEM-H3M in classification, but VHEM-H3M has higher retrieval scores. However, the
training time for SHEM-H3M is approximately 15 times longer than for VHEM-H3M. These
differences in performance can be understood in terms of the different types of approximation
used by SHEM-H3M and VHEM-H3M. The sampling operation of SHEM-H3M provides
an unbiased estimator, whose variance depends on the number of samples used. Hence, in
order to reliably estimate the reduced model (i.e., making the variance small), the SHEM-

21. Note that choosing a lower value of Nv (compared to the music experiments) plays a role in making
the clustering algorithm more reliable. Using fewer virtual samples equates to attaching smaller “virtual
probability masses” to the input HMMs, and leads to less certain assignments of the input HMMs to the
clusters (cf. Equation 19). This determines more mixing in the initial iterations of the algorithm (e.g.,
similar to higher annealing temperature), and reduces the risk of prematurely specializing any cluster to
one of the original HMMs. This effect is desirable, since the input HMMs are estimated over a smaller
number of sequences (compared to the music experiments) and can therefore be noisier and less reliable.

22. In a similar experiment where we used the number of iterations as the stopping criterion, we registered
similar results.
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stop retrieval classification

∆LL P@3 P@5 MAP Accuracy total time (s)

VHEM-H3M

10−2 0.750 0.750 0.738 0.618 1838.34
10−3 0.717 0.750 0.741 0.619 1967.55
10−4 0.733 0.790 0.773 0.648 2210.77
10−5 0.750 0.820 0.775 0.651 2310.93

SHEM-H3M

10−2 0.417 0.440 0.517 0.530 13089.32
10−3 0.683 0.680 0.728 0.664 23203.44
10−4 0.700 0.750 0.753 0.689 35752.20
10−5 0.700 0.750 0.754 0.690 50094.36

EM-H3M

10−2 0.583 0.610 0.667 0.646 6118.53
10−3 0.617 0.650 0.731 0.674 7318.56
10−4 0.650 0.710 0.756 0.707 9655.08
10−5 0.517 0.560 0.665 0.635 10957.38

PPK-SC - 0.600 0.700 0.698 0.646 1463.54

Table 5: Classification and retrieval performance, and training time on the Character Tra-
jectories Data Set, for VHEM-H3M, PPK-SC, SHEM-H3M, and EM-H3M.

H3M algorithm requires generating and handling a sufficiently large number of samples
(relative to the model order/complexity, Hastie et al. 2005). In contrast, the variational
approximation of VHEM-H3M does not require generating samples (and hence avoids the
problem of large variances associate to relatively small samples), but introduces a bias
in the estimator (Gunawardana and Byrne, 2005). Hence, it is not surprising that, on a
relatively less complex problem where a relatively smaller sample size suffices, SHEM-H3M
can perform more robustly than VHEM-H3M (even if still at a larger computational cost).

It is also interesting to note that EM-H3M appears to suffer from overfitting of the
training set, as suggested by the overall drop in performance when the stopping criterion
changes from ∆LL = 10−4 to ∆LL = 10−5. In contrast, both VHEM-H3M and SHEM-
H3M consistently improve on all metrics as the algorithm converges (again looking at ∆LL ∈
{10−4, 10−5}). These results suggest that the regularization effect of hierarchical estimation,
which is based on averaging over more samples (either virtual or actual), can positively
impact the generalization of the learned models.23

Finally, we elaborate on how these results compare to the experiments on music annota-
tion and retrieval (in Section 6.1). First, in the Character Trajectory Data Set the number
of training sequences associated with each class (i.e, each character) is small compared to
the CAL500 data set.24 As a result, the EM-H3M algorithm is able to process all the data,
and achieve good classification performance. However, EM-H3M still needs to evaluate the

23. For smaller values of ∆LL (e.g., ∆LL < 10−5), the performance of EM-H3M did not improve.
24. In the Character Trajectory data set there are on average 71 training sequences per character. In

CAL500, each tag is associated with thousands of training sequences at the song level (e.g., an average
of about 8000 audio fragments per tag).
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Nv = 1000 τ = 10
τ = 2 τ = 5 τ = 10 τ = 20 Nv = 1 Nv = 10 Nv = 100 Nv = 1000

P@5 0.4656 0.4718 0.4738 0.4734 0.4775 0.4689 0.4689 0.4738
P@10 0.4437 0.4487 0.4507 0.4478 0.4534 0.4491 0.4466 0.4507
P@15 0.4236 0.4309 0.4346 0.4327 0.4313 0.4307 0.4242 0.4346

Table 6: Annotation and retrieval performance on CAL500 for VHEM-H3M when varying
the virtual sample parameters Nv and τ .

likelihood of all the original sequences at each iteration. This leads to slower iterations,
and results in a total training time about 5 times longer than that of VHEM-H3M (see
Table 5). Second, the Character Trajectory data is more “controlled” than the CAL500
data, since each class corresponds to a single character, and all the examples are from the
same writer. As a consequence, there is less variation in the intermediate HMMs (i.e., they
are clustered more closely), and several of them may summarize the cluster well, providing
good candidate cluster centers for PPK-SC. In conclusion, PPK-SC faces only a limited
loss of information when selecting one of the initial HMMs to represent each cluster, and
achieves reasonable performances.

6.3 Robustness of VHEM-H3M to Number and Length of Virtual Samples

The generation of virtual samples in VHEM-H3M is controlled by two parameters: the
number of virtual sequences (N), and their length (τ). In this section, we investigate the
impact of these parameters on annotation and retrieval performance on CAL500. For a
given tag t, we set N = NvNtK

(s), where Nv is a constant, Nt the number of training songs
for the tag, and K(s) the number of mixture components for each song-level H3M. Starting
with (Nv, τ) = (1000, 10), each parameter is varied while keeping the other one fixed, and
annotation and retrieval performance on the CAL500 data set are calculated, as described
in Section 6.1.

Table 6 presents the results, for τ ∈ {2, 5, 10, 20} and Nv ∈ {1, 10, 100, 1000}. The
performances when varying τ are close on all metrics. For example, average P@5, P@10
and P@15 vary in small ranges (0.0082, 0.0070 and 0.0110, respectively). Similarly, varying
the number of virtual sequences Nv has a limited impact on performance as well.25 This
demonstrates that VHEM-H3M is fairly robust to the choice of these parameters.

Finally, we tested VHEM-H3M for music annotation and retrieval on CAL500, using
virtual sequences of the same length as the audio fragments used at the song level, that is,
τ = T = 125. Compared to τ = 10 (the setting used in earlier experiments), we registered
an 84% increase in total running time, with no corresponding improvement in performance.
Thus, in our experimental setting, making the virtual sequences relatively short positively
impacts the running time, without reducing the quality of the learned models.

25. Note that the E-step of the VHEM-H3M algorithm averages over all possible observations compatible
with the input models, also when we choose a low value of Nv (e.g., Nv = 1). The number of virtual
samples controls the “virtual mass” of each input HMMs and thus the certainty of cluster assignments.
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7. Conclusion

In this paper, we presented a variational HEM (VHEM) algorithm for clustering HMMs
with respect to their probability distributions, while generating a novel HMM center to
represent each cluster. Experimental results demonstrate the efficacy of the algorithm on
various clustering, annotation, and retrieval problems involving time-series data, showing
improvement over current methods. In particular, using a two-stage, hierarchical estima-
tion procedure—learn H3Ms on many smaller subsets of the data, and summarize them in
a more compact H3M model of the data—the VHEM-H3M algorithm estimates annotation
models from data more efficiently than standard EM and also improves model robustness
through better regularization. Specifically, averaging over all possible virtual samples pre-
vents over-fitting, which can improve the generalization of the learned models. Moreover,
using relatively short virtual sequences positively impacts the running time of the algorithm,
without negatively affecting its performance on practical applications. In addition, we have
noted that the VHEM-H3M algorithm is robust to the choice of the number and length of
virtual samples.

In our experiments, we have implemented the first stage of the hierarchical estimation
procedure by partitioning data in non-overlapping subsets (and learning an intermediate
H3M on each subset). In particular, partitioning the CAL500 data at the song level had
a practical advantage. Since individual songs in CAL500 are relevant to several tags, the
estimation of the song H3Ms can be executed one single time for each song in the database,
and re-used in the VHEM estimation of all the associated tag models. This has a positive
impact on computational efficiency. Depending on the particular application, however, a
slightly different implementation of this first stage (of the hierarchical estimation procedure)
may be better suited. For example, when estimating a H3M from a very large amount of
training data, one could use a procedure that does not necessarily cover all data, inspired by
Kleiner et al. (2011). If n is the size of the training data, first estimate B > 1 intermediate
H3Ms on as many (possibly overlapping) “little” bootstrap subsamples of the data,26 each
of size b < n. Then summarize all the intermediate H3Ms into a final H3M using the
VHEM-H3M algorithm.

In future work we plan to extend VHEM-H3M to the case where all HMMs share a
large GMM universal background model for the emission distributions (with each HMM
state having a different set of weights for the Gaussian components), which is commonly
used in speech (Huang and Jack, 1989; Bellegarda and Nahamoo, 1990; Rabiner and Juang,
1993) or in hand-writing recognition (Rodriguez-Serrano and Perronnin, 2012). This would
allow for faster training (moving the complexity to estimating the noise background model)
and would require a faster implementation of the inference (e.g., using a strategy inspired
by Coviello et al. (2012b)). In addition, we plan to derive a HEM algorithm for HMMs
with discrete emission distributions, and compare its performance to the work presented
here and to the extension with the large GMM background model.

Finally, in this work we have not addressed the model selection problem, that is, selecting
the number of reduced mixture components. Since VHEM is based on maximum likelihood
principles, it is possible to apply standard statistical model selection techniques, such as

26. Several techniques have been proposed to bootstrap from sequences of samples, for example refer to Hall
et al. (1995).
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Bayesian information criterion (BIC) and Akaike information criterion (AIC) (MacKay,
2003). Alternatively, inspired by Bayesian non-parametric statistics, the VHEM formulation
could be extended to include a Dirichlet process prior (Blei and Jordan, 2006), with the
number of components adapting to the data.
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Appendix A. Derivation of the Lower Bounds

The lower bounds are derived as follow.

A.1 Lower Bound on EM(b)
i

[
log p(Yi|M(r))

]
The lower bound (15) on EM(b)

i

[
log p(Yi|M(r))

]
is computed by introducing the variational

distribution qi(zi) and applying (10)

EM(b)
i

[
log p(Yi|M(r))

]
≥ max

qi

∑
j

qi(zi = j)

{
log

p(zi = j|M(r))

qi(zi = j)
+ EM(b)

i

[log p(Yi|M(r)
j )]

}

= max
qi

∑
j

qi(zi = j)

{
log

p(zi = j|M(r))

qi(zi = j)
+ EM(b)

i

[log p(y|M(r)
j )Ni ]

}
(30)

= max
qi

∑
j

qi(zi = j)

{
log

p(zi = j|M(r))

qi(zi = j)
+NiEM(b)

i

[log p(y|M(r)
j )]

}
(31)

≥ max
qi

∑
j

qi(zi = j)

{
log

p(zi = j|M(r))

qi(zi = j)
+NiLi,jHMM

}
, LiH3M ., (32)

where in (30) we use the fact that Yi is a set of Ni i.i.d. samples. In (31), log p(y|M(r)
j )

is the observation log-likelihood of an HMM, which is essentially a mixture distribution.
Since the latter expectation cannot be calculated directly, in (32) we use instead the lower
bound Li,jHMM defined in (13).
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A.2 Lower Bound on EM(b)
i

[log p(y|M(r)
j )]

To calculate the lower bound Li,jHMM ,starting with (13), we first rewrite the expectation

EM(b)
i

to explicitly marginalize over the HMM state sequence β from M(b)
i ,

EM(b)
i

[log p(y|M(r)
j )] = E

β|M(b)
i

[
E
y|β,M(b)

i

[log p(y|M(r)
j )]

]
=
∑
β

π
(b),i
β E

y|β,M(b)
i

[log p(y|M(r)
j )]. (33)

We introduce a variational distribution qi,j(ρ|β) on the state sequence ρ, which depends

on a particular sequence β from M(b)
i . Applying (10) to (33), we have

EM(b)
i

[log p(y|M(r)
j )]

≥
∑
β

π
(b),i
β max

qi,j

∑
ρ

qi,j(ρ|β)

{
log

p(ρ|M(r)
j )

qi,j(ρ|β)
+ E

y|β,M(b)
i

[log p(y|ρ,M(r)
j )]

}

=
∑
β

π
(b),i
β max

qi,j

∑
ρ

qi,j(ρ|β)

{
log

p(ρ|M(r)
j )

qi,j(ρ|β)
+
∑
t

EM(b)
i,βt

[log p(yt|M(r)
j,ρt

)]

}
(34)

≥
∑
β

π
(b),i
β max

qi,j

∑
ρ

qi,j(ρ|β)

{
log

p(ρ|M(r)
j )

qi,j(ρ|β)
+
∑
t

L(i,βt),(j,ρt)
GMM

}
, Li,jHMM , (35)

where in (34) we use the conditional independence of the observation sequence given the
state sequence, and in (35) we use the lower bound, defined in (14), on each expectation.

A.3 Lower Bound on EM(b)
i,β

[log p(y|M(r)
j,ρ)]

To derive the lower bound L(i,β),(j,ρ)
GMM for (14), we first rewrite the expectation with respect

to M(b)
i,β to explicitly marginalize out the GMM hidden assignment variable ζ,

EM(b)
i,β

[log p(y|M(r)
j,ρ)] = E

ζ|M(b)
i,β

[
EM(b)

i,β,ζ

[log p(y|M(r)
j,ρ)]

]
=

M∑
m=1

c
(b),i
β,mEM(b)

i,β,m

[
log p(y|M(r)

j,ρ)
]
.

Note that p(y|M(r)
j,ρ) is a GMM emission distribution as in (1). Hence, the observation vari-

able is y, and the hidden variable is ζ. Therefore, we introduce the variational distribution
qi,jβ,ρ(ζ|m), which is conditioned on the observation y arising from the mth component in

M(b)
i,β, and apply (10),

EM(b)
i,β

[log p(y|M(r)
j,ρ)]

≥
M∑
m=1

c
(b),i
β,m max

qi,jβ,ρ

M∑
ζ=1

qi,jβ,ρ(ζ|m)

{
log

p(ζ|M(r)
j,ρ)

qi,jβ,ρ(ζ|m)
+ EM(b)

i,β,m

[log p(y|M(r)
j,ρ,ζ)]

}
, L(i,β),(j,ρ)

GMM .
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Appendix B. Derivation of the E-Step

GMM: Substituting the variational distribution η
(i,β),(j,ρ)
`|m into (17), we have

L(i,β),(j,ρ)
GMM =

M∑
m=1

c
(b),i
β,m max

η
(i,β),(j,ρ)
`|m

M∑
`=1

η
(i,β),(j,ρ)
`|m

log
c

(r),j
ρ,`

η
(i,β),(j,ρ)
`|m

+ EM(b)
i,β,m

[log p(y|M(r)
j,ρ,`)]

 .

The maximizing variational parameters are obtained as (see Appendix D.2)

η̂
(i,β),(j,ρ)
`|m =

c
(r),j
ρ,` exp

{
EM(b)

i,β,m

[log p(y|M(r)
j,ρ,`)]

}
∑

`′ c
(r),j
ρ,`′ exp

{
EM(b)

i,β,m

[log p(y|M(r)
j,ρ,`′)]

} ,
HMM: Substituting the variational distribution φi,j into (16), we have

Li,jHMM =
∑
β

π
(b),i
β max

φi,j

∑
ρ

φi,j(ρ|β)

{
log

π
(r),j
ρ

φi,j(ρ|β)
+
∑
t

L(i,βt),(j,ρt)
GMM

}
. (36)

The maximization of (36) with respect to φi,jt (ρt|ρt−1, βt) and φi,j1 (ρ1|β1) is carried out
independently for each pair (i, j), and follow Hershey et al. (2007). In particular it uses a
backward recursion, starting with Li,jτ+1(βt, ρt) = 0, for t = τ, . . . , 2,

φ̂i,jt (ρt|ρt−1, βt) =
a

(r),j
ρt−1,ρt exp

{
L(i,βt),(j,ρt)

GMM + Li,jt+1(βt, ρt)
}

∑S
ρ a

(r),j
ρt−1,ρ exp

{
L(i,βt),(j,ρ)

GMM + Li,jt+1(βt, ρ)
}

Li,jt (βt−1, ρt−1) =
S∑
β=1

a
(b),i
βt−1,β

log
S∑
ρ=1

a(r),j
ρt−1,ρ exp

{
L(i,β),(j,ρ)

GMM + Li,jt+1(β, ρ)
}
,

and terminates with

φ̂i,j1 (ρ1|β1) =
π

(r),j
ρ1 exp

{
L(i,β1),(j,ρ1)

GMM + Li,j2 (β1, ρ1)
}

∑S
ρ π

(r),j
ρ exp

{
L(i,β1),(j,ρ)

GMM + Li,j2 (β1, ρ)
}

Li,jHMM =

S∑
β=1

π
(b),i
β log

S∑
ρ=1

π(r),j
ρ exp

{
L(i,β),(j,ρ)

GMM + Li,j2 (β, ρ)
}

(37)

where (37) is the maxima of the terms in (36) in Section 3.3.1.
H3M: Substituting the variational distribution zij into (15), we have

LiH3M = max
zij

∑
j

zij

{
log

ω
(r)
j

zij
+NiLi,jHMM

}
. (38)

The maximizing variational parameters of (38) are obtained using Appendix D.2,

ẑij =
ω

(r)
j exp(NiLi,jHMM )∑
j′ ω

(r)
j′ exp(NiLi,j

′

HMM )
.
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Appendix C. Derivation of the M-Step

The M-steps involves maximizing the lower bound in (11) with respect to M(r), while
holding the variational distributions fixed,

M(r)∗ = argmax
M(r)

K(b)∑
i=1

LiH3M . (39)

Substituting (20) and (21) into the objective function of (39),

L(M(r)) =
K(b)∑
i=1

LiH3M

=
∑
i,j

ẑij

log
ω

(r)
j

ẑij
+Ni

∑
β

π
(b),i
β

∑
ρ

φ̂i,j(ρ|β)

[
log

π
(r),j
ρ

φ̂i,j(ρ|β)
+
∑
t

L(i,βt),(j,ρt)
GMM

] (40)

In the following, we detail the update rules for the parameters of the reduced model M(r).

C.1 HMMs Mixture Weights

Collecting terms in (40) that only depend on the mixture weights {ω(r)
j }K

(r)

j=1 , we have

L̃({ω(r)
j }) =

∑
i

∑
j

ẑij logω
(r)
j =

∑
j

[∑
i

ẑij

]
logω

(r)
j (41)

Given the constraints
∑K(r)

j=1 ω
(r)
j = 1 and ω

(r)
j ≥ 0, (41) is maximized using the result in

Appendix D.1, which yields the update in (24).

C.2 Initial State Probabilities

The objective function in (40) factorizes for each HMMM(r)
j , and hence the parameters of

each HMM are updated independently. For the j-th HMM, we collect terms in (40) that

depend on the initial state probabilities {π(r),j
ρ }Sρ=1,

L̃j({π(r),j
ρ }) =

∑
i

ẑijNi

∑
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∝
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i

ẑijω
(b)
i ν̂i,j1 (ρ)

]
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ρ , (43)
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where in the (42) we have used the summary statistic defined in (23). Considering the

constraints
∑S

ρ=1 π
(r),j
ρ = 1 and π

(r),j
ρ ≥ 0, (43) is maximized using the result in Appendix

D.1, giving the update formula in (25).

C.3 State Transition Probabilities

Similarly, for each HMM M(r)
j and previous state ρ, we collect terms in (40) that depend

on the transition probabilities {a(r),j
ρ,ρ′ }

S
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βt−1,βt

τ∏
t=4

φ̂i,jt (ρt|ρt−1, βt)
τ∑
t=4

log a(r),j
ρt−1,ρt


= . . .

=
∑
i

ẑijNi

τ∑
t=2

∑
ρt−1

∑
ρt

∑
βt

ξi,jt (ρt−1, ρt, βt) log a(r),j
ρt−1,ρt

∝
∑
i

ẑijNi

∑
ρ′

τ∑
t=2

∑
β

ξi,jt (ρ, ρ′, β)︸ ︷︷ ︸
ξ̂i,j(ρ,ρ′)

log a
(r),j
ρ,ρ′

∝
S∑

ρ′=1

[∑
i

ẑijω
(b)
i ξ̂i,j(ρ, ρ′)

]
log a

(r),j
ρ,ρ′ . (44)
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Considering the constraints
∑S

ρ′=1 a
(r),j
ρ,ρ′ = 1 and a

(r),j
ρ,ρ′ ≥ 0, (44) is maximized using the

result in Appendix D.1, giving the update in (25).

C.4 Emission Probability Density Functions

The cost function (40) factors also for each GMM indexed by (j, ρ, `). Factoring (40),

L̃(M(r)
j,ρ,`) =

∑
i

ẑijNi

∑
β

π
(b),i
β

∑
ρ

φ̂i,j(ρ|β)
∑
t

L(i,βt),(j,ρt)
GMM

=
∑
i

ẑijNi

∑
β

[
π

(b),i
β1

τ∏
t=2

a
(b),i
βt−1,βt

]∑
ρ

[
φ̂i,j1 (ρ1|β1)

τ∏
t=2

φ̂i,jt (ρt|ρt−1, βt)

]∑
t

L(i,βt),(j,ρt)
GMM

=
∑
i

ẑijNi

∑
ρ1

∑
β1

π
(b),i
β1

φ̂i,j1 (ρ1|β1)︸ ︷︷ ︸
νi,j1 (ρ1,β1)

[
L(i,β1),(j,ρ1)
GMM . . .

+
∑
β2···βτ

τ∏
t=2

a
(b),i
βt−1,βt

∑
ρ2···ρτ

τ∏
t=2

φ̂i,j(ρt|ρt−1, βt)
τ∑
t=2

L(i,βt),(j,ρt)
GMM


=
∑
i

ẑijNi

∑
ρ1

∑
β1

νi,j1 (ρ1, β1)L(i,β1),(j,ρ1)
GMM

+
∑
i

ẑijNi

∑
ρ2

∑
β2

∑
ρ1

∑
β1

(
νi,j1 (ρ1, β1)a

(b),i
β1,β2

)
φ̂i,j2 (ρ2|ρ1, β2)︸ ︷︷ ︸

ξi,j2 (ρ1,ρ2,β2)︸ ︷︷ ︸
νi,j2 (ρ2,β2)

[
L(i,β2),(j,ρ2)
GMM . . .

+
∑
β3···βτ

τ∏
t=3

a
(b),i
βt−1,βt

∑
ρ3···ρτ

τ∏
t=3

φ̂i,jt (ρt|ρt−1, βt)

τ∑
t=3

L(i,βt),(j,ρt)
GMM


= . . .

=
∑
i

ẑijNi

τ∑
t=1

∑
ρt

∑
βt

νi,jt (ρt, βt)L(i,βt),(j,ρt)
GMM

∝
∑
i

ẑijNi

∑
β

τ∑
t=1

νi,jt (ρ, β)︸ ︷︷ ︸
ν̂i,jt (ρ,β)

L(i,β),(j,ρ)
GMM

∝
∑
i

ẑijNi

S∑
β=1

ν̂i,j(ρ, β)

M∑
m=1

c
(b),i
β,m η̂

(i,β),(j,ρ)
`|m

[
log c

(r),j
ρ,` + EM(b)

i,β,m

[log p(y|M(r)
j,ρ,`)]

]

= Ωj,ρ

(
η̂

(i,β),(j,ρ)
`|m

[
log c

(r),j
ρ,` + EM(b)

i,β,m

[log p(y|M(r)
j,ρ,`)]

])
, (45)

where in (45) we use the weighted-sum operator defined in (28), which is over all base model

GMMs {M(b)
i,β,m}. The GMM mixture weights are subject to the constraints

∑M
`=1 c

(r),j
ρ,` = 1,
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∀j, ρ. Taking the derivative with respect to each parameter and setting it to zero,27 gives
the GMM update Equations (26) and (27).

Appendix D. Useful Optimization Problems

The following two optimization problems are used in the derivation of the E-step and M-
step.

D.1

The optimization problem

max
α`

L∑
`=1

β` logα` s.t.
L∑
`=1

α` = 1, α` ≥ 0, ∀`

is optimized by α∗` = β`∑L
`′=1 β

′
`

.

D.2

The optimization problem

max
α`

L∑
`=1

α` (β` − logα`) s.t.

L∑
`=1

α` = 1 α` ≥ 0, ∀`

is optimized by α∗` = expβ`∑L
`′=1 expβ′`

.

Appendix E. Clustering Synthetic Data where the Clustering Model
Does Not Match the “True” Model

In this appendix we present two experiments on clustering synthetic data, where the order
of the model used for clustering does not necessarily match the order of the “true” model
used to generate the data. In both experiments, the true model consists of C = 4 HMMs
each with S = 3 hidden states—we used the HMMs of experiment (c) in Section 5.3. Data
sequences are generated from each of the C HMMs, and then corrupted with Gaussian
noise. An HMM with S′ states is estimated over each sequence. These HMMs are denoted
as noisy HMMs, to differentiate them from the original HMMs representing the C classes.
The entirety of noisy HMMs are then clustered into C ′ groups using in turn our VHEM-H3M
algorithm and PPK-SC.

In the first experiments we set S′ = S(= 3), and vary C ′ ∈ {3, 4, 5, 6}. Hence, the
number of clusters does not necessarily match the true number of groups. In the second
experiments, we fix C ′ = C(= 4), and vary S′ ∈ {2, 3, 4, 5}, that is, the model order of the
noisy HMMs does not match the order of the original HMMs. Results are reported in Table
7 below.

27. We also considered the constraints on the covariance matrices Σ
(r),j
ρ,` � 0.
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experiment (d) experiment (e)
number of clusters C ′ varies, S′ = 3 number of HMM states S′ varies, C ′ = 4 fixed

2 3 4 (true) 5 2 3 (true) 4 5
VHEM-H3M 0.665 0.782 0.811 0.816 0.801 0.811 0.828 0.832
PPK-SC 0.673 0.729 0.768 0.781 0.766 0.768 0.781 0.798

Table 7: Results on clustering synthetic data with VHEM-H3M and PPK-SC, when the
model order does not match the order of the true model used for generating the
data. We fist vary the number of clusters C ′, keeping S′ = 3 fixed to the true
value. Then, we vary the number of HMM states S′, keeping C ′ = 4 fixed to the
true value. Performance is measured in terms of Rand-index, and is averaged over
K ∈ {2, 4, 8, 16, 32}.

Performance are more sensitive to selecting a sufficient number of clusters than using the
right number of HMM states. In particular, when using fewer clusters than the true number
of classes (e.g., C ′ < C), the Rand-index degrades for both VHEM-H3M and PPK-SC, see
experiment (d) in Table 7. On the opposite, performance are relatively stable when the
number of HMM states does not match the true one, for example, S′ 6= S, see experiment
(e) in Table 7. In particular, when using fewer HMM states (e.g., S′ < S) the model can
still capture some of the dynamics, and the drop in performance is not significant. It is
also interesting to note that using a larger number of HMM states (e.g., S′ > S) leads to
slightly better results. The reason is that, when estimating the HMMs on the corrupted
data sequences, there are additional states to better account for the effect of the noise.
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