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Abstract

We introduce a spectral learning algorithm for latent-variable PCFGs (Matsuzaki et al.,
2005; Petrov et al., 2006). Under a separability (singular value) condition, we prove that
the method provides statistically consistent parameter estimates. Our result rests on three
theorems: the first gives a tensor form of the inside-outside algorithm for PCFGs; the
second shows that the required tensors can be estimated directly from training examples
where hidden-variable values are missing; the third gives a PAC-style convergence bound
for the estimation method.
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1. Introduction

Statistical models with hidden or latent variables are of great importance in natural language
processing, speech, and many other fields. The EM algorithm is a remarkably successful
method for parameter estimation within these models: it is simple, it is often relatively
efficient, and it has well understood formal properties. It does, however, have a major
limitation: it has no guarantee of finding the global optimum of the likelihood function.
From a theoretical perspective, this means that the EM algorithm is not guaranteed to give
statistically consistent parameter estimates. From a practical perspective, problems with
local optima can be difficult to deal with.
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Recent work has introduced a polynomial-time learning algorithm for an important case
of hidden-variable models: hidden Markov models (Hsu et al., 2009). This algorithm uses
a spectral method: that is, an algorithm based on eigenvector decompositions of linear
systems, in particular singular value decomposition (SVD). In the general case, learning
of HMMs is intractable (e.g., see Terwijn, 2002). The spectral method finesses the prob-
lem of intractability by assuming separability conditions. More precisely, the algorithm of
Hsu et al. (2009) has a sample complexity that is polynomial in 1/0, where o is the mini-
mum singular value of an underlying decomposition. The HMM learning algorithm is not
susceptible to problems with local maxima.

In this paper we derive a spectral algorithm for learning of latent-variable PCFGs (L-
PCFGs) (Petrov et al., 2006; Matsuzaki et al., 2005). L-PCFGs have been shown to be
a very effective model for natural language parsing. Under a condition on singular values
in the underlying model, our algorithm provides consistent parameter estimates; this is in
contrast with previous work, which has used the EM algorithm for parameter estimation,
with the usual problems of local optima.

The parameter estimation algorithm (see Figure 7) is simple and efficient. The first step
is to take an SVD of the training examples, followed by a projection of the training examples
down to a low-dimensional space. In a second step, empirical averages are calculated on
the training examples, followed by standard matrix operations. On test examples, tensor-
based variants of the inside-outside algorithm (Figures 4 and 5) can be used to calculate
probabilities and marginals of interest.

Our method depends on the following results:

e Tensor form of the inside-outside algorithm. Section 6.1 shows that the inside-outside
algorithm for L-PCFGs can be written using tensors and tensor products. Theorem 3
gives conditions under which the tensor form calculates inside and outside terms
correctly.

o Observable representations. Section 7.2 shows that under a singular-value condition,
there is an observable form for the tensors required by the inside-outside algorithm.
By an observable form, we follow the terminology of Hsu et al. (2009) in referring to
quantities that can be estimated directly from data where values for latent variables
are unobserved. Theorem 6 shows that tensors derived from the observable form
satisfy the conditions of Theorem 3.

e FEstimating the model. Section 8 gives an algorithm for estimating parameters of the
observable representation from training data. Theorem 8 gives a sample complexity
result, showing that the estimates converge to the true distribution at a rate of 1/v/M
where M is the number of training examples.

The algorithm is strikingly different from the EM algorithm for L-PCFGs, both in its
basic form, and in its consistency guarantees. The techniques developed in this paper are
quite general, and should be relevant to the development of spectral methods for estimation
in other models in NLP, for example alignment models for translation, synchronous PCFGs,
and so on. The tensor form of the inside-outside algorithm gives a new view of basic
calculations in PCFGs, and may itself lead to new models.
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In this paper we derive the basic algorithm, and the theory underlying the algorithm.
In a companion paper (Cohen et al., 2013), we describe experiments using the algorithm to
learn an L-PCFG for natural language parsing. In these experiments the spectral algorithm
gives models that are as accurate as the EM algorithm for learning in L-PCFGs. It is
significantly more efficient than the EM algorithm on this problem (9h52m of training time
vs. 187h12m), because after an SVD operation it requires a single pass over the data,
whereas EM requires around 20-30 passes before converging to a good solution.

2. Related Work

The most common approach for statistical learning of models with latent variables is the
expectation-maximization (EM) algorithm (Dempster et al., 1977). Under mild conditions,
the EM algorithm is guaranteed to converge to a local maximum of the log-likelihood
function. This is, however, a relatively weak guarantee; there are in general no guarantees
of consistency for the EM algorithm, and no guarantees of sample complexity, for example
within the PAC framework (Valiant, 1984). This has led a number of researchers to consider
alternatives to the EM algorithm, which do have PAC-style guarantees.

One focus of this work has been on the problem of learning Gaussian mixture models.
In early work, Dasgupta (1999) showed that under separation conditions for the underlying
Gaussians, an algorithm with PAC guarantees can be derived. For more recent work in this
area, see for example Vempala and Wang (2004), and Moitra and Valiant (2010). These
algorithms avoid the issues of local maxima posed by the EM algorithm.

Another focus has been on spectral learning algorithms for hidden Markov models
(HMMs) and related models. This work forms the basis for the L-PCFG learning algo-
rithms described in this paper. This line of work started with the work of Hsu et al. (2009),
who developed a spectral learning algorithm for HMMs which recovers an HMM’s param-
eters, up to a linear transformation, using singular value decomposition and other simple
matrix operations. The algorithm builds on the idea of observable operator models for
HMMs due to Jaeger (2000). Following the work of Hsu et al. (2009), spectral learning
algorithms have been derived for a number of other models, including finite state transduc-
ers (Balle et al., 2011); split-head automaton grammars (Luque et al., 2012); reduced rank
HMMs in linear dynamical systems (Siddiqi et al., 2010); kernel-based methods for HMMs
(Song et al., 2010); and tree graphical models (Parikh et al., 2011; Song et al., 2011). There
are also spectral learning algorithms for learning PCFGs in the unsupervised setting (Bailly
et al., 2013).

Foster et al. (2012) describe an alternative algorithm to that of Hsu et al. (2009) for
learning of HMMSs, which makes use of tensors. Our work also makes use of tensors, and
is closely related to the work of Foster et al. (2012); it is also related to the tensor-based
approaches for learning of tree graphical models described by Parikh et al. (2011) and Song
et al. (2011). In related work, Dhillon et al. (2012) describe a tensor-based method for
dependency parsing.

Bailly et al. (2010) describe a learning algorithm for weighted (probabilistic) tree au-
tomata that is closely related to our own work. Our approach leverages functions ¢ and
¥ that map inside and outside trees respectively to feature vectors (see Section 7.2): for
example, ¢(t) might track the context-free rule at the root of the inside tree ¢, or features
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corresponding to larger tree fragments. Cohen et al. (2013) give definitions of ¢ and
used in parsing experiments with L-PCFGs. In the special case where ¢ and v are identity
functions, specifying the entire inside or outside tree, the learning algorithm of Bailly et al.
(2010) is the same as our algorithm. However, our work differs from that of Bailly et al.
(2010) in several important respects. The generalization to allow arbitrary functions ¢ and
1 is important for the success of the learning algorithm, in both a practical and theoretical
sense. The inside-outside algorithm, derived in Figure 5, is not presented by Bailly et al.
(2010), and is critical in deriving marginals used in parsing. Perhaps most importantly, the
analysis of sample complexity, given in Theorem 8 of this paper, is much tighter than the
sample complexity bound given by Bailly et al. (2010). The sample complexity bound in
theorem 4 of Bailly et al. (2010) suggests that the number of samples required to obtain
|p(t) — p(t)] < e for some tree t of size N, and for some value e, is exponential in N. In
contrast, we show that the number of samples required to obtain ), |p(t) — p(t)| < € where
the sum is over all trees of size N is polynomial in N. Thus our bound is an improvement
in a couple of ways: first, it applies to a sum over all trees of size IV, a set of exponential
size; second, it is polynomial in .

Spectral algorithms are inspired by the method of moments, and there are latent-variable
learning algorithms that use the method of moments, without necessarily resorting to spec-
tral decompositions. Most relevant to this paper is the work in Cohen and Collins (2014)
for estimating L-PCFGs, inspired by the work by Arora et al. (2013).

3. Notation

Given a matrix A or a vector v, we write AT or v! for the associated transpose. For any
integer n > 1, we use [n] to denote the set {1,2,...n}.

We use R"™*! to denote the space of m-dimensional column vectors, and R'*™ to denote
the space of m-dimensional row vectors. We use R" to denote the space of m-dimensional
vectors, where the vector in question can be either a row or column vector. For any row or
column vector y € R, we use diag(y) to refer to the (m x m) matrix with diagonal elements
equal to yp for h = 1...m, and off-diagonal elements equal to 0. For any statement I', we
use [I'] to refer to the indicator function that is 1 if " is true, and 0 if T" is false. For a
random variable X, we use E[X] to denote its expected value.

We will make use of tensors of rank 3:

Definition 1 A tensor C' € RU™™M>*M) 4s g set of m® parameters Cijk fori,j,k € [m].
Given a tensor C, and vectors y' € R™ and y?> € R™, we define C(y',y?) to be the m-
dimensional row vector with components
[Cu ™)=Y,  Cijny)vie
jelm],ke[m]

Hence C can be interpreted as a function C : R™ x R™ — RY™™ that maps vectors y' and
y? to a row vector C(y',y?) e RYX™,

In addition, we define the tensor C(y 5 € RM>Xmxm) for any tensor C € RM*mxm) ¢,
be the function C(y gy : R™ x R™ — R™*1 defined as

[CapW' )= D, Cijwviyi

i€e[m],je[m]
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Similarly, for any tensor C' we define C(y 3) : R™ x R™ — R™ s

[CamnW'v)i= D)  Cijsvivi

i€[m],ke[m]
Note that Cy 9 (v, y?) and C1,3) (y*,y?) are both column wvectors.

For vectors x,y, z € R™, zy' 2T is the tensor D € R™*™*™ where D; i = xiyjz (this
is analogous to the outer product: [zy'];; = 7;y;).
We use || ...||r to refer to the Frobenius norm for matrices or tensors: for a matrix A,

[Al[F = 4/2; ;(Ai;)?, for a tensor C, [|Cl[r = 4/>; ;1(Cijk)? For a matrix A we use

||Al|2,0 to refer to the operator (spectral) norm, ||A||2,, = maxg.o ||Az||2/||z]|2.

4. L-PCFGs

In this section we describe latent-variable PCFGs (L-PCFGs), as used for example by
Matsuzaki et al. (2005) and Petrov et al. (2006). We first give the basic definitions for
L-PCFGs, and then describe the underlying motivation for them.
4.1 Basic Definitions
An L-PCFG is an 8-tuple (NV,Z,P,m,n,t,q,m) where:

e N is the set of non-terminal symbols in the grammar. Z < N is a finite set of in-

terminals. P < N is a finite set of pre-terminals. We assume that N' = Z u P, and
I nP = (. Hence we have partitioned the set of non-terminals into two subsets.

e [m] is the set of possible hidden states.
e [n] is the set of possible words.

e ForallaeZ, be N, ce N, hi,he,hg € [m], we have a context-free rule a(hy) —
b(hg) C(hg).

e For all a € P, h € [m], x € [n], we have a context-free rule a(h) — =.
e ForallaeZ,b,ce N, and hy, ha, hs € [m], we have a parameter t(a — b ¢, ha, hslhi,a).
e For all a € P, x € [n], and h € [m], we have a parameter q(a — x|h,a).

e For all @ € Z and h € [m], we have a parameter 7(a,h) which is the probability of
non-terminal a paired with hidden variable h being at the root of the tree.

Note that each in-terminal a € 7 is always the left-hand-side of a binary rule a — b ¢;
and each pre-terminal a € P is always the left-hand-side of a rule ¢ — x. Assuming that the
non-terminals in the grammar can be partitioned this way is relatively benign, and makes
the estimation problem cleaner.

For convenience we define the set of possible “skeletal rules” as R = {a > bc:ae€Z,be

N,ce N}.
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S rr =S — NP VP
P rg=NP — D N
NP, VPs r3 =D — the
PN PN r4 =N — dog
D3 N4 Vg P~ rs =VP — VP
| | | | re =V — saw
the dog saw him r» =P — him

Figure 1: s-tree, and its sequence of rules. (For convenience we have numbered the nodes
in the tree.)

These definitions give a PCFG, with rule probabilities
pla(h1) = b(h2) c(hs)|a(h1)) = t(a — b ¢, hy, hs|hy, a),

and
pla(h) — zl|a(h)) = q(a — z|h, a).

Remark 2 In the previous paper on this work (Cohen et al., 2012), we considered an L-
PCFG model where

p(a(hy) — b(h2) c(hg)|a(hy)) = p(a — b c|hi,a) x p(h2|h1,a — bc) x p(hslh1,a — b c)

In this model the random variables ho and hs are assumed to be conditionally independent
given h1 and a — b c.
In this paper we consider a model where

p(a(hl) — b(hg) C(hg)’a(hq)) = t(a —b C, hg, hg, |h1, a). (1)

That is, we do not assume that the random variables hy and hsg are independent when
conditioning on hy and a — bc. This is also the model considered by Matsuzaki et al.
(2005) and Petrov et al. (2006).

Note however that the algorithms in this paper are the same as those in Cohen et al.
(2012): we have simply proved that the algorithms give consistent estimators for the model
form in Eq. 1.

As in usual PCFGs, the probability of an entire tree is calculated as the product of its
rule probabilities. We now give more detail for these calculations.

An L-PCFG defines a distribution over parse trees as follows. A skeletal tree (s-tree) is
a sequence of rules rq...ry where each r; is either of the form ¢ — b ¢ or a — z. The
rule sequence forms a top-down, left-most derivation under a CFG with skeletal rules. See
Figure 1 for an example.

A full tree consists of an s-tree r1...7ry, together with values hy...hy. Each h; is the
value for the hidden variable for the left-hand-side of rule r;. Each h; can take any value in
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Define a; to be the non-terminal on the left-hand-side of rule r;. For any i € [N] such
that a; € Z (i.e., a; is an in-terminal, and rule r; is of the form a — b ¢) define h§2) to be the

hidden variable value associated with the left child of the rule r;, and h§3) to be the hidden
variable value associated with the right child. The probability mass function (PMF) over
full trees is then

p(r1...rN,h1 ... hy) = m(a1, hy) x H t(ri,h?),hg?’”hi,ai) X H q(rilhi, a;). (2)

i:a;€L i:a; P

The PMF over s-trees is p(ry...ry) = Zhlth p(ri...rn,hi...hy).
In the remainder of this paper, we make use of a matrix form of parameters of an
L-PCFG, as follows:

e For cach a — b c e R, we define T4t ¢ e R™*™*™ {4 he the tensor with values

T’?;;%l;,chg = t(a — bc, hy, h3la, hy).
e For each a € P, z € [n], we define g,—, € R!*™ to be the row vector with values

[Qa—>x]h = q(a - CL‘|h, CL)

for h=1,2,...m.

e For each a € Z, we define the column vector 7% € R™*! where [7%];, = 7(a, h).

4.2 Application of L-PCFGs to Natural Language Parsing

L-PCFGs have been shown to be a very useful model for natural language parsing (Mat-
suzaki et al., 2005; Petrov et al., 2006). In this section we describe the basic approach.
We assume a training set consisting of sentences paired with parse trees, which are
similar to the skeletal tree shown in Figure 1. A naive approach to parsing would simply
read off a PCFG from the training set: the resulting grammar would have rules such as

S — NP VP
NP — DN
VP — V NP
D — the
N — dog

and so on. Given a test sentence, the most likely parse under the PCFG can be found using
dynamic programming algorithms.

Unfortunately, simple “vanilla” PCFGs induced from treebanks such as the Penn tree-
bank (Marcus et al., 1993) typically give very poor parsing performance. A critical issue
is that the set of non-terminals in the resulting grammar (S, NP, VP, PP, D, N, etc.) is
often quite small. The resulting PCFG therefore makes very strong independence assump-
tions, failing to capture important statistical properties of parse trees.

In response to this issue, a number of PCFG-based models have been developed which
make use of grammars with refined non-terminals. For example, in lexicalized models
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(Collins, 1997; Charniak, 1997), non-terminals such as S are replaced with non-terminals
such as S-sleeps: the non-terminals track some lexical item (in this case sleeps), in addition
to the syntactic category. For example, the parse tree in Figure 1 would include rules

S-saw — NP-dog VP-saw
NP-dog — D-the N-dog
VP-saw — V-saw P-him

D-the — the

N-dog — dog

V-saw — saw

P-him — him

In this case the number of non-terminals in the grammar increases dramatically, but
with appropriate smoothing of parameter estimates lexicalized models perform at much
higher accuracy than vanilla PCFGs.

As another example, Johnson describes an approach where non-terminals are refined to
also include the non-terminal one level up in the tree; for example rules such as

S — NP VP

are replaced by rules such as
S-ROOT — NP-S VP-S

Here NP-S corresponds to an NP non-terminal whose parent is S; VP-S corresponds to a VP
whose parent is S; S-ROOT corresponds to an S which is at the root of the tree. This simple
modification leads to significant improvements over a vanilla PCFG.

Klein and Manning (2003) develop this approach further, introducing annotations cor-
responding to parents and siblings in the tree, together with other information, resulting
in a parser whose performance is just below the lexicalized models of Collins (1997) and
Charniak (1997).

The approaches of Collins (1997), Charniak (1997), Johnson, and Klein and Manning
(2003) all use hand-constructed rules to enrich the set of non-terminals in the PCFG. A
natural question is whether refinements to non-terminals can be learned automatically.
Matsuzaki et al. (2005) and Petrov et al. (2006) addressed this question through the use
of L-PCFGs in conjunction with the EM algorithm. The basic idea is to allow each non-
terminal in the grammar to have m possible latent values. For example, with m = 8 we
would replace the non-terminal S with non-terminals S-1, S-2, ..., S-8, and we would
replace rules such as

S — NP VP

with rules such as
S-4 — NP-3 VP-2

The latent values are of course unobserved in the training data (the treebank), but they can
be treated as latent variables in a PCFG-based model, and the parameters of the model can
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be estimated using the EM algorithm. More specifically, given training examples consisting
of skeletal trees of the form () = ( gz), réz), e ,r](@), fori =1... M, where N; is the number
of rules in the ¢’th tree, the log-likelihood of the training data is

M M
Z logp(rgl) e 7"5\2) = Z log Z p(T%Z) .. r%i, hi...hn;)

where p(r%l) .. .TJ(\Z,E, hi...hy,) is as defined in Eq. 2. The EM algorithm is guaranteed to
converge to a local maximum of the log-likelihood function. Once the parameters of the
L-PCFG have been estimated, the algorithm of Goodman (1996) can be used to parse test-
data sentences using the L-PCFG: see Section 4.3 for more details. Matsuzaki et al. (2005)
and Petrov et al. (2006) show very good performance for these methods.

4.3 Basic Algorithms for L-PCFGs: Variants of the Inside-Outside Algorithm

Variants of the inside-outside algorithm (Baker, 1979) can be used for basic calculations in
L-PCFGs, in particular for calculations that involve marginalization over the values for the
hidden variables.

To be more specific, given an L-PCFGQG, two calculations are central:

1. For a given s-tree ry ...ry, calculate p(ry...ry) = Zhl...hN p(ri...rn b1 ... hy).

2. For a given input sentence z = x; ...z, calculate the marginal probabilities
waij)= >, p(r)
T€T (x):(a5,j)eT

for each non-terminal a € N, for each (i,5) such that 1 < i < j < N. Here T (z)
denotes the set of all possible s-trees for the sentence x, and we write (a,i,j) € 7 if
non-terminal a spans words x; ...z, in the parse tree 7.

The marginal probabilities have a number of uses. Perhaps most importantly, for a
given sentence r = x ...xy, the parsing algorithm of Goodman (1996) can be used to find
arg max ,1,7).

g max >, #lasing)
(a)i,j)er
This is the parsing algorithm used by Petrov et al. (2006), for example.! In addition,
we can calculate the probability for an input sentence, p(z) = > 7, P(7), as p(z) =
ZaEI M(aa 1; N)
Figures 2 and 3 give the conventional (as opposed to tensor) form of inside-outside

algorithms for these two problems. In the next section we describe the tensor form. The
algorithm in Figure 2 uses dynamic programming to compute

p(ri...ry) = Z p(ri...rn,h1 ... hy)
b by

1. Note that finding arg max,e7 () p(7), where p(7) = Zhlth p(T,h1...hn), is NP hard, hence the use
of Goodman’s algorithm. Goodman’s algorithm minimizes a different loss function when parsing: it
minimizes the expected number of spans which are incorrect in the parse tree according to the underlying
L-PCFG. We use it while restricting the output tree to be valid under the PCFG grammar extracted
from the treebank. There are variants of Goodman’s algorithm that do not follow this restriction.
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Inputs: s-tree ry...ry, L-PCFG (N,Z,P,m,n,t,q, ), with parameters
e t(a — bc,hy, hslhi,a) for all a — b c e R, hy, he, hg € [m].
e g(a — z|h,a) for all a € P,x € [n],h € [m]
e m(a,h) forallaeZ, he[m].
Algorithm: (calculate the b’ terms bottom-up in the tree)
e For all i € [N] such that a; € P, for all h € [m], b = q(r;|h,a;)

e For all i € [N] such that a; € Z, for all h € [m], b, = Db g LTy h2, Rl b, ai)b’zzbz3
where 3 is the index of the left child of node i in the tree, and «y is the index of the
right child.

Return: Y, b} (a1, h) = p(ry...7N)

Figure 2: The conventional inside-outside algorithm for calculation of p(r;...7x).

for a given parse tree ry...ry. The algorithm in Figure 3 uses dynamic programming to
compute marginal terms.

5. Roadmap

The next three sections of the paper derive the spectral algorithm for learning of L-PCFGs.
The structure of these sections is as follows:

e Section 6 introduces a tensor form of the inside-outside algorithms for L-PCFGs. This
is analogous to the matrix form for hidden Markov models (see Jaeger 2000, and in
particular Lemma 1 of Hsu et al. 2009), and is also related to the use of tensors in
spectral algorithms for directed graphical models (Parikh et al., 2011).

e Section 7.2 derives an observable form for the tensors required by algorithms of Sec-
tion 6. The implication of this result is that the required tensors can be estimated
directly from training data consisting of skeletal trees.

e Section 8 gives the algorithm for estimation of the tensors from a training sample,

and gives a PAC-style generalization bound for the approach.

6. Tensor Form of the Inside-Outside Algorithm

This section first gives a tensor form of the inside-outside algorithms for L-PCFGs, then
give an illustrative example.

6.1 The Tensor-Form Algorithms
Recall the two calculations for L-PCFGs introduced in Section 4.3:
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Inputs: Sentence z7 ...z, L-PCFG (N,Z,P,m,n,t,q, ), with parameters
e t(a — bc,ho,hs|hi,a) for all a > b ce R, hy, ha, hs € [m].
e g(a — z|h,a) for all a € P,x € [n],h € [m]
e ww(a,h) for all a € Z, h € [m].
Data structures:
e Each a®/ e R™™ forae N, 1 <i < j < N is a row vector of inside terms.
e Each %% e R™*! for ae N, 1 <i < j < N is a column vector of outside terms.
e Each fi(a,i,j) eR for ae N, 1 <i < j < N is a marginal probability.

Algorithm: B
(Inside base case) Va € P,i€ [N]|,he[m] a;"" = qla — z;]h, a)
(Inside recursion) Va € Z,1 < i < j < N, h € [m]

-8 T S e bl ol

k=i a—b c hoe[m] hze[m

(Outside base case) Ya € Z,h € [m] len = 7(a, h)
(Outside recursion) Va e N';1 < i < j < N,h € [m]

awa Z Z Z t(b — ca,hg, hlhs, )XB;blf’dezkl '

k=1b—c a hae[m] hze[m

* Z Z Z Z t(b — ac,h,hs|ha,b) x BZZ’kXO_éZ’gH’k

k=j+1b—a c hoe[m] hae[m

Marginals) Va e N, 1 < i < '<N,
(Marg j

ala,i,g) = a®t et = 3 aptt gt

he[m]

Figure 3: The conventional form of the inside-outside algorithm, for calculation of marginal
terms fi(a,i,j).
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Inputs: s-tree r;...ry, L-PCFG (N,Z,P,m,n), parameters
o Cobe g Rmxmxm) for all g > bece R
o ¢, e R forall ae P, x e [n]

° c}l e Rmx1) for all a € Z.

Algorithm: (calculate the f? terms bottom-up in the tree)

e For all i € [N] such that a; € P, f* = ¢°

e For all i € [N] such that a; € Z, f* = C"(f3, f7) where 3 is the index of the left
child of node 7 in the tree, and + is the index of the right child.
1.1

Return: flc, =p(ri...7n)

Figure 4: The tensor form for calculation of p(ri...ry).

1. For a given s-tree ry ...ry, calculate p(ry...7ry).

2. For a given input sentence z = x; ...z, calculate the marginal probabilities
pla,i )= > pr)
T€T (z):(a,i,j)eT

for each non-terminal a € N, for each (i,5) such that 1 < i < j < N, where T (z)
denotes the set of all possible s-trees for the sentence x, and we write (a,i,j) € 7 if
non-terminal a spans words x; ...z, in the parse tree 7.

The tensor form of the inside-outside algorithms for these two problems are shown in
Figures 4 and 5. Each algorithm takes the following inputs:

1. A tensor C9™b¢ g Rmxmxm) fo1 aach rule a — b c.

2. A vector ¢ e RI*X™) for each rule a — z.

a—x

3. A vector ¢! e R for each a € T.

The following theorem gives conditions under which the algorithms are correct:

Theorem 3 Assume that we have an L-PCFG with parameters go—g, T*0¢, 7%, and that
there exist matrices G¢ € RU™ ™) for all a € N such that each G® is invertible, and such
that:

1. For all rules a — b c, Co70¢(yt, y?) = (TP (y' G, y2G®)) (G*) 7.
2. For all rules a — x, ¢, = qas(G*) L.

3. ForallaeZ, ck = G7%,
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Then: 1) The algorithm in Figure 4 correctly computes p(r1...7rN) under the L-PCFG. 2)
The algorithm in Figure 5 correctly computes the marginals p(a,i,j) under the L-PCFG.

Proof: see Section A.1. The next section (Section 6.2) gives an example that illustrates
the basic intuition behind the proof. |

Remark 4 It is easily verified (see also the example in Section 6.2), that if the inputs to
the tensor-form algorithms are of the following form (equivalently, the matrices G* for all
a are equal to the identity matrix):

1. For all rules a — bc, O ¢(yl 42) = T2l e(yl 4?).
2. For all rules a — x, 2, = qa—z-
3. ForallaeZ, cl =x°.

then the algorithms in Figures 4 and 5 are identical to the algorithms in Figures 2 and 3
respectively. More precisely, we have the identities

h=rh
for the quantities in Figures 2 and 4, and

a’1’7‘7

—(l,'i,j
=«
h

oy,

Bz,i,j _ ﬁz,i,j
for the quantities in Figures 3 and 5.

The theorem shows, however, that it is sufficieni® to have parameters that are equal to
T%b¢ gurse and ™ up to linear transforms defined by the matrices G* for all non-terminals
a. The linear transformations add an extra degree of freedom that is crucial in what follows
i this paper: in the next section, on observable representations, we show that it is possible
to directly estimate values for C*0¢, ¢®  and c that satisfy the conditions of the theorem,
but where the matrices G* are not the identity matrix.

The key step in the proof of the theorem (see Section A.1) is to show that under the

assumptions of the theorem we have the identities

f’i _ bi(Ga)—l
for Figures 2 and 4, and

aa’iuj = dazivj(Ga)il

511,2}]' _ GaBa,iJ
for Figures 5 and 5. Thus the quantities calculated by the tensor-form algorithms are equiv-
alent to the quantities calculated by the conventional algorithms, up to linear transforms.
The linear transforms and their inverses cancel in useful ways: for example in the output
from Figure 4 we have

N(a,i,j) _ aa,i,jﬁa,i,j _ da,i,j(Ga)flGaBa,i,j _ dz7i7j6fb7i7j7
h

showing that the marginals calculated by the conventional and tensor-form algorithms are
tdentical.

2. Assuming that the goal is to calculate p(r1...rn) for any skeletal tree, or marginal terms p(a, 3, 7).
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Inputs: Sentence zi...xy, L-PCFG (N,Z,P,m,n), parameters C¢¢ e R(mxmxm)
foralla > bceR, ¢, e RUX™ for all ae P,z € [n], ck e RV for all a € Z.
Data structures:

e Each % e R™™ forae N, 1 <

N

j < N is a row vector of inside terms.
e Each %% e R™*! for ae N, 1 <i < j < N is a column vector of outside terms.
e Each u(a,i,j) eR forae N, 1 <i<j <N is a marginal probability.

Algorithm:
(Inside base case) Ya € P,i e [N], a® = %
(Inside recursion) Ya e Z,1 <i < j < N,

a—x;

a,z,] Z Z Ca—>bc b,i,k ack+1,])

k=ia—bc

(Outside base case) Va € Z, p*I" = ¢l

a

(Outside recursion) Ya e N',1 <i < j < N,

Baz,j_ Z Z Cg)—wa l@bk,] ackz 1)

k=1b—ca

+ Z Z Cb%ac /Bb,z,k ac,jJrl,k)

k=j+1lb—ac
(Marginals) Vae N,1 <i<j <N,

pla,i,j) = a®higohi = Z azwﬁz,u]

he[m]

Figure 5: The tensor form of the inside-outside algorithm, for calculation of marginal terms
p(a, i, j).

6.2 An Example

In the remainder of this section we give an example that illustrates how the algorithm in
Figure 4 is correct, and gives the basic intuition behind the proof in Section A.1. While we
concentrate on the algorithm in Figure 4, the intuition behind the algorithm in Figure 5 is
very similar.

Consider the skeletal tree in Figure 6. We will demonstrate how the algorithm in
Figure 4, under the assumptions in the theorem, correctly calculates the probability of
this tree. In brief, the argument involves the following steps:
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S1
/\ r=S — NPV
NPQ V5 T = NP - DN
PN \ r3 =D — the
D3 Ny sleeps ry =N — dog
= —
tl‘le d‘og ry =V sleeps

Figure 6: An s-tree, and its sequence of rules. (For convenience we have numbered the

nodes in the tree.)

1. We first show that the algorithm in Figure 4, when run on the tree in Figure 6,

calculates the probability of the tree as

S—>NPV ~NP—D N o0 0 0 1
C (C (CD—>the7 CN—»dog)? cV—>sleeps)cS'

Note that this expression mirrors the structure of the tree, with ¢, terms for the

leaves, C%~b ¢ terms for each rule production a — b ¢ in the tree, and a c}g term for
the root.

. We then show that under the assumptions in the theorem, the following identity holds:

S—>NPV ~NP—D N/ o0 0 0 1
C (C (CD—>the7 cN—>dog)7 CV—»sleeps)CS'

TS NEV(TNE= DN (G ey AN—dog)> @V —sleeps) T (3)

This follows because the G and (G%)~! terms for the various non-terminals in the
tree cancel. Note that the expression in Eq. 3 again follows the structure of the tree,
but with ¢, terms for the leaves, 7% ¢ terms for each rule production @ — b ¢ in
the tree, and a 7° term for the root.

. Finally, we show that the expression in Eq. 3 implements the conventional dynamic-
programming method for calculation of the tree probability, as described in Eqgs. 11-13
below.

We now go over these three points in detail. The algorithm in Figure 4 calculates the
following terms (each f*is an m-dimensional row vector):

3 _ 0
f = CDothe
4 Q0
f = CN—dog
5 _ o0
f - cV—)sleeps

f2 _ CNP—»D N(f3;f4)
fl _ CSHNP V(f2, f5)
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The final quantity returned by the algorithm is
fles =" falekn.
h

Combining the definitions above, it can be seen that

1

11 _ ~nS>NPV NP—D N/ o0 00 0
f Cs = C (C (CD—>the7 CN—>dog)7 CV—»sleeps)CS7

demonstrating that point 1 above holds.
Next, given the assumptions in the theorem, we show point 2, that is, that

S—NPV  ~NP—D N (0 0 0 1
¢ (C (CDchev CNHdOg)7 CVHsleeps>CS

TS*NP V(TNP_)D N(QDchev QNHdog); qvasleeps)"rs- (4)

This follows because the G* and (G%)~! terms in the theorem cancel. More specifically, we
have

-1

f3 = cogathe = QDﬁthe(GD) (5)
Y= Rdog = AN —dog(GY) T (6)
o= c%)ﬁsleeps = QVasleePS(Gv)_l (7)
2= ONFPN(B iy = TNP2D N (g ey GD—dog) (GNT) 1 (8)
L= CFNPV(f2 ) = TS NEV(TNP=D N (G e, GN—sdog)s @V —steeps) (GZ) T (9)

Egs. 5, 6, 7 follow by the assumptions in the theorem. Eq. 8 follows because by the assump-
tions in the theorem

CNP—>D N(f3 f4) _ TNP—»D N(f3GD f4GN)(GNP)_1
hence

CNP*)D N(f37f4) _ TNP*)D N(QDche(GD)ilGD,QNﬁdog(GN>71GN)(GNP)71

TNP=D N (ah ihes AN —dog) (G T)

Eq. 9 follows in a similar manner.
It follows by the assumption that c}g = G that

S—>NPV ~NP—D N/ o 0 0 1
C (C (CD—>th37 CN—>dog)7 CV—»sleeps)CS

TSHNP v (TNPHD N (QD—>thev QN—>dog)7 qvasleeps) (Gs)ileﬂ'S

TSHNP V(TNPHD N(QDchev QNHdog)a qvasleeps)ﬂ's (10)

The final step (point 3) is to show that the expression in Eq. 10 correctly calculates the
probability of the example tree. First consider the term TNP—>DN (gD—thes AN—dog)—this
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is an m-dimensional row vector, call this b>. By the definition of the tensor TVNF=P N

have

we

b% = [TNP_)D N(QD—»they QN—>dog)] h
= Y t(NP — D N, hy, hs|h, NP) x q(D — the|ha, D) x q(N — dog|hs, N) (11)
ha,hs
By a similar calculation, TSNP V(TNP_’D N(QD—nfhe, AN —dog)> qV —sleeps)—call this vector
bl —is
bi, = >, t(S — NPV, hy, hs|h,S) x b, x q(V — sleeps|hs, V) (12)
ha,h3

Finally, the probability of the full tree is calculated as
Z b,llw;? . (13)
h

It can be seen that the expression in Eq. 4 implements the calculations in Egs. 11, 12
and 13, which are precisely the calculations used in the conventional dynamic programming
algorithm for calculation of the probability of the tree.

7. Estimating the Tensor Model

A crucial result is that it is possible to directly estimate parameters C*~b¢, c® . and cl

that satisfy the conditions in Theorem 3, from a training sample consisting of s-trees (i.e.,
trees where hidden variables are unobserved). We first describe random variables underlying
the approach, then describe observable representations based on these random variables.

7.1 Random Variables Underlying the Approach

Each s-tree with N rules r1...ry has N nodes. We will use the s-tree in Figure 1 as a
running example.

Each node has an associated rule: for example, node 2 in the tree in Figure 1 has the
rule NP — D N. If the rule at a node is of the form a — b ¢, then there are left and right
inside trees below the left child and right child of the rule. For example, for node 2 we have
a left inside tree rooted at node 3, and a right inside tree rooted at node 4 (in this case the
left and right inside trees both contain only a single rule production, of the form a — z;
however in the general case they might be arbitrary subtrees).

In addition, each node has an outside tree. For node 2, the outside tree is

S
/\
NP VP
/\
V P
\ \
saw  him

The outside tree contains everything in the s-tree r;...ry, excluding the subtree below
node 1.

Our random variables are defined as follows. First, we select a random internal node,
from a random tree, as follows:
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e Sample a full tree r1...ryx,hy ... hy from the PMF p(ri...rx,hi ... hN).

e Choose a node 7 uniformly at random from [V].
If the rule r; for the node i is of the form a — b ¢, we define random variables as follows:

e R; is equal to the rule r; (e.g., NP — D N).

e 7 is the inside tree rooted at node 7. T5 is the inside tree rooted at the left child of
node 7, and T3 is the inside tree rooted at the right child of node 1.

e Hy, Hy, Hy are the hidden variables associated with node %, the left child of node ¢,
and the right child of node i respectively.

e Ay, As, As are the labels for node 7, the left child of node 4, and the right child of node
i respectively. (e.g., Ay = NP, Ay =D, A3 =N.)

e (O is the outside tree at node 7.

e B is equal to 1 if node i is at the root of the tree (i.e., i = 1), 0 otherwise.

If the rule r; for the selected node i is of the form a — x, we have random variables
Ry,T1, Hy,

A1,0, B as defined above, but Hy, H3,T5, T3, As, and A3 are not defined.

We assume a function v that maps outside trees o to feature vectors 1)(0) € R?. For
example, the feature vector might track the rule directly above the node in question, the
word following the node in question, and so on. We also assume a function ¢ that maps
inside trees t to feature vectors ¢(t) € R?. As one example, the function ¢ might be an
indicator function tracking the rule production at the root of the inside tree. Later we give
formal criteria for what makes good definitions of ¥ (0) and ¢(¢). One requirement is that
d >m and d > m.

In tandem with these definitions, we assume projection matrices U* € R(@*™) and
Ve e RE@*m) for all ¢ € N. We then define additional random variables Yi,Ys,Ys, Z
as

Yi = (U (1) Z = (V)T(0)

Yo = (U®)T¢(Ty) Ya = (U®) ¢(T3)

where a; is the value of the random variable A;. Note that Y7, Y5, Y3, Z are all in R™.

7.2 Observable Representations

Given the definitions in the previous section, our representation is based on the following
matrix, tensor and vector quantities, defined for all a € N, for all rules of the form a — b c,
and for all rules of the form a — x respectively:

2 = EMWiZT|A; =a],
Daabc = E [IIRI =a—b CHZYQTY3T|A1 = a] )
dr,, = E[[Ri=a—z]Z"|A =d].

a—x
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Assuming access to functions ¢ and ¢, and projection matrices U® and V¢, these quantities
can be estimated directly from training data consisting of a set of s-trees (see Section 8).
Our observable representation then consists of:

cobeyly?) = DUyt ) (B (14)
e = df ()7 (15)
cl = EB[[A =aW1|B=1]. (16)

We next introduce conditions under which these quantities satisfy the conditions in Theo-
rem 3.
The following definition will be important:

Definition 5 For all a € N, we define the matrices I* € R4*™) gnd Jo e R(@xm) 44
[1*]in = E[¢i(T1) | H1 = h, Ay = a,

[J%)in = E[¢i(0) | Hi = h, A1 = a].
In addition, for any a € N, we use v* € R™ to denote the vector with v = P(H; = h|A; =

a).

The correctness of the representation will rely on the following conditions being satisfied
(these are parallel to conditions 1 and 2 in Hsu et al. (2009)):

Condition 1 Va € N, the matrices I* and J* are of full rank (i.e., they have rank m).
For alla e N, for all h € [m], ~ > 0.

Condition 2 Va € N, the matrices U* € R@*™) gnd Vo e RE>M) gre such that the
matrices G¢ = (U*)T1* and K* = (V)T J% are invertible.

We can now state the following theorem:

Theorem 6 Assume conditions 1 and 2 are satisfied. For alla € N, define G* = (U*)TI°.
Then under the definitions in Eqs. 14-16:

1. For all rules a — b c, Co70¢(yl, y?) = (TP (y*G*,y2G*)) (G*) !
2. For all rules a — x, ¢, = qa—e(G*) L.

3. Forallae N, ¢l = Gn®

Proof: The following identities hold (see Section A.2):

Da—>bc(y17y2) _ (TaAbc(ylevaGc)) diag(’}/a)(Ka)T (17)
020 = gaadiag(y?)(K9)T (18)

5 = Gdiag(y*)(K")" (19)

c = Gq'n° (20)
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Under conditions 1 and 2, ¥¢ is invertible, and (3¢)~' = ((K2)")~!(diag(7*))~1(G*)~ .
The identities in the theorem follow immediately. |

This theorem leads directly to the spectral learning algorithm, which we describe in the
next section. We give a sketch of the approach here. Assume that we have a training set
consisting of skeletal trees (no latent variables are observed) generated from some under-
lying L-PCFG. Assume in addition that we have definitions of ¢, 1, U* and V* such that
conditions 1 and 2 are satisfied for the L-PCFG. Then it is straightforward to use the train-
ing examples to derive i.i.d. samples from the joint distribution over the random variables
(A1, R1,Y1,Y5,Y3, Z, B) used in the definitions in Eqs. 14-16. These samples can be used
to estimate the quantities in Eqs. 14-16; the estimated quantities Ca—b ¢ ¢*, . and &l can
then be used as inputs to the algorithms in Figures 4 and 5. By standard arguments, the
estimates Co™b ¢, ¢®  and é will converge to the values in Eqs. 14-16.

The following lemma justifies the use of an SVD calculation as one method for finding
values for U® and V* that satisfy condition 2, assuming that condition 1 holds:

Lemma 7 Assume that condition 1 holds, and for all a € N define
Q° = E[¢(T1) (4(0)) " |41 = d] (21)

Then if U is a matriz of the m left singular vectors of Q* corresponding to non-zero singular
values, and V¢ is a matriz of the m right singular vectors of Q* corresponding to non-zero
singular values, then condition 2 is satisfied.

Proof sketch: It can be shown that Q¢ = I%diag(y*)(J%)". The remainder is similar to
the proof of lemma 2 in Hsu et al. (2009). [

The matrices 2% can be estimated directly from a training set consisting of s-trees,
assuming that we have access to the functions ¢ and . Similar arguments to those of Hsu
et al. (2009) can be used to show that with a sufficient number of samples, the resulting
estimates of U® and V¢ satisfy condition 2 with high probability.

8. Deriving Empirical Estimates

Figure 7 shows an algorithm that derives estimates of the quantities in Eqs. 14, 15, and
16. As input, the algorithm takes a sequence of tuples (r(i’l),t(i’l),t(i’2),t(i’3), o0, b(i)) for
ie[M].

These tuples can be derived from a training set consisting of s-trees i ... 7y as follows:

e Vi € [M], choose a single node j; uniformly at random from the nodes in 7;. Define
(1) to be the rule at node j;. t(1) is the inside tree rooted at node j;. If r(#1) is of the form
a — b ¢, then t4?) is the inside tree under the left child of node j;, and ¢(»3) is the inside
tree under the right child of node j;. If #(#1) is of the form a — =, then ¢(»?) = ¢(&:3) — NULL.
0 is the outside tree at node j;. b is 1 if node j; is at the root of the tree, 0 otherwise.

Under this process, assuming that the s-trees 7y ... 737 are i.i.d. draws from the distribu-
tion p(7) over s-trees under an L-PCFG, the tuples (r(ivl), (1) 1(12) 4(03) (1) b(i)) are i.i.d.
draws from the joint distribution over the random variables Ry,T1,T5,T5,0, B defined in
the previous section.

The algorithm first computes estimates of the projection matrices U% and V¢: following
Lemma 7, this is done by first deriving estimates of 2%, and then taking SVDs of each Q°.
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The matrices are then used to project inside and outside trees (@1 4(6:2) 4(63) () down to
m-dimensional vectors y(z’l),y(“?),y(m), 2 these vectors are used to derive the estimates
of Cob¢ ¢ and c!. For example, the quantities

= E[[Ri=a—bc]ZY,) V5 |A =a]
dr,, = E[[Ri=a—2]Z"|A =a]

Da%b c

can be estimated as

M
ﬁaabc =4, x Z[[r(i,l) —a—b Cﬂz(i)(y(i,Q))T(y(i,ZS))T
=1

M
42 = 80 x Y[ = a - o]0
i=1

where 0, = 1/ Zf\i 1la; = a], and we can then set
éra—»b C(y17 y2) _ ‘Da—>b C(yl’ y2)(2a)—1
(=7

We now state a PAC-style theorem for the learning algorithm. First, we give the fol-
lowing assumptions and definitions:

~00 o)
Ca—»x - da—»x

e We have an L-PCFG (N,Z,P,m,n,t,q, 7). The samples used in Figures 7 and 8 are
ii.d. samples from the L-PCFG (for simplicity of analysis we assume that the two

algorithms use independent sets of M samples each: see above for how to draw i.i.d.
samples from the L-PCFG).

e We have functions ¢(¢) € R and (o) € R? that map inside and outside trees respec-
tively to feature vectors. We will assume without loss of generality that for all inside
trees ||o(t)||2 < 1, and for all outside trees ||¢(0)|]2 < 1.

e See Section 7.2 for a definition of the random variables
(R17T17T27T3a A17A27A37H17 H27 H37 O? B)7
and the joint distribution over them.

e For all a € NV define
Q" = E[¢(T1)(¥(0)) |41 = d]
and define I* € R¥*™ to be the matrix with entries
[1*]i.n = E[¢i(T1)|A1 = a, Hy = h]
e Define
o = min o, (2%)

and
¢ = mino,,(I%)

where 0,,(A) is the m’th largest singular value of the matrix A.
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e Define
= i t(a — bc, ho, hsla,h
i a,b,ceN,;LIllbItlg,hge[m] (CL @2 3|(1 1)
e Define 7 (a, N) to be the set of of all skeletal trees with N binary rules (hence 2N + 1
rules in total), with non-terminal a at the root of the tree.

The following theorem gives a bound on the sample complexity of the algorithm:

Theorem 8 There exist constants C1,Co,Cs, Cy,C5 such that the following holds. Pick
any € > 0, any value for § such that 0 < § < 1, and any integer N such that N > 1.
Define L = log W\{sﬁ. Assume that the parameters CoY¢ ¢ and ¢\ are output from

the algorithm in Figure 7, with values for No, M, and R such that

CiLN?*m? CoLN?*m?n
YaeZ,N, = regigt YaeP,N, = —agi
C3LN?m? C4LN?m?
VGEI,MQ>W VCLEP,M(ZZW
C5LN2m3
B2 —am

It follows that with probability at least 1 — 6, for all a € N,

teT (a,N)
, where p(t) is the output from the algorithm in Figure 4 with parameters Ca—be ¢r,, and
el and p(t) is the probability of the skeletal tree under the L-PCFQG.

a’

See Appendix B for a proof.

The method described of selecting a single tuple (7‘(’71), @0 §(62) 4(63) (D) b(i)) for each
s-tree ensures that the samples are i.i.d., and simplifies the analysis underlying Theorem 8.
In practice, an implementation should use all nodes in all trees in training data; by Rao-
Blackwellization we know such an algorithm would be better than the one presented, but
the analysis of how much better would be challenging (Bickel and Doksum, 2006; section
3.4.2). It would almost certainly lead to a faster rate of convergence of p to p.

9. Discussion

There are several applications of the method. The most obvious is parsing with L-PCFGs
(Cohen et al., 2013).3 The approach should be applicable in other cases where EM has
traditionally been used, for example in semi-supervised learning. Latent-variable HMMs
for sequence labeling can be derived as special case of our approach, by converting tagged
sequences to right-branching skeletal trees (Stratos et al., 2013).

3. Parameters can be estimated using the algorithm in Figure 7; for a test sentence x1...xn we can first
use the algorithm in Figure 5 to calculate marginals p(a, 4, j), then use the algorithm of Goodman (1996)

to find arg max e (a) Z(aﬂ»’j)ef wla,, j).
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Inputs: Training examples (01, ¢ 2 103) 60 p0) for i e {1... M}, where (-1
is a context free rule; t@1), 2 and t(43) are inside trees; o is an outside tree; and
b(®) = 1 if the rule is at the root of tree, 0 otherwise. A function ¢ that maps inside trees

t to feature-vectors ¢(t) € R%. A function 1 that maps outside trees o to feature-vectors
(o) e RY .

Definitions: For each a € N, define N, = Zi‘il[[ai = a]. Define R = Zf\il[[b(i) = 1].
(These definitions will be used in Theorem 8.)

Algorithm:

Define a; to be the non-terminal on the left-hand side of rule r®&V. If (1) is of the
form a — b ¢, define b; to be the non-terminal for the left-child of (1), and ¢; to be the
non-terminal for the right-child.

(Step 0: Singular Value Decompositions)

e Use the algorithm in Figure 8 to calculate matrices U® € R(@x™) ya g R(@xm) gapnq
2o e R™X™M) for each a € N.

(Step 1: Projection)
e For all i € [M], compute y(»1) = (T7%) T (t(D),

e Foralli € [M] such that (1) is of the form a — b ¢, compute y(#2) = (U%) T (t(2))
andzﬁ@@ _ ( q)T¢(ﬂL$)‘

e For all i € [M], compute 2z = (V%)T¢(0().
(Step 2: Calculate Correlations)
e For each a € N, define 6, = 1/ M [a; = a].

e For each rule a — b ¢, compute

M
ﬁaabc _ 5a % Z[r(i,l) —a—b C]]Z(i) (y(i,Q))T(y(i,B))T_
=1

e For each rule a — x, compute d2,, = §, x >0 [r) = ¢ — 2] (2())T.

(Step 3: Compute Final Parameters)

e For all a — b c, CA'a_’bC(yl, y2) = lA)a_)bc(ZJl,yQ)(ia)_l-

o _ Jo
a—Tr da—m:

(B4)~L

3, lai=a and O =1]yC1)
Titi [b®=1]

e Foralla — z, ¢

e ForallaeZ, ¢l =

Figure 7: The spectral learning algorithm.
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Inputs: Identical to algorithm in Figure 7.

Definition: For each a € N, define M, = Zf\i 1[a; = a] (this definition will be used in
Theorem 8).

Algorithm:

e For each a € N, compute Qo e REx) 49

o _ Zizlai = a[o(t®D) ((0®)T
Sl lai = a

and calculate a singular value decomposition of Qe.

e For each a € N, define U € R™*4 o be a matrix of the left singular vectors of Qo
corresponding to the m largest singular values. Define Ve e R™*d to be a matrix of
the right singular vectors of Qo corresponding to the m largest singular values. Define
i}a _ ([j’a)TQaf/a.

Figure 8: Singular value decompositions.

In terms of efficiency, the first step of the algorithm in Figure 7 requires an SVD cal-
culation: modern methods for calculating SVDs are very efficient (e.g., see Dhillon et al.,
2011 and Tropp et al., 2009). The remaining steps of the algorithm require manipulation
of tensors or vectors, and require O(Mm3) time.

The sample complexity of the method depends on the minimum singular values of Q¢;
these singular values are a measure of how well correlated 1) and ¢ are with the unobserved
hidden variable Hi. Experimental work is required to find a good choice of values for v
and ¢ for parsing.

For simplicity we have considered the case where each non-terminal has the same num-
ber, m, of possible hidden values. It is simple to generalize the algorithms to the case where
the number of hidden values varies depending on the non-terminal; this is important in
applications such as parsing.
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Appendix A. Proofs of Theorems 1 and 2

This section gives proofs of Theorems 3 and 6.

A.1 Proof of Theorem 3

The key idea behind the proof of Theorem 3 is to show that the algorithms in Figures 4 and 5
compute the same quantities as the conventional version of the inside outside algorithms,
as shown in Figures 2 and 3.

First, the following lemma leads directly to the correctness of the algorithm in Figure 4:

Lemma 9 Assume that conditions 1-3 of Theorem 3 are satisfied, and that the input to the
algorithm in Figure J is an s-tree ri...rn. Define a; for i € [N] to be the non-terminal
on the left-hand-side of rule r;. For all i € [N], define the row vector b® € RIXM) 4o pe
the vector computed by the conventional inside-outside algorithm, as shown in Figure 2,
on the s-tree r1...ry. Define fi e REX™) to be the vector computed by the tensor-based
inside-outside algorithm, as shown in Figure 4, on the s-tree r1...7TxN.

Then for alli € [N], f* = b"(G@) =1, It follows immediately that

fleh, = b (G 1GMm,, = blma, = Y bp(a, h).
h

Hence the output from the algorithms in Figures 2 and 4 is the same, and it follows that
the tensor-based algorithm in Figure 4 s correct.

This lemma shows a direct link between the vectors f* calculated in the algorithm, and
the terms bﬁl, which are terms calculated by the conventional inside algorithm: each f is a
linear transformation (through G%) of the corresponding vector b'.

Proof: The proof is by induction.

First consider the base case. For any leaf—i.e., for any ¢ such that a; € P—we have
bi = q(ri|h, a;), and it is easily verified that f* = b*(G(®))~1,

The inductive case is as follows. For all i € [N] such that a; € Z, by the definition in
the algorithm,

f= et
= (1776, pam)) ()

Assuming by induction that f8 = b%(G(®))~1 and f7 = b7(G(*))~1, this simplifies to

fi= () (e (22)
By the definition of the tensor 17,
[T”(bﬂ, m)]h = Y t(ri ho, halai, BB

hQE[m] ,hge[m]

But by definition (see the algorithm in Figure 2),

bz — Z t(m,h2ah3’aivh)bgzbzs’

hge[m] ,hge[m]
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hence b* = T7(b%,b7) and the inductive case follows immediately from Eq. 22. [
Next, we give a similar lemma, which implies the correctness of the algorithm in Figure 5:

Lemma 10 Assume that conditions 1-3 of Theorem 3 are satisfied, and that the input to
the algorithm in Figure 5 is a sentence x1...xN. For anya € N, for any1 <i < j < N,
define a® e RUxm) = paii ¢ R and fi(a,i,j) € R to be the quantities computed
by the conventional inside-outside algorithm in Figure 3 on the input x1...xn. Define
i e RUxm) = paii e RO gnd (a,i,j) € R to be the quantities computed by the
algorithm in Figure 5.

Then for all i € [N], a®® = a%»(G*)~! and B+ = GBI, It follows that for all
(a7 i?j)?

wa,i, j) = a®H g = a®HI (G TIGUBYY = a® M BN = fi(a, i, ).

Hence the outputs from the algorithms in Figures 5 and 5 are the same, and it follows that
the tensor-based algorithm in Figure 5 is correct.

Thus the vectors a®*J and f%%J are linearly related to the vectors a®*/ and 5%*J, which
are the inside and outside terms calculated by the conventional form of the inside-outside
algorithm.

Proof: The proof is by induction, and is similar to the proof of Lemma 9.

First, we prove that the inside terms satisfy the relation a%*/ = %/ (G%)~1.

The base case of the induction is as follows. By definition, for any a € P,i € [N], h € [m],
we have 042’” = q(a — xih,a). We also have for any a € P,i € [N], a®"' = ¢F, =
Ga—z;(G*) L. Tt follows directly that a®%¢ = a%%*(G%)~! for any a € P,i € [N].

The inductive case is as follows. By definition, we have Ya € Z,1 <i < j < N,h € [m]

,a,ld _ Z Z Z Z a —be, hg,h3‘h, a) % az,l,k « @Z;c-‘rlﬂ

k=i b,c hoe[m] hae[m]

We also have Vae Z,1 <i < j < N,

7j—1
aa,i,j _ Z Z Ca—»b C(ab,iJ{J, ac,k‘-{-l,j) (23)
k=i b,c
7—1
_ Z Z (Taﬁb C(ab,i,ka’ ac,k+1,jGC)> (Ga)fl (24)
k=i b,c
7j—1
_ Z Z (Taﬁbc(@b,i,h dc,k+1,j> (Ga)—l (25)
k=i b,c
= a®i(@m)~L (26)

Eq. 23 follows by the definitions in algorithm 5. Eq. 24 follows by the assumption in the
theorem that
Ca—>b C(yl’ y2) _ (Tzz—>b C(yle, y2GC)) (Ga)—l
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Eq. 25 follows because by the inductive hypothesis,
ab,i,k _ O—éb,i,k((;«b)—l

and
ac,kJrl,] - a% k41,5 (GC)

Eq. 26 follows because

[Taabc(db,i,k’@c,k+1,j):|h _ Z (a_) bc hg,hg‘h a) bzk cf-‘rl,g
ha,h3

hence

Z Z Taﬂb c b,z,k ac k+1,]) a,'L,]

k=i b,c

We now turn the outside terms, proving that f%% = G?3%%J. The proof is again by
induction.

The base case is as follows. By the definitions in the algorithms, for all a € Z, f%1" =
b = G*7%, and for all a € Z, h € [m], B"""™ = 7(a, h). Tt follows directly that for all a € Z,
ﬁa,l,n _ GaBa,l,n‘

The inductive case is as follows. By the definitions in the algorithms, we have Va €

N,1<i<j<N,he[m]
Bz,i,j _ Vlaz,j _|_Fy2az,]

where

1aw—2 Z Z Z tb—ca h37h‘h27) 5bk,gx—zfz '

k=1b—c a hae[m] hze[m

2al7] Z Z Z Z b —ac, h, h3|h2, ) X Bz’;’k _Z’J+1k

k=j+1b—a c hoe[m] hae[m]
and Vae N,1<i<j <N,

Ba,z,j _ Z Z Cbaca ,Bbk’] ackz 1 Z Z Cbﬁac /Bblk ac,jJrl,k)

k=1b—ca k=j+1lb—ac

Critical identities are

i—1
Y, Yl (B, ekt oyl 1)
k=1b—ca ,
Z Z Cbl—;(;c 5b,i,k,ac,j+1,k) _ Ga,yQ,a,i,j (28)
k=j+lb—ac

from which %% = G¢3%%J follows immediately.
The identities in Eq. 27 and 28 are proved through straightforward algebraic manipula-
tion, based on the following properties:
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e By the inductive hypothesis, f%%7 = GPp¥FJ and poi+ = GO Y+,

e By correctness of the inside terms, as shown earlier in this proof, it holds that
ac,k,ifl — dc,k,ifl(Gc)fl and ac,jJrl,k — dc,jJrl,k(Gc)fl

e By the assumptions in the theorem,
cabe(yl y?) = (TaabC(y1Gb,y2GC)> (G*)~!
It follows (see Lemma 11) that
C&—;ca(ﬁb kg ackz 1) _ g (T(bl—é():a((Gb)—le,k,j’ac,k,i—ch))
— g (Tg)ﬁca(ﬁbk,J Gokii— 1)>

and

(bl—gaC(ﬁbzk c,j+1,k) = Q¢ ((bl—éac(ﬁblk c,j+1,k)>

Finally, we give the following Lemma, as used above:

Lemma 11 Assume we have tensors C € R™M*™M*M gnd T € R™*™X™ sych that for any
TRNTAS ) .

Cy*y’) = (T(y*A,y°B)) D
where A, B, D are matrices in R™*™. Then for any y',y?,

0(1,2) (ylva) =B (T(172)(Dy1,y2A)) (29)

and for any y',vy3,
CamW',v*) = A(Tus/(Dy',y*B)). (30)

Proof: Consider first Eq. 29. We will prove the following statement:
vyl y® % ¥PCaa W' y?) = v’ B (T2 (Dy',y*A))

This statement is equivalent to Eq. 29.
First, for all y*, 42, y3, by the assumption that C(y?,3%) = (T(y2A,y3B)) D,

C(y* y*)y' = T(y*A, y*B) Dy’

hence

Ecjkyzyjyk:_ZTsz (31)
0,5,k .5,k

where 2! = Dyt 22 = ?A, 2% = ¢3B.
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In addition, it is easily verified that

VCupW' v = ) Ciintivivi (32)
1,5,k

ygB (T(LQ)(Dyl,ng)) = Zﬂ,j,kzilzjz'zg (33)
4,5,k

where again 2! = Dy', 22 = y?A, 23 = y3B. Combining Egs. 31, 32, and 33 gives

y*Cao ', y?) = v’ B (Ta2(Dy',y°A)),

thus proving the identity in Eq. 29.
The proof of the identity in Eq. 30 is similar, and is omitted for brevity. |

A.2 Proof of the Identity in Eq. 17

We now prove the identity in Eq. 17, repeated here:
DYyt %) = (T‘Hbc(yle, yzGC)) diag(y")(K*)".
Recall that
D¢ =E|[[R1 =a— bc]ZY, Y5 |Ar = a],
or equivalently
Dy R =E[[Ry = a—bc]ZYs;Ysk|A1 = a].

Using the chain rule, and marginalizing over hidden variables, we have

Dg;kbc = E [[[Rl =a—ob C]]ZZ'YQJ'Yg’k‘Al = CL]
= Z p(a — bC, hl,hg,hg,’a)E [ZiYQJ}/g,MRl =a — bC, hl,hz,hg].
hl,hg,hge[m]
By definition, we have

p(a —b ¢, h17h25h3’a) = 7}?1 X t(a —b ¢, h’27h’3|hl7a)

In addition, under the independence assumptions in the L-PCFG, and using the definitions
of K% and G*, we have

E [ZZ}/QJ}/&/‘J|R1 =a—b c, h17 h27 h3]
= E[ZZ|A1 =a,H = hl] X E[YVQJ‘AZ =b,Hy = hg] X E[Y37k|A3 =c,Hy = h3]
= K, x G;h

(&
X Gl g

1 2

Putting this all together gives
pope = Z Vi, x tla — b e, ha, hslhy,a) x K,
hl,hg,hge[m]

= D x K&, x>0 tla—be g, halhy,a) x GY o< G
hie[m] ha,hze[m]

b c
X Giny X Gy
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By the definition of tensors,

(D" ey, )i

o a—bec, 1. 2
= Y. Di v
j7k

- Z X K&, % Z t(a — b e, hy, hslhi,a) x (Zy;c;%) X (Zyg g,h3>
j k

hie[m] ha,hze[m]
- 2 Vhy X K, % [T“_’b C(yle,yQGc)]h .
hie[m] !

The last line follows because by the definition of tensors,

[Ta—>b C(yle’ yQGc)]hl _ 2 T}(Lll_,;zbg,chg [yle] . [yQGc]h3
ha,h3

and we have
T 0%, = tla—be hy hslh,a)
1 10
[y G ]h2 Zyj Gjﬁz
J

[yQGC] hs Z yl% (lé,hg .
k

Finally, the required identity
Da—»b c(y1’ y2) _ (Ta—>b c(yle7 yQGc)> diag(’ya)(Ka)T
follows immediately from Eq. 34.

A.3 Proof of the Identity in Eq. 18

We now prove the identity in Eq. 18, repeated below:
sy = qaodiag(y®) (K"

Recall that by definition

A, =E[[R1 =a—z]Z"|A1 = a],
or equivalently
[da’szl; = E[[R1 = a — 2] Zi| Ay = a].

Marginalizing over hidden variables, we have

(g

aﬁx]i

= E [[[Rl =a— HZ]]ZZ|A1 = a]
= ZP(G—’$ah|a)E[Zi|H1 =h,Ry =a— x].
h
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By definition, we have
pla — z,hla) = v5q(a — z|h,a) = v [qdasal), -
In addition, by the independence assumptions in the L-PCFG, and the definition of K¢,
E[Z;|Hy = h,R1 = a — x| = E[Z;|H, = h, A1 = a] = K}},.
Putting this all together gives

[detel; = 272 [da—z]p Ky
h

from which the required identity
sy = Ga—adiag(y®)(K*)"

follows immediately. |

A.4 Proof of the Identity in Eq. 19
We now prove the identity in Eq. 19, repeated below:
¥ = Gdiag(v*)(K*) "

Recall that by definition
Y = E[Y1Z7|A; = a]

or equivalently
[X];; = E[Y1,Z;|A1 = d]

Marginalizing over hidden variables, we have

[Ea]i,j = E[V1:Z;|A1 = a
> p(hla)E[Y1,Z;|Hy = h, Ay = a]
h

By definition, we have

Vi = p(hla)
In addition, under the independence assumptions in the L-PCFG, and using the definitions
of K% and G%, we have

E[m,izj’Hl = h, A1 = a] = E[Y17i|H1 = h,A1 = a] X E[Zj|H1 = h,A1 = a]

Putting all this together gives
(25 = D MG,
h
from which the required identity
¥ — Godiag(y")(K*)T

follows immediately. |
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A.5 Proof of the Identity in Eq. 20
We now prove the identity in Eq. 19, repeated below:

1 _ a,_a
c, = G,

Recall that by definition
ey =E[[4 = a]V1|B = 1],

or equivalently
[cali = E[[A1 = a]Y14/B =1].

Marginalizing over hidden variables, we have
[cali = E[[A1=a]Y1|B = 1]
= Y. P(Ay =a,H =hB=1E[Y1;|A =a,H = h,B=1].
h

By definition we have
P(Ay =a,Hy =h|B=1)=m(a,h)

By the independence assumptions in the PCFG, and the definition of G%, we have

E[Yi,A; = a,H, = h,B =1]

E[Y1;|A1 = a, Hy = h]
ih

Putting this together gives

[cali = ) m(a, WG,
h

from which the required identity

1 _ a,__a
c, = Gm

follows. [ |

Appendix B. Proof of Theorem 8

In this section we give a proof of Theorem 8. The proof relies on three lemmas:

e In Section B.1 we give a lemma showing that if estimates Ca~be e, .. and ¢l are
close (up to linear transforms) to the parameters of an L-PCFG, then the distribution
defined by the parameters is close (in /;-norm) to the distribution under the L-PCFG.

~

e In Section B.2 we give a lemma showing that if the estimates Qa, Da—b ¢ dX,, and
¢l are close to the underlying values being estimated, the estimates C* ¢, é,_,, and

a
él are close (up to linear transforms) to the parameters of the underlying L-PCFG.

e In Section B.3 we give a lemma relating the number of samples in the estimation

algorithm to the errors in estimating Q% D%>b¢, cZ?f_,w and é..

The proof of the theorem is then given in Section B.4.
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B.1 A Bound on How Errors Propagate

In this section we show that if estimated tensors and vectors C~¢, é® . and él are
sufficiently close to the underlying parameters T7%7°¢, ¢*, = and 7 of an L-PCFG, then
the distribution under the estimated parameters will be close to the distribution under the
L-PCFG. Section B.1.1 gives assumptions and definitions; Lemma 12 then gives the main

lemma; the remainder of the section gives proofs.

B.1.1 ASSUMPTIONS AND DEFINITIONS

We make the following assumptions:

e Assume we have an L-PCFG with parameters 7% ¢ e R™Xm*m o e R™, 1% e R™,
Assume in addition that we have an invertible matrix G* € R™*™ for each a € N.
For convenience define H® = (G%)~! for all a € N.

e We assume that we have parameters C970¢ e Rm*mxm % e RIX™M apd ¢l e M1

a—x
that satisfy the following conditions:

— There exists some constant A > 0 such that for all rules a — b ¢, for all y',y? €
R™,
1G4y H, y? HO)G* = T (y", 4P oo < Allyl2]]y7]l2-

— There exists some constant § > 0 such that for all a € P, for all h € [m],

D lEr.Gn = (9200 0n] < 6.

— There exists some constant x > 0 such that for all a,
(G g — 7%l < &,
We give the following definitions:

e For any skeletal tree t = rq...7y, define b(t) to be the quantities computed by the
algorithm in Figure 4 with ¢ together with the parameters T7%7?¢ ¢%, 7@ as input.
Define f*(t) to be the quantities computed by the algorithm in Figure 4 with ¢ together

with the parameters Ca—b X s é}l as input. Define
E(t) = b' (1),

and R

£(t) = fLHG™.
where as before a; is the non-terminal on the left-hand-side of rule 7. Define p(t) to
be the value returned by the algorithm in Figure 4 with ¢ together with the parameters
co=be ¢* ¢l oas input. Define p(t) to be the value returned by the algorithm in

? Ca—>ac7 a
Figure 4 with ¢ together with the parameters 70t ¢, ¢, | 7% as input.

e Define T (a, N) to be the set of of all skeletal trees with N binary rules (hence 2N + 1
rules in total), with non-terminal a at the root of the tree.
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e Define
Z(aah7N) = Z [g(t)]/u
teT (a,N)
D(a,h,N) = D7 (€0 — [ED]al,
teT (a,N)
_ Df(a,h,N)
F(a, h, N) m
e Define
Y= min t(a—> bC, h27h3|a, hl).

a,b,ce N h1,ha,hs€[m]

e For any a — b ¢ define the tensor

Ta—>b c(yl’ y2) _ C«a—»b C(yle, yZHc)Ga‘

B.1.2 THE MAIN LEMMA

Lemma 12 Given the assumptions in Section B.1.1, for any a, N,

teT (a,N)

Proof: By definition we have

S p(t) — p(0)

teT (a,N)

Define e = [(G%)~tel] —

£(t) - [(G)tel] — ¢(t) - n°

teT

€(t) - 7 = &(F) -

D11t = p(t)] < m ((1 + K) (1 + ﬁ)N_l 1+ 0N - 1) .

2LEOmIE™

h h

N)

Z
Z €@ - 1em e — ) 7.
€7 (a,

N)

7% Then by the triangle inequality,

We bound each of the three terms as follows:

~

€(t) - m = €(t) - 7| < |IEC) —

€(t) e = &(1) e < [I€(t) —

(1) - el <

E() ool I 11 < [1€(2)

E@)lollell < wlIE()

€0l < X[
|m<n2}

1E@) oo el 1 < wIE@) o0 < # D [EC
h
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Combining the above gives

Y, ) —p@®) < (1+5)

teT (a,N) teT (a,N

Ohl[+5 Y Dle®n

teT (a,N) h

> (1+ )N+t — 1>+m/<c

= m((l—i—ﬁ)( ?) (1+ 6N — 1)

where the second inequality follows because ZteT(a, N) > ul&(t)]n < m, and because Lemma 13

gives
AN
t)]h\’ <m <<1 + ) (1+ 6N — 1) .
teT (a,N) h v

/N
—
+
=
/"“\\
/’_‘\
<H>

|
We now give a crucial lemma used in the previous proof:
Lemma 13 Given the assumptions in Section B.1.1, for any a, h, N,
. A\
D(a,h,N) = > |[€®)]n — [£(0)]n| < Z(a, b, N) ((1 + ) (1+ 0N+ - 1) :
teT (a,N) v
Proof: A key identity is the following, which holds for any N > 1 (recall that F'(a, h, N) =
D(a,h, N)/Z(a, h, N)):
F(a,h,N)
< =14 D> glasb ek by, ho)(1 + F(bha, k) (1 + F(e, hg, N — k — 1))
k=0 b,c h1,ho
+Aymj]§532hb k,hi, ha)(1 + F(b,h1,k))(1 + F(c,ha, N — k — 1))
Z(a,h,N) ¢, 1,702 1, ¢, na, )
k=0 b,c h1,ho
(36)

where

Z(b, b1, k) Z(c, ha, N — k — 1)

(a b, c k,hlahQ) = t(a—> b c, hl,h2|a, h) Z(ajh,N)
N—
Y(N) = ZZZ bhl, ChQ,N k'—l)
=0 b Chl hQ
N—-Fk—1
Wb.e by hy) = ZRLR)Z(ehs, N =k —1)

Y(N)
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The proof of Eq. 36 is in Section B.1.3. Note that we have

N— N—
Z D) gla,b, e,k by, hy) = Z D> h(b e,k by, hy) = 1.

0 b,c hy,h2 k=0 b,c h1,h2

The rest of the proof follows through induction. For the base case, for N = 0 we have

Z(a,h,N) ((1 + ?)N (1+ 6N+ — 1) =6Z(a,h,N) =6

where the last equality follows because Z(a, h,0) = 1 for any a, h. For N = 0 we also have

3 [EO ] = Sl ~ laalil <5

teT (a,N)

The base case follows immediately.
For the recursive case, by the inductive hypothesis we have

A k
14 F(b,hy, k) < <1+> (14 6)~*1
gl
and
A N—k—1
1+F(c,h2,N—k—1)<(1+> (1+0)N-F

It follows from Eq. 36 that

F(a,h,N) < -1+ <1+Am> (1+§)N_1<1+5>N+1

N
< —1+ <1+§> (1+6)N+1

where the second inequality follows because

Y(N) - kN;Ol Zb,c Zhl,hz Z(bv h17 k)Z(C’ h27 N—Fk— 1) < l
Z(a,h,N) SN Sy S tla— behi,hala,h)Z(b,ha, k) Z (e, he, N =k —1) 7

This completes the proof. |

B.1.3 PRrROOF oF EQ. 36

Any tree t € T (a, N) where N > 1 can be decomposed into the following: 1) A choice b, ¢,
implying the rule a — b ¢ is at the root; 2) A choice of 0 < k < N —1, implying that the tree
dominated by b is of size k, the tree dominated by c is of size N —1—k; 3) A choice of trees
t1 € T(b,k) and t € T(c, N — 1 — k). The resulting tree has &, () = T2 ¢(&(t1), £(t2)).
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Define d(t) = £(t) — £(t). We then have the following:

= XX X n ) ) — T ) £()

k=0 b,c t1€T (b,k) t2€T (¢, N—1—k)

N—-1
< A DU (E@)llz + Ndt)2) (1) 2 + [d(t2)]]2)

k=0 b,c tleT(b,k) tQET(C,N—l—k)
N-1

+ > TR0 (&), d(t2)))]
k=0 be t1eT (bk) t2eT (c,N—1—k)
N—-1

+ > TR0 e (d(tr), €(t2)))
k=0 b t1eT (bk) taeT (e, N—1—Fk)

[y

_l’_
MZ

Y TRt dt2)]. (37)

b,c t1€T(b,k) t2€T(C,N*1*k)

i
o

The inequality follows because by Lemma 14,

T30 (€t E(t2)) — TR (&), E(t2)))
< A(EED 2 + () 2) ([EE) ]2 + [1d(E2)]]2)
HTE0C(E(t), d(t2)] + | T " (dlta), E(82))| + [T “(d(t), d(t2)) -

We first derive an upper bound on the last three terms of Eq. 37. Note that we have
the identity

Z(a,h,N)
N-1
= Dy tla—behyholah) Y &) Y Enlta)
k=0 b,c h1,h2 t1€T(b,k) ta€T (¢, N—1—k)
N-1
= > tla— be i, hola, h)Z(b, ha, k) Z(c, ha, N — k — 1).
k=0 b,c hi,ho

2435



COHEN, STRATOS, COLLINS, FOSTER AND UNGAR

It follows that

1

N—
> M (T (et dlt2))] + [ TR o(d(t), (L))

—0 bc t1€T (b,k) to€T (0, N—1—k)
TP e (d(t), d(t2))])

ko
N2

N-1
= tla—behiholah) > &) DL |d(t2)nl
k=0 b,c h1,hs t1€T(bk) to€T (¢,N—1—k)
N-—1
+ Z 2 t a_’ bC, hlah2|a‘7h) 2 |d(t1)h1| Z g(t2)h2
k=0 b,c h1,h2 t1€T (b,k) toeT (¢, N—1—k)
N—-1
+ tla—behy holah) > |d(t)n, | > |d(t2)n, |
k=0 b,c h1,hs t1€T(b,k) to€T (¢,N—1—k)
1

>} tla—be,hy, hola, h)
Chlh

Il
VRS
a Z
I |
=)

@‘

[¥]

S (En + D (E G, + |d<t2>h2|>)) ~ Z(a.h.N)

tlET(b k‘) tQET(C,N—l—k)

/—\

t(CL —b & h’lah2|aﬂ h)(Z(b, hla ]’C)+

2

D(b, h1, k))(Z(e, ha, N — k — 1) + D(c, ha, N — k — 1))) — Z(a,h, N)

Il
VN
T =z
obL7dL
&

o
>
>

1,

1

N
= (Z > t(a—be by, hola,h)Z(b, by, k) Z(c, hy, N — k — 1)
k=0

Ch1 h2

2

D(b,hl,k))( , Dleha, N~k —1)
(b7h17k) Z(C7h27N_k_ 1)

— Z(a,h,N) (ZVZ bz > gla,b,ek hl,hg)(1+F(b7h17k’))(1+F(c,h2,N—k—1))>

h hz
—Z(a,h,N) (38)

x (1 + >_Z(a7h7N)

where g(a,b,c, k,hy,hy) = Hamt c7h1’hQ‘a’h)Z(gbhhiL’)k)Z(c hoNohel)
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We next derive a bound on the first term as follows:

A Z > Do €@z + )l (1E(E)] 12 + [d(t2)]]2)

k=0 b,c t,€T (b,k) t2eT (c,N—1—k)

Y (@Il + el el + lldE)lh)

b,c 1T (bk) t2€T (¢, N—1—k)

N
>

I MZ
[
2

= A ZZ (b, h1,k) + D(b, h1,k))(Z(c,hg, N — k — 1) + D(c, hg, N — k — 1))

k=0 b,c h1,ha
N—-1
= A > Z(b,ha, k) Z (e, ho, N =k — 1)(1 + F(b, b1, k))(1 + Fc,hg, N — k — 1))
k=0 b,c h1,ha
N-1
= AY(N) Z h(k,b,c,hi,ha)(1 + F(b,hy,k))(1 4+ F(c,he, N —k —1)) (39)
k=0 b,c hi,hs
where ( \2( )
Z(b,h1,k)Z(c,ha, N —k — 1
h(k,b,c,h1,he) =
( ,0,C, N1, 2) Y(N)
and Y(N) = Y0700 S o S,y Z(b, ha, k) Z(c, ha, N — k — 1).
Combining Eqs 37, 38 and 39 gives the inequality in Eq. 36, repeated below:
F(a,h,N)
< -1
N-1
+ 33> glabye ki ho)(1+ F(b, hy, k) (1 + F(c, ha, N — k — 1))

k=0 b,c hy,ho

h N 2 DD (b, e,k by, ho) (1 + F(b, by, k) (1 + Fe, ho, N — k — 1)).
Z(a, k=0 b,c hi,ho

The following lemma was used in the previous proof:

Lemma 14 Assume we have tensors T and T and that there is some constant A such that
for any y*, y* € R™,
1T %) = T y7) o < Ally 2]y
Then for any y',y?, 4%, 92, for any h, it follows that
03", 9%) = Tu(y', v < Ay 2+ [1d 1) (152 l|2 + [1d°[]2)
+HTh(y', d*)| + | Tu(d', &) + 1T (d", v?)]

where d* = ' — y, and d*> = §* — y>.
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Proof: Define
") =Tuly", ),

9(y") = Tu(y",v*).
Define d' = (' — y'), d> = (9> — 4?). For any v € R™,

< |Th(v,9%) = Th(v,¥2)| + [Th(v, d®) — Thy(v, d*)| + | Ty (v, d?)|.

We can then derive the following bound:

109", 9%) = Tu(y',v*)| = 19(3") — 9(y"))
< 19" — gy )|+|g(d1) g(dh)] + |g(dh)]
< |Th'y?) — Tu(y' v + [ Th(y' d2) — Tu(y', d*)| + | Th(y", d%)]
HTh(d'y?) = Ta(d' y?)| + |Th(d", d?) — Tp(d", d?)| + |Tn(d', d)|
+|Tn(d", y?)]
< AllyMll2 + [ld' 1) (1y? ]2 + lld?]|2)

+HTh(y', d*)| + |Th(d', d?)| + [T (d", y?)].

B.2 Relating A, §, x to Estimation Errors

We now give a lemma that relates estimation errors in the algorithm to the values for A, §
and k as defined in the previous section.
Throughout this section, in addition to the estimates D*~b¢, dzoqx, Sa, Ca—be CX s
1

¢, computed by the algorithm in Figure 7, we define quantities

¥ = EYZTA; =d]

Daabc = E [IIRI =a—b CHZYZTY?)T’AI = a/]
dr,, = E[[Ri=a—2]Z"|A =a]
Coteyly?) = DUy ()T
Caoo_,x = d?—»x(za)_l
¢t = E[[A, =aVi|B=1]

where
Yi = (U")To(Th) Z= (V") 4(0)
Yo = (U*)T6(Ty) Y3 = (U")  ¢(T).
Note that these definitions are identical to those given in Section 7.2, with the additional
detail that the projection matrices used to define random variables Y7, Yo, Y3, Z are U® and

V“, that is, the projection matrices estimated in the first step of the algorithm in Figure 7.
The lemma is as follows:
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Lemma 15 Assume that under a run of the algorithm in Figure 7 there are constants
eé,eé,elj,ed,eﬂ such that

Va e P, 108 — Q% |F < €}
VaeZ, || -Qr<éh
Va —be, ||Da—be — Da*b0|| <ep

Yae P, @Hdm—dm?m

Va, [k —clla <
Assume in addition that 6%2 < mingep @ and 6?) < minger w For all a define
GO = (U)TI* and H* = (G*)~'. Then:
o For all a, G* is invertible.
e For all y',y? € R™, for all rules of the form a — b c
|Gy Y 2 HO) G — (Y P HO)G oo < Ally 87

where
16 1

€ €D
A== 0 .
3 o (1) (I°) <0m(Q“)2 i 3am(Q“)>
e Forallae€ P, for all h € [m],
D a G = [, G nl < 6

o= <0m§)2“)2 * 351{5)) ‘

(G e, = (G ealh < w

where

e For all a,

where

B.2.1 Proor OF LEMMA 15

We first prove three necessary lemmas, then give a proof of Lemma 15.

Lemma 16 Assume we have vectors and matrices d € RY*™, ¥ e R™*X™, d e RIxm,
Y eR™™ UeRY™ [ eRY™, We assume that ¥, 3, and (U'I) are invertible.
In addition, define

c = dx!
¢ = dyt
G = U'IL

We assume:
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e Forh=1...m, ||I}|l2 <1, where I}, is the h’th column of I*.
e ||Ull2,0 < 1 where ||U||2, is the spectral norm of the matriz U.
¢ [E-Zlo<a

It follows that

1++/5 e1]|dl] |d — d||»

cG* — G| < ~ .

Proof:
16G* = cG[ 0
= (@)U I||»
(By definition G¢ = U 'I)
< |le=auTl
By [Hnll2 < 1)
< le—cll2
(By [IU]l20 < 1)
= [[dE7! —dxTY),
(By definitions of ¢, ¢)
< [ dET =22+ (I(d = )72
(By triangle inequality)
< 2= = 7 20 + 1ld = d 217120
(By definition of ||.||2,0)
- HdHQH\F €1 I|d — d||2

= +
min{o, (%), om(2)}2 om(X)
(By Lemma 23 of Hsu et al. 2009, and |72, = 1/0, (X))

Lemma 17 Assume we have vectors c,é € R™*1, and we have a matrizx G* € R™*™ that
1s invertible. It follows that

6 e - (G el < Yl sll,

Proof:

_ vmllé =l

(G~ e = (G elly < Vml|(GY) e = (G) ez < T om(GY)

The first inequality follows because ||.||1 < y/m||.||2. The second inequality follows because
(G20 = 1/om(GY).
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Lemma 18 Assume we have matrices and tensors D € R™*™>™M 3, e R™M*M De Ry mxm
S eR™M [ e RXM [ e RIXM G e RMXm G e RMX™ . We assume that ¥, B, G, G€,
and UTT are invertible.

In addition define

Cly'y*) = D'y
Cly'y*) = D'y
G* = U'I
Hb _ (Gb)—l
Hc _ (GC)—I
We assume:
e Forh=1...m, ||I}|l2 <1, where I}, is the h’th column of I*.

o [[U]l20<1
o ||Z— 2,0 < €1
It follows that for any y*,y? € R™,
Hé(ylea VP HO)GE — Oy Hb, oy H)G |

1y [olly?la (145 el|[D||r N |1D - Dl|r
om(G®)om(G°) 2 min{o,, (X), om(2)}2 om(X) )

Proof:

IC(y  HY, y? HO)G® — C(y" H®, y* HY) G|
1++/5 €1 . |ID(y" H®, y?H®) — D(y* H, y>H°)||2

N

1D(y" H®, 4> H)|

2 min{om(D), om(X)}2 om(%)

(By Lemma 16, using d = D(y'H,42H¢), d = D(y' H,y2H°).)

1+4/5 €1 |ID - D||r

= +
2 min{om(D), om(X)}2 om(X)

(By [|D(vY,v?)|]2 < ||D]|r|vY|2][v?]]2 for any tensor D, vectors v!,v2.)
Il (|5, 1 V5 o L 1D = Dilr
om(G?)om (G°) 2 min{on(X),om(X)}2 o)

(By H® = (G*)7! hence ||H?||2, = 1/0m(G?). Similar for H¢.)

N

Iy H[[2] [y HE |2 <|IDIIF

N

Proof of Lemma 15: By Lemma 9 of Hsu et al. (2009), assuming that e < min, gQa)
gives for all a

on(5%) = Som(0)
V3

o (5) = L o(27)
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3
om(GY) = \gam(l")
The condition that o,,(I*) > 0 implies that 0,,(G*) > 0 and hence G is invertible. The
values for A and & follow from lemmas 18 and and 17 respectively.
The value for § is derived as follows. By Lemma 16 we have for any rule a — z, for any

he [m]a

1+\f €1Hdaax”2 ”daﬁx a%az”2.

& = le 2 min{o,(29), om(22)}2 om(X9)

|[ a—)z (1—>33Ga] | (40)

By definition

dits = (2%1[[7"(@1) = ﬂ) x (2%1[[7«@” —a— x]](z(i))T)

U Xhlei=d St [t = a o]
In addition 2 = (V@) T (tG1) and ||V |2, < 1, ||t D)||2 < 1, hence ||2]]z < 1, and

ol < 2= =z o]
2i:1[[ai = a]

I

It follows that

ZHdaﬁxHQ <L (41)
In addition we have

anm 42|l < v/n @Hdm de,, |12 < v/nea. (42)

Combining Egs. 41, 42 and 40 gives for any a € P, for any h € [m],

00 a a 1+ \/5 €1 \/>\/2 ||daﬁx aﬁx||2
; ’[caHxG ]h [ aHxG ] ’ 2 min{am(Z“),am(ia)}z + am(Ea)

from which the lemma follows.

B.3 Estimation Errors

The next lemma relates estimation errors to the number of samples in the algorithm in
Figure 4:

Lemma 19 Consider the algorithm in Figure 7. With probability at least 1—4, the following
statements hold:

N 2 1
Ve, [MlIDebe— Debells <y |5 \/ cul it
b,c
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/ 2/\/ +1
VGEP \/ZHdaaz_dgoamHZ \/ | |
“a a 1 2 2N+ 1
— < N N - -
Va e N, ||Q% — Q%|r 4/Na+\/Nalog 5
1 2. 2IN|+1
A 2
J;Wkﬁm<VR+¢Rm(s

B.3.1 PROOF OF LEMMA 19

We first need the following lemma:

Lemma 20 Assume i.i.d. random vectors X ... Xy where each X; € ]Rd, and for all © with
probability 1, || X;||2 < 1. Define

q = E[X;]
for all i and

N
Q _ Zz‘:lXi
=N

Then for any € > 0,

P(|Q —qll2 = 1/VN +¢) < e N2,

Proof: The proof is very similar to the proof of proposition 19 of Hsu et al. (2009).
Consider two random samples z1 ...z, and ¥y ...y, where x; = y; for all ¢ # k. define

G = Zz]\il Ty
N
and
§= Ziil Yi
N
Then
1= alls — 116 — alls < |G — plJz = =6 —2ellz  lell2 lloslle 2
= N h N SN

It follows through McDiarmid’s inequality (McDiarmid, 1989) that

Pr([|Q —qll2 > E|Q — gl + ¢) < e N/
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In addition,

E |11 - qll2]
Z]‘\ilXi
- E|||&=L2
(LT
= *E ||Z i—q ||2]
1 N
< ﬁ\E HE(Xi—Q)H%]
(By Jensen’s inequality)
1
(By 1ndependence of the X;’s)
RN 2 2
W\ D ELIIX:l3] = Nllall3
i=1
1 2
< /N a3
(By [1Xil[2 < 1.)
1
< T
VN

which completes the proof.
Proof of Lemma 19: For each a — b ¢, i, j, k € [m], define a random variable

ALY =Ry = a— b ZYPY.

It follows that
D{j30 ¢ = E[A7; °| A1 = a].
Note that
1212 = [[(V) T4 (0)]]2 < 1
because ||V ]2, < 1, and |[1(0)|]2 < 1. Similarly ||[Y?|]2 <1 and ||Y3]|2 <
In addition we have for all a € Z,

m m m

Do A = N 3 M APV PIVEPIR = a — b PP

b i=1j=1k=1 bei=1j=1k=1

= [1ZIBIYV2IBIYRIEQ R = a — b ?) <
b,c
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It follows by an application of Lemma 20 that for the definitions of D*~?¢ and Dae~be ip
Figure 7, for all a,

(|20 20 1D85 e = D el = YN/ Mo+ er) < e MotV

b,c 1,5,k

or equivalently,

N 2 1 )
ZHDa—»bC_Da—»bcH% |N|+ <

" F TN+ 1 (43)

By a similar argument, if for each a € P, z € [n], ¢ € [m] we define the random variable
B™" = Zi[R1 = a — 7]

then
dOO

a—x

= E[B/™"[A1 = d]

and

DSIDUBITTR =Y 3 ZiP[Ry = a — 2] <1

T =1 T =1

It follows by an application of Lemma 20 that for the definitions of d?,, and d*,, in
Figure 7, for all a,

\/ZZ| 2oli = (A2 Jif2 = 1/7/ Ny + €) < 7 Mec3/2

or equivalently

2|N|+1 )
<\/Z|daﬂx_dzoﬁx|2 = +\/ > < 2|./V’|+1' (44)

A similar argument can be used to show that for all a, for the definitions of Q2% and Qo

2|Q 1/\/74-63 e~ Na€3/2

in Figure 7,

or equivalently

. 1 2 . 2N|+1 5
P|[Q—Q%F = —1 < 45
(H I ﬁ%+¢mog : ) ST (45)

Finally, if we define the random variable

= Y![4; =]

2445



COHEN, STRATOS, COLLINS, FOSTER AND UNGAR

then
SO IFEP
a 1

In addition
— E[Ff|B = 1].

= > DIV P[AL =’ <1

It follows by an application of Lemma 20 that for the definitions of ¢} and ¢! in Figure 7,

\/22\ [éL]; > 1/VR+ ) <

or equivalently

—Reﬁ/Q

0

p (, > llet —cklf3 >

\/1 2N|+1>

2N+ 1

(46)

Finally, applying the union bound to the 2|N| + 1 events in Eqs. 43, 44, 45 and 46 proves

the theorem.

B.4 Proof of Theorem 8

Under the assumptions of the theorem, we have constants C, Cs, C3, Cy and C5 such that

N 2 CoNm)\?
VaeI,No>Lx (i~} VaeP,N,>Lx 22"
ve £202 €02
N 2 N 2
vaeT My>Lx (N ™) vaer.a,sLx (o, NV
ve 20 €
N 2
R>1Lx <C5W)
€0
It follows from Lemma 19 that with probability at least 1 — 4,
VaeZ, 109 — Q|F < €}
VaeP, |- QYF <€
Va—»bc, Hﬁaabc_DaabcHF<€D
VaeP, \/ZHda—m A ll2 < €q
Va,  |lég —coll2 < er
where
L<3x — 2, _¢
€0 X G X 0% X o
6%<3XEX€202X%
6D<3X63X§20'X%
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€ <3 X — X0 X
= 4 \/ﬁNm
5 o €
€ X — X —— X ——,
= Cs /m Nm

It follows from Lemma 15 that with suitable choices of (' . . . C5, the inequalities in Lemma 15

hold with values

ve
A<
4Nm

It follows from Lemma 12 that

1) -l <m (14 )" <1) <

teT (a,N)

where the second inequality follows because (1 + a/t)! < 1 + 2a for a < 1/2.
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