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Abstract

The study of social networks is a burgeoning research area. However, most existing work
is on networks that simply encode whether relationships exist or not. In contrast, relation-
ships in signed networks can be positive (“like”, “trust”) or negative (“dislike”, “distrust”).
The theory of social balance shows that signed networks tend to conform to some local pat-
terns that, in turn, induce certain global characteristics. In this paper, we exploit both
local as well as global aspects of social balance theory for two fundamental problems in the
analysis of signed networks: sign prediction and clustering. Local patterns of social balance
have been used in the past for sign prediction. We define more general measures of social
imbalance (MOIs) based on `-cycles in the network and give a simple sign prediction rule.
Interestingly, by examining measures of social imbalance, we show that the classic Katz
measure, which is used widely in unsigned link prediction, also has a balance theoretic inter-
pretation when applied to signed networks. Motivated by the global structure of balanced
networks, we propose an effective low rank modeling approach for both sign prediction
and clustering. We provide theoretical performance guarantees for our low-rank matrix
completion approach via convex relaxations, scale it up to large problem sizes using a ma-
trix factorization based algorithm, and provide extensive experimental validation including
comparisons with local approaches. Our experimental results indicate that, by adopting a
more global viewpoint of social balance, we get significant performance and computational
gains in prediction and clustering tasks on signed networks. Our work therefore highlights
the usefulness of the global aspect of balance theory for the analysis of signed networks.

Keywords: signed networks, sign prediction, balance theory, low rank model, matrix
completion, graph clustering
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1. Introduction

The study of networks is a highly interdisciplinary field that draws ideas and inspiration from
multiple disciplines including biology, computer science, economics, mathematics, physics,
sociology, and statistics. In particular, social network analysis deals with networks that form
between people. With roots in sociology, social network analysis has evolved considerably.
Recently, a major force in its evolution has been the growing importance of online social
networks that were themselves enabled by the Internet and the World Wide Web. A natural
result of the proliferation of online social networks has been the increased involvement in
social network analysis of people from computer science, data mining, information studies,
and machine learning.

Traditionally, online social networks have been represented as graphs, with nodes rep-
resenting entities, and edges representing relationships between entities. However, when a
network has like/dislike, love/hate, respect/disrespect, or trust/distrust relationships, such
a representation is inadequate since it fails to encode the sign of a relationship. Recently,
online networks where two opposite kinds of relationships can occur have become common.
For example, online review websites such as Epinions allow users to either like or dislike
other people’s reviews. Such networks can be modeled as signed networks, where edge
weights can be either greater or less than 0, representing positive or negative relationships
respectively. The development of theory and algorithms for signed networks is an impor-
tant research task that cannot be successfully carried out by merely extending the theory
and algorithms for unsigned networks in a straightforward way. First, many notions and
algorithms for unsigned networks break down when edge weights are allowed to be negative.
Second, there are some interesting theories that are applicable only to signed networks.

Perhaps the most basic theory that is applicable to signed social networks but does not
appear in the study of unsigned networks is that of social balance (Harary, 1953; Cartwright
and Harary, 1956). The theory of social balance states that relationships in friend-enemy
networks tend to follow patterns such as “an enemy of my friend is my enemy” and “an
enemy of my enemy is my friend”. A notion called weak balance (Davis, 1967) further
generalizes social balance by arguing that in many cases an enemy of one’s enemy can indeed
act as an enemy. Both strong and weak balance are defined in terms of local structure at
the level of triangles. Interestingly, the local structure dictated by balance theory also leads
to a special global structure of signed networks. We review the connection between local
and global structure of balance signed networks in Section 2.

Social balance has been shown to be useful for prediction and clustering tasks for signed
networks. For instance, consider the sign prediction problem where the task is to predict
the (unknown) sign of the relationship between two given entities. Ideas derived from
local balance of signed networks can be successfully used to obtain algorithms for sign
prediction (Leskovec et al., 2010a; Chiang et al., 2011). In addition, the clustering problem
of partitioning the nodes of a graph into tightly knit clusters turns out to be intimately
related to weak balance theory. We will see how a clustering into mutually antagonistic
groups naturally emerges from weak balance theory (see Theorem 8 for more details).

The goal of this paper is to develop algorithms for prediction and clustering in signed
networks by adopting the local to global perspective that is already present in the theory
of social balance. What we find particularly interesting is that the local-global interplay
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that occurs in the theory of social balance also occurs in our algorithms. We hope to
convince the reader that, even though the local and global definitions of social balance
are theoretically equivalent, algorithmic and performance gains occur when a more global
approach in algorithm design is adopted.

We mentioned above that a key challenge in designing algorithms for signed networks is
that the existing algorithms for unsigned networks may not be easily adapted to the signed
case. For example, it has been shown that spectral clustering algorithms for unsigned net-
works cannot, in general, be directly extended to signed networks (Chiang et al., 2012).
However, we do discover interesting connections between methods meant for unsigned net-
works and those meant for signed networks. For instance, in the context of sign prediction,
we see that the Katz measure, which is widely used for unsigned link prediction, actually has
a justification as a sign prediction method in terms of balance theory. Similarly, methods
based on low rank matrix completion can be motivated using the global viewpoint of balance
theory. Thus, we see that existing methods for unsigned network analysis can reappear in
signed network analysis albeit due to different reasons.

Here are the key contributions we make in this paper:

• We provide a local to global perspective of the sign prediction problem, and show that
our global methods are superior on synthetic as well as real-world data sets.

• In particular, we propose sign prediction methods based on local structures (triads and
higher-order cycles) and low-rank modeling. The methods that use local structures
are motivated by a local viewpoint of social balance, whereas the low-rank modeling
approach can be viewed as a global approach motivated by a corresponding global
viewpoint of social balance.

• We show that the Katz measure used for unsigned networks can be interpreted from
a social balance perspective: this immediately yields a sign prediction method.

• We provide theoretical guarantees for sign prediction and signed network clustering
of balanced signed networks, under mild conditions on their structure.

• We provide comprehensive experimental results that establish the superiority of global
methods over local methods studied in the past and other state-of-the-art approaches.

Parts of this paper have appeared previously in Chiang et al. (2011) and Hsieh et al. (2012).
The sign prediction methods based on paths and cycles were first presented in Chiang et al.
(2011), and low-rank modeling in Hsieh et al. (2012). In this paper, we provide a more
detailed and unified treatment of our previous research; in particular, we provide a local-
to-global perspective of the proposed methods, and a much more comprehensive theoretical
and experimental treatment.

The organization of this paper is guided by the local versus global aspects of social
balance theory. We first review some basics of signed networks and balance theory in
Section 2. We recall notions such as (strong) balance and weak balance while emphasizing
the connections between local and global structures of balanced signed networks. We will see
that local balance structure is revealed by triads (triangles) and cycles, while global balance
structure manifests itself as clusterability of the nodes in the network. An understanding
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of the local viewpoint of social balance as well as its global implications are reviewed in
Section 2 to help the reader better appreciate the methods developed in the paper.

We introduce sign prediction methods motivated from the local viewpoint of social
balance in Section 3. In particular, we propose measures of social imbalance (MOIs), and
a simple sign prediction method for a given measure of imbalance. The proposed measures
of imbalance satisfy the property that they are zero if and only if the network is balanced.
While the imbalance measure based on triads has already been studied, the local definition
of social balance based on general cycles can be used to obtain a more general measure of
imbalance. We also propose a simple and efficient relaxation of the proposed measure. We
show the validity of the relaxation in Theorem 10. An infinite-order version of the measure
for sign prediction leads to a familiar proximity measure for (unsigned) networks called the
Katz measure, as stated in Theorem 12. Other than serving to reinterpret the Katz measure
from the perspective of social balance in signed networks, this result is the first connection
that we see between link prediction in unsigned networks and sign prediction in signed
networks. The sign prediction method recently proposed by Leskovec et al. (2010a) was
also motivated by the local definition of social balance. This method, however, is limited
to using triangles in the network. In our experiments, we observe that a variant of their
method that considers higher-order cycles performs better.

In Section 4, we develop a completely global approach based on the global structure
of balanced signed networks. We appeal to the global clusterability of complete weakly
balanced networks (stated in Theorem 8) to develop our global approach. Broadly, we
show that such networks have low rank adjacency matrices, so that we can solve the sign
prediction problem by reducing it to a low rank matrix completion problem. Specifically,
we show that the adjacency matrix of a complete k-weakly balanced network, that can
be partitioned into k > 2 groups such that within-cluster edges are positive and the rest
are negative, has rank k (Theorem 13). The result follows by observing that the column
space of the signed adjacency matrix is spanned by a set of k linearly independent vectors
corresponding to the k groups.

Our approach attempts to fill in the unobserved (missing) edges of a signed network so
that the resulting network is weakly balanced. Our result on the low-rank nature of signed
adjacency matrices allows us to pose the sign prediction problem as a low-matrix completion
problem. The inherent rank constraint in the problem is non-convex. Therefore, we resort
to using multiple approximation strategies for solving the problem. First, we look at a
standard convex relaxation of rank constraint using the trace norm. The approach comes
with recovery guarantees due to Candés and Tao (2009), and it requires the adjacency matrix
to be ν-incoherent (see Definition in (10)). We analytically show that incoherence, in the
case of complete k-weakly balanced signed networks, is directly related to the notion of group
imbalance, which measures how skewed the group sizes are (Theorem 17). We would expect
a large group imbalance to make the recovery of the adjacency matrix harder. We rigorously
show the recovery guarantee in terms of group imbalance for signed networks in Theorem 18.
Unfortunately, solving the aforementioned convex relaxation is computationally prohibitive
in practice. We discuss two approaches for approximately solving the low-rank matrix
completion problem: one based on Singular Value Projection proposed by Jain et al. (2010)
and the other based on matrix factorization, which is both scalable and empirically more
accurate.
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Furthermore, the low rank modeling approach can also be used for the clustering of a
signed network. Our clustering method proceeds as follows. First, we use a low-rank matrix
completion algorithm on its adjacency matrix. Then we cluster the top-k eigenvectors of
the completed matrix using any feature-based clustering algorithm. By doing so, we show
that under the same assumptions that guarantee the recovery of signed networks, the true
clusters can be identified from the top-k eigenvectors (Theorem 19).

In Section 5, we show some evidence of local and global balance in real networks. Our
experiments on synthetic and real networks show that global methods (based on low rank
models) generally perform better, in terms of accuracy of sign prediction, than local methods
(based on triads and cycles). Finally, we discuss related work in Section 6, and state our
conclusions in Section 7.

2. Signed Networks and Social Balance

In this section, we set up our notation for signed networks, review the basic notions of
balance theory, and describe the two main tasks (sign prediction and clustering) addressed
in this paper.

2.1 Categories of Signed Networks

The most basic kind of a signed network is a homogeneous signed network. Formally, a
homogeneous signed network is represented as a graph with the adjacency matrix A ∈
{−1, 0, 1}n×n, which denotes relationships between entities as follows:

Aij =


1, if i & j have positive relationship,

−1, if i & j have negative relationship,

0, if relationship between i & j is unknown (or missing).

We should note that we treat a zero entry in A as an unknown relationship instead of
no relationship, since we expect any two entities have some (hidden) positive or negative
attitude toward each other even if the relationship itself might not be observed. From an
alternative point of view, we can assume there exists an underlying complete signed network
A?, which contains relationship information between all pairs of entities. However, we only
observe some entries of A?, denoted by Ω. Thus, the partially observed network A can be
represented as:

Aij =

{
A?ij , if (i, j) ∈ Ω,

0, otherwise.

A signed network can also be heterogeneous. In a heterogeneous signed network, there
can be more than one kind of entity, and relationships between two, same or different,
entities can be positive and negative. For example, in the online video sharing website
Youtube, there are two kinds of entities—users and videos, and every user can either like or
dislike a video. Therefore, the Youtube network can be seen as a bipartite signed network,
in which the positive and negative links are between users and videos.

In this paper, we will focus our attention on homogeneous signed networks, that is,
networks where relationships are between the same kind of entities. For heterogeneous
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Balanced triads Unbalanced triads
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Table 1: Configurations of balanced and unbalanced triads.

signed networks, it is possible to do some preprocessing to reduce them to homogeneous
networks. For instance, in a Youtube network, we could possibly infer the relationships
between users based on their taste of videos. These preprocessing tasks, however, are not
trivial.

In the remaining part of the paper, we will use the term “network” as an abbreviation
for “signed network”, unless we explicitly specify otherwise. In addition, we will now mainly
focus on undirected signed graphs (i.e., A is symmetric) unless we specify otherwise. For
a directed signed network, a simple but sub-optimal way to apply our methods is by con-
sidering the symmetric network, sign(A + AT ). Of course, making the network symmetric
erases edges with conflicting signs between a pair of nodes. It is important to know how
much information is lost in the process. We found that in real networks, the percentage of
conflicting edges is extremely small (see Table 4 in Section 5). The observation suggests
that making the network undirected preserves the sign structure for the most part, and is
sufficient for analysis.

2.2 Social Balance

A key idea behind many methods that estimate a high dimensional complex object from
limited data is the exploitation of structure. In the case of signed networks, researchers have
identified various kinds of non-trivial structure (Harary, 1953; Davis, 1967). In particular,
one influential theory, known as social balance theory, states that relationships between
entities tend to be balanced. Formally, we say a triad (or a triangle) is balanced if it contains
an even number of negative edges. This is in agreement with beliefs such as “a friend of my
friend is more likely to be my friend” and “an enemy of my friend is more likely to be my
enemy”. The configurations of balanced and unbalanced triads are shown in Table 1.

Though social balance specifies the patterns of triads, one can generalize the balance
notion to general `-cycles. An `-cycle is defined as a simple path from some node to itself
with length equal to `. The following definition extends social balance to general `-cycles:

Definition 1 (Balanced `-cycles) An `-cycle is said to be balanced when it contains an
even number of negative edges.

Table 2 shows some instances of balanced and unbalanced cycles based on the above def-
inition. To define balance for general networks, we first define the notion of balance for
complete networks:

Definition 2 (Balanced complete networks) A complete network is said to be balanced
when all triads in the network are balanced.
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Balanced cycles Unbalanced cycles
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Table 2: Some instances of balanced and unbalanced cycles.

Of course, most real networks are not complete. To define balance for general networks,
we adopt the perspective of a missing value estimation problem as follows:

Definition 3 (Balanced networks) A (possibly incomplete) network is said to be bal-
anced when it is possible to assign ±1 signs to all missing entries in the adjacency matrix,
such that the resulting complete network is balanced.

So far, the notion of balance is defined by specifying patterns of local structures in
networks (i.e., the patterns of triads). The following result from balance theory shows that
balanced networks have a global structure.

Theorem 4 (Balance theory, Cartwright and Harary, 1956) A network is balanced
iff either (i) all edges are positive, or (ii) we can divide nodes into two clusters (or groups),
such that all edges within clusters are positive and all edges between clusters are negative.

Now we revisit balanced `-cycles defined at the beginning of this subsection. Under
that definition, we can verify if a network is balanced or not by looking at all cycles in the
network due to the following well-known theorem (whose proof can be found in Easley and
Kleinberg (2010, Chapter 5)).

Theorem 5 A network is balanced iff all its `-cycles are balanced.

One possible weakness of social balance theory is that the defined balance relationships
might be too strict. In particular, researchers have argued that the degree of imbalance in
the triad with two positive edges (the fourth triad in Table 1) is much stronger than that
in the triad with all negative edges (the third triad in Table 1). By allowing triads with all
negative edges, a weaker version of balance notion can be defined (Davis, 1967).

Definition 6 (Weakly balanced complete networks) A complete network is said to
be weakly balanced when all triads in the network are weakly balanced.

Note that `-cycles with an odd number of negative edges are allowed under weak balance.
The definition for general incomplete networks can be obtained by adopting the perspective
of a missing value estimation problem:

Definition 7 (Weakly balanced networks) A (possibly incomplete) network is said to
be weakly balanced when it is possible to obtain a weakly balanced complete network by filling
the missing edges in its adjacency matrix.
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Though the above definitions define weak balance in terms of patterns of local triads,
one can show that weakly balanced networks have a special global structure, analogous to
Theorem 4:

Theorem 8 (Weak balance theory, Davis 1967) A network is weakly balanced iff ei-
ther (i) all of its edges are positive, or (ii) we can divide nodes into k clusters, such that all
the edges within clusters are positive and all the edges between clusters are negative.

Note that when k = 2, this theorem simply reduces to Theorem 4.

At this juncture, it would be helpful to recall that balance and weak balance are more
natural for the analysis of undirected (signed) networks. More recently, Leskovec et al.
(2010b) analyzed directed signed networks using the concept of “status”, that is character-
istic of directed networks. We do not explore the “status structure” of signed networks in
this paper, but the theory seems to be promising and worthy of study in the future.

2.3 Key Problems in Signed Network Analysis

As in classical social network analysis, we are interested in what we can infer given a signed
network topology. In particular, we will focus on two core problems—sign prediction and
clustering.

In the sign prediction problem, we intend to infer the unknown relationship between a
pair of entities i and j based on partial observations of the entire network of relationships.
More specifically, if we assume that we are given a (usually incomplete) network A sampled
from some underlying (complete) network A?, then the sign prediction task is to recover the
sign patterns of one or more edges in A?. This problem bears similarity to the structural
link prediction problem in unsigned networks (Liben-Nowell and Kleinberg, 2007; Menon
and Elkan, 2011). Note that the temporal link prediction problem has also been studied in
the context of an unsigned network evolving in time. The input to the prediction algorithm
then consists of a series of networks (snapshots) instead of a single network. We do not
consider such temporal problems in this paper.

Clustering is another important problem in network analysis. Recall that according
to weak balance theory (Theorem 8), we can find k groups such that they are mutually
antagonistic in a weakly balanced network. Motivated by this, the clustering task in a
signed network is to identify k antagonistic groups in the network, such that most edges
within the same cluster are positive while most edges between different clusters are negative.
Notice that since the (weak) balance notion only applies to signed networks, most traditional
clustering algorithms for unsigned networks cannot be directly applied.

3. Local Methods for Sign Prediction

The definition of structural balance based on triangles is local in nature. A natural approach
for designing sign prediction algorithms proceeds by reasoning locally in terms of unbalanced
triangles, which motivates the following measure of imbalance:

µtri(A) :=
∑

σ̃∈SC3(A)

1 [σ̃ is unbalanced] , (1)
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where SC3(A) refers to the set of triangles (simple cycles of length-3) in the network A.
In general, we use SC`(A) to denote the set of all simple `-cycles in the network A. A
definition essentially similar to the one above appears in the recent work of van de Rijt
(2011, p. 103) who observes that the equivalence

µtri(A) = 0 iff A is balanced

holds only for complete graphs. For an incomplete graph, imbalance might manifest itself
only if we look at longer simple cycles. Accordingly, we define a higher-order analogue of
(1),

µs`(A) :=
∑̀
i=3

βi
∑

σ̃∈SCi(A)

1 [σ̃ is unbalanced] , (2)

where ` ≥ 3 and βi’s are coefficients weighting the relative contributions of unbalanced
simple cycles of different lengths. If we choose a decaying choice of βi, like βi = βi for some
β ∈ (0, 1), then we can even define an infinite-order version,

µs∞(A) :=
∑
i≥3

βi
∑

σ̃∈SCi(A)

1 [σ̃ is unbalanced] . (3)

It is clear that µs∞(·) is a genuine measure of imbalance in the sense formalized by the
following corollary of Theorem 5.

Corollary 9 Fix an observed graph A. Let βi > 0 be any sequence such that the infinite
sum in (3) is well-defined. Then, µs∞(A) > 0 iff A is unbalanced.

The basic idea of using a measure of imbalance for predicting the sign of a given query
link {i, j}, such that i 6= j and Ai,j = 0, is as follows. Given the observed graph A and
query {i, j}, i 6= j, we construct two graphs: A+(i,j) and A−(i,j). These are obtained from
A by setting Aij and Aji to +1 and −1 respectively. Formally, these two augmented graphs
are defined as:

A+(i,j)
uv =

{
1, if (u, v) = (i, j) or (j, i)

Auv, otherwise.
A−(i,j)
uv =

{
−1, if (u, v) = (i, j) or (j, i)

Auv, otherwise.

Then, given a measure of imbalance, denoted as µ (·), the predicted sign of {i, j} is simply:

sign
(
µ
(
A−(i,j)

)
− µ

(
A+(i,j)

))
. (4)

Note that, to use the above for prediction, we should use a µ (·) for which the quantity
(4) is efficiently computable. The measure of imbalance based on triads µtri(A) and the more
general measure µs∞(A) involve counting simple cycles in a graph. However, enumerating
simple cycles of a graph is NP-hard.1 To get around this computational issue, we slightly
change the definition of µ`(·) to the following.

µ`(A) :=
∑̀
i=3

βi
∑

σ∈Ci(A)

1 [σ is unbalanced] . (5)

1. By straightforward reduction to the Hamiltonian cycle problem (Karp, 1972).

1185



Chiang, Hsieh, Natarajan, Dhillon and Tewari

As before, we allow ` =∞ provided the βi’s decay sufficiently rapidly.

µ∞(A) :=
∑
i≥3

βi
∑

σ∈Ci(A)

1 [σ is unbalanced] . (6)

The only difference between these definitions and (2),(3) is that here we sum over all cycles
(denoted by Ci(A)), not just simple ones. However, we still get a valid notion of imbalance
as stated by the following result.

Theorem 10 Fix an observed graph A. Let βi > 0 be any sequence such that the infinite
sum in (6) is well-defined. Then, µ∞(A) > 0 iff A is unbalanced.

It turns out, somewhat surprisingly, that computing (4) with µ (A) = µtri(A) simply
reduces to computing (i, j) entry in A2. The following key lemma gives an efficient way to
compute (4) with µ (·) = µ`(·) in general. Indeed, it amounts to computing higher powers
of the adjacency matrix.

Lemma 11 Fix A and let i 6= j be such that (i, j) /∈ Ω. Let A+(i,j) and A−(i,j) be the
augmented graphs. Then, for any ` ≥ 3,∑

σ∈C`(A−(i,j))

1 [σ] −
∑

σ∈C`(A+(i,j))

1 [σ] = A`−1
i,j ,

where 1 [σ] is the abbreviation of 1 [σ is unbalanced].

Using Lemma 11, it is easy to see that the prediction (4) using (5) reduces to

sign
(
µ`

(
A−(i,j)

)
− µ`

(
A+(i,j)

))
= sign

(∑̀
t=3

βtA
t−1
i,j

)
,

and the prediction (4) using (6) reduces to

sign
(
µ∞

(
A−(i,j)

)
− µ∞

(
A+(i,j)

))
= sign

∑
`≥3

β`A
`−1
i,j

 . (7)

Lemma 11 is also key to interpreting a classical proximity measure called the Katz mea-
sure in the context of sign prediction, discussed next. Proofs of Theorem 10 and Lemma 11
are presented in Appendix A.

3.1 Katz Measure is Valid for Signed Networks

The classic method of Katz (1953) has been used successfully for unsigned link prediction
(Liben-Nowell and Kleinberg, 2007). Formally, given an unsigned network A with a query
node-pair (i, j), the Katz measure for the link (i, j) is defined as:

Katz(i, j) :=
∞∑
`=2

β`A`ij ,
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where β > 0 is a constant so that the above infinite sum is well defined (β < 1
‖A‖2 suffices,

where ‖A‖2 is the spectral norm of A).2 Intuitively, the Katz measure sums up all possible
paths between i and j. The number of length ` paths can grow exponentially as ` increases
(for example, there are Ω(n`−1) length ` paths between i and j if the network is complete).
Therefore, the contributions from length ` paths are exponentially damped by the constant
β`. One can also verify the above definition has the following matrix form:

Katz(i, j) = ((I − βA)−1 − I − βA)ij .

A higher Katz score indicates more proximity between nodes i and j, and the link (i, j) is
therefore more likely to exist or to form in the future.

While Katz has been used as an effective proximity measure for link prediction in un-
signed networks, it is not obvious what the signed Katz score corresponds to in signed
networks. Following (7), the connection between Katz measure and µ∞(·) stands out. The
following theorem shows that by considering a sign prediction method based on µ∞(·) we
obtain an interesting interpretation of the Katz measure on a signed network from a balance
theory viewpoint.

Theorem 12 (Balance Theory Interpretation of the Katz Measure) Consider the
sign prediction rule (4) using µ∞(·) in the reduced form (7). In the special case when
β` = β`−1 with β small enough (β < 1/‖A‖2), the rule can be expressed as the Katz
prediction rule for edge sign prediction, in closed form:

sign
((

(I − βA)−1 − I − βA
)
i,j

)
.

Our sign prediction rule for a given measure of imbalance relies on social balance theory
for signed networks. However, real world networks may not conform to the prediction of
balance theory or may do so only to a certain extent. Furthermore, balance theory was
developed for undirected networks and hence methods based on measures of imbalance can
deal only with undirected networks. To partly mitigate the lapse, we can use measures
of imbalance to derive features that can then be fed to a supervised learning algorithm
(like logistic regression) along with the signs of the known edges in the network. When we
learn weights for such features, we are weakening our reliance on social balance theory but
can naturally deal with directed graphs. By using features constructed from higher-order
cycles, we extend the supervised approach used by Leskovec et al. (2010a) that was limited
to learning from triads-based features. While the learning approach itself is straightforward,
construction of higher-order features for directed signed networks requires some attention.
We defer the details to Appendix B. In the experiments (Section 5), we denote the local
method (7) corresponding to the measure of imbalance based on cycles of length ` by MOI-
`. Note that MOI-∞ refers to the signed Katz measure. The supervised learning method

2. Our definition is slightly different from the definition in Liben-Nowell and Kleinberg (2007), where the
summation starts from ` = 1. However, the measures are identical for the purpose of link prediction,
as the prediction needs to be made only when the query nodes i and j have no existing edge, that is,
Aij = 0.
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discussed in Appendix B, where we use logistic regression to train weights for features
constructed from higher-order cycles of length up to `, is referred to as HOC-` in the
experiments.

4. Global Methods: Low Rank Modeling

In Section 3, we have seen how to use `-cycles for sign prediction. We have also seen that
`-cycles play a major role in how balance structure manifests itself locally. By increasing `,
the level at which balance structure is considered becomes less localized. Still, it is natural
to ask whether we can design algorithms for signed networks by directly making use of
their global structure. To be more specific, let us revisit the definition of complete weakly
balanced networks. In general, weak balance can be defined from either a local or a global
point of view. From a local point of view, a given network is weakly balanced if all triads
are weakly balanced, whereas from a global point of view, a network is weakly balanced if
its global structure obeys the clusterability property stated in Theorem 8. Therefore, it is
natural to ask whether we can directly use this global structure for sign prediction. In the
sequel, we show that weakly balanced networks have a “low-rank” structure, so that the
sign prediction problem can be formulated as a low rank matrix completion problem.

We begin by showing that given a complete k-weakly balanced network, its adjacency
matrix A? has rank at most k:

Theorem 13 (Low Rank Structure of Signed Networks) The adjacency matrix A?

of a complete k-weakly balanced network has rank 1 if k ≤ 2, and has rank k for all k > 2.

Proof Since A? is k-weakly balanced, the nodes can be divided into k groups, say

S(1), S(2), . . . , S(k). Suppose group S(i) contains nodes s
(i)
1 , s

(i)
2 , . . . , s

(i)
ni , then the corre-

sponding columns vectors of A? all have the following form (after suitable reordering of
nodes):

bi = [−1 · · · − 1 1 · · · 1︸ ︷︷ ︸
the ith group

−1 · · · − 1]T ,

and so the column space of A? is spanned by {b1, . . . ,bk}.
First consider k ≤ 2, that is, the network is strongly balanced. If k = 1, it is easy to see

that rank(A?) = 1. If k = 2, then b1 = −b2. Therefore, rank(A?) is again 1.

Now consider k > 2. In this case, we argue that rank(A?) exactly equals k by showing
that b1, . . . ,bk are linearly independent. We consider the k× k square matrix M such that
Mij = −1,∀i 6= j and Mii = 1, ∀i. It is obvious that 1 = [1 1 · · · 1]T is an eigenvector of M
with eigenvalue −(k − 2). We can further construct the other k − 1 linearly independent
eigenvectors, each with eigenvalue 2:

e1 − e2, e1 − e3, . . . , e1 − ek,

where ei ∈ Rk is the ith column of the k × k identity matrix. These k − 1 eigenvectors are
clearly linearly independent. Therefore, rank(M) = k.

From the above we can show that rank(A?) = k. Suppose that b1, . . . ,bk are not lin-
early independent, then there exists α1, . . . , αk, with some αi 6= 0, such that

∑k
i=1 αibi = 0.
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Using this set of α’s, it is easy to see that
∑k

i=1 αiMi = 0 (where Mi is the ith column of
M), but this contradicts the fact that rank(M) = k. Therefore, rank(A?) = k.

1 1 1 −1 −1 −1

1 1 1 −1 −1 −1

1 1 1 −1 −1 −1

−1 −1 −1 1 −1 −1

−1 −1 −1 −1 1 1

−1 −1 −1 −1 1 1




=

−1.045 0.265 −0.402

−1.045 0.265 −0.402

−1.045 0.265 −0.402

0.319 −1.260 −0.830

0.919 0.670 −0.541

0.919 0.670 −0.541





−1.045 0.265 0.402

−1.045 0.265 0.402

−1.045 0.265 0.402

0.319 −1.260 0.830

0.919 0.670 0.541

0.919 0.670 0.541





T

Figure 1: An illustrative example of the low-rank structure of a 3-weakly balanced network.
The network can be represented as a product of two rank-3 matrices, and so the
adjacency matrix has rank no more than 3.

Figure 1 is an example of a complete 3-weakly balanced network. As shown, we see its
adjacency matrix can be expressed as a product of two rank-3 matrices, indicating its rank
is no more than three. In fact, by Theorem 13, we can conclude that its rank is exactly 3.

The above reasoning shows that (adjacency matrices of) complete weakly balanced net-
works have low rank. However, most real networks are not complete graphs. Recall that in
order to define balance on incomplete networks, we try to fill in the unobserved or missing
edges (relationships) so that balance is obtained. Following this desideratum, we can think
of sign prediction in signed networks as a low-rank matrix completion problem. Specifically,
suppose we observe entries (i, j) ∈ Ω of a complete signed network A?. We want to find a
complete matrix by assigning ±1 to every unknown entry, such that the resulting complete
graph is weakly balanced and hence, the completed matrix is low rank. Thus, our missing
value estimation problem can be formulated as:

minimize rank(X)

s.t. Xij = A?ij , ∀ (i, j) ∈ Ω, (8)

Xij ∈ {±1}, ∀ (i, j) /∈ Ω.

Once we obtain the minimizer of (8), which we will denote by X?, we can infer the missing
relationship between i and j by simply looking up the sign of the entryX?

ij . So the question is
whether we can solve (8) efficiently. In general, (8) is known to be NP-hard; however, recent
research has shown the surprising result that under certain conditions, the low-rank matrix
completion problem (8) can be solved by convex optimization to yield a global optimum in
polynomial time (Candés and Recht, 2008). In the following subsections, we identify such
conditions as well as approaches to approximately solve (8) for real-world signed networks.

4.1 Sign Prediction via Convex Relaxation

One possible approximate solution for (8) can be obtained by dropping the discrete con-
straints and replacing rank(X) by the trace norm of X (denoted by ‖X‖∗), which is the
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tightest convex relaxation of rank (Fazel et al., 2001). Thus, a convex relaxation of (8) is:

minimize ‖X‖∗
s.t. Xij = A?ij , ∀ (i, j) ∈ Ω. (9)

It turns out that, under certain conditions, by solving (9) we can recover the exact
missing relationships from the underlying complete signed network. This result is the con-
sequence of recent research (Candés and Recht, 2008; Candés and Tao, 2009) which has
shown that perfect recovery is possible if the observed entries are uniformly sampled and
A? has high incoherence, which may be defined as follows:

Definition 14 (Incoherence) An n×n matrix X with singular value decomposition X =
UΣV T is ν-incoherent if

max
i,j
|Uij | ≤

√
ν√
n

and max
i,j
|Vij | ≤

√
ν√
n
. (10)

Intuitively, higher incoherence (smaller ν) means that large entries of the matrix are
not concentrated in a small part. The following theorem shows that under high incoherence
and uniform sampling, solving (9) exactly recovers A? with high probability.

Theorem 15 (Recovery Condition Candés and Tao, 2009) Let A? be an n× n ma-
trix with rank k, with singular value decomposition A? = UΣV T . In addition, assume A?

is ν-incoherent. Then there exists some constant C, such that if Cν4nk2 log2 n entries are
uniformly sampled, then with probability at least 1−n−3, A? is the unique optimizer of (9).

In particular, if the underlying matrix has bounded rank (i.e., k = O(1)), the number
of sampled entries required for recovery reduces to O(ν4n log2 n).

Based on Theorem 15, we now show that the notion of incoherence can be connected
to the relative sizes of the clusters in signed networks. As a result, by solving (9), we will
show that we can recover the underlying signed network with high probability if there are
no “small” groups. To start, we define the group imbalance of a signed network as follows:

Definition 16 (Group Imbalance) Let A? be the adjacency matrix of a complete k-
weakly balanced network with n nodes, and let n1, . . . , nk be the sizes of the groups. Group
imbalance τ of A? is defined as

τ := max
i=1,...,k

n

ni
.

By definition, k ≤ τ ≤ n. Larger group imbalance τ indicates the presence of a very small
group, which would intuitively make recovery of the underlying network harder (under
uniform sampling). For example, consider an extreme scenario that a k-weakly balanced
network contains n nodes, with two groups that contain only one node each. Then if nodes
n − 1 and n form these singleton groups, the adjacency matrix of this network has group
imbalance τ = n with A?n−1,n−1 = A?n,n = 1 and A?n−1,n = A?n,n−1 = −1. However, without
observing A?n−1,n or A?n,n−1, it is impossible to determine whether the last two nodes are
in the same cluster, or whether each of them belongs to an individual cluster. When n is

1190



Global Modeling of Signed Networks

very large, the probability of observing one of these two entries will be extremely small.
Therefore, under uniform sampling of O(n log2 n) entries, it is unlikely that any matrix
completion algorithm will be able to exactly recover this network.

Motivated by this example, we now analytically show that group imbalance τ determines
the possibility of recovery. We first show the connection between τ and incoherence ν.

Theorem 17 (Incoherence of Signed Networks) Let A? be the adjacency matrix of a
complete k-weakly balanced network with group imbalance τ . Then A? is τ -incoherent.

Proof Recall that incoherence ν is defined as the maximum absolute value in the (nor-
malized) singular vectors of A?, which are identical to its eigenvectors (up to signs), since
A? is symmetric.

Let u be any unit eigenvector of A? (‖u‖2 = 1) with eigenvalue λ. Suppose i and j are
in the same group, then the ith and jth rows of A? are identical, that is, A?i,: = A?j,:. As a

result, the ith and jth elements of all eigenvectors will be identical (since ui = A?i,:u/λ =
A?j,:u/λ = uj). Thus, u has the following form:

u = [α1, α1, . . . , α1︸ ︷︷ ︸
n1

, α2, . . . , α2︸ ︷︷ ︸
n2

, . . . , αk, . . . , αk︸ ︷︷ ︸
nk

]T . (11)

Because ‖u‖2 = 1,
∑k

i=1 niα
2
i = 1, and so niα

2
i ≤ 1, ∀i, which implies |αi| ≤ 1/

√
ni, ∀i.

Thus,

max
i
|ui| = max

i
|αi| ≤ max

i

1
√
ni

= max
i

√
n/ni√
n
≤
√
τ√
n
.

Therefore, A? is τ -incoherent.

Putting together Theorems 15 and 17, we now have the main theorem of this subsection:

Theorem 18 (Recovery Condition for Signed Networks) Suppose we observe edges
Aij, (i, j) ∈ Ω, from an underlying k-weakly balanced signed network A? with n nodes, and
suppose that the following assumptions hold:
A. k is bounded (k = O(1)),
B. the set of observed entries Ω is uniformly sampled, and
C. number of samples is sufficiently large, that is, |Ω| ≥ Cτ4n log2 n, where τ is the group

imbalance of the underlying complete network A?.
Then A? can be perfectly recovered by solving (9), with probability at least 1− n−3.

In particular, if n/ni is upper bounded so that τ is a constant, then we only need O(n log2 n)
observed entries to exactly recover the complete k-weakly balanced network.

4.2 Sign Prediction via Singular Value Projection

Though the convex optimization problem (9) can be solved to yield the global optimum,
the computational cost of solving it might be too prohibitive in practice. Therefore, recent
research provides more efficient algorithms to approximately solve (8) (Cai et al., 2010; Jain
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et al., 2010). In particular, we consider the Singular Value Projection (SVP) algorithm
proposed by Jain et al. (2010) which attempts to solve the low-rank matrix completion
problem in an efficient manner. The SVP algorithm considers a robust formulation of (8)
as follows:

minimize ‖P(X)−A‖2F
s.t. rank(X) ≤ k, (12)

where the projection operator P is defined as:

(P(X))ij =

{
Xij , if (i, j) ∈ Ω

0, otherwise.

Note that the objective (12) recognizes that there might be some violations of weak balance
in the observations A, and minimizes the squared-error instead of trying to enforce exact
equality as in (9). In an attempt to optimize (12), the SVP algorithm iteratively calculates
the gradient descent update X̂(t) of the current solution X(t), and projects X̂(t) onto the
non-convex set of matrices whose rank are at most k using SVD. After the SVP algorithm
terminates and outputs X̄, one can take the sign of each entry of X̄ to obtain an approximate
solution of (8). The SVP procedure for sign prediction is summarized in Algorithm 1.

Algorithm 1: Sign Prediction via Singular Value Projection (SVP)

Input: Adjacency matrix A, rank k, tolerance ε, max iteration tmax, step size η
Output: X̄, the completed low-rank matrix that approximately solves (8)

1. Initialize X(0) ← 0 and t← 0.
2. Do

• X̂(t) ← X(t) − η(P(X(t))−A)
• [Uk,Σk, Vk]← Top k singular vectors and singular values of X̂(t)

• X(t+1) ← UkΣkVk
T

• t← t+ 1
while ‖P(X(t))−A‖2F > ε and t < tmax

3. X̄ ← sign(X(t))

In addition to its efficiency, experimental evidence provided by Jain et al. (2010) suggests
that if observations are uniformly distributed, then all iterates of the SVP algorithm are
ν-incoherent, and if this occurs, then it can be shown that the matrix completion problem
(8) can be exactly solved by SVP. In Section 5, we will see that SVP performs well in
recovering weakly balanced networks.

4.3 Sign Prediction via Matrix Factorization

A limitation of both convex relaxation and SVP is that they require uniform sampling to en-
sure good performance. However, this assumption is violated in most real-life applications,
and so these approaches do not work very well in practice. In addition, both the methods
cannot scale to very large data sets, as they require computation of the SVD. Thus, we use
a gradient based matrix factorization approach as an approximation to the signed network
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completion problem. In Section 5, we will see that this matrix factorization approach can
boost the accuracy of estimation as well as scale to large real networks.

In the matrix factorization approach, we consider the following problem:

min
W,H∈Rn×k

∑
(i,j)∈Ω

(Aij − (WHT )ij)
2 + λ‖W‖2F + λ‖H‖2F . (13)

Problem (13) is non-convex, and an alternating minimization algorithm is commonly
used to solve it. Recent theoretical results show that the alternating minimization algo-
rithm provably solves (13) under similar conditions as trace-norm minimization (Jain et al.,
2013). The matrix factorization approach is widely used in practical collaborative filtering
applications as its performance is competitive to or better than trace-norm minimization,
while scalability is much better. For example, to solve the Netflix problem, (13) has been
applied with a fair amount of success to factorize data sets with 100 million ratings (Koren
et al., 2009).

Nevertheless, there is an issue when modeling signed networks using (13): the squared
loss in the first term of (13) tends to force entries of WHT to be either +1 or −1. However,
what we care about in this completion task is the consistency between sign((WHT )ij) and
sign(Aij) rather than their difference. For example, (WHT )ij = 10 should have zero loss
when Aij = +1 if only the signs are important.

To resolve this issue, instead of using the squared loss, we use a loss function that only
penalizes the inconsistency in sign. More precisely, objective (13) can be generalized as:

min
W,H∈Rn×k

∑
(i,j)∈Ω

`oss (Aij , (WHT )ij) + λ‖W‖2F + λ‖H‖2F . (14)

In order to penalize inconsistency of sign, we can change the loss function to be the sigmoid
or squared-hinge loss:

`oss sigmoid(x, y) = 1/(1 + exp(xy)),

`oss square-hinge(x, y) = (max(0, 1− xy))2. (15)

In Section 5, we will see that applying sigmoid or squared-hinge loss functions slightly
improves prediction accuracy.

4.4 Time Complexity of Sign Prediction Methods

There are two main optimization techniques for solving (13) for large-scale data: Alternating
Least Squares (ALS) and Stochastic Gradient Descent (SGD) (Koren et al., 2009). ALS
solves the squared loss problem (13) by alternately minimizing W and H. When one of
W or H is fixed, the optimization problem becomes a least squares problem with respect
to the other variable, so that we can use well developed least squares solvers to solve each
subproblem. Given an n × n observed matrix with m observations, it requires O(mk2)
operations to form the Hessian matrices, and O(nk3) operations to solve each least squares
subproblem. Therefore, the time complexity of ALS is O(t1(mk2 + nk3)) where t1 is the
number of iterations.
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HOC LR-ALS LR-SGD

O(2`nm) O(t1(nk3 +mk2)) O(t2km)

Table 3: Time complexity of cycle-based method (HOC) and low rank modeling methods
(LR-ALS, LR-SGD). The HOC time only considers feature computation time. The
time for low rank modeling consists of total model construction time.

However, ALS can only be used when the loss function is the squared loss. To solve the
general form (14) with various loss functions, we use stochastic gradient descent (SGD). In
SGD, for each iteration, we pick an observed entry (i, j) at random, and only update the
ith row wT

i of W and the jth row hTj of H. The update rule for wT
i and hTj is given by:

wT
i ← wT

i − η
(
∂`oss (Aij , (WHT )ij)

∂wT
i

+ λwT
i

)
,

hTj ← hTj − η

(
∂`oss (Aij , (WHT )ij)

∂hTj
+ λhTj

)
,

where η is a small step size. Each SGD update costs O(k) time, and the total cost of
sweeping through all the entries is O(mk). Therefore, the time complexity for SGD is
O(t2mk), where t2 is the number of iterations taken by SGD to converge. Notice that
although the complexity of SGD is linear in k, it usually takes many more iterations to
converge compared with ALS, that is, t2 > t1. For other approaches to solve (14) for large
scale data, please see Yu et al. (2013).

On the other hand, all cycle-based algorithms introduced in Section 3 require time at
least O(nm), because they involve multiplication of m-sparse n× n matrices in model con-
struction. In particular, the time complexity for HOC-` methods is O(2`nm) (see Appendix
B for details), which is much more expensive than both ALS and SGD as shown in Table
3 (note that in real large-scale social networks, m > n� t1, t2, k).

4.5 Clustering Signed Networks

In this section, we see how to take advantage of the low-rank structure of signed networks
to find clusters. Based on weak balance theory, the general goal of clustering for signed
graphs is to find a k-way partition such that most within-group edges are positive and most
between-group edges are negative. One of the state-of-the-art algorithms for clustering
signed networks, proposed by Kunegis et al. (2010), extends spectral clustering by using
the signed Laplacian matrix. Given a partially observed signed network A, the signed
Laplacian L̄ is defined as D̄−A, where D̄ is a diagonal matrix such that D̄ii =

∑
j 6=i |Aij |.

By this definition, the clustering of signed networks can be derived by computing the top k
eigenvectors of L̄, say U ∈ Rn×k, and subsequently running the k-means algorithm on U to
get the clusters. This procedure is analogous to the standard spectral clustering algorithm
on unsigned graphs; the only difference being that the usual graph Laplacian is replaced by
the signed Laplacian.

However, there is no theoretical guarantee that the use of the signed Laplacian can
recover the true groups in a weakly-balanced signed network. To overcome this theoretical
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Algorithm 2: Clustering with Matrix Completion

Input: Adjacency matrix A, number of clusters k
Output: Cluster indicators

1. X? ← Completion(A) with any matrix completion algorithm.
2. U ← Top k eigenvectors of X?.
3. Run any feature-based clustering algorithm on U .

defect, we now give an algorithm which, under certain conditions, is able to recover the
real structure even with partial observations. The key idea is to first use a low-rank matrix
completion algorithm before performing the clustering. The following theorem shows that
the eigenvectors of the completed matrix possess a desirable property.

Theorem 19 Let Aij, (i, j) ∈ Ω, be entries observed from a complete k-weakly balanced
network A? with n nodes, and assume that the solution of (9) is X? with eigenvectors
U = [u1,u2, · · · ,uk]. If the assumptions in Theorem 18 are all satisfied, then the rows of
U , Ui,: = Uj,: iff i and j are in the same cluster in A?with probability at least 1− n−3.

Proof From Theorem 18, we know the recovered matrix X? will be A? with probability
≥ 1− n−3 if the assumptions hold. Suppose u1, . . . ,uk are the k eigenvectors of X?. From
the proof of Theorem 17, the eigenvectors will have the form in (11), which means that the
ith and jth rows of U , Ui,: = Uj,: if i and j are in the same cluster. Furthermore, when i and
j are in different clusters, A?i,: 6= A?j,:, so Ui,: cannot equal Uj,:. This proves the theorem.

Following this theorem, the true clusters can be identified from the eigenvectors of X?

when the assumptions in Theorem 18 hold. Therefore, perfect clustering is guaranteed in
this scenario.

More generally, we can use any matrix completion method to complete A. For example,
if we take SVP as the matrix completion approach, we can obtain a perfect clustering result
if all iterates of the algorithm are ν-incoherent. Under the latter condition, SVP can recover
A? exactly, so the property of eigenvectors in Theorem 19 can again be used. Our clustering
algorithm that uses matrix completion is summarized in Algorithm 2.

It should not be surprising that our clustering algorithm is superior to (signed) spectral
clustering. In some sense, our approach can be viewed as a spectral method, except that it
first fills in the missing links from the training data by doing matrix completion. This step
is simple yet crucial in signed networks as it overcomes the sparsity of the network. We
will see that our clustering algorithm outperforms the (signed) spectral clustering method
in Section 5.

5. Experimental Results

We now present experimental results for sign prediction and clustering using our proposed
methods. For sign prediction, we show that local methods, such as MOI and HOC (see
Section 3), yield better predictive accuracy when longer cycles are considered. In addition,
if we consider the global low-rank structure of the network, prediction via matrix factoriza-
tion further outperforms local methods in terms of both accuracy and running time. For
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clustering, we show that clustering via low rank model gives us significantly better results
than clustering via signed Laplacian. These results suggest the usefulness of the global
perspective on social balance.

5.1 Description of Data Sets

In our experiments, we consider both synthetic and real-life data sets. To construct syn-
thetic networks, we first consider a complete k-weakly balanced network A?, and sample
entries from A? to form the partially observed network A, with three controlling parameters:
sparsity s, noise level ε and sampling process D. The sparsity s controls the percentage
of edges we sample from A?. The noise level ε specifies the probability that the sign of a
sampled edge is flipped. The sampling process D specifies how the sampled entries are dis-
tributed. In particular, we will focus on two sampling distributions: uniform and power-law
distribution, denoted as Duni and Dpow respectively. Thus, a partially observed network A
can be described as A = A?(s, ε,D).

We also consider three real-life signed networks: Epinions, Slashdot, Wikipedia. Epin-
ions is a consumer review network in which users can either trust or distrust other con-
sumer’s reviews. Slashdot is a discussion web site in which users can recognize others as
friends or foes. Wikipedia is a who-votes-for-whom network in which users can vote for or
against others to be administrators in Wikipedia. These three data sets have previously
been used as benchmarks for sign prediction (Leskovec et al., 2010a; Chiang et al., 2011).
Table 4 shows the statistics of the three networks.

# nodes # edges + edges - edges
edges with

conflicting signs

Wikipedia 7,065 103,561 78.8% 21.2% 0.71%
Slashdot 82,144 549,202 77.4% 22.6% 0.64%
Epinions 131,828 840,799 85.0% 15.0% 0.57%

Table 4: Network Statistics

5.2 Evidence of Local and Global Patterns in Real Signed Networks

We have seen that cycles in signed networks exhibit structural balance according to balance
theory, and that we can make use of cycles for predictions (see Section 3). Indeed, cycles
tend to be balanced in real-life networks. In all three real networks we consider, Leskovec
et al. (2010b) found that balanced triads (i.e., 3-cycles) are much more likely to be observed
than unbalanced triads. Our study also shows that the local patterns (i.e., `-cycles) of the
three networks tend to be balanced. For each network A, we consider all patterns of 3-cycles
and 4-cycles in the symmetric network sign(A+AT ). For convenience, we use C`i to denote
the ith pattern (of signs) of an `-cycle. The patterns of these cycles are shown in Table 5.
We first calculate the probability that the configuration of a given `-cycle is C`i, denoted
P (C`i). We then randomly shuffle the signs of edges in the network and calculate the same
probability on the shuffled network, which is denoted P0(C`i). Thus P0(C`i) can be viewed
as the (expected) probability that C`i is observed if the signs of edges have no particular
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Epinions Slashdot Wikipedia
Type of cycle P (C`i) P0(C`i) S(C`i) P (C`i) P0(C`i) S(C`i) P (C`i) P0(C`i) S(C`i)

C31 : + + + 0.8259 0.5754 1107.0 0.7301 0.4502 425.2 0.6996 0.4806 335.4
C33 : + −− 0.0791 0.0706 72.3 0.1364 0.1260 23.5 0.0840 0.1105 -64.7
C41 : + + ++ 0.7538 0.4777 14464.7 0.6723 0.3435 5120.8 0.6080 0.3757 3557.6
C43 : + + −− 0.0911 0.0787 1210.6 0.1127 0.1286 -352.1 0.1007 0.1155 -344.1
C44 : + − +− 0.0065 0.0393 -4418.5 0.0138 0.0645 -1528.0 0.0139 0.0578 -1396.4
C46 : −−−− 0.0103 0.0008 8722.8 0.0263 0.0030 3147.7 0.0054 0.0022 505.4

C32 : + + − 0.0834 0.3493 -1218.4 0.1125 0.4111 -458.7 0.2052 0.3987 -302.5
C34 : −−− 0.0117 0.0047 220.9 0.0211 0.0127 56.9 0.0013 0.0102 8.5
C42 : + + +− 0.1174 0.3875 -14508.8 0.1413 0.4211 -4191.5 0.2473 0.4167 -2548.5
C45 : + −−− 0.0208 0.0160 1017.7 0.0337 0.0392 -212.0 0.0247 0.0320 -309.3

Balanced 3-cycles 0.9050 0.6459 1182.9 0.8665 0.5763 443.9 0.7835 0.5911 299.6
Balanced 4-cycles 0.8617 0.5965 14147.8 0.8250 0.5397 4234.7 0.7280 0.5513 2635.6

Table 5: Statistics of balanced and unbalanced `-cycles, ` = 3, 4 (note that
∑

i P (C`i) =∑
i P0(C`i) = 1). The first 6 cycles in the table are balanced while the last 4

cycles are unbalanced. The last two rows show that overall balanced 3-cycles and
4-cycles are much more than expected.

pattern. With the two probabilities, we calculate the “surprise” of observing C`i as follows:

S(C`i) :=
∆`P (C`i)−∆`P0(C`i)√
∆`P0(C`i)(1− P0(C`i))

,

where ∆` is the number of `-cycles in the network. The above quantity is basically the
number of standard deviations that the observed value of C`i differs from the expected
value of C`i in the shuffled network. See Leskovec et al. (2010b) for more discussion.

Table 5 shows the observed probability, the expected probability, and the surprise value
of each C`i in three networks. Although it is not true that each of the balanced cycles is
much more likely to appear, the last two rows in Table 5 show that differences between
P (C) and P0(C) and the surprise values of overall balanced 3- and 4-cycles are quite large.
This implies that given an arbitrary 3- or 4-cycle in these networks, it is very likely to be
balanced. Overall, we find that local balanced patterns are somewhat significant.

On the other hand, in Section 4, we have seen that low rank structure emerges when
we theoretically examine weakly balanced networks. We now show that real networks tend
to exhibit low-rank structure to a much greater extent compared to random networks.
As a baseline, for each real network we create two corresponding random networks for
comparison: the first one is the (symmetric) ER network generated from the Erdös-Rényi
model (Erdös and Rényi, 1960) that preserves the sparsity and the ratio of positive to
negative edges of the compared real network. The second one is the shuffled network with
the same network structure as the compared real network, except that we randomly shuffle
the signs of edges.

The experiment is conducted as follows. We first derive the low-rank complete matrix
X? by running matrix completion on the observed entries Aij . Then, we look at the relative
error on the observed set Ω:

errΩ =
‖W ◦ (X? −A)‖F

‖A‖F
,
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where Wij = 1 if (i, j) ∈ Ω and Wij = 0 otherwise, and ◦ denotes element-wise multiplica-
tion. Clearly, smaller errΩ indicates better approximation for the observed entries.

In our experiment, we use matrix factorization for matrix completion, with ranks k =
1, 2, 4, 8, 16 and 32. For each network (real networks and their corresponding random net-
works), we complete the network with different k values and compute errΩ. The result is
shown in Figure 2. Compared to the two random networks, the three real-life networks
achieve much smaller errΩ for each small k. This suggests that low-rank matrices provide a
better approximation of the observed entries for real-life networks.
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Figure 2: Relative error on Ω, the observed entries, between adjacency matrix and com-
pleted matrix, for real-life networks versus random networks. Real-life networks
achieve much smaller relative error for every k as compared with random net-
works.

5.3 Sign Prediction

We now compare the performance of our proposed methods for sign prediction. As intro-
duced in Section 3, there are two families of cycle-based methods: one based on measures of
imbalance (MOI), and the other based on the supervised learning using higher order cycles
(HOC). Both families depend on a parameter ` ≥ 3 that denotes the order of the cycles
that the method is based on. For MOI, we consider all ` less than 10 as well as ∞ (recall
that in this case, MOI becomes the Katz measure), and for HOC we consider ` = 3, 4, 5.
Note that the set of features used by HOC-(` + 1) is a strict superset of the features used
by HOC-`.

We also consider two global approaches for low rank matrix completion—Singular Value
Projection and matrix factorization from Sections 4.2 and 4.3 respectively. The SVP ap-
proach (denoted as LR-SVP) is chosen to demonstrate that perfect recovery can be achieved
if the observations are uniformly distributed. For matrix factorization, we consider the ALS
method that solves problem (13), as well as SGD methods that solve the general problem
(14) with sigmoid loss and square-hinge loss, defined in (15). We denote these methods as
LR-ALS, LR-SIG and LR-SH, respectively.
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5.3.1 Results on Synthetic Data Sets

We first compare all categories of approaches on synthetic data sets. We choose LR-SVP,
LR-ALS, MOI-∞ and HOC-3 as representatives of the two approaches of low rank matrix
completion, MOI-based, and HOC-based methods respectively. We consider the underlying
network A? to be a complete 5-weakly balanced network, where the five clusters have sizes
100, 200, 300, 400 and 500. Instead of observing all of A?, we assume that we only observe a
partial network A using three procedures: uniform sampling, uniform sampling with noise,
and sampling with power-law distribution. For each algorithm, we input the observed entries
as training data and calculate the sign prediction accuracy on the rest of the entries.

Uniform sampling: In this scenario, we generate several observed networks A =
A?(s, 0,Duni). We vary s from 0.001 to 0.1 and plot the prediction accuracy in Figure 3a.
Under this setting, LR-SVP and LR-ALS outperform the cycle-based methods. We observe
that MOI-∞ performs the worst with accuracy only 50%-70%. However, if we repeat the
same experiment substituting A? with A?2, where A?2 is a complete strongly balanced network
whose two groups have size 1000, we observe that MOI and global methods perform alike
as shown in Figure 3b. This is because MOI uses cycle-based measurements to make more
cycles become balanced. This prediction policy is most appropriate when k = 2 (that is,
the underlying network A? has strong balance), but performs poorly when the underlying
network is weakly balanced (i.e., more than two groups). HOC-3 works much better than
MOI-∞ since it learns a classifier from cycle-based features rather than simply making
cycles balanced, but its accuracy drops dramatically when s is less than 0.05. On the other
hand, both LR-SVP and LR-ALS show high accuracy for all s ≥ 0.01. In particular, LR-
SVP can achieve 100% accuracy when s > 0.07, which reconfirms the theoretical recovery
guarantee stated in Theorem 18. Moreover, LR-ALS can also recover the ground truth, an
observation that is consistent with previous results.

Uniform sampling with noise: To make the synthetic data more similar to real data, we
further add noise to the observations. We generate observed networks A = A?(0.1, ε,Duni),
where ε varies from 0.01 to 0.25. The result is shown in Figure 3c. We can see that
global methods are still clearly better than cycle-based methods when noise level is higher.
Moreover, LR-SVP perfectly recovers A? when the noise level ε < 0.05, and LR-ALS also
achieves perfect recovery with a smaller ε.

Sampling with power-law distribution: As Sections 4.1 and 4.2 pointed out, the exact
recovery guarantees of convex relaxation and SVP for matrix completion crucially rely on
the assumption that observed entries are uniformly sampled. However, in most real networks
(for example, Slashdot in Kunegis et al. 2009), the degree distribution of observed entries
follows a power law. Therefore, we examine how the approaches perform on power-law
distributed networks. The power-law distributed networks are generated using the Chung-
Lu-Vu (CLV) model proposed by Chung et al. (2004), which allows one to generate random
graphs with arbitrary expected degree sequence. Similar to the uniform sampling case, we
perform the sign prediction task on A = A?(s, 0,Dpow) varying s from 0.001 to 0.1, and plot
the prediction accuracy in Figure 3d. We can see that MOI-∞ still has poor performance
for weakly balanced graphs. However, unlike the uniform sampling case, LR-SVP has lower
accuracy rate compared to HOC-3 when s < 0.1. On the other hand, LR-ALS still performs
better than all other methods on power-law distributed graphs.

1199



Chiang, Hsieh, Natarajan, Dhillon and Tewari

10
−2

10
−1

0.5

0.6

0.7

0.8

0.9

1

Fraction of observed entries

A
c
c
u

ra
c
y

 

 

LR−SVP

LR−ALS

HOC−3

MOI−∞

(a) Uniformly sampled without noise (k =
5)

10
−3

10
−2

10
−1

0.5

0.6

0.7

0.8

0.9

1

Fraction of observed entries

A
c
c
u

ra
c
y

 

 

LR−SVP

LR−ALS

MOI−∞

(b) Uniformly sampled without noise on
balanced networks (k = 2)

0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.6

0.7

0.8

0.9

1

Fraction of noisy entries

A
c
c
u

ra
c
y

 

 

LR−SVP

LR−ALS

HOC−3

MOI−∞

(c) Uniformly sampled with noise (k = 5)

10
−2

10
−1

0.5

0.6

0.7

0.8

0.9

1

Fraction of noisy entries

A
c
c
u

ra
c
y

 

 

LR−SVP

LR−ALS

HOC−3

MOI−∞

(d) Power-law distributed networks (k = 5)

Figure 3: Sign prediction accuracy of local and global methods on synthetic data sets. On
(strongly) balanced networks (3b), MOI-∞ is seen to perform as well as low
rank modeling methods (LR-SVP and LR-ALS). However, in weakly balanced
networks, global methods LR-SVP and LR-ALS outperform cycle-based methods
such as MOI-∞ and HOC-3 (supervision on high order cycles). In addition, low
rank modeling with matrix factorization (LR-ALS) is more robust than singular
value projection (LR-SVP) when the observations are sampled from a power-law
distribution.

From results on synthetic data shown in Figure 3, we can conclude that global methods
generally do better than local methods, and the low rank model with matrix factorization
(LR-ALS) performs the best in most cases, even when observed entries are not uniformly
distributed.

5.3.2 Results on Real-life Data Sets

Now we further evaluate our sign prediction methods on three real-life networks. To begin
with, we evaluate and compare MOI methods using a leave-one-out type methodology:
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Figure 4: Accuracy of MOI-based methods for cycle lengths ` = 3, 4, 5, 10. These plots show
the accuracy of MOI-` methods for edges with embeddedness at least T for various
thresholds T . We see that the difference in the performance of MOI-3 and higher
order methods is larger for edges with lower embeddedness. We also see that the
improvement obtained by going beyond order 5 is not very significant.

each edge in the network is successively removed and the method tries to predict the sign
of that edge using the rest of the network. Figure 4 shows the accuracy of MOI based
methods. Note that the accuracy is shown for edges with embeddedness under a certain
threshold. First, we see that the accuracy is a non-decreasing function of the embeddedness
threshold. Next, it is clear that higher-order methods perform significantly better than the
MOI-3 (triangle-based) method. Finally, the performance boost is larger for edges with low
embeddedness. This is expected as edges of low embeddedness by definition do not have
many common neighbors for their end-points, and higher-order cycles have relatively better
information for such edges. We also observe from our experiments that beyond ` = 5, the
performance gain is not very significant.

Next, we compare HOC methods with various ` to see how much high order cycles can
benefit us in supervision. We resort to 10-fold cross-validation: we (randomly) created ten
disjoint test folds each consisting of 10% of the total number of edges in the network. For
each test fold, the remaining 90% of the edges serve as the training set. (For a given test fold,
the feature extraction and logistic model training are done on a graph with the test edges
removed, not just the signs.) To evaluate HOC methods, we consider not only prediction
accuracies but also false-positive rates. We report accuracies as well as false-positive rates
by averaging them over the ten folds. As shown in Table 6, in all the data sets, there is a
small improvement in accuracy by using higher order cycles (HOC-5). The false positive
rate, however, reveals a more interesting phenomenon in Figure 5. Indeed, higher order
methods (such as HOC-5) significantly reduce the false positive rate as compared to HOC-
3. However Figure 5 shows that, unlike MOI based methods, edge embeddedness does not
seem to affect the decrease in false positive rate for HOC methods. We see this trend across
all the data sets.

At this point, we see that for cycle-based methods, considering higher order cycles
benefits the accuracy of sign prediction and lowers the false positive rate. Furthermore, the
results are consistent across the three diverse networks. These results confirm the intuition
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Figure 5: False positive rates of higher order cycle (HOC) Methods for ` = 3, 5. These plots
show the false positive rate of HOC-` methods for edges with embeddedness at
least T for various thresholds T . We see that considering higher order cycles has
the benefit of significantly reducing false-positives while simultaneously achieving
slightly better overall accuracy (refer to Table 6). However, unlike what we see
for MOI methods, the improvement here does not seem to depend strongly on
edge embeddedness. The false positive rates for HOC-4 are very similar to that
of HOC-5 and hence are not shown for clarity.

that getting more global information improves quality of prediction, and motivate us to
consider the global structure of networks.

Now we turn our attention to low rank modeling approaches. We have seen that LR-SVP
does not perform well under power-law distributions of observed relationships in synthetic
networks (see Figure 3d), so we consider the more robust matrix factorization approach
for solving the matrix completion problem, including LR-ALS, LR-SIG and LR-SH, for
experiments on real data sets. Again, we use 10-fold cross validation setting, and report
the average prediction accuracy for each data set in Table 6. From the table, we observe
that global methods clearly outperform cycle-based methods. In particular, we observe that
HOC-5 only improves HOC-3 by less than 1.5%, while global methods consistently improve
the accuracy of HOC-5 by more than 2% over all data sets. In addition, LR-SIG and LR-
SH further improve the accuracy of LR-ALS. This shows that the sigmoid and square-hinge
losses are more suitable for sign prediction, which supports the discussion in Section 4.3.
On real data sets, we do not have prior information about the target rank k. However,
Figure 6 shows that the performance of LR-based methods is not sensitive to k.

In Figure 7, we further select a representative of each category, MOI-10, HOC-5 and
LR-ALS, and show their performances with different levels of edge embeddedness (LR-SIG
and LR-SH perform similar to LR-ALS in all data sets). In addition, we also compare our
methods with the methods A sym exp and A exp proposed by Kunegis et al. (2009), which
predicts the sign of edges using matrix exponential with low rank approximation.34 For
LR-ALS, A sym exp and A exp we choose the rank k = 40.

3. The method A sym exp considers the symmetric matrix A sym = A + AT and its eigen-decomposition
UΣUT , and computes the matrix exponential of A sym with rank-k approximation, Uk exp(Σk)UT

k .
4. They incorrectly refer to A exp as the exponential of A as they in fact compute A exp as Uk exp(Σk)V T

k ,
where UkΣkV

T
k is the best rank-k approximation of A.
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Epinions Slashdot Wikipedia

MOI-3 0.5539 0.3697 0.7456
MOI-10 0.8497 0.7850 0.8220

HOC-3 0.9014± 0.0013 0.8303± 0.0018 0.8424± 0.0063
HOC-5 0.9080± 0.0012 0.8469± 0.0015 0.8605± 0.0049

LR-ALS 0.9437± 0.0007 0.8774± 0.0018 0.8814± 0.0043
LR-SIG 0.9448± 0.0009 0.8806± 0.0017 0.8839± 0.0049
LR-SH 0.9437± 0.0015 0.8835± 0.0015 0.8810± 0.0042

Table 6: The sign prediction accuracy for cycle-based methods (MOI and HOC) and low
rank modeling methods (LR-ALS, LR-SIG and LR-SH) along with standard de-
viation if the accuracy is averaged by 10-fold cross validation. Note that for MOI
methods we report leave-one-out accuracy. We can see that the low rank modeling
approaches are better than cycle-based methods.
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Figure 6: Sign prediction accuracy for low rank modeling with matrix factorization (LR-
ALS) with different ranks. We see that LR-ALS is quite robust to the rank.

From Figure 7 we see that matrix exponential and MOI methods perform alike as one
would expect. HOC learns the weights carefully to determine which configurations of cycles
are more important, and therefore performs better than the former two methods that use
fixed weights. Also, one might expect that cycle-based approaches should perform better on
edges with higher embeddedness because of the relatively richer cycle information available.
However, LR-ALS achieves higher prediction accuracy regardless of the embeddedness. All
the above results show that global methods are more effective than local methods.

5.3.3 Running Time Comparison

As discussed in Section 4.3, low rank modeling with matrix factorization is more efficient
than cycle-based algorithms in terms of time complexity, which we now confirm. The
running times are summarized in Table 7. To show the scalability of matrix factorization
methods, we construct a large-scale data set Cluster10, which contains 1.1 million nodes
and 120 million edges (about 100 times more than Epinions). Cluster10 is constructed by
uniformly sampling edges from a 10-weakly balanced network, in which clusters have sizes
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Figure 7: Sign prediction accuracy of various methods with different levels of embedded-
ness, along with standard deviation if the accuracy is averaged by 10-fold cross
validation. For MOI methods we report leave-one-out accuracy. These plots show
the accuracy for edges with embeddedness at least T . The A sym exp method
in Epinions cannot achieve accuracy 80% for all embeddedness levels so it is not
shown in the plot. We can see that LR-ALS consistently achieves the highest
accuracy for all thresholds T .

HOC-3 HOC-4 HOC-5 LR-ALS LR-SGD

Wikipedia 18.08 74.52 462.92 2.26 2.41
Slashdot 133.4 1,936.0 > 10, 000 17.4 24.7
Epinions 560.64 6,156.8 > 10, 000 28.67 37.2
Cluster10 > 10, 000 > 10, 000 > 10, 000 455.1 1,152

Table 7: Running time (in seconds) for low rank modeling methods (LR-ALS and LR-SGD)
and supervision on high order cycles (HOC) on real data sets and a 1.1 million
node synthetic data Cluster10. We see that LR methods with matrix factorization
are clearly more efficient than cycle-based algorithms.

20000, 40000, . . . , 200000. For matrix factorization approach, we report the time needed
to solve the model by ALS (with square loss) and SGD (with sigmoid and square-hinge
losses). The time LR-SGD is thus the average time to solve LR-SIG and LR-SH models.
For HOC methods the training time is dominated by the feature construction step, thus we
only report the time for computation of features. Therefore, the reported time for HOC is
an underestimate of the time required to construct the HOC model; even then we can see
that the time required by LR-ALS, LR-SIG and LR-SH is much lower than HOC methods.

In conclusion, for the sign prediction problem, the low rank model with matrix factor-
ization is clearly the best method in terms of accuracy and scalability.

5.4 Clustering

We now show that our clustering approach, which completes the low-rank structure of signed
networks before performing clustering, outperforms spectral clustering based on the signed
Laplacian (Kunegis et al., 2010). We conduct experiments on synthetic data generated
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from weakly balanced networks (note that we do not have ground truth for clustering in
the real-life data sets). We consider a 10-weakly balanced network A? where size of each
group is 100, and sample entries from A? using uniform sampling and uniform sampling
with noise.

To measure the performance of clustering, we calculate the number of edges that satisfy
the ground-truth clustering, which is defined by∑

i,j:si=sj

I(s̄i = s̄j) +
∑

i,j:si 6=sj

I(s̄i 6= s̄j). (16)

where s1, . . . , sn denote the ground-truth clustering assignment for each node, and s̄1, . . . , s̄n
are the clustering results given by the clustering algorithm.

Following the procedure outlined in Section 5.3, in the uniform sampling case, we con-
sider the networks A = A?(s, 0,Duni) with s ∈ [0.01, 0.06], while in sampling with noise case
we consider networks A = A?(0.05, ε,Duni) with ε ∈ [0.01, 0.08]. For each observed network,
we apply Algorithm 2 (see Section 4.5) and clustering via the signed Laplacian, and evaluate
clustering results using (16). The results of these two scenarios are shown in Figure 8. In
both the scenarios, our proposed clustering approach is significantly better than clustering
based on the signed Laplacian, and shows that recovering the low-rank structure of signed
networks leads to improved clustering results.
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Figure 8: Clustering partially observed synthetic data - clustering with matrix completion
using SVP (LR-SVP) performs significantly better than clustering with the signed
Laplacian.

6. Related Work

Signed networks have been studied since the early 1950s. Harary and Cartwright were the
first to mathematically study structural balance. They defined balanced triads and proved
the global structure of balanced signed networks (Harary, 1953; Cartwright and Harary,
1956). Davis (1967) further generalized the balance notion to weak balance by allowing
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triads with all negative edges, and showed that weakly balanced graphs have the global
structure of mutual antagonistic groups.

Though theoretical studies of signed networks have been conducted for a long time, it
was not until this decade that analysis of real signed networks could be done at a large
scale as large real networks have become more accessible recently. For example, Kunegis
et al. (2009) performed several analysis tasks on Slashdot, and Leskovec et al. (2010a,b)
studied the local and global structure of three real signed networks. They designed several
computational experiments to justify that the structure of these signed networks match
balance theory.

In this paper, we focused on problems in signed networks. However, these problems have
their counterparts in unsigned networks. For instance, structural link prediction in unsigned
networks corresponds to the sign prediction problem. Structural link prediction has been
well explored, and it is usually solved by computing a similarity measure between nodes
(Liben-Nowell and Kleinberg, 2007), such as those proposed by Katz (1953) and Adamic and
Adar (2003). The sign prediction problem, however, was not formally considered until the
work by Guha et al. (2004), in which they develop a trust propagation framework to predict
trust or distrust between entities. More recently, Kunegis et al. (2009, 2010) reconsidered
this problem by using various similarity functions and kernels such as matrix exponential
and signed Laplacian. Leskovec et al. (2010a) proposed a machine learning formulation of
this problem, arguing that learning from only local triangular structure of edges can achieve
reasonable accuracy.

Sign prediction using our global method is closely related to the low-rank matrix com-
pletion problem. In the last five years, there has been substantial research studying exact
recovery conditions for this problem (Candés and Recht, 2008; Candés and Tao, 2009), and
algorithms with theoretical guarantees have also been proposed, such as SVT (Cai et al.,
2010) and SVP (Jain et al., 2010). While the matrix completion problem has been consid-
ered mostly in collaborative filtering, our low rank model arises naturally from the weak
balance of signed networks.

Clustering is another fundamental problem in network analysis. For unsigned networks,
there are several proposed algorithms that have been shown to be effective, such as clustering
via graph Laplacian (Ng et al., 2001), modularity (Newman, 2006) and multilevel approaches
(Dhillon et al., 2007). However, most of these approaches cannot be directly extended to
signed networks since weak balance theory does not apply to unsigned networks. As a result,
researchers have tried to tailor unsigned network clustering algorithms in order to make them
applicable to signed networks. For instance, Doreian and Mrvar (1996) proposed a local
search strategy which is similar to the Kernighan-Lin algorithm (Kernighan and Lin, 1970).
Starting with an initial clustering assignment, it tries to move nodes one by one to get a more
preferable clustering. Yang et al. (2007) proposed an agent-based method which basically
conducts a random walk on the graph. Kunegis et al. (2010) generalized spectral algorithms
to signed networks. They proposed a spectral approach using the signed Laplacian, and
showed that partitioning signed networks into two groups using the signed Laplacian kernel
is analogous to considering ratio cut on unsigned networks. Anchuri and Magdon-Ismail
(2012) proposed hierarchical iterative methods that solve 2-way signed modularity objectives
using spectral relaxation at each hierarchy. Chiang et al. (2012) proposed graph kernels for
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signed network clustering, and showed that the multilevel framework can be extended to
this problem.

Another line of research related to signed graph clustering problem is correlation clus-
tering. The goal of correlation clustering is the following: given n objects where certain
pairs of objects are labelled as similar and certain pairs as dissimilar, find a clustering that
maximizes the number of similar pairs within clusters, plus the number of dissimilar pairs
between clusters. The problem was first considered by Bansal et al. (2004), who proved
that finding the optimal correlation clustering is NP-hard, and proposed two approximation
algorithms to maximize the number of edges that satisfy “agreement” (a positive within-
cluster edge or a negative between cluster-edge) and to minimize the number of edges that
do not, under the special case that all pairwise label information is given. Bounds for gen-
eral correlation clustering setting have been obtained by Demaine et al. (2006). On the
other hand, some researchers have also considered the correlation clustering problem from
the statistical learning theory viewpoint. For example, Joachims and Hopcroft (2005) give
error bounds for the problem if only partial pairs are observed. Recently, Cesa-Bianchi
et al. (2012) proposed a method for sign prediction by learning a correlation clustering
index. They consider three types of learning models: batch, online and active learning, and
provide theoretical bounds for prediction mistakes under each setting. Though there is no
social balance notion in the correlation clustering problem, it can be viewed as finding a
clustering of signed graph where nodes correspond to objects, and positive/negative edges
correspond to similar/dissimilar pairs. Therefore, our proposed method can also be applied
to the problem of correlation clustering.

7. Conclusions and Future Work

In this paper, we studied the usefulness of social balance in signed networks, with two fun-
damental applications: sign prediction and clustering. Starting from a local view of social
balance, we developed sign prediction methods based on length-` cycles. The predictive ac-
curacies are improved if longer cycles are taken into consideration, suggesting that a broader
view of local patterns helps in sign prediction. We then considered the global perspective on
social balance, and showed that the adjacency matrices of (weakly) balanced networks are
low rank. Based on this observation, we modeled the sign prediction problem as a low-rank
matrix completion problem. We discussed three approaches to matrix completion: convex
relaxation, singular value projection, and matrix factorization. In addition, we applied this
low rank modeling technique to the clustering problem. In experiments, we observe that sign
prediction via matrix factorization not only outperforms local methods (MOI and HOC),
but requires much less running time. Clustering results are also more favorable via the ma-
trix completion approach in comparison with the existing signed Laplacian approach. All
of these results consistently demonstrate the effectiveness of the global viewpoint of social
balance.

For future work, one possible direction is to explore analysis tasks for heterogeneous
signed networks. Since there are different types of entities in heterogeneous networks,
currently there are no clear answers to questions such as: do balance relationships exist on
such networks? How do we quantitatively measure balance if balance patterns exist? How
is balance at a local level related to the global structure? Furthermore, another possible

1207



Chiang, Hsieh, Natarajan, Dhillon and Tewari

direction is to examine other theories for directed signed networks. Leskovec et al. (2010a,b)
has found evidence that status theory holds in real signed networks, but that the patterns
conforming to status theory are quite different from those conforming to balance theory.
Thus, it is natural to ask how to design algorithms by pursuing global patterns conforming
to status theory. These interesting directions are worth exploring in future research.

Acknowledgments

We gratefully acknowledge the support of NSF grants CCF-0916309, CCF-1117055, and
DOD Army grant W911NF-10-1-0529. Most of the contribution of Ambuj Tewari to this
work occurred while he was a postdoctoral fellow at the University of Texas at Austin.

Appendix A. Proofs

Proof of Theorem 10 One direction is trivial. If A is unbalanced then there is an
unbalanced simple cycle. However, any simple cycle is obviously a cycle and hence the sum
in (6) will be strictly positive.

For the other direction, suppose µ∞(A) > 0. This implies there is an unbalanced cycle
σ in the graph. Decompose the unbalanced cycle into finitely many simple cycles. We will
be done if we could show that one of these simple cycles has to be unbalanced. It is easy
to see why this is true: if all of these simple cycles were balanced, they all would have had
an even number of negative edges, but then the total number of negative edges in σ could
not have been odd.

Proof of Lemma 11 Define the sets of `-cycles,

C+
` (i, j) := {σ ∈ C`

(
A+(i,j)

)
: σ includes (i, j)}

C−` (i, j) := {σ ∈ C`
(
A−(i,j)

)
: σ includes (i, j)} ,

that include the edge (i, j). Note that, since A+(i,j) and A−(i,j) only differ in the sign of the
edge (i, j), we have,

C`

(
A+(i,j)

)
\C+

` (i, j) = C`

(
A−(i,j)

)
\C−` (i, j) .

Thus, we have,∑
σ∈C`(A−(i,j))

1 [σ]−
∑

σ∈C`(A+(i,j))

1 [σ]

=
∑

σ∈C−
` (i,j)

1 [σ] +
∑

σ∈C`(A−(i,j))\C−
` (i,j)

1 [σ]−
∑

σ∈C+
` (i,j)

1 [σ]−
∑

σ∈C`(A+(i,j))\C+
` (i,j)

1 [σ]

=
∑

σ∈C−
` (i,j)

1 [σ]−
∑

σ∈C+
` (i,j)

1 [σ] . (17)

Now cycles in C−` (i, j) are in 1-1 correspondence with paths π in P`−1 (i, j) of length `− 1,
in the original graph A, that go from i to j. Moreover, σ ∈ C−` (i, j) is unbalanced iff
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the corresponding path in P`−1 (i, j) has an even number of −1’s. Similarly, σ ∈ C+
` (i, j)

is unbalanced iff the corresponding path in P`−1 (i, j) has an odd number of −1’s. Thus,
continuing from (17):∑

σ∈C−
` (i,j)

1 [σ]−
∑

σ∈C+
` (i,j)

1 [σ]

=
∑

π∈P`−1(i,j)

1 [π has even no. of −1’s]−
∑

π∈P`−1(i,j)

1 [π has odd no. of −1’s]

=
∑

i1,i2,...,i`−2

Ai,i1 ·Ai1,i2 · . . . ·Ai`−2,j =
(
A`−1

)
i,j

,

where the second equality is true because A only has ±1, 0 entries.

Appendix B. Supervised Higher-Order Cycle (HOC) methods

We begin by describing the approach used by Leskovec et al. (2010a). The features for an
edge are based on the sign configurations of triads it is a part of. Fix an edge e = (i, j).
Consider an arbitrary common neighbor (in an undirected sense) k of i and j. Links between
i and k can be in 4 possible configurations:

i
+→ k i

+← k

i
−→ k i

−← k .

Similarly, there are 4 possible configurations for links between k and j. Thus, we can get
a total of 16 features for the edge e by considering the number of common neighbors k in
each of the 4 × 4 = 16 configurations. Though we draw 4 configurations separately, links
with different directions can simultaneously exist between i and j, possibly with different
sign.

These configurations corresponds to features for a supervised variant of the k-cycle
method for k = 3. Let A+ and A− be the matrices of positive and negative edges such that
A = A+ + A−. In terms of matrix powers, these sixteen features are nothing but the (i, j)
entries in the sixteen matrices:

Ab1 ·Ab2 Ab1 ·
(
Ab2
)T (

Ab1
)T
·Ab2

(
Ab1
)T
·
(
Ab2
)T

, (18)

where b1, b2 ∈ {±}, and (Ab1)T denotes the transpose of Ab1 . Note that we have described
the features of a directed edge e = (i, j).

B.1 Using Higher-order Cycles

A criticism against using only these triangle-based features is that there could be many
people in the social network who do not share friends. In fact, this is the case in most of the
networks used by Leskovec et al. (2010a). The reason their method is able to predict well
on such pairs is that they additionally use seven other “degree-type” features like in-degree
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and out-degree (and their signed variants). Thus, the prediction for an edge with zero
emdeddedness (embeddedness refers to the number of common neighbors of the vertices of
an edge) relies completely on the degree-based features. We can additionally incorporate
features from higher-order cycles. Generalizing the construction (18), we can define 64
fourth-order features (corresponding to 4-cycles in the graph) of an edge (i, j) as the (i, j)
entries in the matrices: (

Ab1
)t1
·
(
Ab2
)t2
·
(
Ab3
)t3

,

where bi ∈ {±} indicates whether we look at the positive or negative part of A and ti ∈
{T, 1} indicates whether or not we transpose it. There are 4 possibilities for each bi, ti pair,
resulting in a total of 4× 4× 4 = 64 possibilities.

By now the reader can guess the construction of features of a general order ` ≥ 3. For
the edge (i, j), they will be the (i, j) entries in the 4`−1 matrices(

Ab1
)t1
·
(
Ab2
)t2

. . . ·
(
Ab`−1

)t`−1

,

with bi ∈ {±}, ti ∈ {T, 1}.
Note that the number of features is exponential in `, and therefore it is not feasible to

obtain features from arbitrarily long cycles. We use ` ≤ 5 for supervised HOC methods in
our experiments that are presented in Section 5.

B.2 Reducing the Number of Features

The number of features can quickly become unmanageable, and computationally infeasible,
as soon as ` is beyond 5. While dimensionality of the feature space may be the primary
concern, the combinatorial nature of the features also raises the following intuitive concern:
the interpretability of features rendered by high-order cycles, say when ` = 6, composed
of different signs and directions, is a challenge. For example, it is intuitively hard to

appreciate the difference between the two walks i
+→ k1

+→ k2
−→ k3

+→ k4
+→ j and

i
+→ k1

+→ k2
−← k3

+→ k4
+→ j.

With this realization, one way to quickly reduce the number of features, yet retain the
information in longer cycles, is to consider the underlying undirected graph, ignoring the
directions. In particular, the `th order features will be from the matrices

Ab1 ·Ab2 . . . ·Abk−1 ,

with bi ∈ {±}. Note that since we are considering the undirected graph, we ensure that
the features are symmetric by summing features of the form Ab1Ab2 and Ab2Ab1 . Thus
the number of `th order features to compute is reduced to O(2`) from O(4`). Though the
number of features is still exponential in `, the construction of features becomes easier for
small values of `.

We note that another way to avoid dealing with too many features is to use a kernel
instead. A kernel computes inner products in feature space without explicitly constructing
the feature map. One can then use off-the-shelf SVM classifiers to perform the classification.
We leave this promising approach of directly defining a kernel on pairs of nodes of a graph
and using it for link prediction to future work.
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B.3 Classifier

We use a simple logistic regression where the imbalance of an edge is modeled as a linear
combination of the features, which are imbalances in cycles of various lengths and charac-
teristics themselves. Let V be the set of vertices in the network and Φ : V ×V → Rp denote
the feature map. Then,

P (Aij = +1) =
1

1 + exp (−w0 − 〈w,Φ(i, j)〉)
,

using which logistic regression is used to learn w0 and the weight vector w = [w1 · · ·wp]T ∈
Rp. The prediction of any query (i, j) is then given by sign(P (Aij = +1)− 0.5).
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