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Abstract

One of the most widely used techniques for data clustering is agglomerative clustering. Such
algorithms have been long used across many different fields ranging from computational
biology to social sciences to computer vision in part because their output is easy to interpret.
Unfortunately, it is well known, however, that many of the classic agglomerative clustering
algorithms are not robust to noise. In this paper we propose and analyze a new robust
algorithm for bottom-up agglomerative clustering. We show that our algorithm can be
used to cluster accurately in cases where the data satisfies a number of natural properties
and where the traditional agglomerative algorithms fail. We also show how to adapt our
algorithm to the inductive setting where our given data is only a small random sample of
the entire data set. Experimental evaluations on synthetic and real world data sets show
that our algorithm achieves better performance than other hierarchical algorithms in the
presence of noise.
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1. Introduction

Many data mining and machine learning applications ranging from computer vision to
biology problems have recently faced an explosion of data. As a consequence it has become
increasingly important to develop effective, accurate, robust to noise, fast, and general
clustering algorithms, accessible to developers and researchers in a diverse range of areas.

One of the oldest and most commonly used methods for clustering data, widely used
in many scientific applications, is hierarchical clustering (Gower, 1967; Bryant and Berry,
2001; Cheng et al., 2006; Dasgupta and Long, 2005; Duda et al., 2000; Gollapudi et al.,
2006; Jain and Dubes, 1981; Jain et al., 1999; Johnson, 1967; Narasimhan et al., 2006).

∗. A preliminary version of this article appeared under the title Robust Hierarchical Clustering in the
Proceedings of the Twenty-Third Conference on Learning Theory, 2010.

c©2014 Maria-Florina Balcan, Yingyu Liang, Pramod Gupta.



Balcan, Liang and Gupta

In hierarchical clustering the goal is not to find a single partitioning of the data, but
a hierarchy (generally represented by a tree) of partitions which may reveal interesting
structure in the data at multiple levels of granularity. The most widely used hierarchical
methods are the agglomerative clustering techniques; most of these techniques start with
a separate cluster for each point and then progressively merge the two closest clusters
until only a single cluster remains. In all cases, we assume that we have a measure of
similarity between pairs of objects, but the different schemes are distinguished by how
they convert this into a measure of similarity between two clusters. For example, in single
linkage the similarity between two clusters is the maximum similarity between points in
these two different clusters. In complete linkage, the similarity between two clusters is the
minimum similarity between points in these two different clusters. Average linkage defines
the similarity between two clusters as the average similarity between points in these two
different clusters (Dasgupta and Long, 2005; Jain et al., 1999).

Such algorithms have been used in a wide range of application domains ranging from
biology to social sciences to computer vision mainly because they are quite fast and the
output is quite easy to interpret. It is well known, however, that one of the main limitations
of the agglomerative clustering algorithms is that they are not robust to noise (Narasimhan
et al., 2006). In this paper we propose and analyze a robust algorithm for bottom-up
agglomerative clustering. We show that our algorithm satisfies formal robustness guarantees
and with proper parameter values, it will be successful in several natural cases where the
traditional agglomerative algorithms fail.

In order to formally analyze correctness of our algorithm we use the discriminative frame-
work (Balcan et al., 2008). In this framework, we assume there is some target clustering
(much like a k-class target function in the multi-class learning setting) and we say that an
algorithm correctly clusters data satisfying property P if on any data set having property P ,
the algorithm produces a tree such that the target is some pruning of the tree. For example
if all points are more similar to points in their own target cluster than to points in any
other cluster (this is called the strict separation property), then any of the standard single
linkage, complete linkage, and average linkage agglomerative algorithms will succeed.1 See
Figure 1 for an example. However, with just tiny bit of noise, for example if each point has
even just one point from a different cluster that it is similar to, then these standard algo-
rithms will all fail (we elaborate on this in Section 2.2). See Figure 2 for an example. This
brings up the question: is it possible to design an agglomerative algorithm that is robust
to these types of situations and more generally can tolerate a substantial degree of noise?
The contribution of our paper is to provide a positive answer to this question; we develop a
robust, linkage based algorithm that will succeed in many interesting cases where standard
agglomerative algorithms will fail. At a high level, our new algorithm is robust to noise in
two different and important ways. First, it uses more global information for determining the
similarities between clusters; second, it uses a robust linkage procedure involving a median
test for linking the clusters, eliminating the influence of the noisy similarities.

1. We note however that the Ward’s minimum variance method, another classic linkage based procedure,
might fail under the strict separation property in the presence of unbalanced clusters. We provide a
concrete example in Appendix C.
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1.1 Our Results

In particular, in Section 3 we show that if the data satisfies a natural good neighborhood
property, then our algorithm can be used to cluster well in the tree model, that is, to
output a hierarchy such that the target clustering is (close to) a pruning of that hierarchy.
The good neighborhood property relaxes the strict separation property, and only requires
that after a small number of bad points (which could be extremely malicious) have been
removed, for the remaining good points in the data set, in the neighborhood of their target
cluster’s size, most of their nearest neighbors are from their target cluster. We show that
our algorithm produces a hierarchy with a pruning that assigns all good points correctly. In
Section 4, we further generalize this to allow for a good fraction of “boundary” points that
do not fully satisfy the good neighborhood property. Unlike the good points, these points
may have many nearest neighbors outside their target cluster in the neighborhood of their
target cluster’s size; but also unlike the bad points, they have additional structure: they fall
into a sufficiently large subset of their target cluster, such that all points in this subset have
most of their nearest neighbors from this subset. As long as the fraction of boundary points
in such subsets is not too large, our algorithm can produce a hierarchy with a pruning that
assigns all good and boundary points correctly.

We further show how to adapt our algorithm to the inductive setting with formal cor-
rectness guarantees in Section 5. In this setting, the clustering algorithm only uses a small
random sample over the data set and generates a hierarchy over this sample, which also
implicitly represents a hierarchy over the entire data set. This is especially useful when
the amount of data is enormous such as in astrophysics and biology. We prove that our
algorithm requires only a small random sample whose size is independent of that of the
entire data set and depends only on the noise and the confidence parameters.

We then perform experimental evaluations of our algorithm on synthetic data and real-
world data sets. In controlled experiments on synthetic data presented in Section 6.1, our
algorithm achieves results consistent with our theoretical analysis, outperforming several
other hierarchical algorithms. We also show in Section 6.2 that our algorithm performs
consistently better than other hierarchical algorithms in experiments on several real-world
data. These experimental results suggest that the properties and the algorithm we propose
can handle noise in real-world data as well. To obtain good performance, however, our
algorithm requires tuning the noise parameters which roughly speaking quantify the extent
to which the good neighborhood property is satisfied.

1.2 Related Work

In agglomerative hierarchical clustering (Dasgupta and Long, 2005; Duda et al., 2000; Jain
and Dubes, 1981; Jain et al., 1999), the goal is not to find a single partitioning of the data,
but a hierarchy (generally represented by a tree) of partitionings which may reveal interest-
ing structure in the data at multiple levels of granularity. Traditionally, only clusterings at
a certain level are considered, but as we argue in Section 2 it is more desirable to consider
all the prunings of the tree, since this way we can then handle much more general situations.

As mentioned above, it is well known that standard agglomerative hierarchical cluster-
ing techniques are not tolerant to noise (Nagy, 1968; Narasimhan et al., 2006). Several
algorithms have been proposed to make the hierarchical clustering techniques more robust

4013



Balcan, Liang and Gupta

to noise, such as Wishart’s method (Wishart, 1969), and CURE (Guha et al., 1998). Ward’s
minimum variance method (Ward, 1963) is also more preferable in the presence of noise.
However, these algorithms have no theoretical guarantees for their robustness. Also, our
empirical study demonstrates that our algorithm has better tolerance to noise.

On the theoretical side, the simple strict separation property discussed above is gener-
alized to the ν-strict separation property (Balcan et al., 2008). The generalization requires
that after a small number of outliers have been removed all points are strictly more similar
to points in their own cluster than to points in other clusters. They provided an algorithm
for producing a hierarchy such that the target clustering is close to some pruning of the
tree, but via a much more computationally expensive (non-agglomerative) algorithm. Our
algorithm is simpler and substantially faster. As discussed in Section 2.1, the good neigh-
borhood property is much broader than the ν-strict separation property, so our algorithm
is much more generally applicable compared to their algorithm specifically designed for
ν-strict separation.

In a different statistical model, a generalization of Wishart’s method is proposed Chaud-
huri and Dasgupta (2010). The authors proved that given a sample from a density function,
the method constructs a tree that is consistent with the cluster tree of the density. Although
not directly targeting at robustness, the analysis shows the method successfully identifies
salient clusters separated by low density regions, which suggests the method can be robust
to the noise represented by the low density regions.

For general clustering beyond hierarchical clustering, there are also works proposing
robust algorithms and analyzing robustness of the algorithms; see (Garćıa-Escudero et al.,
2010) for a review. In particular, the trimmed k-means algorithm (Garćıa-Escudero and
Gordaliza, 1999), a variant of the classical k-means algorithm, updates the centers after trim-
ming points that are far away and thus are likely to be noise. An interesting mathematical
probabilistic framework for clustering in the presence of outliers is introduced (Gallegos,
2002; Gallegos and Ritter, 2005), which used maximum likelihood approach to estimate the
underlying parameters. An algorithm combining the above two approaches is later pro-
posed (Garćıa-Escudero et al., 2008). The robustness of some classical algorithms such as
k-means is also studied from the perspective of how the clusters are changed after adding
some additional points (Hennig, 2008; Ackerman et al., 2013).

1.3 Structure of the Paper

The rest of the paper is organized as follows. In Section 2, we formalize our model and define
the good neighborhood property. We describe our algorithm and prove it succeeds under
the good neighborhood property in Section 3. We then prove that it also succeeds under a
generalization of the good neighborhood property in Section 4. In Section 5, we show how
to adapt our algorithm to the inductive setting with formal correctness guarantees. We
provide the experimental results in Section 6, and conclude the paper in Section 7.

2. Definitions. A Formal Setup

We consider a clustering problem (S, `) specified as follows. Assume we have a data set S
of n objects. Each x ∈ S has some (unknown) “ground-truth” label `(x) in Y = {1, . . . , k},
where we will think of k as much smaller than n. Let Ci = {x ∈ S : `(x) = i} denote
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the set of points of label i (which could be empty), and denote the target clustering as
C = {C1, . . . , Ck}. Let C(x) be a shorthand of Cl(x), and nC denote the size of a cluster C.

Given another proposed clustering h, h : S → Y , we define the error of h with respect
to the target clustering to be

err(h) = min
σ∈Sk

[
Pr
x∈S

[σ(h(x)) 6= `(x)]

]
,

where Sk is the set of all permutations on {1, . . . , k}. Equivalently, the error of a clustering
C′ = {C ′1, . . . , C ′k} is minσ∈Sk

1
n

∑
i |Ci − C ′σ(i)|. This is popularly known as Classification

Error (Meilă and Heckerman, 2001; Balcan et al., 2013; Voevodski et al., 2012).

We will be considering clustering algorithms whose only access to their data is via
a pairwise similarity function K(x, x′) that given two examples outputs a number in the
range [−1, 1]. We will say that K is a symmetric similarity function if K(x, x′) = K(x′, x)
for all x, x′. In this paper we assume that the similarity function K is symmetric.

Our goal is to produce a hierarchical clustering that contains a pruning that is close
to the target clustering. Formally, the goal of the algorithm is to produce a hierarchical
clustering: that is, a tree on subsets such that the root is the set S, and the children
of any node S′ in the tree form a partition of S′. The requirement is that there must
exist a pruning h of the tree (not necessarily using nodes all at the same level) that has
error at most ε. It has been shown that this type of output is necessary in order to be
able to analyze non-trivial properties of the similarity function (Balcan et al., 2008). For
example, even if the similarity function satisfies the requirement that all points are more
similar to all points in their own cluster than to any point in any other cluster (this is
called the strict separation property) and even if we are told the number of clusters, there
can still be multiple different clusterings that satisfy the property. In particular, one can
show examples of similarity functions and two significantly different clusterings of the data
satisfying the strict separation property. See Figure 1 for an example. However, under
the strict separation property, there is a single hierarchical decomposition such that any
consistent clustering is a pruning of this tree. This motivates clustering in the tree model,
which is the model we consider in this work as well.

Given a similarity function satisfying the strict separation property (see Figure 1 for an
example), we can efficiently construct a tree such that the ground-truth clustering is a prun-
ing of this tree (Balcan et al., 2008). Moreover, the standard linkage single linkage, average
linkage, and complete linkage algorithms would work well under this property. However,
one can show that if the similarity function slightly deviates from the strict separation con-
dition, then all these standard agglomerative algorithms will fail (we elaborate on this in
Section 2.2). In this context, the main question we address in this work is: Can we develop
other more robust, linkage based algorithms that will succeed under more realistic and yet
natural conditions on the similarity function?

Note The strict separation property does not guarantee that all the cutoffs for different
points x are the same, so single linkage would not necessarily have the right clustering if it
just stopped once it has k clusters; however the target clustering will provably be a pruning
of the final single linkage tree; this is why we define success based on prunings.
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Figure 1: Consider a document clustering problem. Assume that data lies in multiple re-
gions Algorithms, Complexity, Learning, Planning, Squash, Billiards, Football,
Baseball. Suppose that the similarity K(x, y) = 0.999 if x and y belong to
the same inner region; K(x, y) = 3/4 if x ∈ Algorithms and y ∈ Complexity,
or if x ∈ Learning and y ∈ Planning, or if x ∈ Squash and y ∈ Billiards,
or if x ∈ Football and y ∈ Baseball; K(x, y) = 1/2 if x is in (Algorithms or
Complexity) and y is in (Learning or Planning), or if x is in (Squash or Billiards)
and y is in (Football or Baseball); define K(x, y) = 0 otherwise. Both clusterings
{Algorithms ∪ Complexity ∪ Learning ∪ Planning, Squash ∪ Billiards,Football ∪
Baseball} and {Algorithms∪Complexity,Learning∪Planning, Squash∪Billiards∪
Football ∪ Baseball} satisfy the strict separation property.

2.1 Properties of the Similarity Function

We describe here some natural properties of the similarity functions that we analyze in this
paper. We start with a noisy version of the simple strict separation property mentioned
above (Balcan et al., 2008) and then define an interesting and natural generalization of it.

Property 1 The similarity function K satisfies ν-strict separation for the clustering
problem (S, `) if for some S′ ⊆ S of size (1 − ν)n, K satisfies strict separation for (S′, `).
That is, for all x, x′, x′′ ∈ S′ with x′ ∈ C(x) and x′′ 6∈ C(x) we have K(x, x′) > K(x, x′′).

So, in other words we require that the strict separation is satisfied after a number of
bad points have been removed. A somewhat different condition is to allow each point to
have some bad immediate neighbors as long as most of its immediate neighbors are good.
Formally:

Property 2 The similarity function K satisfies α-good neighborhood property for the
clustering problem (S, `) if for all points x we have that all but αn out of their nC(x) nearest
neighbors belong to the cluster C(x).

Note that the α-good neighborhood property is different from the ν-strict separation
property. For the ν-strict separation property we can have up to νn bad points that can
misbehave; in particular, these νn bad points can have similarity 1 to all the points in
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S; however, once we remove these points the remaining points are more similar to points
in their own cluster than to points in other cluster. On the other hand, for the α-good
neighborhood property we require that for all points x all but αn out of their nC(x) nearest
neighbors belong to the cluster C(x). (So we cannot have a point that has similarity 1 to
all the points in S.) Note however that different points might misbehave on different αn
neighbors. We can also consider a property that generalizes both the ν-strict separation
and the α-good neighborhood property. Specifically:

Property 3 The similarity function K satisfies (α, ν)-good neighborhood property for
the clustering problem (S, `) if for some S′ ⊆ S of size (1−ν)n, K satisfies α-good neighbor-
hood for (S′, `). That is, for all points x ∈ S′ we have that all but αn out of their nC(x)∩S′
nearest neighbors in S′ belong to the cluster C(x).

Clearly, the (α, ν)-good neighborhood property is a generalization of both the ν-strict
separation and α-good neighborhood property. Formally,

Fact 1 If the similarity function K satisfies the α-good neighborhood property for the clus-
tering problem (S, `), then K also satisfies the (α, 0)-good neighborhood property for the
clustering problem (S, `).

Fact 2 If the similarity function K satisfies the ν-strict separation property for the clus-
tering problem (S, `), then K also satisfies the (0, ν)-good neighborhood property for the
clustering problem (S, `).

It has been shown that if K satisfies the ν-strict separation property with respect to
the target clustering, then as long as the smallest target cluster has size 5νn, one can in
polynomial time construct a hierarchy such that the ground-truth is ν-close to a pruning
of the hierarchy (Balcan et al., 2008). Unfortunately the algorithm presented there is
computationally very expensive: it first generates a large list of Ω(n2) candidate clusters
and repeatedly runs pairwise tests in order to laminarize these clusters; its running time is
a large unspecified polynomial. The new robust linkage algorithm we present in Section 3
can be used to get a simpler and much faster algorithm for clustering accurately under the
ν-strict separation and the more general (α, ν)-good neighborhood property.
Generalizations Our algorithm succeeds under an even more general property called weak
good neighborhood, which allows a good fraction of points to only have nice structure in
their small local neighborhoods. The relations between these properties are described in
Section 4.1, and the analysis under the weak good neighborhood is presented in Section 4.2.

2.2 Standard Linkage Based Algorithms Are Not Robust

As we show below, even if the data satisfies the good neighborhood property, the standard
single linkage, average linkage, and complete linkage algorithms might fail. The contribution
of our work is to develop a robust, linkage based algorithm that will succeed under these
natural conditions. More specifically, we can show an example where the standard single
linkage, average linkage, and complete linkage algorithms would perform very badly, but
where our algorithm would work well. In particular, let us slightly modify the example
in Figure 1, by adding a little bit of noise, to form links of high similarity between points
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Figure 2: Same as Figure 1 except that let us match each point in Algorithms with a point
in Squash, each point in Complexity with a point in Billiards, each point in
Learning with a point in Football, and each point in Planning with a point in
region Baseball. Define the similarities to be the same as in Figure 1 except that
we let K(x, y) = 1 if x and y are matched. Note that for α = 1/n the similarity
function satisfies the α-good neighborhood with respect to any of the prunings
of the tree above. However, single linkage, average linkage, and complete linkage
would initially link the matched pairs and produce clusters with very high error
with respect to any such clustering.

in different inner blobs.2 See Figure 2 for a precise description of the similarity. In this
example all the single linkage, average linkage, and complete linkage algorithms would in
the first n/2 stages merge the matched pairs of points. From that moment on, no matter
how they perform, none of the natural and desired clusterings will even be 1/2 close to
any of the prunings of the hierarchy produced. Notice however, that K satisfies the α-good
neighborhood with respect to any of the desired clusterings (for α = 1/n), and that our
algorithm will be successful on this instance. The ν-strict separation is not satisfied in this
example either, for any constant ν.

3. Robust Median Neighborhood Linkage

In this section, we propose a new algorithm, Robust Median Neighborhood Linkage, and
show that it succeeds for instances satisfying the (α, ν)-good neighborhood property.

Informally, the algorithm maintains a threshold t and a list C′t of subsets of points of
S; these subsets are called blobs for convenience. We first initialize the threshold to a
value t that is not too large and not too small (t = 6(α + ν)n + 1), and initialize C′t−1 to

2. Since, usually, the similarity function between pairs of objects is constructed based on heuristics, this
could happen in practice; for example we could have a similarity measure that puts a lot of weight on
features such as date or names, and so we could easily have a document about Learning being more
similar to a document about Football than to other documents about Learning. While this example
seems a little bit contrived, in Figure 7 in Section 4 we will give a naturally occurring example where
the standard single linkage, average linkage, and complete linkage algorithms still fail but our algorithm
succeeds because it satisfies a generalization of the good neighborhood property that we will discuss in
Section 4.
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Algorithm 1 Robust Median Neighborhood Linkage

Input: Similarity function K on a set of points S, n = |S|, noise parameters α > 0, ν > 0.

Step 1 Initialize t = 6(α+ ν)n+ 1.
Initialize C′t−1 to be a list of blobs so that each point is in its own blob.
while |C′t−1| > 1 do

Step 2 B Build a graph Ft whose vertices are points in S and

whose edges are specified as follows.

Let Nt(x) denote the t nearest neighbors of x.
for any x, y ∈ S that satisfy |Nt(x) ∩Nt(y)| ≥ t− 2(α+ ν)n do

Connect x, y in Ft.
end for

Step 3 B Build a graph Ht whose vertices are blobs in C′t−1 and

whose edges are specified as follows.

Let NF (x) denote the neighbors of x in Ft.
for any Cu, Cv ∈ C′t−1 do

if Cu, Cv are singleton blobs, i.e., Cu = {x}, Cv = {y} then
Connect Cu, Cv in Ht, if |NF (x) ∩NF (y)| > (α+ ν)n.

else
Set St(x, y) = |NF (x) ∩NF (y) ∩ (Cu ∪ Cv)|, i.e., the number of

points in Cu ∪Cv that are common neighbors of x, y in Ft.
Connect Cu, Cv in Ht, if medianx∈Cu,y∈CvSt(x, y) > |Cu|+|Cv |

4 .
end if

end for
Step 4 B Merge blobs in C′t−1 to get C′t

Set C′t = C′t−1.
for any connected component V in Ht with |

⋃
C∈V C| ≥ 4(α+ ν)n do

Update C′t by merging all blobs in V into one blob.
end for

Step 5 B Increase threshold

t = t+ 1.
end while

Output: Tree T with single points as leaves and internal nodes corresponding to the
merges performed.

contain |S| blobs, one for each point in S. For each t, the algorithm builds C′t from C′t−1
by merging two or more blobs as follows. It first builds a graph Ft, whose vertices are the
data points in S and whose edges are constructed by connecting any two points that share
at least t − 2(α + ν)n points in common out of their t nearest neighbors. Then it builds
a graph Ht whose vertices correspond to blobs in C′t−1 and whose edges are specified in
the following way. Two singleton blobs Cu = {x} and Cv = {y} are connected in Ht if
the points x, y have more than (α + ν)n common neighbors in Ft. For blobs Cu and Cv
that are not both singleton, the algorithm performs a median test. In this test, for each

4019



Balcan, Liang and Gupta

pair of points x ∈ Cu, y ∈ Cv, it computes the number St(x, y) of points z ∈ Cu ∪ Cv
that are the common neighbors of x and y in Ft. It then connects Cu and Cv in Ht if
medianx∈Cu,y∈CvSt(x, y) is larger than 1/4 fraction of |Cu| + |Cv|. Once Ht is built, we
analyze its connected components in order to create C′t. For each connected component
V of Ht, if V contains sufficiently many points from S in its blobs we merge all its blobs
into one blob in C′t. After building C′t, the threshold is increased and the above steps are
repeated until only one blob is left. The algorithm finally outputs the tree with single points
as leaves and internal nodes corresponding to the merges performed. The full details of our
algorithm are described in Algorithm 1. Our main result in this section is the following:

Theorem 1 Let K be a symmetric similarity function satisfying the (α, ν)-good neighbor-
hood for the clustering problem (S, `). As long as the smallest target cluster has size greater
than 6(ν + α)n, Algorithm 1 outputs a hierarchy such that a pruning of the hierarchy is
ν-close to the target clustering in time O(nω+1), where O(nω) is the state of the art for
matrix multiplication.

In the rest of this section, we will first describe the intuition behind the algorithm in
Section 3.1 and then prove Theorem 1 in Section 3.2.

3.1 Intuition of the Algorithm under the Good Neighborhood Property

We begin with some convenient terminology and a simple fact about the good neighborhood
property. In the definition of the (α, ν)-good neighborhood property (see Property 3), we
call the points in S′ good points and the points in B = S \ S′ bad points. Let Gi = Ci ∩ S′
be the good set of label i. Let G = ∪iGi denote the whole set of good points; so G = S′.
Clearly |G| ≥ n− νn. Recall that nCi is the number of points in the cluster Ci. Note that
the following is a useful consequence of the (α, ν)-good neighborhood property.

Fact 3 Suppose the similarity function K satisfies the (α, ν)-good neighborhood property for
the clustering problem (S, `). As long as t is smaller than nCi, for any good point x ∈ Ci,
all but at most (α+ ν)n out of its t nearest neighbors lie in its good set Gi.

Proof Let x ∈ Gi. By definition, out of its |Gi| nearest neighbors in G, there are at least
|Gi| − αn points from Gi. These points must be among its |Gi| + νn nearest neighbors in
S, since there are at most νn bad points in S \ G. This means that at most (α + ν)n out
of its |Gi| + νn nearest neighbors are outside Gi. Notice |Gi| + νn ≥ nCi , we have that at
most (α+ ν)n out of its nCi nearest neighbors are outside Gi, as desired.

Intuition We first assume for simplicity that all the target clusters have the same size nC
and that we know nC . In this case it is quite easy to recover the target clusters as follows.
We first construct a graph F whose vertices are points in S; we connect two points in F if
they share at least nC−2(ν+α)n points in common among their nC nearest neighbors. By
Fact 3, if the target clusters are not too small (namely nC > 6(ν +α)n), we are guaranteed
that no two good points in different target clusters will be connected in F , and that all
good points in the same target cluster will be connected in F . If there are no bad points
(ν = 0), then each connected component of F corresponds to a target cluster, and we could
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G1 G2 G3 G4

B

(a) F

G1

B

G2 G3 G4

(b) H

Figure 3: Graph F and H when all target clusters are of the same size nC , which is known.
In F , no two good points in different target clusters can be connected, and all good
points in the same target cluster will be connected. In H, bad points connected
to good points from different target clusters are disconnected.

simply output them. Alternatively, if there are bad points (ν > 0), we can still cluster well
as follows. We construct a new graph H on points in S by connecting points that share
more than (α+ ν)n neighbors in the graph F . The key point is that in F a bad point can
be connected to good points from only one single target cluster. This then ensures that no
good points from different target clusters are in the same connected component in H. So,
if we output the largest k components of H, we will obtain a clustering with error at most
νn. See Figure 3 for an illustration.

If we do not know nC , we can still use a pretty simple procedure. Specifically, we start
with a threshold t ≤ nC that is not too small and not too large (say 6(ν + α)n < t ≤ nC),
and build a graph Ft on S by connecting two points if they share at least t − 2(ν + α)n
points in common out of their t nearest neighbors. We then build another graph Ht on S by
connecting points if they share more than (α+ν)n neighbors in the graph Ft. The key idea
is that when t ≤ nC , good points from different target clusters share less than t−2(ν+α)n
neighbors, and thus are not connected in Ft and Ht. If the k largest connected components
of Ht all have sizes greater than (α + ν)n and they cover at least a (1 − ν) fraction of the
whole set of points S, then these components must correspond to the target clusters and
we can output them. Otherwise, we increase the critical threshold and repeat. By the time
we reach nC , all good points in the same target clusters will get connected in Ft and Ht, so
we can identify the k largest components as the target clusters.

Note that as mentioned above, when t ≤ nC , each connected component in Ht can
contain good points from only one target cluster. An alternative procedure is to reuse this
information in later thresholds, so that we do not need to build the graph Ht from scratch
as described in the above paragraph. Specifically, we maintain a list C′t of subsets of points;
these subsets are called blobs for convenience. We start with a list where each blob contains
a single point. At each threshold t, we build Ft on the points in S as before, but build Ht on
the blobs in C′t−1 (instead of on the points in S). When building Ht, for two singleton blobs,
it is safe to connect them if their points share enough neighbors in Ft. For non-singleton
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Figure 4: Graph Ft and Ht when target clusters have the same size nC but we do not know
nC . The figure shows the case when t < nC . In Ft, no good points are connected
with good points outside their target clusters; in Ht, blobs containing good points
in different target clusters are disconnected.

blobs, it turns out that we can use a median test to outvote the noise.3 In particular, for
two blobs Cu and Cv that are not both singleton, we compute for all x ∈ Cu and y ∈ Cv the
quantity St(x, y), which is the number of points in Cu∪Cv that are the common neighbors of
x and y in Ft. We then connect the two blobs in Ht if medianx∈Cu,y∈CvSt(x, y) is sufficiently
large. See Figure 4 for an illustration and see Step 3 in Algorithm 1 for the details.

In the general case where the sizes of the target clusters are different, similar ideas
can be applied. The key point is that when t ≤ nCi , good points from Ci share less than
t−2(ν+α)n neighbors with good points outside, and thus are not connected to them in Ft.
Then in Ht, we can make sure that no blobs containing good points in Ci will be connected
with blobs containing good points outside Ci. When t = nCi , good points in Ci form a
clique in Ft, then all the blobs containing good points in Ci are connected in Ht, and thus
are merged. See Figure 5 for an illustration. Full details are presented in Algorithm 1 and
the proof of Theorem 1 in the following subsection.

3.2 Correctness under the Good Neighborhood Property

In this subsection, we prove Theorem 1 for our algorithm. The correctness follows from
Lemma 2 and the running time follows from Lemma 3. Before proving these lemmas, we
begin with a useful fact which follows immediately from the design of the algorithm.

Fact 4 In Algorithm 1, for any t, if a blob in Ct contains at least one good point, then at
least 3/4 fraction of the points in that blob are good points.

Proof This is clearly true when the blob is singleton. When it is non-singleton, it must be
formed in Step 4 in Algorithm 1, so it contains at least 4(α + ν)n points. Then the claim
follows since there are at most νn bad points.

3. The median test is quite robust and as we show, it allows some points in these blobs to have weaker
properties than the good neighborhood. See Section 4 for examples of such points and a theoretical
analysis of the robustness.
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Figure 5: Graph Ft and Ht when target clusters are of different sizes. The figure shows
the case when t = nC2 . In Ft, no good points are connected with good points
outside their target clusters; good points in C2 form a clique since t = nC2 . In Ht,
blobs containing good points in different target clusters are disconnected; blobs
containing good points in C2 are all connected.

Lemma 2 The following claims are true in Algorithm 1:
(1) For any Ci such that t ≤ |Ci|, any blob in C′t containing good points from Ci will not
contain good points outside Ci.
(2) For any Ci such that t = |Ci|, all good points in Ci belong to one blob in C′t.

Proof Before proving the claims, we first show that the graph Ft constructed in Step 2 has
the following useful properties. Recall that Ft is constructed on points in S by connecting
any two points that share at least t − 2(α + ν)n points in common out of their t nearest
neighbors. For any Ci such that t ≤ |Ci|, we have:

(a) If x is a good point in Ci and y is a good point outside Ci, then x and y are not
connected in Ft.

To see this, first note that by Fact 3, x has at most (α+ ν)n neighbors outside Ci
out of the t nearest neighbors. For y ∈ Gj , if nCj ≥ t, then y has at most (α + ν)n
neighbors in Ci; if nCj < t, y has at most (α+ ν)n+ t− nCj neighbors in Ci. In both
cases, y has at most (α+ ν)n+ max(0, t−nCj ) < t− 5(α+ ν)n neighbors in Ci, since
nCj > 6(α+ν)n and t > 6(α+ν)n. Then x and y have at most t−4(α+ν)n common
neighbors, so they are not connected in Ft.

(b) If x is a good point in Ci, y is a good point outside Ci, and z is a bad point, then z
cannot be connected to both x and y in Ft.

To prove this, we will show that if z is connected to x, then z cannot be connected
to y. First, by the same argument as above, out of the t nearest neighbors, y has
less than t − 5(α + ν)n neighbors in Ci. Second, by Fact 3, x has at most (α + ν)n
neighbors outside Ci. If z has less than t − 3(α + ν)n neighbors in Ci, then z and x
share less than t − 3(α + ν)n + (α + ν)n = t − 2(α + ν)n neighbors and will not be
connected. So z must have at least t − 3(α + ν)n neighbors in Ci, and thus cannot
have more than 3(α+ ν)n neighbors outside Ci. The two statements show that y and
z share less than t − 5(α + ν)n neighbors in Ci, and at most 3(α + ν)n neighbors
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Figure 6: Illustration of the median test on Cu and Cv. At least 3/4 fraction of the points
in Cu and Cv are good points, and thus more than half of the pairs (x, y) with
x ∈ Cu and y ∈ Cv are pairs of good points.

outside Ci. So they share less than t−2(α+ν)n+3(α+ν)n = t−2(α+ν)n neighbors
and thus are not connected in Ft.

Now we prove Claim (1) in the lemma by induction on t. The claim is clearly true
initially. Assume for induction that the claim is true for the threshold t − 1 < |Ci|, that
is, for any Ci such that t − 1 < |Ci|, any blob in C′t−1 containing good points from Ci will
not contain good points outside Ci. We now prove that the graph Ht constructed in Step 3
has the following properties, which can be used to show that the claim is still true for the
threshold t.

• If Cu ∈ C′t−1 contains good points from Ci and Cv ∈ C′t−1 contains good points outside
Ci, then they cannot be connected in Ht.

If both Cu and Cv are singleton blobs, say Cu = {x}, Cv = {y}, then by Property (a)
of Ft, the common neighbors of x and y can only be bad points, and thus Cu and Cv
cannot be connected.
If one of the two blobs (say Cu) is a singleton blob and the other is not, then Cu
contains only one good point, and by Fact 4, at least 3/4 fraction of the points in Cv
are good points. If both Cu and Cv are non-singleton blobs, then by Fact 4, at least
3/4 fraction of the points in Cu and Cv are good points. Therefore, in both cases, the
number of pairs (x, y) with good points x ∈ Cu and y ∈ Cv is at least 3

4 |Cu|×
3
4 |Cv| >

|Cu||Cv |
2 . That is, more than half of the pairs (x, y) with x ∈ Cu and y ∈ Cv are pairs

of good points; see Figure 6 for an illustration. This means there exist good points
x∗ ∈ Cu, y∗ ∈ Cv such that St(x

∗, y∗) is no less than medianx∈Cu,y∈CvSt(x, y). By the
induction assumption, x∗ is a good point in Ci and y∗ is a good point outside Ci.
Then by Property (a)(b) of Ft, x

∗ and y∗ have no common neighbors in Ft, and thus
medianx∈Cu,y∈CvSt(x, y) = 0. Therefore, Cu and Cv are not connected in Ht.

• If Cu ∈ C′t−1 contains good points from Ci, Cv ∈ C′t−1 contains good points outside
Ci, and Cw ∈ C′t−1 contains only bad points, then Cw cannot be connected to both
Cu and Cv in Ht.

To prove this, assume for contradiction that Cw is connected to both Cu and Cv.
First, note the following fact about Cw. Since any non-singleton blob must be formed
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in Step 4 in the algorithm and contain at least 4(α + ν)n points and thus cannot
contain only bad points, Cw must be a singleton blob, containing only a bad point z.
Next, we show that if Cw = {z} is connected to Cu, then z must be connected to
some good point in Ci in Ft. If Cu is a singleton blob, say Cu = {x}, then by Step
4 in the algorithm, z and x share more than (α + ν)n common neighbors in Ft. By
Property (a)(b) of Ft, the common neighbors of x and z in Ft can only be good points
in Ci or bad points. Since there are at most νn bad points, z must be connected to
some good point in Ci in Ft. If Cu is not a singleton blob, then by Step 4 in the
algorithm, medianx∈CuSt(x, z) > (|Cu| + |Cw|)/4. By Fact 4, at least 3/4 fraction of
the points in Cu are good points. So there exists a good point x∗ ∈ Cu such that
St(x

∗, z) ≥ medianx∈CuSt(x, z), which leads to St(x
∗, z) > (|Cu| + |Cw|)/4 > νn. By

the induction assumption, x∗ is a good point in Ci. Then by Property (a) of Ft, x
∗ is

only connected to good points from Ci and bad points. Since St(x
∗, z) > νn, z and

x∗ must share some common neighbors from Ci. Therefore, z is connected to some
good point in Ci in Ft.
Similarly, if Cw = {z} is connected to Cv, z must be connected to some good point
outside Ci in Ft. But then z is connected to both a good point in Ci and a good point
outside Ft, which contradicts Property (b) of Ft.

By the properties of Ht, no connected component contains both good points in Ci and good
points outside Ci. So Claim (1) is still true for the threshold t. By induction, it is true for
all thresholds.

Finally, we prove Claim (2). First, at the threshold t = |Ci|, all good points in Ci are
connected in Ft. This is because any good point in Ci has at most (α + ν)n neighbors
outside Ci, so when t = |Ci|, any two good points in Ci share at least t−2(α+ν)n common
neighbors and thus are connected in Ft.

Second, all blobs in C′t−1 containing good points in Ci are connected in Ht. There are
two cases.

• If no good points in Ci have been merged, then all singleton blobs containing good
points in Ci will be connected in Ht.

This is because all good points in Ci are connected in Ft, and thus they share at
least |Gi| ≥ 6(α+ ν)n− νn points as common neighbors in Ft.

• If some good points in Ci have already been merged into non-singleton blobs in C′t−1,
we can show that in Ht these non-singleton blobs will be connected to each other and
connected to singleton blobs containing good points from Ci.

Consider two non-singleton blobs Cu and Cv that contain good points from Ci. By
Fact 4, at least 3/4 fraction of the points in Cu and Cv are good points. So there exist
good points x∗ ∈ Cu and y∗ ∈ Cv such that St(x

∗, y∗) ≤ medianx∈Cu,y∈CvSt(x, y). By
Claim (1), x∗ and y∗ must be good points in Ci. Then they are connected to all good
points in Ci in Ft, and thus St(x

∗, y∗) is no less than the number of good points in Cu
and Cv, which is at least 3(|Cu| + |Cv|)/4. Now we have medianx∈Cu,y∈CvSt(x, y) ≥
St(x

∗, y∗) ≥ 3(|Cu|+ |Cv|)/4 > (|Cu|+ |Cv|)/4, and thus Cu, Cv are connected in Ht.
Consider a non-singleton blob Cu and a singleton blob Cv that contain good points
from Ci. The above argument also holds, so Cu, Cv are connected in Ht.
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Therefore, in both cases, all blobs in C′t−1 containing good points in Ci are connected in Ht.
Then in Step 4, all good points in Ci are merged into a blob in C′t.

Lemma 3 Algorithm 1 has a running time of O(nω+1).

Proof The initializations in Step 1 take O(n) time. To compute Ft in Step 2, for any
x ∈ S, let It(x, y) = 1 if y is within the t nearest neighbors of x, and let It(x, y) = 0
otherwise. Initializing It takes O(n2) time. Next we compute Nt(x, y), the number of
common neighbors between x and y. Notice that Nt(x, y) =

∑
z∈S It(x, z)It(y, z), so Nt =

ItI
T
t . Then we can compute the adjacency matrix Ft (overloading notation for the graph

Ft) from Nt. These steps take O(nω) time.
To compute the graph Ht in Step 3, first define NSt = Ft(Ft)

T . Then for two points x
and y, NSt(x, y) is the number of their common neighbors in Ft. Further define a matrix
FCt as follows: if x and y are connected in Ft and are in the same blob in C′t−1, then let
FCt(x, y) = 1; otherwise, let FCt(x, y) = 0. As a reminder, for two points x that belongs
to Cu ∈ C′t−1 and y that belongs to Cv ∈ C′t−1, St(x, y) is the number of points in Cu ∪ Cv
they share as neighbors in common in Ft. FCt is useful for computing St: since for x ∈ Cu
and y ∈ Cv,

St(x, y) =
∑
z∈Cv

Ft(x, z)Ft(y, z) +
∑
z∈Cu

Ft(x, z)Ft(y, z)

=
∑
z∈S

Ft(x, z)FCt(y, z) +
∑
z∈S

FCt(x, z)Ft(y, z),

we have St = Ft(FCt)
T + FCt(Ft)

T . Based on NSt and St, we can then build the graph
Ht. All these steps take O(nω) time.

When we perform merges in Step 4 or increase the threshold in Step 5, we need to
recompute the above data structures, which takes O(nω) time. Since there are O(n) merges
and O(n) thresholds, Algorithm 1 takes time O(nω+1) in total.

4. A More General Property: Weak Good Neighborhood

In this section we introduce a weaker notion of good neighborhood property and prove that
our algorithm also succeeds for data satisfying this weaker property.

To motivate the property, consider a point x with the following neighborhood structure.
In the neighborhood of size nC(x), x has a significant amount of its neighbors from other
target clusters. However, in a smaller, more local neighborhood, x has most of its nearest
neighbors from its target clusters C(x). In practice, points close to the boundaries between
different target clusters typically have such neighborhood structure; for this reason, points
with such neighborhood are called boundary points.

We present an example in Figure 7. A document close to the boundary between the
two fields AI and Statistics has the following neighborhood structure: out of its n/4
nearest neighbors, it has all its neighbors from its own field; but out of its n/2 near-
est neighbors, it has n/4 neighbors outside its field. With 1/8 fraction of such boundary
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Figure 7: Consider a document clustering problem. Assume that there are n/4 documents
in each of the four areas: Learning, Planning, ParameterEstimation and Hypothe-
sisTesting. The first two belong to the field AI, and the last two belong to the field
Statistics. The similarities are specified as follows. (1) K(x, y) = 0.99 if x, y be-
long to the same area; (2) K(x, y) = 0.8 if x, y belong to different areas in the same
field; (3) K(x, y) = 0.5 if x, y belong to different fields. As shown in (b), there are
four prunings: {Learning,Planning,ParameterEstimation,HypothesisTesting},
{AI,ParameterEstimation,HypothesisTesting}, {Learning,Planning, Statistics},
and {AI, Statistics}. All these four prunings satisfy the strict separation prop-
erty, and consequently satisfy the α-good neighborhood property for α = 0.
However, this is no longer true if we take into account noise that naturally
arises in practice. As shown in (c), in each area, 1/8 fraction of the docu-
ments lie close to the boundary between the two fields. More precisely, the
similarities for these boundary documents are defined as follows. (1) These doc-
uments are very similar to some document in the other field: for each bound-
ary document x, we randomly pick one document y in the other field and set
K(x, y) = K(y, x) = 1.0; (2) These documents are also closely related to the other
documents in the other field: K(x, y) = K(y, x) = 0.9 when x is a boundary
document and y belongs to the other field; (3) These documents are not close
to those in the other area in the same field: K(x, y) = K(y, x) = 0.6 when x is
a boundary document and y belongs to the other area in the same field. Then
the clustering {AI,Statistics} satisfies the (α, ν)-good neighbor property only for
α ≥ 1/4 or ν ≥ 1/8. Similarly, {AI,ParameterEstimation,HypothesisTesting}
and {Learning,Planning,Statistics} satisfy the property only for α ≥ 1/4 or
ν ≥ 1/16. See the text for more details, and see Section 6.1 for simulations of
this example and its variants.

points, the clustering {AI,Statistics} satisfies the (α, ν)-good neighbor property only for
α ≥ 1/4 or ν ≥ 1/8. This is because either we view all the boundary points as bad
points in the (α, ν)-good neighborhood property which leads to ν ≥ 1/8, or we need
α ≥ 1/4 since a boundary point has n/4 neighbors outside its target cluster. Similarly,
{AI,ParameterEstimation,HypothesisTesting} and {Learning,Planning, Statistics} satisfy
the property only for α ≥ 1/4 or ν ≥ 1/16.

For this example, either α is too large so that Theorem 1 is not applicable, or ν is too
large so that the guarantee in Theorem 1 leads to constant error rate. However, it turns
out that our algorithm can still successfully produce a hierarchy as in Figure 7(b) where
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the desired clusterings ({Learning,Planning,ParameterEstimation,HypothesisTesting},
{AI,ParameterEstimation,HypothesisTesting}, {Learning,Planning, Statistics}, and
{AI,Statistics}) are prunings of the hierarchy. As we show, the reason is that each of
these prunings satisfies a generalization of the good neighborhood property which takes
into account the boundary points, and for which our algorithm still succeeds. Note that the
standard linkage algorithms fail on this example.4 In the following, we first formalize this
property and discuss how it relates to the properties of the similarity function described in
the paper so far. We then prove that our algorithm succeeds under this property, correctly
clustering all points that are not adversarially bad.

For clarity, we first relax the α-good neighborhood to the weak (α, β)-good neighborhood
defined as follows.

Property 4 A similarity function K satisfies weak (α, β)-good neighborhood property
for the clustering problem (S, `), if for each p ∈ S, there exists Ap ⊆ C(p) of size greater
than 6αn such that p ∈ Ap and

• any point in Ap has at most αn neighbors outside Ap out of the |Ap| nearest neighbors;

• for any such subset Ap ⊆ C(p), at least β fraction of points in Ap have all but at most
αn nearest neighbors from C(p) out of their nC(p) nearest neighbors.

Informally, the first condition implies that every point falls into a sufficiently large subset
of its target cluster, and points in the subset are close to each other in the sense that most
of their nearest neighbors are in the subset. This condition is about the local neighborhood
structure of the points. It shows that each point has a local neighborhood in which points
closely relate to each other. Note that the local neighborhood should be large enough so
that the membership of the point is clearly established: it should have size comparable to
the number of connections to points outside (αn). Here we choose a minimum size of greater
than 6αn mainly because it guarantees that our algorithm can still succeed in the worst
case. The second condition implies that for points in these large enough subsets, a majority
of them have most of their nearest neighbors from their target cluster. This condition is
about more global neighborhood structure. It shows how the subsets are closely related to
those in the same target cluster in the neighborhood of size equal to the target cluster size.
Note that in this more global neighborhood, we do not require all points in these subsets
have most nearest neighbors from their target clusters; we allow the presence of (1 − β)
fraction of points that may have a significant number of nearest neighbors outside their
target clusters.

Naturally, as we can relax the α-good neighborhood property to the (α, ν)-good neigh-
borhood property, we can relax the weak (α, β)-good neighborhood to the weak (α, β, ν)-
good neighborhood as follows. Informally, it implies that the target clustering satisfies the
weak (α, β)-good neighborhood property after removing a few bad points.

4. For any fixed non-boundary point y and fixed boundary point x in the other field, the probability
that y has similarity 1.0 only with x is 2

n
(1 − 2

n
)n/16−1 ≈ 2

n
e−1/8. Since there are n/16 such boundary

points x and 7n/8 such non-boundary points y, when n is sufficiently large, with high probability n/12
non-boundary points have similarity 1.0 with one single boundary point. Then the standard linkage
algorithms (in particular, single linkage, average linkage, and complete linkage) would first merge these
pairs of points with similarity 1.0. From then on, no matter how they perform, any pruning of the
hierarchy produced will have error higher than 1/12.
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Property 5 A similarity function K satisfies weak (α, β, ν)-good neighborhood prop-
erty for the clustering problem (S, `), if there exist a subset of points B of size at most νn,
and for each p ∈ S \B, there exists Ap ⊆ C(p) \B of size greater than 6(α+ ν)n such that
p ∈ Ap and

• any point in Ap has at most αn neighbors outside Ap out of the |Ap| nearest neighbors;

• for any such subset Ap ⊆ Ci \ B, at least β fraction of points in Ap have all but at
most αn nearest neighbors from Ci \B out of their |Ci \B| nearest neighbors in S \B.

For convenience, we call points in B bad points. If a point in Ci \B has all but at most
αn nearest neighbors from Ci \ B out of its |Ci \ B| nearest neighbors in S \ B, we call it
a good point. Then the second condition in the definition can be simply stated as: any Ap
has at least β fraction of good points. Note that Ci can contain points that are neither bad
nor good. Such points are called boundary points, since in practice such points typically lie
close to the boundaries between target clusters.

As a concrete example, consider the clustering {AI,Statistics} in Figure 7(c). It satisfies
the weak (α, β, ν)-good neighborhood property with probability at least 1 − δ when the
number of points n = O(ln 1

δ ). To see this, first note that for a fixed point y and a fixed
boundary point x in the other field, the probability that K(y, x) = 1 is 2/n. Since there
are n/16 boundary point in the other field, by Hoeffding bound, the probability that y has
similarity 1 with more than n/32 points is bounded by exp{−2·n/16·(1/2)2} = exp{−n/32}.
By union bound, with probability at least 1−n exp{−n/32}, no point has similarity 1 with
more than n/32 points. Then by setting Ap as the area that p falls in, we can see that the
clustering satisfies the weak (α, β, ν)-good neighborhood property for α = 1/32, β = 7/8
and ν = 0. Note that there may also be some adversarial bad points. Then the weak
(α, β, ν)-good neighborhood property is satisfied when α = 1/32, β = 7/8 and ν is the
fraction of bad points. See Section 6.1 for simulations of this example and its variants.

4.1 Relating Different Versions of Good Neighborhood Properties

The relations between these properties are illustrated in Figure 8. The relations between
the weak good neighborhood properties and other properties are discussed below, while the
other relations in the figure follow from the facts in Section 2.1.

strict
separation

−strict
separation

−good
neighborhood

 , −good
neighborhood

weak  ,−good
neighborhood

weak  , ,−good
neighborhood

Figure 8: Relations between various properties. The arrows represent generalization.
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By setting Ap = Ci for p ∈ Ci in the definition, we can see that the weak (α, β)-good
neighborhood property is a generalization of the α-good neighborhood property when each
target cluster has size greater than 6αn. Formally,

Fact 5 If the similarity function K satisfies the α-good neighborhood property for the clus-
tering problem (S, `) and mini |Ci| > 6αn, then K also satisfies the weak (α, β)-good neigh-
borhood property for the clustering problem (S, `) for any 0 < β ≤ 1.

Proof If K satisfies the α-good neighborhood property and mini |Ci| > 6αn, then we have:
for any p ∈ Ci, there exists a subset Ci ⊆ Ci of size greater than 6αn, such that out of the
nCi nearest neighbors, any point x ∈ Ci has at most αn neighbors outside Ci. So K satisfies
both conditions of the weak (α, β)-good neighborhood property.

By setting Ap = Gi for p ∈ Gi in the definition, we can see that the weak (α, β, ν)-good
neighborhood property generalizes the (α, ν)-good neighborhood property when each target
cluster has size greater than 7(α + ν)n. Also, by setting ν = 0, we can see that the weak
(α, β)-good neighborhood property is equivalent to the weak (α, β, 0)-good neighborhood.

Fact 6 If the similarity function K satisfies the (α, ν)-good neighborhood property for the
clustering problem (S, `) and mini |Ci| > 7(α+ ν)n, then K also satisfies the weak (α, β, ν)-
good neighborhood property for the clustering problem (S, `) for any 0 < β ≤ 1.

Proof If K satisfies the (α, ν)-good neighborhood property and mini |Ci| > 7(α + ν)n,
then we have: for any p ∈ Gi = Ci \ B, there exists a subset Gi ⊆ Gi of size greater than
6(α+ ν)n, such that out of the |Gi| nearest neighbors in S \B, any good point x ∈ Gi has
at most αn neighbors outside Gi. So K satisfies both conditions of the weak (α, β, ν)-good
neighborhood property.

Fact 7 If the similarity function K satisfies the weak (α, β)-good neighborhood property
for the clustering problem (S, `), then K also satisfies the weak (α, β, 0)-good neighborhood
property for the clustering problem (S, `).

Proof By setting ν = 0 in the definition of the weak (α, β, ν)-good neighborhood property,
we can see that it is the same as the weak (α, β)-good neighborhood property.

4.2 Correctness under the Weak Good Neighborhood Property

Now we prove that our algorithm also succeeds under the weak (α, β, ν)-good neighborhood
property when β ≥ 7/8. Formally,

Theorem 4 Let K be a symmetric similarity function satisfying the weak (α, β, ν)-good
neighborhood property for the clustering problem (S, `) with β ≥ 7/8. Then Algorithm 1
outputs a hierarchy such that a pruning of the hierarchy is ν-close to the target clustering
in time O(nω+1), where O(nω) is the state of the art for matrix multiplication.
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Figure 9: Illustration of a fully formed blob Cu: for any point p ∈ Cu\B, Ap ⊆ Cu. Then we
can show that sets in {Ap : p ∈ Cu \B} are laminar, that is, for any p, q ∈ Cu \B,
either Ap ∩ Aq = ∅ or Ap ⊆ Aq or Aq ⊆ Ap. For example, in the figure we have
Ap5 ⊆ Ap4 .

Theorem 4 is a generalization of Theorem 1, and the proof follows a similar reasoning.
The proof of correctness is from Lemma 8 stated and proved below and the running time
follows from Lemma 3. The intuition is as follows. First, by similar arguments as for the
good neighborhood property, each point p in S \ B will only be merged with other points
in Ap at t ≤ |Ap|, and all points in Ap will belong to one blob at t = |Ap| (Lemma 5), since
in the local neighborhood of size |Ap|, the point has most of its nearest neighbor from Ap.
Then, we need to show that such blobs will be correctly merged. The key point is to show
that even in the presence of boundary points, the majority of points in such blobs are good
points (Lemma 7). Then the median test can successfully distinguish blobs containing good
points from different target clusters, and our algorithm can correctly merge blobs from the
same target clusters together.

To formally prove the correctness, we begin with Lemma 5. The proof is similar to that
for Lemma 2, replacing Ci with Ap.

Lemma 5 The following claims are true in Algorithm 1:
(1) For any point p ∈ S \B and t such that t ≤ |Ap|, any blob in C′t containing points from
Ap will not contain points in (S \Ap) \B.
(2) For any point p ∈ S \B and t = |Ap|, all points in Ap belong to one blob in C′t.

Lemma 5 states that for any p ∈ S \B, we will form Ap before merging them with points
outside. Then we only need to make sure that these Ap formed will be correctly merged.
More precisely, we need to consider the blobs that are “fully formed” in the following sense:

Definition 6 A blob Cu ∈ C′t in Algorithm 1 is said to be fully formed if for any point
p ∈ Cu \B, Ap ⊆ Cu.

To show that fully formed blobs are correctly merged, the key point is to show that the
majority of points in such blobs are good points, and thus the median test in the algorithm
can successfully distinguish blobs containing good points from different target clusters. This
key point is in fact a consequence of Lemma 5:
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Lemma 7 For any fully formed blob Cu ∈ C′t in Algorithm 1, at least β fraction of points
in Cu \B are good points.

Proof It suffices to show that there exist a set of points P ⊆ Cu\B, such that {Ap : p ∈ P}
is a partition of Cu \B. Clearly Cu \B = ∪p∈Cu\BAp. So we only need to show that sets in
{Ap : p ∈ Cu \B} are laminar, that is, for any p, q ∈ Cu \B, either Ap ∩Aq = ∅ or Ap ⊆ Aq
or Aq ⊆ Ap. See Figure 9 for an illustration.

Assume for contradiction that there exist Ap and Aq such that Ap \Aq 6= ∅, Aq \Ap 6= ∅
and Ap ∩ Aq 6= ∅. Without loss of generality, suppose |Ap| ≤ |Aq|. Then by the second
claim in Lemma 5, when t = |Ap|, all points in Ap belong to one blob in C′t. In other words,
this blob contains Ap ∩Aq and Ap \Aq. So for t ≤ |Aq|, the blob contains points in Aq and
also points in S \B \Aq, which contradicts the first claim in Lemma 5.

We are now ready to prove the following lemma that implies Theorem 4.

Lemma 8 The following claims are true in Algorithm 1:
(1) For any Ci such that t ≤ |Ci|, any blob in C′t containing points in Ci \B will not contain
points in (S \ Ci) \B.
(2) For any Ci such that t = |Ci|, all points in Ci \B belong to one blob in C′t.

Proof Before proving the claims, we first show that the graph Ft constructed in Step 2 has
the following useful properties by an argument similar to that in Lemma 2. Recall that Ft
is constructed on points in S by connecting any two points that share at least t− 2(α+ ν)n
points in common out of their t nearest neighbors. For any Ci such that t ≤ |Ci|, we have:

(a) If x is a good point in Ci and y is a good point outside Ci, then x and y are not
connected in Ft.

To see this, first note that by Fact 3, x has at most (α+ ν)n neighbors outside Ci
out of the t nearest neighbors. Suppose y is a good point from Cj . If nCj ≥ t, then
y has at most (α+ ν)n neighbors in Ci; if nCj < t, y has at most (α+ ν)n+ t− nCj

neighbors in Ci. In both cases, y has at most (α+ν)n+max(0, t−nCj ) < t−5(α+ν)n
neighbors in Ci, since nCj > 6(α+ν)n and t > 6(α+ν)n. Then x and y have at most
t− 4(α+ ν)n common neighbors, so they are not connected in Ft.

(b) If x is a good point in Ci, y is a good point outside Ci, and z is a bad point, then z
cannot be connected to both x and y in Ft.

To prove this, we will show that if z is connected to x, then z cannot be connected
to y. First, by the same argument as above, out of the t nearest neighbors, y has
less than t − 5(α + ν)n neighbors in Ci. Second, by Fact 3, x has at most (α + ν)n
neighbors outside Ci. If z has less than t − 3(α + ν)n neighbors in Ci, then z and x
share less than t − 3(α + ν)n + (α + ν)n = t − 2(α + ν)n neighbors and will not be
connected. So z must have at least t − 3(α + ν)n neighbors in Ci, and thus cannot
have more than 3(α+ ν)n neighbors outside Ci. The two statements show that y and
z share less than t − 5(α + ν)n neighbors in Ci, and at most 3(α + ν)n neighbors
outside Ci. So they share less than t−2(α+ν)n+3(α+ν)n = t−2(α+ν)n neighbors
and thus are not connected in Ft.
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Now we prove Claim (1) in the lemma by induction on t. The claim is clearly true
initially. Assume for induction that the claim is true for the threshold t− 1, that is, for any
Ci such that t−1 ≤ |Ci|, any blob in C′t−1 containing points in Ci \B will not contain points
in (S \ Ci) \ B. We now prove that the graph Ht constructed in Step 3 has the following
properties, which can be used to show that the claim is still true for the threshold t.

• If Cu ∈ C′t−1 contains points from Ci\B and Cv ∈ C′t−1 contains points from (S\Ci)\B,
then they cannot be connected in Ht.

Suppose one of them (say Cu) is not fully formed, that is, there is a point p ∈ Cu\B
such that Ap 6⊆ Cu. Then by Lemma 5, the algorithm will not merge Cu with Cv at this
threshold. More precisely, since not all points in Ap belong to Cu, we have t−1 < |Ap|
by Claim (2) in Lemma 5. Then by Claim (1) in Lemma 5, since Cv contains points
in (S \Ap) \B, Cu and Cv will not be merged in C′t. So they are not connected in Ht.
So we only need to consider the other case when Cu and Cv are fully formed blobs. By
Lemma 7, the majority of points in the two blobs are good points. The good points
from different target clusters have few common neighbors in Ft, then by the median
test in our algorithm, the two blobs will not be connected in Ht. Formally, we can
find two good points x∗ ∈ Cu, y∗ ∈ Cv that satisfy the following two statements.

– St(x
∗, y∗) ≥ medianx∈Cu,y∈CvSt(x, y).

By Lemma 7, at least β ≥ 7/8 fraction of points in Cu \B are good points. The
fraction of good points in Cu is at least

β|Cu \B|
|Cu \B|+ |B|

≥ 7/8× 6(α+ ν)n

6(α+ ν)n+ νn
≥ 3

4
,

since |Cu \B| ≥ 6(α+ ν)n and |B| ≤ νn. Similarly, at least 3
4 fraction of points

in Cv are good points. Then among all the pairs (x, y) such that x ∈ Cu, y ∈ Cv,
at least 3

4 ×
3
4 >

1
2 fraction are pairs of good points. So there exist good points

x∗ ∈ Cu, y∗ ∈ Cv such that St(x
∗, y∗) ≥ medianx∈Cu,y∈CvSt(x, y).

– St(x
∗, y∗) ≤ (|Cu|+ |Cv|)/4.

The fraction of good points in Cu ∪ Cv is at least 3
4 . Since in Ft, good points in

Cu are not connected to good points in Cv, we have St(x
∗, y∗) ≤ (|Cu|+ |Cv|)/4.

Combining the two statements, we have medianx∈Cu,y∈CvSt(x, y) ≤ (|Cu| + |Cv|)/4
and thus Cu and Cv are not connected in Ht.

• If in C′t−1, Cu contains points from Ci \B, Cv contains points from (S \ Ci) \B, and
Cw contains only bad points, then Cw cannot be connected to both Cu and Cv.

By the same argument as above, we only need to consider the case when Cu and
Cv are fully formed blobs. To prove the claim in this case, assume for contradiction
that Cw is connected to both Cu and Cv. First, note the following fact about Cw.
Since any non-singleton blob must be formed in Step 4 in the algorithm and contain
at least 4(α + ν)n points and thus cannot contain only bad points, Cw must be a
singleton blob, containing only a bad point z.
Next, we show that if Cw = {z} are connected to Cu in Ht, then z must be connected
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to at least one good point in Cu in Ft. We have medianx∈CuSt(x, z) >
|Cu|+|Cw|

4 , which

means z is connected to more than |Cu|
4 points in Cu in Ft. By the same argument as

above, at least 3/4 fraction of points in Cu are good points, then z must be connected
to at least one good point in Cu.
Similarly, if Cw is connected to Cv in Ht, then z must be connected to at least one
good point in Cv in Ft. But this contradicts Property (b) of Ft, so Cw cannot be
connected to both Cu and Cv in Ht.

By the properties of Ht, no connected component contains both points in Ci \ B and
points in (S \Ci) \B. So Claim (1) is still true for the threshold t. By induction, it is true
for all thresholds.

Finally, we prove Claim (2). By Lemma 5, when t = |Ci|, for any point p ∈ Ci \ B,
Ap belong to the same blob. So all points in Ci \ B are in sufficiently large blobs. We
will show that any two of these blobs Cu, Cv are connected in Ht, and thus will be merged
into one blob. By Lemma 7, we know that more than 3/4 fraction of points in Cu (Cv
respectively) are good points, and thus there exist good points x∗ ∈ Cu, y∗ ∈ Cv such that
St(x

∗, y∗) ≤ medianx∈Cu,y∈CvSt(x, y). By Claim (1), all good points in Cu and Cv are from
Ci, so they share at least t − 2(α + ν)n neighbors when t = |Ci|, and thus are connected
in Ft. Then St(x

∗, y∗) is at least the number of good points in Cu ∪ Cv, which is at least
3(|Cu|+ |Cv|)/4. Then medianx∈Cu,y∈CvSt(x, y) ≥ St(x

∗, y∗) > (|Cu|+ |Cv|)/4. Therefore,
all blobs containing points from Ci \B are connected in Ht and thus merged into a blob.

5. The Inductive Setting

Many clustering applications have recently faced an explosion of data, such as in astrophysics
and biology. For large data sets, it is often resource and time intensive to run an algorithm
over the entire data set. It is thus increasingly important to develop algorithms that can
remove the dependence on the actual size of the data and still perform reasonably well.

In this section we consider an inductive model that formalizes this problem. In this
model, the given data is merely a small random subset of points from a much larger data
set. The algorithm outputs a hierarchy over the sample, which also implicitly represents
a hierarchy over the data set. In the following we describe the inductive version of our
algorithm and prove that when the data satisfies the good neighborhood properties, the
algorithm achieves small error on the entire data set, requiring only a small random sample
whose size is independent of that of the entire data set.

5.1 Formal Definition

First we describe the formal definition of the inductive model. In this setting, the given
data S is merely a small random subset of points from a much larger abstract instance
space X. For simplicity, we assume that X is finite and that the underlying distribution is
uniform over X. Let N = |X| denote the size of the entire instance space, and let n = |S|
denote the size of the sample.
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Algorithm 2 Inductive Robust Median Neighborhood Linkage

Input: similarity function K, n ∈ Z+, parameters α > 0, ν > 0.

B Get a hierarchy on the sample

Sample i.i.d. examples S = {x1, . . . , xn} uniformly at random from X.
Run Algorithm 1 with parameters (2α, 2ν) on S and obtain a hierarchy T .

B Get the implicit hierarchy over X
for any x ∈ X do

Let NS(x) denote the 6(α+ ν)n nearest neighbors of x in S.
Initialize u = root(T ) and fu(x) = 1.
while u is not a leaf do

Let w be the child of u that contains the most points in NS(x).
Set u = w and fu(x) = 1.

end while
end for

Output: Hierarchy T and {fu, u ∈ T}.

Our goal is to design an algorithm that based on the sample produces a hierarchy of
small error with respect to the whole distribution. Formally, we assume that each node u in
the hierarchy derived over the sample induces a cluster (a subset of X). For convenience, u
is also used to denote the blob of sampled points it represents. The cluster u induces over
X is implicitly represented as a function fu : X → {0, 1}, that is, for each x ∈ X, fu(x) = 1
if x is a point in the cluster and 0 otherwise. We say that the hierarchy has error at most
ε if it has a pruning fu1 , . . . , fuk of error at most ε.

5.2 Inductive Robust Median Neighborhood Linkage

The inductive version of our algorithm is described in Algorithm 2. To analyze the al-
gorithm, we first present the following lemmas showing that, when the data satisfies the
good neighborhood property, a sample of sufficiently large size also satisfies the weak good
neighborhood property.

Lemma 9 Let K be a symmetric similarity function satisfying the (α, ν)-good neighborhood
for the clustering problem (X, `). Consider any fixed x ∈ X \B. If the sample size satisfies
n = Θ

(
1
α ln 1

δ

)
, then with probability at least 1 − δ, x has at most 2αn neighbors outside

(C(x) \B) ∩ S out of the |(C(x) \B) ∩ S| nearest neighbors in S \B.

Proof Suppose x ∈ Gi. Let NN(x) denote its |Gi| nearest neighbors in X. By assumption
we have that |NN(x) \Gi| ≤ αN and |Gi \NN(x)| ≤ αN . Then by Chernoff bounds, with
probability at least 1− δ at most 2αn points in our sample are in NN(x) \Gi and at most
2αn points in our sample are in Gi \NN(x).

We now argue that at most 2αn of the |Gi ∩ S| nearest neighbors of x in S \ B can
be outside Gi. Let n1 be the number of points in (NN(x) \ Gi) ∩ S, n2 be the number of
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points in (Gi \ NN(x)) ∩ S, and n3 be the number of points in (Gi ∩ NN(x)) ∩ S. Then
|Gi ∩ S| = n2 + n3 and we know that n1 ≤ 2αn, n2 ≤ 2αn. We consider the following two
cases.

• n1 ≥ n2. Then n1 + n3 ≥ n2 + n3 = |Gi ∩ S|. This implies that the |Gi ∩ S| nearest
neighbors of x in the sample all lie inside NN(x), since by definition all points inside
NN(x) are closer to x than any point outside NN(x). But we are given that at most
n1 ≤ 2αn of them can be outside Gi. Thus, we get that at most 2αn of the |Gi ∩ S|
nearest neighbors of x are not from Gi.

• n1 < n2. This implies that the |Gi ∩ S| nearest neighbors of x in the sample include
all the points in NN(x) in the sample, and possibly some others too. But this implies
in particular that it includes all the n3 points in Gi∩NN(x) in the sample. So, it can
include at most |Gi ∩S| −n3 = n2 ≤ 2αn points not in Gi ∩NN(x). Even if all those
are not in Gi, the |Gi ∩ S| nearest neighbors of x still include at most 2αn points not
from Gi.

In both cases, at most 2αn of the |Gi∩S| nearest neighbors of x in S\B can be outside Gi.

Lemma 10 Let K be a symmetric similarity function satisfying the (α, ν)-good neighbor-

hood for the clustering problem (X, `). If the sample size satisfies n = Θ
(

1
min(α,ν) ln 1

δmin(α,ν)

)
,

then with probability at least 1 − δ, K satisfies the (2α, 2ν)-good neighborhood with respect
to the clustering induced over the sample S.

Proof First, by Chernoff bounds, when n ≥ 3
ν ln 2

δ , we have that with probability at least
1− δ/2, at most 2νn bad points fall into the sample.

Next, by Lemma 9 and union bound, when n = Θ
(
1
α ln n

δ

)
we have that with probability

at least 1− δ/2, for any Ci, any x ∈ Gi ∩S, x has at most 2αn points outside Gi ∩S out of

its |Gi ∩ S| nearest neighbors in (X \B)∩ S. Therefore, if n = Θ
(

1
min(α,ν) ln n

δ

)
, then with

probability at least 1 − δ, the similarity function satisfies the (2α, 2ν)-good neighborhood
property with respect to the clustering induced over the sample S.

It now suffices to show n is large enough so that n = Θ
(

1
min(α,ν) ln n

δ

)
. To see this, let

η = min(α, ν). Since lnn ≤ tn− ln t− 1 for any t, n > 0, we have

c

η
lnn ≤ c

η

(
η

2c
n+ ln

2c

η
− 1

)
=
n

2
+
c

η
ln

2c

e · η
,

for any constant c > 0. Then n = Θ
(
1
η ln 1

η

)
implies n = Θ

(
1
η lnn

)
, and n = Θ

(
1
η ln 1

δ·η

)
implies n = Θ

(
1
η ln n

δ

)
.

Theorem 11 Let K be a symmetric similarity function satisfying the (α, ν)-good neighbor-
hood for the clustering problem (X, `). As long as the smallest target cluster has size greater

than 12(ν + α)N , then Algorithm 2 with parameters n = Θ
(

1
min(α,ν) ln 1

δ·min(α,ν)

)
produces

a hierarchy with a pruning that is (ν+δ)-close to the target clustering with probability 1−δ.
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Proof Note that by Lemma 10, with probability at least 1− δ/4, we have that K satisfies
the (2α, 2ν)-good neighborhood with respect to the clustering induced over the sample.
Moreover, by Chernoff bounds, with probability at least 1 − δ/4, each Gi has at least
6(ν + α)n points in the sample. Then by Theorem 1, Algorithm 1 outputs a hierarchy T
on the sample S with a pruning that assigns all good points correctly. Denote this pruning
as {u1, . . . , uk} such that ui \B = (Ci ∩ S) \B.

Now we want to show that fu1 , . . . , fuk have error at most ν+δ with probability at least
1− δ/2. For convenience, let u(x) be a shorthand of u`(x). Then it is sufficient to show that
with probability at least 1− δ/2, a (1− δ) fraction of points x ∈ X \B have fu(x)(x) = 1.

Fix Ci and a point x ∈ Ci \ B. By Lemma 9, with probability at least 1− δ2/2, out of
the |Gi ∩ S| nearest neighbors of x in S \ B, at most 2αn can be outside Gi. Recall that
Algorithm 2 checks NS(x), the 6(α+ ν)n nearest neighbors of x in S. Then out of NS(x),
at most 2(α+ ν)n points are outside Gi ∩ S. By Lemma 2, ui contains Gi ∩ S, so ui must
contain at least 4(α + ν)n points in NS(x). Consequently, any ancestor w of ui, including
ui, has more points in NS(x) than any other sibling of w. Then we must have fw(x) = 1
for any ancestor w of ui. In particular, fui(x) = 1. So, for any point x ∈ X \ B, with
probability at least 1− δ2/2 over the draw of the random sample, fu(x)(x) = 1.

Then by Markov inequality, with probability at least 1− δ/2, a (1− δ) fraction of points
x ∈ X \ B have fu(x)(x) = 1. More precisely, let Ux denote the uniform distribution over
X \ B, and let US denote the distribution of the sample S. Let I(x, S) denote the event
that fu(x)(x) 6= 1. Then we have

Ex∼Ux,S∼US
[I(x, S)] = ES∼US

[
Ex∼Ux [I(x, S)|S]

]
≤ δ2/2.

Then by Markov inequality, we have

PrS∼US

[
Ex∼Ux [I(x, S)|S] ≥ δ

]
≤ δ/2,

which means that with probability at least 1− δ/2 over the draw of the random sample S,
a (1− δ) fraction of points x ∈ X \B have fu(x)(x) = 1.

Similarly, Algorithm 2 also succeeds for the weak good neighborhood property. By
similar arguments as those in Lemma 9 and 10, we can prove that K satisfies the weak good
neighborhood property over a sufficiently large sample (Lemma 12), which then leads to
the final guarantee Theorem 13. For clarity, the proofs are provided in Appendix B.

Lemma 12 Let K be a symmetric similarity function satisfying the weak (α, β, ν)-good
neighborhood for the clustering problem (X, `). Furthermore, it satisfies that for any p ∈
X \ B, |Ap| > 24(α + ν)N . If the sample size satisfies n = Θ

(
1

min(α,ν) ln 1
δmin(α,ν)

)
, then

with probability at least 1 − δ, K satisfies the (2α, 1516β, 2ν)-good neighborhood with respect
to the clustering induced over the sample S.

Theorem 13 Let K be a symmetric similarity function satisfying the weak (α, β, ν)-good
neighborhood for the clustering problem (X, `) with β ≥ 14

15 . Furthermore, it satisfies

4037



Balcan, Liang and Gupta

that for any p ∈ X \ B, |Ap| > 24(α + ν)N . Then Algorithm 2 with parameters n =

Θ
(

1
min(α,ν) ln 1

δ·min(α,ν)

)
produces a hierarchy with a pruning that is (ν + δ)-close to the

target clustering with probability 1− δ.

6. Experiments

In this section, we compare our algorithm (called RMNL for convenience) with popu-
lar hierarchical clustering algorithms, including standard linkage algorithms (Sneath and
Sokal, 1973; King, 1967; Everitt et al., 2011), (Generalized) Wishart’s Method (Wishart,
1969; Chaudhuri and Dasgupta, 2010), Ward’s minimum variance method (Ward, 1963),
CURE (Guha et al., 1998), and EigenCluster (Cheng et al., 2006).

To evaluate the performance of the algorithms, we use the model discussed in Section 2.
Given a hierarchy output by an algorithm, we generate all possible prunings of size k, where
k is the number of clusters in the target clustering.5 Then we compute the Classification
Error of each pruning with respect to the target clustering, and report the best error. The
Classification Error of a computed clustering h with respect to the target clustering ` is the
probability that a point chosen at random from the data is labeled incorrectly.6 Formally,

err(h) = min
σ∈Sk

[
Pr
x∈S

[σ(h(x)) 6= `(x)]

]
,

where Sk is the set of all permutations on {1, . . . , k}. For reporting results, we follow the
classic methodology (Guha et al., 1998): for all algorithms accepting input parameters
(including (Generalized) Wisharts’ Method, CURE, and RMNL), the experiments are re-
peated on the same data over a range of input parameter values, and the best results are
considered.

Data sets To emphasize the effect of noise on different algorithms, we perform controlled
experiments on a synthetic data set AIStat. This data set contains 512 points. It is an
instance of the example discussed in Section 4 and is described in Figure 7. We further
consider the following real-world data sets from UCI Repository (Bache and Lichman, 2013):
Wine, Iris, BCW (Breast Cancer Wisconsin), BCWD (Breast Cancer Wisconsin Diagnostic),
Spambase, and Mushroom. We also consider the MNIST data set (LeCun et al., 1998) and
use two subsets of the test set for our experiments: Digits0123 that contains the examples
of the digits 0, 1, 2, 3, and Digits4567 that contains the examples of the digits 4, 5, 6, 7.

We additionally consider the 10 data sets (PFAM1 to PFAM10) (Voevodski et al., 2012),
which are created by randomly choosing 8 families (of size between 1000 and 10000) from
the biology database Pfam (Punta et al., 2012), version 24.0, October 2009. The sim-
ilarities for the PFAM data sets are generated by biological sequence alignment software
BLAST (Altschul et al., 1990). BLAST performs one versus all queries by aligning a queried
sequence to sequences in the data set, and produces a score for each alignment. The score
is a measure of the alignment quality and thus can be used as similarity. However, BLAST

5. Note that we generate all prunings of size k for evaluating the performance of various algorithms only. The
hierarchical clustering algorithms do not need to generate these prunings when creating the hierarchies.

6. To compute this error for a computed clustering in polynomial time, we first find its best match to the
target clustering using the Hungarian Method (Kuhn, 1955) for min-cost bipartite matching in time
O(n3), and then calculate the error as the fraction of points misclassified in matched clusters.
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Figure 10: Classification Error on the synthetic data AIStat. The y-axis represents the %
error. (a) Fix ν = 0 and vary α from 1/32 to 1/16. The x-axis represents the
value of α; (b) Fix α = 1/32 and vary ν from 0 to 1/32. The x-axis represents
the value of ν; (c) Vary α from 1/32 to 1/16, and vary ν from 0 to 1/32. The
x-axis represents the value of α + ν. Note that the instance no longer satisfies
the weak good neighborhood property when α+ ν ≥ 1/24 ≈ 11/256.

does not consider alignments with some of the sequences, in which case we assign similari-
ties 0 to the corresponding sequences and exclude them from the neighbors of the queried
sequence.

The smaller data sets are used in the transductive setting: Wine (178 points of dimension
13), Iris (150×4), BCW (699×10), and BCWD (569×32). The larger ones are used in the
inductive setting: Spambase (4601× 57), Mushroom (8124× 22), Digits0123 (4157× 784),
Digits4567 (3860× 784), and PFAM1 to PFAM10 (10000 ∼ 100000 sequences each).

6.1 Synthetic Data

Here we compare the performance of the algorithms on the synthetic data AIStat. Recall
that the clustering {AI, Statistics} satisfies the weak (α, β, ν)-good neighborhood property
for α = 1/32, β = 7/8, ν = 0 with high probability (See Figure 7 in Section 4). We conduct
three sets of experiments, where we vary the values of α and ν by modifying the similarities
between the points.

(a) For each point x, we choose ∆αn points y from the other field and set the similarities
K(x, y) = K(y, x) = 1, so that the value of α is increased to 1/32 + ∆α. By varying
∆α, we control α = 1/32 + i/256 for i = 0, . . . , 8 and run the clustering algorithms
on the modified data.

(b) We randomly choose νn points x, and then set the similarity between x and any other
point to be 1 minus the original similarity. This introduces νn bad points. We thus
control ν = i/256 for i = 0, . . . , 8.
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(c) We perform the above two modifications simultaneously, that is, we control α =
1/32 + i/256 and ν = i/256 for i = 0, . . . , 8.

Note that the instance no longer satisfies the weak good neighborhood property when α+ν ≥
1/24. This is because the weak good neighborhood requires that each point p 6∈ B falls into
a subset Ap of size greater than 6(α+ ν)n with desired properties (see Property 5), and the
largest such subsets in AIStat have size n/4.

Figure 10 shows the results of these experiments, averaged over 10 runs. When α+ ν <
1/24, the instance satisfies the weak good neighborhood property and our algorithm has
error at most ν. Moreover, even if the instance does not satisfy the weak good neighborhood
property when α+ν ≥ 1/24, our algorithm still reports lower error. All the other algorithms
have higher error than our algorithm and fail rapidly as α+ ν increases. This demonstrates
that in cases modeled by the properties we propose, our algorithm will be successful while
the traditional agglomerative algorithms fail.

6.2 Real-World Data

In this section, we compare the performance of our algorithm with the other algorithms on
real-world data sets and show that our algorithm consistently outperforms the others.

6.2.1 Transductive Setting

Here we compare the performance of the algorithms in the transductive setting where the
algorithms use all the points in the data set. Figure 11 shows that our algorithm consistently
achieves lowest or close to lowest errors on all the data sets. Ward’s Method is the best
among the other algorithms, but still shows larger errors than our algorithms. All the other
algorithms generally show worse performance, and report significantly higher errors on some
of the data sets. The comparison shows the robustness of our algorithm to the noise in the
real world data sets.

To further evaluate the robustness of the algorithms, in the following we show their
performance when different types of noise are added to the data. Since our algorithm
requires additional parameters to characterize noise, we also discuss their robustness to
parameter tuning.
Robustness to Noise Here we present the performance of the algorithms when Gaussian noise
or corruption noise is added and the level of noise is increased monotonically. The Gaussian
noise model essentially corresponds to additive perturbations to the data entries and it is
a very common type of noise studied throughout machine learning. The corruption noise
models data corruption or missing values, and is also frequently studied in machine learning
and coding theory (Blum et al., 2007; Feldman et al., 2008; Wigderson and Yehudayoff,
2012; Moitra and Saks, 2013). The experiments on different types of noise then evaluate
the robustness of the algorithms to noise caused by different reasons in real world scenarios.
Note that the instance is not in a metric space after adding noise to the similarities, so in
this case, we only evaluate algorithms that can be run on non-metric instances.

We consider three types of noise: corruption noise to the attributes, corruption noise
to the similarities, and Gaussian noise added to the attributes. The first type of noise
is generated as follows: normalize the entries in the data matrix to [0, 1]; randomly pick
p fraction of the entries; replace each sampled entry with a random value independently
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(a) Wine (b) Iris (c) BCW (d) BCWD

Figure 11: Classification Error in the transductive setting. The y-axis represents the %
error.

generated from N(0, 1), where p is the parameter indicating the level of noise. The second
type of noise is generated using the same approach, but is added to the similarity matrix.
The third type of noise is generated as follows: normalize the entries in the data matrix to
[0, 1]; add a random value independently generated from N(0, p2) to each entry, where p is
the parameter indicating the level of noise.

Figure 12 shows the results of different algorithms in the presence of noise, averaged over
30 runs. The rows correspond to different types of noise added, and the columns correspond
to different data sets. The first row shows the results when corruption noise is added to the
attributes. Our algorithm shows robustness to such type of noise: its error rates remain
the best or close to the best up to noise level 0.2 on all data sets. EigenCluster and Ward’s
method also show robustness, but their error rates are generally higher than those of our
algorithm. The other algorithms report high errors even when the noise level is as low as
0.04.

The second row shows the results when corruption noise is added to the similarities. We
observe that the errors of our algorithm remain nearly the same up to noise level 0.2 over
all the data sets, while the other algorithms report higher errors. Some algorithms (such as
Complete Linkage on Wine) show comparable performance to our algorithms when there
is no noise, but their errors generally increase rapidly as the noise level increases. This
shows that our algorithm performs much better than the other algorithms in the presence
of corruptions in the similarities.

The third row shows the results when Gaussian noise is added to the attributes. We
observe that when the noise level increases, the errors of all algorithms increase. The errors
of our algorithm do not increase much: they remain the best or close to the best up to
the noise level 0.2 on all the data sets. Ward’s method also shows robustness, since the
minimum variance criterion used is insensitive to this type of noise. The other algorithms
generally show higher errors than our algorithms and Ward’s method.
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Figure 12: Classification Error in the presence of noise. Rows: corruption noise added to
the attributes, corruption noise added to the similarities, Gaussian noise added
to the attributes. Columns: Wine, Iris, BCW, BCWD. In each subfigure, the
x-axis represents the noise level, and the y-axis represents the % error.

In conclusion, our algorithm generally outperforms the other algorithms when corruption
noise is added to the data attributes or the similarities, or when Gaussian noise is added to
the data attributes. Its robustness to Gaussian noise in similarities is not so significant since
such noise with large variance can change the neighbor rankings of all points considerably.
Still, it can tolerate such noise when the noise variance is not too large.

Robustness to Parameter Tuning Our algorithm requires extra input parameters α and ν.
There may be indirect ways to set their values, for example, by estimating the size of the
smallest target cluster. Still, we are not aware of any efficient algorithm to compute the ap-
proximately correct values. Since these parameters play an important role in our algorithm,
it is crucial to show the robustness of the algorithm to parameter tuning. Note that the
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Figure 13: Classification Error of RMNL using different values of parameter (α + ν). The
x-axis represents the value of (α+ ν), and the y-axis represents the % error.

two parameters are always used together as the additive term (α+ ν), thus essentially the
algorithm takes one parameter. So for evaluation, we vary the parameter (α + ν) linearly
and run our algorithm over these values.

Figure 13 shows the performance of the algorithm for different parameter values. We
observe that the algorithm does not require the exact value of (α + ν) as it shows good
performance over a continuous range of values. The range is sufficiently large for all data
sets except Iris. The range for Iris is relatively small as there is little noise in it, and thus
the parameter should be set to small values. In the other data sets we tried, we observed
that it is easy to land in the right range with only a few runs.

6.2.2 Inductive Setting

In this subsection, we present the evaluation results in the inductive setting. In this setting,
the algorithm generates a hierarchy on a small random sample of the data set, and inserts
the remaining points to generate a new hierarchy over the entire data set. We repeat the
sampling and evaluation for 5 times and report the average results.

We compare our inductive algorithm with the random sample algorithm (Eriksson,
2012). These algorithms sample some fraction of the similarities and use only these sim-
ilarities. The percentage of sampled similarities can be tuned in these algorithms, so we
compare their performance when they use the same amount of sampled similarities.

Figure 14 shows the results for eight configurations (using 5% or 10% similarities on
four different data sets). Our algorithm consistently outperforms the random sampling
algorithm. Figure 15 shows the results on PFAM1 to PFAM10, which approximately satisfy
the good neighborhood property (Voevodski et al., 2012). On all PFAM data sets, the errors
of our algorithm are low while those of the random sample algorithm are much higher. This
shows the significant advantage of our algorithm when the data approximately satisfies the
good neighborhood property.

7. Discussion

In this work we propose and analyze a new robust algorithm for bottom-up agglomerative
clustering. We show that our algorithm can be used to cluster accurately in cases where
the data satisfies a number of natural properties and where the traditional agglomerative
algorithms fail. In particular, if the data satisfies the good neighborhood properties, the
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Figure 14: Classification Error of different algorithms in the inductive setting. The y-axis
represents the % error. The x-axis represents data sets, where the numbers
before the names of the data sets denote the fraction of similarities used by the
inductive algorithms.

Figure 15: Classification Error on PFAM1 to PFAM10 data sets using 2.5% similarities.
The y-axis in each case represents the % error, and the x-axis represents data
sets.

algorithm will be successful in generating a hierarchy such that the target clustering is close
to a pruning of that hierarchy.

We also show how to extend our algorithm to the inductive setting, where the given
data is only a small random sample of the entire data set. Our algorithm achieves similar
correctness guarantees, requiring only a small random sample whose size is independent of
that of the entire data set.

We empirically show that with appropriate tuning of the noise parameters our algorithm
consistently performs better than other hierarchical algorithms and are more robust to noise
in the data. We also show the efficacy of the inductive version of our algorithm as a faster
alternative when evaluation over the complete data is resource intensive.

Additionally, our subsequent work (Balcan and Liang, 2013) showed that the algorithm
can be applied to the closely related community detection task and compares favorably with
existing approaches.
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It would be interesting to see if our algorithmic approach can be shown to work for other
natural properties on the input similarity function. For example, it would be particularly
interesting to analyze a noisy version of the max stability property (Balcan et al., 2008),
which was shown to be a necessary and sufficient condition for single linkage to succeed, or
of the average stability property which was shown to be a sufficient condition for average
linkage to succeed. It would also be interesting to identify other natural conditions under
different types of algorithms which are known to provide empirical noise robustness (e.g.,
the Wards method) would provably succeed. Finally, from an experimental point of view,
an interesting open question is whether one can provide a wrapper for the algorithm to
eliminate the need for manual tuning of the noise parameters.
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Appendix A. Implementation Details of Algorithm 1

Here we give the full details of the implementation of Algorithm 1.

First, we need some auxiliary data structures to build the graphs Ft and Ht. See
Algorithm 3 for the definitions of these data structures.

Second, we specify the order of merging clusters. In the merge step in Algorithm 1, the
blobs in a sufficiently large connected component of Ht can be merged in arbitrary order.
In our implementation, we merge two connected Cu, Cv in Ht such that they are not both
singleton blobs and they have maximum medianx∈Cu,y∈CvSt(x, y)/(|Cu|+ |Cv|) (so that we
are most confident about merging them). Then we merge singleton clusters.

Third, for practical purposes, we can slightly modify the algorithm to speed it up on
practical instances.7 When there are less than 4(α+ν)n singleton blobs, we know that they
cannot be merged together into one blob. So we can simply merge each singleton blob with
the non-singleton blob that has the highest median similarity. This will correctly assign
all but bad points under the good neighborhood properties. Similarly, when the number of
singleton blobs is less than half the current threshold, we can safely merge each singleton
blob with the non-singleton blob that has the highest median similarity.

Appendix B. Additional Proofs for Section 5

Here we provide the details for proving that Algorithm 2 also succeeds for the weak good
neighborhood. First, by a similar argument as that in Lemma 9, we can prove Lemma 14

7. This does not change the time complexity and the correctness, but we observe that it helps speed up
practical instances.
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Algorithm 3 Implementation Details of Robust Median Neighborhood Linkage

Input: Similarity function K on a set of points S, n = |S|, α > 0, ν > 0.

Step 1 For each point, sort the other points increasingly according to the distances.
Initialize t = 6(α+ ν)n+ 1, and C′t−1 to be a list of singleton blobs.
while |C′t−1| > 1 do

Step 2 B Build a graph Ft on the points in S as follows:

Set It(x, y) = 1 if y is in x’s t nearest neighbors; It(x, y) = 0 otherwise.
Set Nt = It(It)

T .
Set Ft(x, y) = 1 if Nt(x, y) ≥ t− 2(α+ ν)n; Ft(x, y) = 0 otherwise.

Step 3 B Build a graph Ht on the blobs in C′t−1 as follows:

Set NSt = Ft(Ft)
T .

Set FCt(x, y) = 1 if x, y are in the same blob in C′t−1 and Ft(x, y) = 1;
FCt(x, y) = 0 otherwise.

Set St = Ft(FCt)
T + FCt(Ft)

T .
for any Cu, Cv ∈ C′t−1 do

if Cu = {x} and Cv = {y} then
Ht(Cu, Cv) = 1 if NSt(x, y) > (α+ ν)n;
Ht(Cu, Cv) = 0 otherwise.

else
Ht(Cu, Cv) = 1 if medianx∈Cu,y∈CvSt(x, y) > |Cu|+|Cv |

4 ;
Ht(Cu, Cv) = 0 otherwise.

end if
end for

Step 4 B Merge blobs

while ∃Cu, Cv with Ht(Cu, Cv) = 1 and |Cu|+ |Cv| > 4(α+ ν)n do

Find the pair Cu, Cv with maximum medianx∈Cu,y∈Cv

St(x,y)
|Cu|+|Cv | .

Merge the pair Cu, Cv, and update C′t−1. Recompute FCt, St and Ht.
end while

Step 5 B Merge singletons

while ∃ component V in Ht with | ∪C∈V C| ≥ 4(α+ ν)n do
Merge blobs in V , and update C′t−1. Recompute FCt, St and Ht.

end while
Step 6 B Speed up

if ∃ less than max{4(α+ ν)n, t/2} singleton blobs in C′t−1 then
Merge each singleton with the non-singleton blob of highest median

similarity.
Update C′t−1. Recompute FCt, St and Ht.

end if
C′t = C′t−1.

Step 7 B Increase threshold

t = t+ 1.
end while

Output: Tree T with single points as leaves and internal nodes corresponding to the
merges performed.
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showing that for a fixed p in X \ B and fixed x ∈ Ap, the first condition of the weak
good neighborhood is still satisfied on a sufficiently large sample (Recall the definition of
Property 5). Similarly, we can prove Lemma 15 showing that the second condition of the
weak good neighborhood is also satisfied. Then, the similarity K satisfies the weak good
neighborhood property with respect to the clustering induced over the sample (Lemma 12).
Our final guarantee, Theorem 13, then follows from the lemmas.

Lemma 14 Let K be a symmetric similarity function satisfying the weak (α, β, ν)-good
neighborhood for the clustering problem (X, `). Consider any fixed p ∈ X \B and any fixed
x ∈ Ap. If the sample size satisfies n = Θ

(
1
α ln 1

δ

)
, then with probability at least 1 − δ, x

has at most 2αn neighbors outside Ap ∩ S out of the |Ap ∩ S| nearest neighbors in S \B.

Lemma 15 Let K be a symmetric similarity function satisfying the weak (α, β, ν)-good
neighborhood for the clustering problem (X, `). Consider any fixed p ∈ X \B and any fixed
good point x ∈ Ap. If the sample size satisfies n = Θ

(
1
α ln 1

δ

)
, then with probability at least

1− δ, x has at most 2αn neighbors outside C(x) ∩ S out of the |Ap ∩ S| nearest neighbors
in S \B.

Lemma 12 Let K be a symmetric similarity function satisfying the weak (α, β, ν)-good
neighborhood for the clustering problem (X, `). Furthermore, it satisfies that for any p ∈
X \ B, |Ap| > 24(α + ν)N . If the sample size satisfies n = Θ

(
1

min(α,ν) ln 1
δmin(α,ν)

)
, then

with probability at least 1 − δ, K satisfies the (2α, 1516β, 2ν)-good neighborhood with respect
to the clustering induced over the sample S.

Proof Consider the first condition of the weak good neighborhood property. First, by
Chernoff bounds, when n ≥ 3

ν ln 4
δ , we have that with probability at least 1 − δ/4, at

most 2νn bad points fall into the sample. Next, by Lemma 14 and union bound, when
n = Θ

(
1
α ln n

δ

)
we have that with probability at least 1− δ/4, for any point p ∈ S \B, any

point x ∈ Ap ∩ S has at most 2αn neighbors outside Ap ∩ S out of the |Ap ∩ S| nearest
neighbors in S \ B. Since |Ap| > 24(α + ν)N , we also have |Ap ∩ S| > 12(α + ν)n with
probability at least 1− δ/4. So the first condition of the weak good neighborhood property
is satisfied.

Now consider the second condition. Fix Ci and a point p ∈ (Ci \ B) ∩ S. When
n = Θ

(
1
α ln n

δ

)
, with probability at least 1 − δ/(8n), at least 15

16β fraction of points x in
Ap ∩ S have all but at most αN nearest neighbors from Ci \B out of their |Ci \B| nearest
neighbors in X \ B. Fix such a point x ∈ Ap ∩ S. By Lemma 15, with probability at least
1 − δ/(8n2), it has all but at most 2αn nearest neighbors from (Ci \ B) ∩ S out of their
|(Ci \B)∩S| nearest neighbors in S \B. By union bound, we have that with probability at
least 1− δ/4, for any Ci and any p ∈ Ci \B, at least 15

16β fraction of points in Ap ∩ S have
all but at most 2αn nearest neighbors from (Ci \B) ∩ S out of their |(Ci \B) ∩ S| nearest
neighbors in S \B. So the second condition is also satisfied.

Therefore, if n = Θ
(

1
min(α,ν) ln n

δ

)
, then with probability at least 1 − δ, the similar-

ity function satisfies the (2α, 2ν)-good neighborhood property with respect to the clus-
tering induced over the sample S. The lemma then follows from the fact that n =

Θ
(

1
min(α,ν) ln 1

δmin(α,ν)

)
implies n = Θ

(
1

min(α,ν) ln n
δ

)
.
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Theorem 13 Let K be a symmetric similarity function satisfying the weak (α, β, ν)-good
neighborhood for the clustering problem (X, `) with β ≥ 14

15 . Furthermore, it satisfies
that for any p ∈ X \ B, |Ap| > 24(α + ν)N . Then Algorithm 2 with parameters n =

Θ
(

1
min(α,ν) ln 1

δ·min(α,ν)

)
produces a hierarchy with a pruning that is (ν + δ)-close to the

target clustering with probability 1− δ.
Proof Note that by Lemma 12, with probability at least 1− δ/4, we have that K satisfies
the weak (2α, 1516β, 2ν)-good neighborhood with respect to the clustering induced over the
sample. Then by Theorem 1, Algorithm 1 outputs a hierarchy T on the sample S with a
pruning {u1, . . . , uk} such that ui \B = (Ci ∩ S) \B.

Now we want to show that fu1 , . . . , fuk have error at most ν + δ with probability at
least 1 − δ/2. For convenience, let u(x) be a shorthand of u`(x). Then it is sufficient to
show that with probability at least 1 − δ/2, a (1 − δ) fraction of points x ∈ X \ B have
fu(x)(x) = 1. Fix Ci and a point x ∈ Ci \ B. By Lemma 14, with probability at least
1 − δ2/2, out of the |Ax ∩ S| nearest neighbors of x in S \ B, at most 2αn can be outside
Ax. Then out of the 6(α + ν)n nearest neighbors of x in S, at most 2(α + ν)n points are
outside Ax ∩ S. By Lemma 2, ui contains Ax ∩ S, so ui must contain at least 4(α + ν)n
points in NS(x). Consequently, any ancestor w of ui, including ui, has more points in NS(x)
than any other sibling of w. Then we must have fw(x) = 1 for any ancestor w of ui. In
particular, fui(x) = 1. So, for any point x ∈ X \B, with probability at least 1− δ2/2 over
the draw of the random sample, fu(x)(x) = 1. By Markov inequality, with probability at
least 1− δ/2, a (1− δ) fraction of points x ∈ X \B have fu(x)(x) = 1.

Appendix C. Strict Separation and Ward’s Method

∣A∣=4n ∣B∣=n

5 6

∣C∣=n

Figure 16: An example that satisfies the strict separation property but is not clustered
successfully by Ward’s minimum variance Method.

Here we describe an example showing that Ward’s minimum variance method fails in
the presence of unbalanced clusters. The clustering instance satisfies the strict separation
property and thus the more general good neighborhood properties, but on this instance
Ward’s method leads to large classification error.

The instance is presented in Figure 16. It consists three groups of points on a line:
Group A has 4n points, Group B has n points, and Group C has n points. The distances
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between points in the same groups are 0, while the distances between points in A and points
in B are 5, the distances between points in B and points in C are 6, the distances between
points in A and points in C are 11.

It can be verified that the clustering {A∪B,C} satisfies the strict separation property.
We now show that Ward’s method will produce a tree that do not have this clustering as
a pruning, and thus fails to cluster the instance. Recall that Ward’s method starts with
each point being a singleton cluster and at each step finds the pair of clusters that leads to
minimum increase in total within-cluster variance after merging. Formally, it merges the
two clusters U and V such that

(U, V ) = argmin [Var(U ∪ V )−Var(U)−Var(V )] ,

where
Var(X) = min

c

∑
p∈X
‖p− c‖22.

Since the distances between points in the same groups are 0, the method will first merge
points in the same groups and forms three clusters A,B, and C. Now, merging A and
B increases the variance by 20n, while merging B and C increases the variance by 18n.
Therefore, B and C will be merged, and thus the best pruning in the tree produced is
{A,B ∪ C}. This leads to an error of 1/6 ≈ 16.7%.
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