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Abstract

The problem of bipartite ranking, where instances are labeled positive or negative and the
goal is to learn a scoring function that minimizes the probability of mis-ranking a pair of
positive and negative instances (or equivalently, that maximizes the area under the ROC
curve), has been widely studied in recent years. A dominant theoretical and algorithmic
framework for the problem has been to reduce bipartite ranking to pairwise classification;
in particular, it is well known that the bipartite ranking regret can be formulated as a
pairwise classification regret, which in turn can be upper bounded using usual regret bounds
for classification problems. Recently, Kotlowski et al. (2011) showed regret bounds for
bipartite ranking in terms of the regret associated with balanced versions of the standard
(non-pairwise) logistic and exponential losses. In this paper, we show that such (non-
pairwise) surrogate regret bounds for bipartite ranking can be obtained in terms of a broad
class of proper (composite) losses that we term as strongly proper. Our proof technique
is much simpler than that of Kotlowski et al. (2011), and relies on properties of proper
(composite) losses as elucidated recently by Reid and Williamson (2010, 2011) and others.
Our result yields explicit surrogate bounds (with no hidden balancing terms) in terms of a
variety of strongly proper losses, including for example logistic, exponential, squared and
squared hinge losses as special cases. An important consequence is that standard algorithms
minimizing a (non-pairwise) strongly proper loss, such as logistic regression and boosting
algorithms (assuming a universal function class and appropriate regularization), are in fact
consistent for bipartite ranking; moreover, our results allow us to quantify the bipartite
ranking regret in terms of the corresponding surrogate regret. We also obtain tighter
surrogate bounds under certain low-noise conditions via a recent result of Clémengon and
Robbiano (2011).

Keywords: bipartite ranking, area under ROC curve (AUC), statistical consistency,
regret bounds, proper losses, strongly proper losses

1. Introduction

Ranking problems arise in a variety of applications ranging from information retrieval to
recommendation systems and from computational biology to drug discovery, and have been
widely studied in machine learning and statistics in the last several years. Recently, there
has been much interest in understanding statistical consistency and regret behavior of algo-
rithms for a variety of ranking problems, including various forms of label/subset ranking as
well as instance ranking problems (Clémencon and Vayatis, 2007; Clémencon et al., 2008;
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Cossock and Zhang, 2008; Balcan et al., 2008; Ailon and Mohri, 2008; Xia et al., 2008;
Duchi et al., 2010; Ravikumar et al., 2011; Buffoni et al., 2011; Clémengon and Robbiano,
2011; Kotlowski et al., 2011; Uematsu and Lee, 2011; Calauzenes et al., 2012; Lan et al.,
2012; Ramaswamy and Agarwal, 2012; Ramaswamy et al., 2013).

In this paper, we study regret bounds for the bipartite instance ranking problem, where
instances are labeled positive or negative and the goal is to learn a scoring function that
minimizes the probability of mis-ranking a pair of positive and negative instances, or equiv-
alently, that maximizes the area under the ROC curve (Freund et al., 2003; Agarwal et al.,
2005). A popular algorithmic and theoretical approach to bipartite ranking has been to
treat the problem as analogous to pairwise classification (Herbrich et al., 2000; Joachims,
2002; Freund et al., 2003; Rakotomamonjy, 2004; Burges et al., 2005; Clémencon et al.,
2008). Indeed, this approach enjoys theoretical support since the bipartite ranking regret
can be formulated as a pairwise classification regret, and therefore any algorithm minimiz-
ing the latter over a suitable class of functions will also minimize the ranking regret (this
follows formally from results of Clémencon et al., 2008; see Section 3.1 for a summary).
Nevertheless, it has often been observed that algorithms such as AdaBoost, logistic regres-
sion, and in some cases even SVMs, which minimize the exponential, logistic, and hinge
losses respectively in the standard (non-pairwise) setting, also yield good bipartite ranking
performance (Cortes and Mohri, 2004; Rakotomamonjy, 2004; Rudin and Schapire, 2009).
For losses such as the exponential or logistic losses, this is not surprising since algorithms
minimizing these losses (but not the hinge loss) are known to effectively estimate conditional
class probabilities (Zhang, 2004); since the class probability function provides the optimal
ranking (Clémencon et al., 2008), it is intuitively clear (and follows formally from results
in Clémengon et al., 2008; Clémengon and Robbiano, 2011) that any algorithm providing a
good approximation to the class probability function should also produce a good ranking.
However, there has been very little work so far on quantifying the ranking regret of a scoring
function in terms of the regret associated with such surrogate losses.

Recently, Kotlowski et al. (2011) showed that the bipartite ranking regret of a scoring
function can be upper bounded in terms of the regret associated with balanced versions of
the standard (non-pairwise) exponential and logistic losses. However their proof technique
builds on analyses involving the reduction of bipartite ranking to pairwise classification,
and involves analyses specific to the exponential and logistic losses (see Section 3.2). More
fundamentally, the balanced losses in their result depend on the underlying distribution and
cannot be optimized directly by an algorithm; while it is possible to do so approximately,
one then loses the quantitative nature of the bounds.

In this work we obtain quantitative regret bounds for bipartite ranking in terms of a
broad class of proper (composite) loss functions that we term strongly proper. Our proof
technique is considerably simpler than that of Kotlowski et al. (2011), and relies on proper-
ties of proper (composite) losses as elucidated recently for example in Reid and Williamson
(2010, 2011); Gneiting and Raftery (2007); Buja et al. (2005). Our result yields explicit
surrogate bounds (with no hidden balancing terms) in terms of a variety of strongly proper
(composite) losses, including for example logistic, exponential, squared and squared hinge
losses as special cases. An immediate consequence is that standard algorithms minimiz-
ing such losses, such as standard logistic regression and boosting algorithms (assuming a
universal function class and appropriate regularization), are in fact consistent for bipartite
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ranking. We also obtain tighter surrogate bounds under certain low-noise conditions via a
recent result of Clémencon and Robbiano (2011).

The paper is organized as follows. In Section 2 we formally set up the bipartite in-
stance ranking problem and definitions related to loss functions and regret, and provide
background on proper (composite) losses. Section 3 summarizes related work that provides
the background for our study, namely the reduction of bipartite ranking to pairwise binary
classification and the result of Kotlowski et al. (2011). In Section 4 we define and charac-
terize strongly proper losses. Section 5 contains our main result, namely a bound on the
bipartite ranking regret in terms of the regret associated with any strongly proper loss,
together with several examples. Section 6 gives a tighter bound under certain low-noise
conditions via a recent result of Clémencon and Robbiano (2011). We conclude with a brief
discussion and some open questions in Section 7.

2. Formal Setup, Preliminaries, and Background

This section provides background on the bipartite ranking problem, binary loss functions
and regret, and proper (composite) losses.

2.1 Bipartite Ranking

As in binary classification, in bipartite ranking there is an instance space X and binary
labels Y = {£1}, with an unknown distribution D on X x {£1}. For (X,Y) ~ D and
x € X, we denote n(z) = P(Y =1| X =2z) and p = P(Y = 1). Given i.i.d. examples
(X1,Y1),...,(Xn,Y,) ~ D, the goal is to learn a scoring function f : X—R (where R =
[—00, 00]) that assigns higher scores to positive instances than to negative ones.! Specifically,
the goal is to learn a scoring function f with low ranking error (or ranking risk), defined

a52

(1] = B[L((Y - Y)(F(X) = F(X)) < 0) + 31(#(X) = (X)) | Y 2], (1)

where (X,Y), (X', Y") are assumed to be drawn i.i.d. from D, and 1(-) is 1 if its argument is
true and 0 otherwise; thus the ranking error of f is simply the probability that a randomly
drawn positive instance receives a lower score under f than a randomly drawn negative
instance, with ties broken uniformly at random. The optimal ranking error (or Bayes
ranking error or Bayes ranking risk) can be seen to be

erp"™" = inf_er3™(/] 2)
= ! E i X)(1 X' X (1 X 3
= oyt —p B [min (100 = n(X), XA D) @)

The ranking regret of a scoring function f : XY =R is then simply

regretis™ [ f] = e [f] — er[y" " (4)

1. Most algorithms learn real-valued functions; we also allow values —co and oo for technical reasons.
2. We assume measurability conditions where necessary.
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We will be interested in upper bounding the ranking regret of a scoring function f in terms
of its regret with respect to certain other (binary) loss functions. In particular, the loss
functions we consider will belong to the class of proper (composite) loss functions. Below we
briefly review some standard notions related to loss functions and regret, and then discuss
some properties of proper (composite) losses.

2.2 Loss Functions, Regret, and Conditional Risks and Regret

Assume again a probability distribution D on X x {£1} as above. Given a prediction space
Y C R, a binary loss function € : {£1} x YR, (where R, = [0,00]) assigns a penalty
{(y,y) for predicting y € Y when the true label is y € {&1}. 3 For any such loss ¢, the
C-error (or (-risk) of a function f: X —Y is defined as

ef%[f] = E(X,Y)ND[K(Yv F(XO)I, (5)
and the optimal £-error (or optimal ¢-risk or Bayes (-risk) is defined as
er’’ = inf _erh[f]. (6)
f:X=Y

The £-regret of a function f : X —Y is the difference of its f-error from the optimal f-error:
regrets[f] = erfy[f] — ery’ . (7)

The conditional (-risk Ly : [0,1] x Y—R, is defined as®
Le(n,9) = By [0V, )] = n€(1,5) + (1 =) &(=1,7), (8)

where Y ~ 1 denotes a {+1}-valued random variable taking value +1 with probability 7.
The conditional Bayes (-risk Hy : [0,1]—R; is defined as

Hy(n) = inf Ly(n, 7). 9)
gey

The conditional (-regret Ry : [0, 1] x JA/%RJF is then simply

Re(n,y) = Le(n,y) — Hy(n) . (10)
Clearly, we have for f : X—>JA),
erp[f] = Ex[Le(n(X), f(X))], (11)
and
erly = Ex[Hy(n(X))]. (12)

We note the following:

Lemma 1 For any JA) C R and binary loss £ : {1} x J7—>R+7 the conditional Bayes £-risk
Hy is a concave function on [0, 1].

The proof follows simply by observing that Hy is defined as the pointwise infimum of a
family of linear (and therefore concave) functions, and therefore is itself concave.

3. Most loss functions take values in R, but some loss functions (such as the logistic loss, described later)
can assign a loss of co to certain label-prediction pairs.

4. Note that we overload notation by using 7 here to refer to a number in [0, 1]; the usage should be clear
from context.
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2.3 Proper and Proper Composite Losses

In this section we review some background material related to proper and proper composite
losses, as studied recently in Reid and Williamson (2010, 2011); Gneiting and Raftery
(2007); Buja et al. (2005). While the material is meant to be mostly a review, some of the
exposition is simplified compared to previous presentations, and we include a new, simple
proof of an important fact (Theorem 4).

2.3.1 PROPER LOSSES

We start by considering binary class probability estimation (CPE) loss functions that op-
erate on the prediction space ) = [0, 1]. A binary CPE loss function ¢ : {£1} x [0,1] >Ry
is said to be proper if for all n € [0, 1],

n € argmin L.(n,7), (13)
ne(o,1]

and strictly proper if the minimizer is unique for all n € [0,1]. Equivalently, ¢ is proper if
for all n € [0,1], H.(n) = Lc(n,n), and strictly proper if H.(n) < L.(n,7) for all  # n. We
have the following basic result:

Lemma 2 (Gneiting and Raftery (2007); Schervish (1989)) Letc: {+1}x[0,1]—R
be a binary CPE loss. If ¢ is proper, then ¢(1,-) is a decreasing function on [0,1] and c(—1,-)
is an increasing function. If ¢ is strictly proper, then c(1,-) is strictly decreasing on [0, 1]
and c¢(—1,-) is strictly increasing.

We will find it useful to consider regular proper losses. As in Gneiting and Raftery (2007),
we say a binary CPE loss ¢ : {1} x [0,1]—=R, is regular if ¢(1,7) € Ry Vi € (0,1] and
c(—1,m) € Ry Vi € [0,1), i.e., if ¢(y,n) is finite for all y,n except possibly for ¢(1,0) and
¢(—1,1), which are allowed to be infinite. The following characterization of regular proper
losses is well known (see also Gneiting and Raftery, 2007):

Theorem 3 (Savage (1971)) A regular binary CPE loss ¢ : {£1} x [0,1]—Ry is proper
if and only if for all n,7 € [0,1] there exists a superderivative H.(7}) of H. at 7 such that®

Le(n,7) = He(n) + (n—0) - Ho(7) -

The following is a characterization of strict properness of a proper loss ¢ in terms of its
conditional Bayes risk H.:

Theorem 4 A proper loss ¢ : {£1} x [0, 1]—=R is strictly proper if and only if H, is strictly
concave.

This result can be proved in several ways. A proof in Gneiting and Raftery (2007) is
attributed to an argument in Hendrickson and Buehler (1971). If H, is twice differentiable,
an alternative proof follows from a result in Buja et al. (2005); Schervish (1989), which
shows that a proper loss ¢ is strictly proper if and only if its ‘weight function’ w. = —H//
satisfies w¢(n) > 0 for all except at most countably many points n € [0, 1]; by a very recent

5. Here u € R is a superderivative of H. at 7 if for all n € [0,1], Hc() — He(n) > u(f — n).
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result of Stein (2012), this condition is equivalent to strict convexity of the function —H,, or
equivalently, strict concavity of H.. Here we give a third, self-contained proof of the above
result that is derived from first principles, and that will be helpful when we study strongly
proper losses in Section 4.

Proof [of Theorem 4] Let ¢ : {1} x [0,1]=R; be a proper loss. For the ‘if’ direction,
assume H, is strictly concave. Let 1,7 € [0, 1] such that 77 # 1. Then we have

Le(n,0) — He(n) = Le(n, ) + He(7) — He(R) — He(n)
= Lo(n, i)+ Ho(i) = 2(3Hen) + $Ho(7))

> Le(n, ) + He(7) — 2H, (";”)

> ((n;ﬁ>c<1,m +(1- ";ﬁ)c<_1,n>) ~om, (1)

(1(2529) - m(13)

= 2
> 0.
Thus c is strictly proper.

Conversely, to prove the ‘only if” direction, assume c is strictly proper. Let 11,12 € [0, 1]
such that n; # 12, and let t € (0,1). Then we have

He(tm + (1 =t)n2) = Le(tm + (1 —t)na, tm + (1 =)o)
= tLe(m, tm 4+ (1 —t)m2) + (1 =) Le(nz, tm + (1 — t)n2)
> tHe(m)+ (1—1t) He(n).

Thus H. is strictly concave. |

2.3.2 PROPER COMPOSITE LOSSES

The notion of properness can be extended to binary loss functions operating on prediction
spaces y other than [0,1] via composition with a link function ¢ : [0,1]—Y. Specifically,
for any ycC R, a loss function £ : {£1} x y—>]R+ is said to be proper composite if it can be
written as

Uy, 9) = cly, v () (14)

for some proper loss ¢ : {1} x [0, 1]—R, and strictly increasing (and therefore invertible)
link function ¢ : [0, 1]%)7 Proper composite losses have been studied recently in Reid and
Williamson (2010, 2011); Buja et al. (2005), and include several widely used losses such as
squared, squared hinge, logistic, and exponential losses.

It is worth noting that for a proper composite loss ¢ formed from a proper loss c,
H, = H.. Moreover, any property associated with the underlying proper loss ¢ can also
be used to describe the composite loss ¢; thus we will refer to a proper composite loss /¢
formed from a regular proper loss ¢ as reqular proper composite, a composite loss formed
from a strictly proper loss as strictly proper composite, etc. In Section 4, we will define and
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characterize strongly proper (composite) losses, which we will use to obtain regret bounds
for bipartite ranking.

3. Related Work

As noted above, a popular theoretical and algorithmic framework for bipartite ranking has
been to reduce the problem to pairwise classification. Below we describe this reduction in
the context of our setting and notation, and then review the result of Kotlowski et al. (2011)
which builds on this pairwise reduction.

3.1 Reduction of Bipartite Ranking to Pairwise Binary Classification

For any distribution D on X x {£1}, consider the distribution D on (X x X) x {1} defined
as follows:

1. Sample (X,Y) and (X’,Y”) i.i.d. from D;

2. If Y =Y’, then go to step 1; else set®

X =(X,X'), Y =sign(Y —Y')
and return (X,Y).
Then it is easy to see that, under IN),

P(X = (n.4)) = PE= TP =2) (772(]::()1(1_—]9;7(93 D@ =n@) o

(16)

p=PY=1) = 1. (17)

Moreover, for the 0-1 loss £o.1 : {£1} x {£1}—{0,1} given by £o.1(y,y) = 1(y # y), we have
the following for any pairwise binary classifier h : X x XY—{+1}:

a%lh] = Ezyp [1(h()?) ” 17)} (18)
el = Eg [min <ﬁ()~(), 1- ﬁ(f())] (19)
1"eg;ret%1 [h] = er%1 [h] — er%l’* . (20)

Now for any scoring function f : X —R, define fgg : X x X—R as

fag(z,2') = f(z) - f(2'). (21)

Then it is easy to see that:
er3™ [f] = er’s'[sign o fuig] (22)
ergnk’* = er%l’* , (23)

6. Throughout the paper, sign(u) = +1 if u > 0 and —1 otherwise.
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The equality in Eq. (23) follows from the fact that the classifier

).
n(x')) achieves the Bayes 0-1 risk, i.e., er%1 [h*] = er%l’* (Clémencon

where (go f)(u) = g(f(u)
B*(z,2) = sign(n(z) -
et al., 2008). Thus

regret’aik[f] = regret%l[signo faiet] (24)

and therefore the ranking regret of a scoring function f : X —R can be analyzed via upper
bounds on the 0-1 regret of the pairwise classifier (sign o fgig) : X x X—{+1}.7

In particular, as noted in Clémengon et al. (2008), applying a result of Bartlett et al.
(2006), we can upper bound the pairwise 0-1 regret above in terms of the pairwise £4-regret
associated with any classification-calibrated margin loss ¢4 : {1} x R—R,, ie., any loss
of the form 44 (y, §) = ¢(yy) for some function ¢ : R—R satisfying V n € [0,1],7 # %,8

zf/‘“eargrypeiﬂqus(n,ﬂ) = J'(n—13%)>0. (25)

We note in particular that for every proper composite margin loss, the associated link
function 1 satisfies w(%) = 0 (Reid and Williamson, 2010), and therefore every strictly
proper composite margin loss is classification-calibrated in the sense above.”

Theorem 5 (Bartlett et al. (2006); see also Clémengon et al. (2008)) Let ¢ : R—R,
be such that the margin loss £y : {£1} x R—R defined as Ly(y,y) = ¢(yy) is classification-
calibrated as above. Then 3 strictly increasing function gy : R4 —[0,1] with g4(0) = 0 such

that for any f: X x X—>R,
0-1[os = b7
regret 5 [signo f] < gy (regretﬁ[f]) .

Bartlett et al. (2006) give a construction for gg; in particular, for the exponential loss given
by ¢exp(u) = e~ and logistic loss given by ¢iog(u) = In(1 +e™"), both of which are strictly
proper composite losses (see Section 5.2) and are therefore classification-calibrated, one has

gexp(z) \/g (26)
glog(z) < \/Z (27)

IN

As we describe below, Kotlowski et al. (2011) build on these observations to bound the
ranking regret in terms of the regret associated with balanced versions of the exponential
and logistic losses.

7. Note that the setting here is somewhat different from that of Balcan et al. (2008) and Ailon and Mohri
(2008), who consider a subset version of bipartite ranking where each instance consists of some finite
subset of objects to be ranked; there also the problem is reduced to a (subset) pairwise classification
problem, and it is shown that given any (subset) pairwise classifier h, a subset ranking function f can be
constructed such that the resulting subset ranking regret is at most twice the subset pairwise classification
regret of h (Balcan et al., 2008), or in expectation at most equal to the pairwise classification regret of
h (Ailon and Mohri, 2008).

8. We abbreviate Ly = Ly, er% = erg’, etc.

9. We note that in general, every strictly proper (composite) loss is classification-calibrated with respect
to any cost-sensitive zero-one loss, using a more general definition of classification calibration with an
appropriate threshold (e.g., see (Reid and Williamson, 2010)).
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3.2 Result of Kotlowski et al. (2011)

For any binary loss £ : {£1} x Y—R,, consider defining a balanced loss lpa : {£1} x YR

as
1

1

iy - -
2p 2(1 =p)
Note that such a balanced loss depends on the underlying distribution D viap = P(Y = 1).

Then Kotlowski et al. (2011) show the following, via analyses specific to the exponential
and logistic losses:

ebal(ya /y\) - (17:7/\) ) 1(y = 1) + E(_Li/\) ’ 1(y = _1) : (28)

Theorem 6 (Kotlowski et al. (2011)) For any f : X —R,
regret 2P fair] < gre ret PP )
D diff] > 4 grevy
regretlj%g[fdiﬁf] < 2regret B[]
Combining this with the results of Eq. (24), Theorem 5, and Egs. (26-27) then gives the
following bounds on the ranking regret of any scoring function f : X—R in terms of the
(non-pairwise) balanced exponential and logistic regrets of f:

regret’aik[f] < regretP P2 f] (29)

Sl e

regret’ k(] < 2 regretlgg’bal[f]. (30)

This suggests that an algorithm that produces a function f : X—R with low balanced
exponential or logistic regret will also have low ranking regret. Unfortunately, since the
balanced losses depend on the unknown distribution D, they cannot be optimized by an
algorithm directly.! Kotlowski et al. (2011) provide some justification for why in certain
situations, minimizing the usual exponential or logistic loss may also minimize the balanced
versions of these losses; however, by doing so, one loses the quantitative nature of the above
bounds. Below we obtain upper bounds on the ranking regret of a function f directly
in terms of its loss-based regret (with no balancing terms) for a wide range of proper
(composite) loss functions that we term strongly proper, including the exponential and
logistic losses as special cases.

4. Strongly Proper Losses

We define strongly proper losses as follows:

Definition 7 Let ¢ : {1} x [0,1] =R, be a binary CPE loss and let A > 0. We say c is
A-strongly proper if for all n,n € [0,1],

Le(n,7) — He(n) > S(n—1)%.

o | >

We have the following necessary and sufficient conditions for strong properness:

10. We note it is possible to optimize approximately balanced losses, e.g., by estimating p from the data.
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Lemma 8 Let A > 0. If c: {&1} x [0,1]=R, is A-strongly proper, then H. is \-strongly
concave.

Proof The proof is similar to the ‘only if’ direction in the proof of Theorem 4. Let ¢ be
A-strongly proper. Let 11,12 € [0, 1] such that 1y # 12, and let ¢ € (0,1). Then we have

He(tm + (1= t)) = Le(tm + (1= t)mo, tm + (1= t)ip2)
= tLe(m, tm + (1 —t)m2) + (1 =) Le(nz, tm + (1 — t)n2)

A
>t <Hc(771) + 5(1 —t)*(m — 772)2>
Ao 2
(L= t) ( He(nz) + 57 (m — 1)
A
= tHo(m) + (1= 1) Holm) + 580 = 0)(m = m)?.
Thus H. is A-strongly concave. |

Lemma 9 Let A > 0 and let ¢ : {1} x [0,1]=R; be a regular proper loss. If H, is
A-strongly concave, then c is A-strongly proper.

Proof Let 7,7 € [0,1]. By Theorem 3, there exists a superderivative H.(7) of H. at 7] such
that

Le(n,7) = He(@) + (n—1) - H(7) -

This gives
Le(n, ) — He(n) = He(R) — He(n) + (n —7) - He(7)
A : .
> 5( —n)?, since H, is A-strongly concave.
Thus c is A-strongly proper. |

This gives us the following characterization of strong properness for regular proper losses:

Theorem 10 Let A > 0 and let ¢ : {£1} x [0,1]—=Ry be a regular proper loss. Then c is
A-strongly proper if and only if H. is A-strongly concave.

We note that from Lemma 8, another way to think about strongly proper losses is that the
weight function w(n) = —H"(n), used to express the proper loss as a weighted mixture of
cost-sensitive misclassification losses (e.g., Buja et al., 2005; Reid and Williamson, 2010), is
bounded below by a positive constant.

Several examples of strongly proper (composite) losses will be provided in Section 5.2
and Section 5.3. Theorem 10 will form our main tool in establishing strong properness of
many of these loss functions.
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5. Regret Bounds via Strongly Proper Losses

We start by recalling the following result of Clémencon et al. (2008) (adapted to account
for ties, and for the conditioning on Y # Y”):

Theorem 11 (Clémengon et al. (2008)) For any f : X—R,

1
)EX7X,[

regretrgnk[f] = 72}0(1_1)

n(X) = n(X")] - (1) = SN X) = (X)) < 0)
+ (0 = (x)) ]

As noted by Clémencon and Robbiano (2011), this leads to the following corollary on the
regret of any plug-in ranking function based on an estimate 7:

Corollary 12 For any 1 : X—|0, 1],
~ 1 ~
regretgnk[n] < mEX HT)(X) - 77(X)H .

For completeness, a proof is given in Appendix A. We now give our main result.

5.1 Main Result

Theorem 13 Let Y C R and let A > 0. Let £: {£1} x YR, be a A-strongly proper
composite loss. Then for any f: X—)Y,

V2
regret B[ f] < ——————/regret})[f].
p(1—p)VA
Proof Let ¢: {£1} x [0,1]—R, be a A-strongly proper loss and ¢ : [0,1]—Y be a (strictly
increasing) link function such that {(y,y) = c(y, v~ 1(y)) for all y € {£1},5 € Y. Let
f: X—=Y. Then we have

regret @ik f] = regret’3™[yy"Lo f], since ¥ is strictly increasing

1 —
p(1—p) Ex [W Hf(X) - 77(X)H , by Corollary 12

o (Bx o0y )
1
p(1—p)

<

IN

VB[00 - a0,

by convexity of ¢(u) = u? and Jensen’s inequality

IA

p(ll—p)\/?\ Ex [Re(n(X),v=1(f(X)))], since cis A-strongly proper

_ p(l_p)ﬁ Ex [R(n(X), /(X))]
V2

p(1—p)VA
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Theorem 13 shows that for any strongly proper composite loss ¢ : {£1} x j)\—>R+, a
function f : X —>3A/ with low f-regret will also have low ranking regret. Below we give
several examples of such strongly proper (composite) loss functions; properties of some of
these losses are summarized in Table 1.

5.2 Examples
Example 1 (Exponential loss) The ezponential 10ss lexp : {£1} x R—R, defined as

gexp <y7 y) = e V¥

is a proper composite loss with associated proper loss cexp @ {£1} x [0, 1]=R, and link
function ey : [0, 1] =R given by

. 1—7\¥? R 1 7l
CeXP(yﬂ’r,) = <ﬁ> 5 d)exp(n) = §1H 1_?/7\ .

It is easily verified that cexp, is reqular. Moreover, it can be seen that
Hexp(n) = 2v/n(1—n),

—H&Am==2muinwwz4 v € [0,1].

Thus Hexp, is 4-strongly concave, and so by Theorem 10, we have Loy, 15 4-strongly proper
composite. Therefore applying Theorem 13 we have for any f : X—R,

1 x
regret B[ f] < —=————/regret3P[f].

V2p(1 —p)
Example 2 (Logistic loss) The logistic l0ss lexp : {1} x R—Ry defined as

log(y,7) = In(1+e7%7)

with

is a proper composite loss with associated proper loss ciog : {£1} x [0,1]—=R4 and link
function g : [0,1] =R given by

Qo) =~ L@ = D5 (@) = ()
Again, it is easily verified that ciog is regqular. Moreover, it can be seen that
Hiog(n) = —nlnn—(1—n)n(l-n),
with .
—Hige(n) = i 24 v € [0,1].

Thus Hog 1s 4-strongly concave, and so by Theorem 10, we have lig is 4-strongly proper
composite. Therefore applying Theorem 13 we have for any f : X—R,
1
regret @ik [f] < ———— regretlgg[f].

V2p(1—p)
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Example 3 (Squared and squared hinge losses) The (binary) squared loss (1 — y7)?
and squared hinge loss ((1—yy)+)? (where uy, = max(u,0)) are generally defined for iy € R.
To obtain class probability estimates from a predicted value y € R, one then truncates y to
[—1,1], and uses ) = y+1 (Zhang, 2004). To obtain a proper loss, we can take Y = [ 1,1];
in this range, both losses coincide, and we can define lsq : {£1} x [—1,1]—[0,4] a

lsa(y,9) = (1—yp)°.

This is a proper composite loss with associated proper loss csq @ {£1} x [—1,1]—0,4] and
link function vsq : [0, 1]—=[—1,1] given by

qu(Lﬁ) = 4(1_ﬁ)2; qu<_1aﬁ) = 4ﬁ2; wbq(ﬁ) = 2ﬁ_1

It can be seen that

Leq(n, ) = 4n(1 =) +4(1 — )i’
and

Hsq(n) = 4n(1—n),
so that
Lsq(n,m) — Hsq(n) = 4(n — ﬁ)2 .

Thus lsq s 8-strongly proper composite, and so applying Theorem 15 we have for any f :
X—[-1,1],

rank 1
regret 5[ f] < 22(0=p)
Note that, if a function f : X—=R is learned, then our bound in terms of Lsq-regret applies
to the ranking regret of an appropriately transformed function f : X—[—1,1], such as that
obtained by truncating values f(x) ¢ [—1,1] to the appropriate endpoint —1 or 1:

regrety[f] .

) 1 i fa) < -
f) = ¢ fl) i f(z) e [-1,1]
1 if f(z)>1

5.3 Constructing Strongly Proper Losses

In general, given any concave function H : [0,1]—=Ry, one can construct a proper loss
c:{£1} x[0,1]>Ry with H. = H as follows:

c(L,n) = H®)+ (1 -nH®) (31)
o(=1.m) = H@) —7H®), (32)

where H'(7)) denotes any superderivative of H at 7). It can be verified that this gives
Lc(n,m) = H®®) + (n—n)H'(n) for all n,n € [0,1], and therefore H.(n) = H(n) for all n €
[0,1]. Moreover, if H is such that H(n)+(1—n)H'(n) € Ry Vi € (0,1) and H(n)—nH'(7) €
R4 ¥n € [0,1), then the loss ¢ constructed above is also regular. Thus, starting with any
A-strongly concave function H : [0, 1] =R satisfying these regularity conditions, any proper
composite loss ¢ formed from the loss function ¢ constructed according to Egs. (31-32) (and
any link function 1) is A-strongly proper composite.
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Loss y ((y,7) c(y,n) ¥(7) A
y=1 | y=-1

. = iy 1-7 n 1 n
Exponential R e v T” 1%77 iln (1%17) 4
Logistic R In(1 4 e~ ¥Y) —In7y —In(1 -17) In (%Aﬁ) 4
Squared [-1,1] (1 —yp)? 4(1-1)? 47? 2n—1 8

: - _ 7 ___1-5 ~

Spherical [0,1] c(y,y) 1 ey 1 = n 1

Canonical = 9\2  ui 1-7 7 271
‘exponential’ R L+(3) 2 n 1-n VA(1-7) 4

Canonical 1 2 ~2 ~2 ~

squared || 1Y (1 —yy) (1—7) 1 -1 12

Canonical 1 =5 |~ 7 1-7 271
spherical || BT 2 (V2=92+99) |1 - =5 | 1 JErar | Vera | ¢

Table 1: Examples of strongly proper composite losses ¢ : {£1} X 3/)\—>R+ satisfying the
conditions of Theorem 13, together with prediction space ), proper loss c : {£1} x
[0, 1] =R, link function ¥ : [0,1]—), and strong properness parameter .

Example 4 (Spherical loss) Consider starting with the function Hgpper : [0,1] =R de-

fined as
Hypher(n) = 1= /n? + (1 —n)2.
Then 0 .
spher() = 772(+77(1 _)17)2
and
~Hlpp) = 1 > 1 welo),

(m?+ (1 —n)?)32 ~

and therefore Hgpher is 1-strongly concave. Moreover, since Hgpher and H;pher are both
bounded, the conditions for regularity are also satisfied. Thus we can use Eqs. (31-32) to

construct a 1-strongly proper 10ss cspher : {£1} % [0,1]=R as follows:

. . ~ . n
Cspher(1,7) = Hgpher(1) + (1 — 1)) épher(n) = 1- 2+ (1—n)2
Copher(—17) = Hopner () — THlppee(7) = 1~ — e
spher ) — spher - — -
P P spher ﬁ2 n (1 — 77)2

Therefore by Theorem 13, we have for any f : X—10,1],

spher

regret? ik f] < regret 5 [ f].

~ p(1-p)
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The loss cgpher above corresponds to the spherical scoring rule described in Gneiting and
Raftery (2007).

We also note that, for every strictly proper loss ¢ : {£1} x [0, 1]—R,, there is an
associated ‘canonical’ link function 1) : [0, 1] =) defined as

(@) = e(=1,1) —c(1,7), (33)

where Y = {¢(7) : 7 € [0,1]}. We refer to composite losses comprised of such a strictly
proper loss ¢ with the corresponding canonical link v as canonical proper composite losses.
Clearly, multiplying ¢ by a factor a > 0 results in the corresponding canonical link 1 also
being multiplied by «; adding a constant (or a function 6(y,7) = 6(7) that is independent
of y) to ¢ has no effect on 1. Conversely, given any Y CR and any (strictly increasing)
link function v : [0,1]—Y, there is a unique strictly proper loss ¢ : {£1} x [0,1]—R, (up
to addition of constants or functions of the form 0(y,n) = 6(7)) for which 1 is canonical;
this is obtained using Eqs. (31-32) with H satisfying H'(7) = — (7)) (with possible addition
of a term 6(7) to both ¢(1,n) and ¢(—1,7) thus constructed). Canonical proper composite
losses £(y, y) have some desirable properties, including for example convexity in their second
argument g for each y € {£1}; we refer the reader to Buja et al. (2005); Reid and Williamson
(2010) for further discussion of such properties.

We note that the logistic loss in Example 2 is a canonical proper composite loss. On
the other hand, as noted in Buja et al. (2005), the link ).y, associated with the exponential
loss in Example 1 is not the canonical link for the proper loss cexp (see Example 5). The
squared loss in Example 3 is almost canonical, modulo a scaling factor; one needs to scale
either the link function or the loss appropriately (Example 6).

Example 5 (Canonical proper composite loss associated with ce.,) Let Cexp {£1}x
[0,1]—R be as in Example 1. The corresponding canonical link texp can : [0, 1] =R is given

by
1-7 27— 1
77bx,n \/ \/ =
exp,ca; 1_ (1_77)

With a little algebra, it can be seen that the resulting canonical proper composite 108s Lexp,can
{£1} x R=>Ry is given by

=5 ~
gexp,cam(yv/y\) = 1+ (%) - % .

Since we saw Cexp 5 4-strongly proper, we have lexp can 15 4-strongly proper composite, and
therefore we have from Theorem 15 that for any f : X—R,

1
V2p(1 —p)

Example 6 (Canonical squared loss) For csq : {1} x [0,1]—(0, 4] defined as in Exam-

I.egretrDank [f] < exp,can[f] )

regret

ple 3, the canonical link 1sq can : [0, 1]—)37 s given by
Usqean() = 477 —4(1-7)* = 4(27-1),
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with Y = [—4,4], and the resulting canonical squared loss lsqean : {E£1} x [—4,4]—10,4] is
given by

7N 2
esq,can(yy/y\) = (1_%) .

Since we saw csq 15 4-strongly proper, we have lsqcan 15 4-strongly proper composite, giving
for any f: X—[—4,4],

ran. 1
a5 < iy

For practical purposes, this is equivalent to using the loss lsq : {1} x [—1,1]—(0,4] defined
in Example 3. Alternatively, we can start with a scaled version of the squared proper loss
Csq - {£1} x [0,1]=[0, 1] defined as

(L) = 1=0)%  aq(-10) = 77,

regret " [ f].

for which the associated canonical link Ysq can : [0, 1]—>§ s given by
wsq’,can(ﬁ) = 7/7\2 - (1 - 7/7\)2 = 2;7\_ 17

with Y = [~1,1], and the resulting canonical squared loss lsqt can = {1} x [=1,1]=0,1] is
given by

. 1—yy)?
gsq’,can(y) y) = (4) .

Again, it can be verified that cs is reqular; in this case Hgy (1) = n(1—n) which is 2-strongly
concave, gwing that Hyy can is 4-strongly proper composite. Therefore applying Theorem 13
we have for any f: X—[—1,1],

regret? k[ ] < p(ll—p) regretsgl’can [f]-
Again, for practical purposes, this is equivalent to using the loss lsq defined in Example 3.
Example 7 (Canonical spherical loss) For cspher : {1} x [0,1]=R defined as in Ex-
ample 4, the canonical link Yspher,can : [0, 1] =Y is given by
2% — 1
4+ (1-n)?

il

wspher,can (7/7\) =

with Y = [-1,1]. The resulting canonical spherical loss lspher,can : {£1} x [=1,1]=R is

given by
. Ly fo— =
espher,can(:% y) = 1- 5( 2— /y\2 + yy) .

Since we saw Cspher 15 1-strongly proper, we have lsphercan 15 1-strongly proper composite,
and therefore we have from Theorem 13 that for any f: X—[—1,1],

2
e < 2 e
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6. Tighter Bounds under Low-Noise Conditions

In essence, our results exploit the fact that for any scoring function f : X—R, given a
strongly proper composite loss £, one can construct a class probability estimator from f
whose distance from the true class probability function 1 can be upper bounded in terms
of the l-regret of f. Specifically, if £ is a strongly proper composite loss with underlying
strongly proper loss ¢ and link function 1, then the Ly (and therefore L;) distance between
Y~ 1(f(X)) and n(X) (with respect to p, the marginal density of D on &) can be upper
bounded precisely in terms of the ¢-regret of f. From this perspective, 7 = ¢~ o f can be
treated as a class probability estimator and therefore a ‘plug-in’ scoring function, which we
analyzed via Corollary 12.

Recently, Clémencon and Robbiano (2011) showed that, under certain low-noise as-
sumptions, one can obtain tighter bounds on the ranking risk of a plug-in scoring function
7 : X—[0,1] than that offered by Corollary 12. Specifically, Clémengon and Robbiano
(2011) consider the following noise assumption for bipartite ranking (inspired by the noise
condition studied in Tsybakov (2004) for binary classification):

Noise Assumption NA («a) (a € [0,1]): A distribution D on X x {£1} satisfies assump-
tion NA(«) if 3 a constant C > 0 such that for all x € X and t € [0, 1],

Px([n(X)—n(x)| <t) < C-1*.

Note that @ = 0 imposes no restriction on D, while larger values of o« impose greater
restrictions. Clémengon and Robbiano (2011) showed the following result (adapted slightly
to our setting, where the ranking risk is conditioned on Y # Y”):

Theorem 14 (Clémencon and Robbiano (2011)) Let a € [0,1) and g € [1,00). Then
3 a constant Coq > 0 such that for any distribution D on X x {1} satisfying noise
assumption NA(a) and any 17 : X—[0, 1],

14+
Ca?q

regret3"™ (7] < (Bx[7(x) = n(X)|") "™

~ p(1-p)

This allows us to obtain the following tighter version of our regret bound in terms of
strongly proper losses under the same noise assumption:

Theorem 15 Let Y C R and A > 0, and let o € [0,1). Let £ : {1} x YR, be a A-
strongly proper composite loss. Then 3 a constant Co > 0 such that for any distribution D
on X x {£1} satisfying noise assumption NA(«) and any f: X—Y,

lta 1+a

Ca 2o 2¥a
regret?aik[ ] < P <i> (regret%[f]) .

Proof Let c: {41} x [0,1]=R be a A-strongly proper loss and ¥ : [0, 1]—>j)\ be a (strictly
increasing) link function such that £(y, ) = c(y,v~1(7)) for all y € {£1},5 € V. Let D be

1669



AGARWAL

a distribution on X x {£1} satisfying noise assumption NA(«) and let f : X—Y. Then

regret @[] = regret’3™ [yl o f], since ¢ is strictly increasing
Ca 2 -1 2 %
< — _
< e (B a0 —ne0)?]) T
by Theorem 14, taking ¢ = 2
e
Ca2 <2 _1 ) 2ta
S —— | T E Rc X 711) f X ’
S (B [Reln(0). 07 )]
since c¢ is A-strongly proper
14+«
Ca 2 2 2+a
= —— | —Ex|Ri(n(X X
o2 (2 [mn0).100)] )
C 2\ 2 L
,2 « ¢ 2+a
= —| = t .
i (3) 7 Ceeeol)
The result follows by setting C, = Cq 2. [ |

For a = 0, as noted above, there is no restriction on D, and so the above result gives
the same dependence on regret’[f] as that obtained from Theorem 13. On the other hand,
as « approaches 1, the exponent of the regretKD[ f] term in the above bound approaches %,
which improves over the exponent of % in Theorem 13.

7. Conclusion and Open Questions

We have obtained upper bounds on the bipartite ranking regret of a scoring function in terms
of the (non-pairwise) regret associated with a broad class of proper (composite) losses that
we have termed strongly proper (composite) losses. This class includes several widely used
losses such as exponential, logistic, squared and squared hinge losses as special cases.

The definition and characterization of strongly proper losses may be of interest in its
own right and may find applications elsewhere. As one example, we recently found strongly
proper losses to be useful in analyzing consistency of algorithms for binary classification
in class imbalance settings (Menon et al., 2013). An open question concerns the necessity
of the regularity condition in the characterization of strong properness of a proper loss in
terms of strong concavity of the conditional Bayes risk (Theorem 10). The characterization
of strict properness of a proper loss in terms of strict concavity of the conditional Bayes
risk (Theorem 4) does not require such an assumption, and one wonders whether it may be
possible to remove the regularity assumption in the case of strong properness as well.

Many of the strongly proper composite losses that we have considered, such as the
exponential, logistic, squared and spherical losses, are margin-based losses, which means the
bipartite ranking regret can also be upper bounded in terms of the regret associated with
pairwise versions of these losses via the reduction to pairwise classification (Section 3.1).
A natural question that arises is whether it is possible to characterize conditions on the
distribution under which algorithms based on one of the two approaches (minimizing a
pairwise form of the loss as in RankBoost/pairwise logistic regression, or minimizing the
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standard loss as in AdaBoost/standard logistic regression) lead to faster convergence than
those based on the other. We hope the tools and results established here may help in
studying such questions in the future.
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Appendix A. Proof of Corollary 12
Proof Let 1: X—[0,1]. By Theorem 11, we have

1
< -
~ 2p(1-p)

The result follows by observing that for any z,z’ € X,

regret?ank( 7] Ex x/ {

7(X) = n(X")| - L(@X) = HEXN () = n(x) <0)] .

() = 7)) (n(x) = n(@) <0 = |n(x) —n(')] < [ix) - n(@)] + [7(z") - nla’)].

To see this, note the statement is trivially true if n(z) = n(a’). If n(x) > n(z'), we have

(A(z) = 0@")(n(z) = (@) <0 = fz) <)
= () =) < (n(@) = 7(z) + ([7(") — ("))
= () —n(a) < In(z) = 72)] + [[a") —n2’)]
= In(z) — ()| < [i(x) = n(z)| + {2 - n(a’)]

regret 3" (7] < 7_pEX,X’ Uﬁ(X) —n(X)| + [7(X) — ”(X/)u
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