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Abstract

We analyze two communication-efficient algorithms for dligtted optimization in statistical set-
tings involving large-scale data sets. The first algorittemaistandard averaging method that
distributes theN data samples evenly tm machines, performs separate minimization on each
subset, and then averages the estimates. We provide a stalysis of this average mixture
algorithm, showing that under a reasonable set of condititim;e combined parameter achieves
mean-squared error (MSE) that decaysogsl— + (N/m)~2). Whenevem < /N, this guaran-
tee matches the best possible rate achievable by a ceettalgorithm having access to &l
samples. The second algorithm is a novel method, based opmppaiate form of bootstrap
subsampling. Requiring only a single round of communicatib has mean-squared error that
decays asO(N~1 4 (N/m)~3), and so is more robust to the amount of parallelization. In ad
dition, we show that a stochastic gradient-based methaihatmean-squared error decaying as
O(N~1+ (N/m)~3/2), easing computation at the expense of a potentially slow8ENate. We
also provide an experimental evaluation of our methodsgstigating their performance both on
simulated data and on a large-scale regression problentfreimternet search domain. In particu-
lar, we show that our methods can be used to efficiently sahadaertisement prediction problem
from the Chinese SoSo Search Engine, which involves lagistiression wittN ~ 2.4 x 108 sam-
ples andd =~ 740,000 covariates.

Keywords: distributed learning, stochastic optimization, averggsubsampling

1. Introduction

Many procedures for statistical estimation are based on a form of (rempd® empirical risk min-
imization, meaning that a parameter of interest is estimated by minimizing an objaatistoh
defined by the average of a loss function over the data. Given thentestglosion in the size and
amount of data available in statistical studies, a central challenge is to dé&gmealgorithms for
solving large-scale problem instances. In a centralized setting, themesaeprocedures for solv-
ing empirical risk minimization problems, among them standard convex progranapprgaches
(e.g., Boyd and Vandenberghe, 2004) as well as stochastic approxinaatiboptimization algo-
rithms (Robbins and Monro, 1951; Hazan et al., 2006; Nemirovski et@9)2 When the size of
the data set becomes extremely large, however, it may be infeasible to btof¢he data on a
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single computer, or at least to keep the data in memory. Accordingly, the @ifdhis paper is the
study of some distributed and communication-efficient procedures for ieadpisk minimization.

Recent years have witnessed a flurry of research on distributedaayb@s to solving very large-
scale statistical optimization problems. Although we cannot survey the literati@guately—the
papers Nedi and Ozdaglar (2009), Ram et al. (2010), Johansson et al. (AD0&hi et al. (2012a),
Dekel et al. (2012), Agarwal and Duchi (2011), Recht et al. (30Duchi et al. (2012b) and ref-
erences therein contain a sample of relevant work—we touch on a fewtenpdnemes here. It
can be difficult within a purely optimization-theoretic setting to show explicit benarising from
distributed computation. In statistical settings, however, distributed computatidead to gains in
computational efficiency, as shown by a number of authors (AgarvaeDarchi, 2011; Dekel et al.,
2012; Recht et al., 2011; Duchi et al., 2012b). Within the family of distridbaigorithms, there can
be significant differences in communication complexity: different computerst be synchronized,
and when the dimensionality of the data is high, communication can be prohibitixpénsive. It
is thus interesting to study distributed estimation algorithms that require fairly limitechsyniza-
tion and communication while still enjoying the greater statistical accuracy thatigly associated
with a larger data set.

With this context, perhaps the simplest algorithm for distributed statistical estimatidrat we
term theaverage mixturé AvGm) algorithm. It is an appealingly simple method: givardifferent
machines and a data set of siegfirst assign to each machine a (distinct) data set ofrsizéN /m,
then have each machineompute the empirical minimizé; on its fraction of the data, and finally
average all the parameter estima&geacross the machines. This approach has been studied for some
classification and estimation problems by Mann et al. (2009) and McDonald @010), as well
as for certain stochastic approximation methods by Zinkevich et al. (2@13n an empirical risk
minimization algorithm that works on one machine, the procedure is straiglafdne implement
and is extremely communication efficient, requiring only a single round of cormation. It is
also relatively robust to possible failures in a subset of machines aritfésedces in speeds, since
there is no repeated synchronization. When the local estimators are @edpit is clear that the
the AvGM procedure will yield an estimate that is essentially as good as that of an esthaatat
on allN samples. However, many estimators used in practice are biased, and satiiréd to ask
whether the method has any guarantees in a more general setting. Tottlé dnesknowledge,
however, no work has shown rigorously that thecM procedure generally has greater efficiency
than the naive approach of using= N/msamples on a single machine.

This paper makes three main contributions. First, in Section 3, we providarp ahalysis of
the AvGM algorithm, showing that under a reasonable set of conditions on the piopulsk, it
can indeed achieve substantially better rates than the naive approahcoheretely, we provide
bounds on the mean-squared error (MSE) that decay(asm) 1 +n~2). Whenever the number
of machinean s less than the number of sampleper machine, this guarantee matches the best
possible rate achievable by a centralized algorithm having accessNo=athm samples. In the
special case of optimizing log likelihoods, the pre-factor in our bound imgthe trace of the
Fisher information, a quantity well-known to control the fundamental limits of $izisestimation.
We also show how the result extends to stochastic programming approexhisting a stochastic
gradient-descent based procedure that also attains convergtarsaaing a®((nm)~1), but with
slightly worse dependence on different problem-specific parameters.

Our second contribution is to develop a novel extension of simple averalgiisgoased on an
appropriate form of resampling (Efron and Tibshirani, 1993; Hall, 199fitis et al., 1999), which
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we refer to as thesubsampled average mixtuf8avGMm) approach. At a high level, theASGm
algorithm distributes samples evenly amangprocessors or computers as before, but instead of
simply returning the empirical minimizer, each processor further subsampleitslata set in
order to estimate the bias of its own estimate, and returns a subsample-cbesiiteate. We
establish that the &GMm algorithm has mean-squared error decaying@as 'n—1+n=3). Aslong
asm < n?, the subsampled method again matches the centralized gold standard in thedérst-
term, and has a second-order term smaller than the standard averggiogcp

Our third contribution is to perform a detailed empirical evaluation of both them and
SavGM procedures, which we present in Sections 4 and 5. Using simulated datanérmal and
non-normal regression models, we explore the conditions under whi@ntlev algorithm yields
better performance than thesam algorithm; in addition, we study the performance of both meth-
ods relative to an oracle baseline that usedabhmples. We also study the sensitivity of the algo-
rithms to the number of split® of the data, and in theA&GMm case, we investigate the sensitivity of
the method to the amount of resampling. These simulations show that agth &nd S\wvGM have
favourable performance, even when compared to the unattainable ‘goldasd” procedure that
has access to al samples. In Section 5, we complement our simulation experiments with a large
logistic regression experiment that arises from the problem of predictimgher a user of a search
engine will click on an advertisement. This experiment is large enough—iimgph ~ 2.4 x 10
samples ind ~ 740,000 dimensions with a storage size of approximately 55 gigabytes—that it is
difficult to solve efficiently on one machine. Consequently, a distributedoagp is essential to
take full advantage of this data set. Our experiments on this problem sho®aham —with the
resampling and correction it provides—gives substantial performaaroefits over naive solutions
as well as the averaging algorithnvém.

2. Background and Problem Set-up

We begin by setting up our decision-theoretic framework for empirical riskmikation, after
which we describe our algorithms and the assumptions we require for outimesiretical results.

2.1 Empirical Risk Minimization

Let {f(-;x), x€ X} be a collection of real-valued and convex loss functions, each defimadset
containing the convex s@ C RY. Let P be a probability distribution over the sample spate
Assuming that each function— f(6; x) is P-integrable, thgopulation risk Iy : © — R is given by

Fo(8) := Ep[f (8:X)] = /X £(6;x)dP(x).
Our goal is to estimate the parameter vector minimizing the population risk, namelyadhéty

6" := argminky (0 —argmm/ f(0;x)dP(x
6O 6cO

which we assume to be unique. In practice, the population distrib&tisrunknown to us, but we
have access to a collecti@of samples from the distributioR. Empirical risk minimization is
based on estimating by solving the optimization problem

Be aregergin{é'gsf(e; x)}.
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Throughout the paper, we impose some regularity conditions on the paraspate, the risk
functionFp, and the instantaneous loss functidiis x) : © — R. These conditions are standard in
classical statistical analysis bf-estimators (e.g., Lehmann and Casella, 1998; Keener, 2010). Our
first assumption deals with the relationship of the parameter space to the oirauagief*.

Assumption 1 (Parameters) The parameter spad® C RY is a compact convex set, with € int®
and/-radius R= ren%xHe —0%|,.
€

In addition, the risk function is required to have some amount of curvaiedormalize this notion
in terms of the Hessian ¢%:

Assumption 2 (Local strong convexity) The population risk is twice differentiable, and there ex-
ists a parameteh > 0 such that1?Fy(8*) = Algxg.

Here[0%Fy(0) denotes thel x d Hessian matrix of the population objectifg evaluated a6, and
we use> to denote the positive semidefinite ordering (i&.> B means thalA — B is positive
semidefinite.) This local condition is milder than a global strong convexity comdhtial is required
to hold only for the population risky evaluated ad*. It is worth observing that some type of
curvature of the risk is required for any method to consistently estimate thenptar*.

2.2 Averaging Methods

Consider a data set consistinghf= mn samples, drawn i.i.d. according to the distributi®nin

the distributed setting, we divide thi¢-sample data set evenly and uniformly at random among a
total of m processors. (For simplicity, we have assumed the total number of samplewisige

of m) Fori=1,...,m we letS; denote the data set assigned to processoy construction, it

is a collection ofn samples drawn i.i.d. according B and the samples in subs&s andS, ; are
independent for # j. In addition, for each processowe define the (local) empirical distribution
P1; and empirical objectivéy; via

1 1
Pji=— O, and Fij(8):=
NS Ts 2 WO =151 2

With this notation, the %Gm algorithm is very simple to describe.

f(0;X%).

2.2.1 AVJERAGE MIXTURE ALGORITHM

(1) Foreach € {1,...,m}, processor uses its local data s& ; to compute the local empirical

minimizer
. 1
01i € argmin f(0;%) ¢. 1
weagmn g 3 (@0} W
~—_———
F1i(0)

(2) Thesemlocal estimates are then averaged together—that is, we compute
_ 1M
01==— 06y1;. 2
1= 3 o @)
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The subsampled average mixturay®&m) algorithm is based on an additional level of sampling
on top of the first, involving a fixed subsampling rate [0, 1]. It consists of the following additional
steps:

2.2.2 SUBSAMPLED AVERAGE MIXTURE ALGORITHM

(1) Each processdrdraws a subse; of size [rn] by sampling uniformly at random without
replacement from its local data sHt;.

(2) Each processorcomputes both the local empirical minimizé¥s from Equation (1) and the
empirical minimizer

1
0, € argmin f(6;x) .
2! egeG) { |SZI‘ XED (9 }

F2i(8)

(3) In addition to the previous average (2), thev8Mm algorithm computes the bootstrap average

6,:=15M,0,;, and then returns the weighted combination
— . él — réz
eSAVGM = 1-r (3)

The intuition for the weighted estimator (3) is similar to that for standard biagcton pro-
cedures using the bootstrap or subsampling (Efron and Tibshirani; H283 1992; Politis et al.,
1999). Roughly speaking, iy = 6* — 8 is the bias of the first estimator, then we may approximate
bo by the subsampled estimate of blas= 68* — 6,. Then, we use the fact thbf ~ by /r to argue
that®* ~ (8, —r0,)/(1—r). The re-normalization enforces that the relative “weightsdpénd6,
sumto 1.

The goal of this paper is to understand under what conditions—and insghae—the estima-
tors (2) and (3) approach tloeacle performancgby which we mean the error of a centralized risk
minimization procedure that is given access td\a# nmsamples.

2.2.3 NOTATION

Before continuing, we 1olefine the remainder of our notation. Weutedenote the usual Euclidean
norm||8||, = (2?21612)7. The ¢,-operator norm of a matriA € R%*% js jts maximum singular
value, defined by

Al = sup  [|Av]2.

VER®, |[v[,<1
A convex functionF is A-strongly convex on a sét C RY if for arbitrary u,v € U we have
A 2
F(u) 2 F(v) + {0F(v),u=v)+ 3 [lu=v3.

(If F is not differentiable, we may repladéF with any subgradient of.) We let® denote the
Kronecker product, and for a pair of vectars/, we define the outer produatz v = uv'. For a
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three-times differentiable functidh, we denote the third derivative tensor ByF, so that for each
u € domF the operatof1®F (u) : R9*¢ — RY is linear and satisfies the relation

3 d 63
[D°F(u)(vav)], = j}él (auiaujaukF(u)) Vi V.

We denote the indicator function of an evenby 1 ), which is 1 if £ is true and 0 otherwise.

3. Theoretical Results

Having described theViaM and S\vGM algorithms, we now turn to statements of our main theo-
rems on their statistical properties, along with some consequences andrisompa past work.

3.1 Smoothness Conditions

In addition to our previously stated assumptions on the population risk, wéreeggularity con-
ditions on the empirical risk functions. It is simplest to state these in terms of thdidns
6 — f(B;x), and we note that, as with Assumption 2, we require these to hold only localip@ro
the optimal poin®*, in particular within some Euclidean ball = {8 ¢ RY | |6 — 0|, <p} CO
of radiusp > 0.

Assumption 3 (Smoothness)There are finite constants,& such that the first and the second
partial derivatives of f exist and satisfy the bounds

E[||Of(6;X)[5] < G® deWD%wmyJﬁ%wmggHsfmmmeu
In addition, for any xc X, the Hessian matrix}? f (6; x) is L(x)-Lipschitz continuous, meaning that
|07 (8';x) — O?f(8;X) ||, < L(x)||®'— 6|, forall 6,6 €U. (4)
We require tha?[L(X)8] < L& andE[(L(X) — E[L(X)])8] < L8 for some finite constant L.

It is an important insight of our analysis that some type of smoothness canditithe Hessian
matrix, as in the Lipschitz condition (4), éssentialn order for simple averaging methods to work.
This necessity is illustrated by the following example:

Example 1 (Necessity of Hessian conditionsllet X be a Bernoulli variable with parametéj,
and consider the loss function

f(6ix) = (S ifx=0 5)
|8 +0 ifx=1,

where 1<) is the indicator of the event6é < 0}. The associated population risk ig(B) =
3(62 + ezl(ego)). Since|Fy(w) — F(v)| < 2|w—v|, the population risk is strongly convex and
smooth, but it has discontinuous second derivative. The unique miniofidex population risk is
6* = 0, and by an asymptotic expansion given in Appendix A, it can be showii[thal = Q(n*%).
Consequently, the bias 6f is Q(nf%), and theAvGwm algorithm using N= mn observations must
suffer mean squared err@[(6; — 6*)?] = Q(n™1).
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The previous example establishes the necessity of a smoothness conditicavet in a certain
sense, it is a pathological case: both the smoothness condition givenumpisn 3 and the local
strong convexity condition given in Assumption 2 are relatively innocuougfactical problems.

For instance, both conditions will hold for standard forms of regressiach) as linear and logistic,
as long as thgopulationdata covariance matrix is not rank deficient and the data has suitable
moments. Moreover, in the linear regression case, oné ka8.

3.2 Bounds for Simple Averaging

We now turn to our first theorem that provides guarantees on the stat@tionhssociated with the
AvGM procedure. We recall th& denotes the minimizer of the population objective funcign
and that for eache {1,...,m}, we useS to denote a data set ofindependent samples. For each
we use; € argmlrbee{ ers f(6;x)} to denote a minimizer of the empirical risk for the data set
S, and we define the averaged vedior 1 =S, 8. The following result bounds the mean-squared
error between this averaged estimate and the mininfizef the population risk.

Theorem 1 Under Assumptions 1 through 3, the mean-squared error is upperdeslias
E[|o-63) < —IEU}DZF (671 0H(O%X) 5] (6)
GZ
)\2 5 (H logd + - = ) [|I0?Roe") 0 (8 X))
+o(m*n~?) 4+ 0(n"?),
where ¢ is a numerical constant.

A slightly weaker corollary of Theorem 1 makes it easier to parse. In péatinote that
2 *\—1 *. 2 *\—1 * . (i) 1 * .
|0%Ro(e") 20f(8') ], < [|0%Fo(e) 2,10 (8" ), < NG PR

where step (i) follows from the inequalityAx|||, < ||Al] ||x||,, valid for any matrixA and vectolx;
and step (ii) follows from Assumption 2. In addition, Assumption 3 impH&& f (6%; X)|| ] <G
and putting together the pieces, we have established the following.

Corollary 2 Under the same conditions as Theorem 1,
202
22

. 2G? @ L
E[[[0-6[3] < 53—+ (H logd +

) +o(m =2+ o(n3). (8)
This upper bound shows that the leading term decays proportiongliyipo*, with the pre-factor
depending inversely on the strong convexity conskaand growing proportionally with the bound
G on the loss gradient. Although easily interpretable, the upper bound {@)eose, since it is
based on the relatively weak series of bounds (7).

The leading term in our original upper bound (6) involves the produtti@fradient] f (6*; X)

with the inverse Hessian. In many statistical settings, including the problemeairliegression,
the effect of this matrix-vector multiplication is to perform some type of stangatidn. When the
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lossf(-;x): © — R is actually the negative log-likelihod{x | 6) for a parametric family of models
{Ps}, we can make this intuition precise. In particular, under suitable regulanitgittons (e.g.,
Lehmann and Casella, 1998, Chapter 6), we can define the Fisher itifmmmaatrix

1(8%):=E [De(x 169)0E(X | e*)T} — E[02¢(X | 67)].

Recalling thatN = mnis the total number of samples available, let us define the neighbourhood
Bo(8,t) := {6 € RY:||@' — 8|, < t}. Then under our assumptions, théjek-Le Cam minimax
theorem (van der Vaart, 1998, Theorem 8.11) guaranteesfpestimatoBy based orN samples
that

. L =~ 2 w\—1

lim liminf ~ sup ~ NEg |[|6n —6|[5| > tr(1(8%)71).

C—0 N—oo BB, (6+,¢/VN) [ 2:|
In connection with Theorem 1, we obtain:

Corollary 3 In addition to the conditions of Theorem 1, suppose that the loss functieng &re
the negative log-likelihood(x | 8) for a parametric family{Ps, 8 € ©}. Then the mean-squared
error is upper bounded as

202

<H2|ogd + LS) + O(mN2),

-}
E[[8.—e3] < str(l(e*)1)+‘m12t;\<zll(\:92))

where c is a numerical constant.

Proof Rewriting the log-likelihood in the notation of Theorem 1, we havgx | 6*) = Of (8*;x)
and all we need to note is that

1(0°) 1=E [| (0°)10(X | 89)0e(X | )1 (e*)*l}
- E[(Dz%(e*)_lﬂf(e*;x)) (DZFO(G*)‘lDf(e*;X))T].

Now apply the linearity of the trace and use the fact thaftr) = HuH%. [

Except for the factor of two in the bound, Corollary 3 shows that Thedre@ssentially achieves
the best possible result. The important aspect of our bound, hovieteat we obtain this conver-
gence rate without calculating an estimate onNa#= mn samples: instead, we calculateinde-
pendent estimators, and then average them to attain the convergeraetgeaWWe remark that an
inspection of our proof shows that, at the expense of worse constahiglter order terms, we can
reduce the factor of Annon the leading term in Theorem 1 ¢+ c)/mnfor any constant > 0;
as made clear by Corollary 3, this is unimprovable, even by constantgactor

As noted in the introduction, our bounds are certainly to be expected ased estimators,
since in such cases averagimgndependent solutions reduces the variance fow. 1n this sense,
our results are similar to classical distributional convergence resulséstimation: for smooth
enough problemsd\i-estimators behave asymptotically like averages (van der Vaart, 199@dreh
and Casella, 1998), and averaging multiple independent realizationseretheir variance. How-
ever, it is often desirable to use biased estimators, and such bias intsaifficeilty in the analysis,
which we explore more in the next section. We also note that in contrast gicelhasymptotic re-
sults, our results are applicable to finite samples and give explicit uppedbam the mean-squared
error. Lastly, our results are not tied to a specific model, which allowsaidyfgeneral sampling
distributions.
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3.3 Bounds for Subsampled Mixture Averaging

When the number of machines is relatively small, Theorem 1 and Corollary 2 show that the
convergence rate of thev&m algorithm is mainly determined by the first term in the bound (6),
which is at mostxg%]. In contrast, when the number of processorgrows, the second term in the
bound (6), in spite of bein@(n—?), may have non-negligible effect. This issue is exacerbated when
the local strong convexity paramefenf the riskF is close to zero or the Lipschitz continuity con-
stantH of Of is large. This concern motivated our development of the subsampledjaverzture
(SavGMm) algorithm, to which we now return.

Due to the additional randomness introduced by the subsamplimyiang, its analysis requires
an additional smoothness condition. In particular, recalling the Eucligesrighbourhoodl of the
optimum@*, we require that the loss functidnis (locally) smooth through its third derivatives.

Assumption 4 (Strong smoothness)or each xe X, the third derivatives of f are §k)-Lipschitz
continuous, meaning that

[(035(8;%) — T3 F(8;%) (u )|, <M(x)||6—8'||,||ull; forall 6,6’ € U, and ue RY,
whereE[M&(X)] < M8 for some constant M oo,

It is easy to verify that Assumption 4 holds for least-squares regresstbrM = 0. It also holds
for various types of non-linear regression problems (e.g., logistic, multin@ttg as long as the
covariates have finite eighth moments.

With this set-up, our second theorem establishes that bootstrap samplirgyigelcbved per-
formance:

Theorem 4 Under Assumptions 1 through 4, the outPgtyem = (61 —182)/(1—r) of the boot-
strap SAVGM algorithm has mean-squared error bounded as

= 112 2+43r
]E|:HGSAVGM -0 HZ] < 71 r)2 nm

M2G®  G*L2dlogd 1 3 1 1
+C< T ><r<1r>2>” +O((lr)Zm " )

for a numerical constant c.

[HDZFO 6) 101 (6 )| )

Comparing the conclusions of Theorem 4 to those of Theorem 1, we Sei¢htne O(n~?)
term in the bound (6) has been eliminated. The reason for this elimination isulhsarapling
at a rater reduces the bias of thea8GM algorithm to O(n‘3), whereas in contrast, the bias
of the AvgM algorithm induces terms of order?. Theorem 4 suggests that the performance
of the SavGm algorithm is affected by the subsampling ratein order to minimize the upper
bound (9) in the regimen < N%/3, the optimal choice is of the formd C,/m/n = Cn?/2/N where
C ~ (G?/N?)max{MG/A,L/dlogd}. Roughly, as the number of machinesbecomes larger, we
may increase, since we enjoy averaging affects from thev&m algorithm.

Let us consider the relative effects of having larger numbers of mahirier both the A/Gm
and S\vGM algorithms, which provides some guidance to seleatirig practice. We define? =
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E[||02Fo(8%)~t0f (8 X) Hg] to be the asymptotic variance. Then to obtain the optimal convergence
rate ofa?/N, we must have

A2
max{H?logd,L2G?/A?}

2
imax{HZIogd,LZGZ} Ziozg % or m< Né\/ (10)

)\2

in Theorem 1. Applying the bound of Theorem 4, we find that to obtain tireesate we require

262 |2 4 2
max{MG LdIogd}Gm3<(l+r)0

Mr(1+r)o? ;
A6 T\ NS — N ’

2
< N2
orm< N3 <maX{M2G6/)\ZaG4L2d logd}

Now suppose that we replacavith Cn?/2/N as in the previous paragraph. Under the conditions
0° ~ G? andr = o(1), we then find that
:
orm§N§< A ) . (11

< Nz )\ZO'ZITI?’/2
3
m= G2max{MG/A,L/dlogd} N max{MG/A,L,/dlogd }

Comparing inequalities (10) and (11), we see that in both casemy grow polynomially with
the global sample sizBl while still guaranteeing optimal convergence rates. On one hand, this
asymptotic growth is faster in the subsampled case (11); on the other hartggbndence on the
dimensiond of the problem is more stringent than the standard averaging case ($@heAocal
strong convexity constamt of the population riskshrinks, both methods allow less splitting of the
data, meaning that the sample size per machine must be larger. This limitation is éntsitige
lower curvature for the population risk means that the local empirical risksciated with each
machine will inherit lower curvature as well, and this effect will be exaatath with a small local
sample size per machine. Averaging methods are, of course, not aeparthe allowed number
of partitionsm does not grow linearly in either case, so blindly increasing the number diimex
proportionally to the total sample sidewill not lead to a useful estimate.

In practice, an optimal choice ofmay not be apparent, which may necessitate cross validation
or another type of model evaluation. We leave as intriguing open questioather computing
multiple subsamples at each machine can yield improved performance oe ribdu@riance of the
SAvGM procedure, and whether using estimates based on resampling the datgplaitemeent, as
opposed to without replacement as considered here, can yield imprexfednpance.

Wi

3.4 Time Complexity

In practice, the exact empirical minimizers assumed in Theorems 1 and 4 manabelable. In-
stead, we need to use a finite number of iterations of some optimization algorithrdeinto obtain
reasonable approximations to the exact minimizers. In this section, we sketfyament that
shows that both the VGm algorithm and the 8/Gm algorithm can use such approximate empir-
ical minimizers, and as long as the optimization error is sufficiently small, the regaltieraged
estimate achieves the same order-optimal statistical error. Here we progidegtiments only for
the AvGm algorithm; the arguments for thea®sm algorithm are analogous.

More precisely, suppose that each processor runs a finite numbeatibites of some optimiza-
tion algorithm, thereby obtaining the vectjras an approximate minimizer of the objective function

F1i. Thus, the vectoB can be viewed as an approximate fornBgfand we le®' = 1M, 6 denote
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the average of these approximate minimizers, which corresponds to the ofithe approximate
AvGM algorithm. With this notation, we have

£ [[6 - 0'|2] < 2s([o— 6|3+ 22 |8 - 8Z] € 2m(j5- 6|3+ 286, el (12)

where step (i) follows by triangle inequality and the elementary bdandb)? < 2a® + 2b?; step
(ii) follows by Jensen'’s inequality. Consequently, suppose that psocesins enough iterations to
obtain an approximate minimizéf such that

E[||6] - 8i]|2] = Oo((mn)~2). (13)

When this condition holds, the bound (12) shows that the aveﬁ'agfahe approximate minimizers
shares the same convergence rates provided by Theorem 1.

But how long does it take to compute an approximate minim@Zesatisfying condition (13)?
Assuming processing one sample requires one unit of time, we claim that thfutation can be
performed in timeO(nlog(mn)). In particular, the following two-stage strategy, involving a com-
bination of stochastic gradient descent (see the following subsectiondie details) and standard
gradient descent, has this complexity:

(1) As shown in the proof of Theorem 1, with high probability, the empirical F; is strongly
convex in a balB,(6,) of constant radiup > 0 around;. Consequently, performing stochas-
tic gradient descent dfy for O(log?(mn)/p?) iterations yields an approximate minimizer that
falls within B, (81) with high probability (e.g., Nemirovski et al., 2009, Proposition 2.1). Note
that the radiugp for local strong convexity is a property of the population figkve use as a
prior knowledge.

(2) This initial estimate can be further improved by a few iterations of stargtadient descent.
Under local strong convexity of the objective function, gradient daetsiscknown to converge
at a geometric rate (see, e.g., Nocedal and Wright, 2006; Boyd anceibadyhe, 2004),
so O(log(1/¢)) iterations will reduce the error to order In our case, we have= (mn)~2,
and since each iteration of standard gradient descent reqofrgsunits of time, a total of
O(nlog(mn)) time units are sufficient to obtain a final estim@{esatisfying condition (13).

Overall, we conclude that the speed-up of thesfu relative to the naive approach of processing
all N = mnsamples on one processor, is at least of onddpg(N).

3.5 Stochastic Gradient Descent with Averaging

The previous strategy involved a combination of stochastic gradient mtesiod standard gradient
descent. In many settings, it may be appealing to use only a stochastic graldierithm, due
to their ease of their implementation and limited computational requirements. In thisnsece
describe an extension of Theorem 1 to the case in which each machinetesmapuapproximate
minimizer using only stochastic gradient descent.

Stochastic gradient algorithms have a lengthy history in statistics, optimizatidnpaohine
learning (Robbins and Monro, 1951; Polyak and Juditsky, 1992; Neski@t al., 2009; Rakhlin
etal., 2012). Let us begin by briefly reviewing the basic form of staohgsadient descent (SGD).
Stochastic gradient descent algorithms iteratively update a parameter &eoter time based on
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randomly sampled gradient information. Specifically, at iteratj@sampleX; is drawn at random
from the distributiorP (or, in the case of a finite set of dafty, . .., Xn}, a sampleX; is chosen from
the data set). The method then performs the following two steps:

o'tz = @' —nOf (6 %) and 6= argmin{He— otz H;} : (14)
00O

Heren; > 0 is a stepsize, and the first update in (14) is a gradient descent stegesptrt to the
random gradientlf (6'; X;). The method then projects the intermediate péfr‘it% back onto the
constraint se® (if there is a constraint set). The convergence of SGD methods of the(fiat) has
been well-studied, and we refer the reader to the papers by Polyakiditeky (1992), Nemirovski
et al. (2009), and Rakhlin et al. (2012) for deeper investigations.

To prove convergence of our stochastic gradient-based averalgiogttams, we require the
following smoothness and strong convexity condition, which is an alternatithee Assumptions 2
and 3 used previously.

Assumption 5 (Smoothness and Strong Convexity Il)There exists a function LX — R, such
that
|0%(8;%) — O%f(8*;x) |||, < L(X) |6 —©67||, forallx € X,

andE[L?(X)] < L2 < . There are finite constants G and H such that
E[||Of(8;X)|3] <G* and E[mmzf(e*;X)m‘z‘] <H* for each fixed € ©.
In addition, the population functionghs A-strongly convex over the spa@ meaning that
[02Fo(8) = Algxq forall 8 c O,

Assumption 5 does not require as many moments as does Assumption 3, g tedoire each
moment bound to hold globally, that is, over the entire sg@a@ther than only in a neighbourhood
of the optimal pointd*. Similarly, the necessary curvature—in the form of the lower bound on
the Hessian matrix]2Fy—is also required to hold globally, rather than only locally. Nonetheless,
Assumption 5 holds for many common problems; for instance, it holds for aegrliregression
problem in which the covariates have finite fourth moments and the dognaiicompact.

The averaged stochastic gradient algorithm (2€&EM) is based on the following two steps:

(1) Given some constamt> 1, each machine performsiterations of stochastic gradient de-
scent (14) on its local data set ofsamples using the stepsipe = 5, then outputs the
resulting local parameté.

(2) The algorithm computes the avera@]e: %z{il e;.

The following result characterizes the mean-squared error of thieguoe in terms of the constants

3/4¢23/2 1/4) 1/2
G::4C2 and B:: max{ ’7CH—‘7 ca~/*G (O( LG +4G+HR>}

A | (c—1)A5/2 AL/2 p3/2
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Theorem 5 Under Assumptions 1 and 5, the outﬁﬂtof theSavGm algorithm has mean-squared
error upper bounded as

B[je e < 3 4 B )

S m‘l‘ 32

Theorem 5 shows that the averaged stochastic gradient desceetipr®a@ttains the optimal
convergence rat&(N—1) as a function of the total number of observatidhs- mn The constant
and problem-dependent factors are somewhat worse than those irrlitbereaults we presented
in Theorems 1 and 4, but the practical implementability of such a procedurénnsayne circum-
stances outweigh those differences. We also note that the second terdeod(n—%/2) may be
reduced toO(n?-29/K) for anyk > 4 by assuming the existencekih moments in Assumption 5;
we show this in passing after our proof of the theorem in Appendix D. lbisciear whether a
bootstrap correction is possible for the stochastic-gradient based estimatio a correction could
be significant, because the teﬁﬁ/ns/2 arising from the bias in the stochastic gradient estimator
may be non-trivial. We leave this question to future work.

4. Performance on Synthetic Data

In this section, we report the results of simulation studies comparing #@vA SAvGMm, and
SGDavGM methods, as well as a trivial method using only a fraction of the data availabée o
single machine. For each of our simulated experiments, we use a fixed tathenof samples
N = 100,000, but we vary the number of parallel splitsof the data (and consequently, the local
data set sizes = N/m) and the dimensionalitgl of the problem solved.

For our experiments, we simulate data from one of three regression models:

y=(U,x) +¢, (16)
d

y = (U,X) +JZleXj3+£, or (17)

y = (u,x) +h(x)[e], (18)

wheree ~ N(0,1), andh is a function to be specified. Specifically, the data generation procedure
is as follows. For each individual simulation, we choose fixed vegtarR? with entriesu; dis-
tributed uniformly in[0, 1] (and similarly forv), and we seh(x) = z?zl(xj/2)3. The models (16)
through (18) provide points on a curve from correctly-specified teglyomis-specified models, so
models (17) and (18) help us understand the effects of subsampling imttevSalgorithm. (In
contrast, the standard least-squares estimator is unbiased for modglThé)noise variable is
always chosen as a standard Gaussian vaxié@el), independent from sample to sample.

In our simulation experiments we use the least-squares loss

£(8:x)) == 5((8.6) —)*

The goal in each experiment is to estimate the ve@taninimizing Fy(0) := E[f(6; (X,Y))]. For
each simulation, we generdtesamples according to either the model (16) or (18). For each
{2,4,8,16,32,64,128}, we estimat®* = arg miry Fo(8) using a parallel method with data split into
mindependent sets of sire= N/m, specifically
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Figure 1: The errof6 — 6* |2 versus number of machines, with standard errors across twenty simu-
lations, for solving least squares with data generated according to trehmiodel (16).
The oracle least-squares estimate usinglalamples is given by the line “All,” while the
line “Single” gives the performance of the naive estimator using orlyN/m samples.

(i) The AvGm method
(i) The Savem method with several settings of the subsampling natio
(iii) The SGDavGM method with stepsizg; = d/(10(d +t)), which gave good performance.

In addition to (i)—(iii), we also estimat@" with

(iv) The empirical minimizer of a single split of the data of size- N/m
(v) The empirical minimizer on the full data set (the oracle solution).

4.1 Averaging Methods

For our first set of experiments, we study the performance of the gimgranethods (%Gm and
SAvGM), showing their scaling as the number of splits of data—the number of machirgsows
for fixed N and dimensionsl = 20 andd = 200. We use the standard regression model (16) to
generate the data, and throughout wéldenote the estimate returned by the method under consid-
eration (so in the AGM case, for example, this is the vectdr= 8;). The data samples consist of
pairs(x,y), wherex € RY andy € R is the target value. To sample eactector, we choose five dis-
tinct indices in{1,...,d} uniformly at random, and the entriesxft those indices are distributed
asN(0,1). For the model (16), the population optimal veddris u.

In Figure 1, we plot the errd6 — 8* |3 of the inferred parameter vectfor the true parameters
0* versus the number of splits, or equivalently, the number of separate machines available for use.
We also plot standard errors (across twenty experiments) for eaeh. g a baseline in each plot,
we plot as a red line the squared erH@N —0*|)2 of the centralized “gold standard,” obtained by
applying a batch method to &l samples.

From the plots in Figure 1, we can make a few observations. ThewvAalgorithm enjoys
excellent performance, as predicted by our theoretical results, iabpemmpared to the naive
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Figure 2: Comparison of ¥6m and SGDwGM methods as in Figure 1 plotted on logarithmic
scale. The plot showi$d — 6*(|3 — [|On — e*ug, whereby is the oracle least-squares esti-
mator using alN data samples.

solution using only a fraction /n of the data. In particular, i is obtained by the batch method,
then AvGM is almost as good as the full-batch baseline evemrfas large as 128, though there is
some evident degradation in solution quality. The S@®M (stochastic-gradient with averaging)
solution also yields much higher accuracy than the naive solution, but ifsrmemnce degrades
more quickly than the ¥GM method’s asgn grows. In higher dimensions, both thezéwm and
SGDavGM procedures have somewhat worse performance; again, this is ngiaated since in
high dimensions the strong convexity condition is satisfied with lower probabiliycil data sets.

We present a comparison between thesM method and the SGAYGM method with some-
what more distinguishing power in Figure 2. For these plots, we compute théejaeen the
AvGM mean-squared-error and the unparallel baseline MSE, which is theaagdast due to par-
allelization or distributing the inference procedure across multiple machirigareR2 shows that
the mean-squared error grows polynomially with the number of machmeghich is consistent
with our theoretical results. From Corollary 3, we expect thves® method to suffer (lower-order)
penalties proportional ta? asm grows, while Theorem 5 suggests the somewhat faster growth
we see for the SGB/GM method in Figure 2. Thus, we see that the improved run-time perfor-
mance of the SGB/GM method—requiring only a single pass through the data on each machine,
touching each datum only once—comes at the expense of some loss H@c@s measured by
mean-squared error.

4.2 Subsampling Correction

We now turn to developing an understanding of ti@&w algorithm in comparison to the standard
average mixture algorithm, developing intuition for the benefits and drawshafdke method. Be-
fore describing the results, we remark that for the standard regrassidel (16), the least-squares
solution is unbiased fd*, so we expect subsampled averaging to yield little (if any) improvement.
The Sx\vGM method is essentially aimed at correcting the bias of the estifigtand de-biasing an
unbiased estimator only increases its variance. However, for the migisgesodels (17) and (18)
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Figure 3: The erroﬂ@— 0*||3 plotted against the number of machimefor the AvGM and S\GM
methods, with standard errors across twenty simulations, using the nomgnasssn
model (16). The oracle estimator is denoted by the line “All.”
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Figure 4: The errof{6 — 6* |5 plotted against the number of machimefor the AvGM and S\GM
methods, with standard errors across twenty simulations, using the novalregression
model (18). The oracle estimator is denoted by the line “All.”

we expect to see some performance gains. In our experiments, we use nsulipgampling rates
to study their effects, choosimge {0.0050.01,0.02,0.04}, where we recall that the output of the
SavGM algorithm is the vectod := (8; —r8,)/(1—r).

We begin with experiments in which the data is generated as in the previoussédia is, to
generate afeature vectoed, choose five distinct indices fiL,...,d} uniformly at random, and the
entries ofx at those indices are distributed&0, 1). In Figure 3, we plot the results of simulations
comparing AGM and S\vGM with data generated from the normal regression model (16). Both
algorithms have have low error rates, but thecd method is slightly better than thea®m
method for both values of the dimensidrand all and sub-sampling rates As expected, in this
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Figure 5. The erroff — 6* | plotted against the number of machimefor the AvGM and S\VGM
methods using regression model (17).

case the 8vGM method does not offer improvement over@wu, since the estimators are unbiased.
(In Figure 3(a), we note that the standard error is in fact very smalle shremean-squared error is
only of order 103.)

To understand settings in which subsampling for bias correction helps, imeFly we plot
mean-square error curves for the least-squares regressionrpralbien the vectoy is sampled
according to the non-normal regression model (18). In this case, teedgaares estimator is
biased for6* (which, as before, we estimate by solving a larger regression problieign LAN data
samples). Figure 4 shows that both thec™ and S\wvGM method still enjoy good performance;
in some cases, thea8GM method even beats the oracle least-squares estimatér thiat uses
all N samples. Since thev&M estimate is biased in this case, its error curve increases roughly
guadratically withm, which agrees with our theoretical predictions in Theorem 1. In conwastee
that the 3wvGMm algorithm enjoys somewhat more stable performance, with increasing tesntfe
number of machinesincreases. For example, in casalef 200, if we choose = 0.01 form < 32,
chooser = 0.02 form= 64 andr = 0.04 form = 128, then 8vGM has performance comparable
with the oracle method that uses Hllsamples. Moreover, we see that all the values-eht least
for the reasonably small values we use in the experiment—provide perfoenraprovements over
a non-subsampled distributed estimator.

For our final simulation, we plot results comparingy&M with AvGM in model (17), which is
mis-specified but still a normal model. We use a simpler data generating meuhapicifically,
we drawx ~ N(0,l4xq¢) from a standard-dimensional normal, andis chosen uniformly if0, 1];
in this case, the population minimizer has the closed 6t u+ 3v. Figure 5 shows the results
for dimensionsd = 20 andd = 40 performed over 100 experiments (the standard errors are too
small to see). Since the model (17) is not that badly mis-specified, therpenfice of the SvGm
method improves upon that of thesdm method only for relatively large values of, however, the
performance of the &GM is always at least as good as that ofgM.
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Feature Name | Dimension| Description

Query 20000| Word tokens appearing in the query.

Gender 3 | Gender of the user

Keyword 20000 | Word tokens appearing in the purchase keywords.
Title 20000 | Word tokens appearing in the ad title.
Advertiser 39191 | Advertiser’s ID

AdID 641707| Advertisement'’s ID.

Age 6 | Age of the user

UserFreq 25 | Number of appearances of the same user.
Position 3 | Position of advertisement on search page.
Depth 3 | Number of ads in the session.

QueryFreq 25 | Number of occurrences of the same query.
AdFreq 25 | Number of occurrences of the same ad.
QueryLength 20 | Number of words in the query.

TitleLength 30 | Number of words in the ad title.

DespLength 50 | Number of words in the ad description.
QueryCtr 150 | Average click-through-rate for query.

UserCtr 150 | Average click-through-rate for user.

AdvrCtr 150 | Average click-through-rate for advertiser.
WordCtr 150 | Average click-through-rate for keyword advertised.
UserAdFreq 20 | Number of times this user sees an ad.
UserQueryFreq 20 | Number of times this user performs a search.

Table 1: Features used in online advertisement prediction problem.

5. Experiments with Advertising Data

Predicting whether a user of a search engine will click on an advertisgonesegnted to him or
her is of central importance to the business of several internet companikén this section, we
present experiments studying the performance of theMiand S\vGM methods for this task. We
use a large data set from the Tencent search engpre, com(Sun, 2012), which contains 641,707
distinct advertisement items with = 235582879 data samples.

Each sample consists of a so-calietpression which in the terminology of the information
retrieval literature (e.g., see the book by Manning et al., 2008), is a ligaicomg a user-issued
search, the advertisement presented to the user in response to tlie aedra labey € {41, —1}
indicating whether the user clicked on the advertisement. The ads in ouredatare presented to
23,669,283 distinct users.

Transforming an impression into a useable set of regregssson-trivial, but the Tencent data
set provides a standard encoding. We list the features present in#ia dable 1, along with some
description of their meaning. Each text-based feature—that is, those mpadevards, which are
Query, Keyword, and Title—is given a “bag-of-words” encoding (Meng et al., 2008). This en-
coding assigns each of 20,000 possible words an index, and if the yppeds in the query (or Key-
word or Title feature), the corresponding index in the vegtiwrset to 1. Words that do not appear
are encoded with a zero. Real-valued features, corresponding tottioentfifteen features in Ta-
ble 1 beginning with “Age”, are binned into a fixed number of interyal®, a;], (a1,az] , . . ., (&, ],
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Figure 6: The negative log-likelihood of the output of theaM, SAvGM, and stochastic methods
on the held-out data set for the click-through prediction task. (a) Fedioce of the
AvGM and S\wvGM methods versus the number of splitsof the data. (b) Performance
of SDCA and SGD baselines as a function of number of passes througitihe data
set.

each of which is assigned an indexdn(Note that the intervals and number thereof vary per feature,
and the dimension of the features listed in Table 1 corresponds to the nuhiireals). When a
feature falls into a particular bin, the corresponding entryisfassigned a 1, and otherwise the en-
tries ofx corresponding to the feature are 0. Each feature has one additidmalfea“unknown.”
The remaining categorical features—gender, advertiser, and adweetis ID (AdID)—are also
given {0,1} encodings, where only one index xforresponding to the feature may be non-zero
(which indicates the particular gender, advertiser, or AdID). This coatiain of encodings yields
a binary-valued covariate vectare {0,119 with d = 741,725 dimensions. Note also that the fea-
tures incorporate information about the user, advertisement, and gseegisncoding information
about their interactions into the model.

Our goal is to predict the probability of a user clicking a given advertisémgia function of
the covariates in Table 1. To do so, we use a logistic regression model totedtira@robability of
a click response

. f— 1
Ply=1|x0):= 1+exp(—(6,x))’

where8 € RY is the unknown regression vector. We use the negative logarithasf the loss,
incorporating a ridge regularization penalty. This combination yields instaatanoss

£(8;(x.)) = log(L+exp(—y(6,4)) + 5 [6]3.

In all our experiments, we assume that the population negative log-likelitiglotias local strong
convexity as suggested by Assumption 2. In practice, we use a small niggtitm parameter
A = 10-° to ensure fast convergence for the local sub-problems.

For this problem, we cannot evaluate the mean-squared @rerﬂ*“%, as we do not know
the true optimal paramet&‘. Consequently, we evaluate the performance of an esti&asdzng
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log-loss on a held-out data set. Specifically, we perform a five-fold atdid experiment, where
we shuffle the data and patrtition it into five equal-sized subsets. For éach five experiments,
we hold out one partition to use as the test set, using the remaining data adrtimg tsat for
inference. When studying thev&m or SavGM method, we compute the local estiméevia a
trust-region Newton-based method (Nocedal and Wright, 2006) implembgtelBSVM (Chang
and Lin, 2011).

The data set is too large to fit in the memory of most computers: in total, four spliteo
data require 55 gigabytes. Consequently, it is difficult to provide anletaaining comparison
using the fullN samples. Instead, for each experiment, we perform 10 passes oastioatual
coordinate ascent (SDCA) (Shalev-Shwartz and Zhang, 2012)@pdskes of stochastic gradient
descent (SGD) through the data set to get two rough baselines of floenp&nce attained by the
empirical minimizer for the entire training data set. Figure 6(b) shows the hdldet log-loss
after each of the sequential passes through the training data finishesthidbalthough the SDCA
enjoys faster convergence rate on the regularized empirical risk {&8hlgartz and Zhang, 2012),
the plot shows that the SGD has better generalization performance.

In Figure 6(a), we show the average hold-out set log-loss (with stdrateors) of the estimator
0, provided by the AcM method versus number of splits of the dataand we also plot the log-loss
of the SAvGM method using subsampling ratiosro& {.1,.25}. The plot shows that for smath,
both AvcM and S\vGM enjoy good performance, comparable to or better than (our proxy fer) th
oracle solution using al samples. As the number of machimagrows, however, the de-biasing
provided by the subsampled bootstrap method yields substantial improvementhe standard
AvGM method. In addition, even witm = 128 splits of the data set, then&m method gives
better hold-out set performance than performing two passes of stmotpaslient on the entire data
set ofm samples; withn = 64, SAvGM enjoys performance as strong as looping through the data
four times with stochastic gradient descent. This is striking, since doing evempass through
the data with stochastic gradient descent gives minimax optimal convergatese(Polyak and
Juditsky, 1992; Agarwal et al., 2012). In ranking applications, rattten measuring negative log-
likelihood, one may wish to use a direct measure of prediction error; to titgtFégure 7 shows
plots of the area-under-the-curve (AUC) measure for thevh and S\vGm methods; AUC is a
well-known measure of prediction error for bipartite ranking (Manninglgt2008). Broadly, this
plot shows a similar story to that in Figure 6.

It is instructive and important to understand the sensitivity of thecG31 method to the value
of the resampling parameter We explore this question in Figure 8 using= 128 splits, where
we plot the log-loss of the &GM estimator on the held-out data set versus the subsampling ratio
r. We choosen = 128 because more data splits provide more variable performarnceHor the
so0so. comad prediction data set, the choice- .25 achieves the best performance, but Figure 8
suggests that mis-specifying the ratio is not terribly detrimental. Indeed, Wiglgerformance
of SavGm degrades to that of thewvlsm method, a wide range of settings ofgive improved
performance, and there does not appear to be a phase transition fgeploomance.

6. Discussion

Large scale statistical inference problems are challenging, and the It§ffafusolving them will
only grow as data becomes more abundant: the amount of data we colleatviaggmuch faster
than the speed or storage capabilities of our computers. @aMASAVGM, and SGDwWGM meth-
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8 16 32 64 128
Number of machines m

Figure 7: The area-under-the-curve (AUC) measure of rankiray éor the output of the *Gm
and S\vGM methods for the click-through prediction task.
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Figure 8: The log-loss on held-out data for thev&M method applied wittn = 128 parallel splits
of the data, plotted versus the sub-sampling rate

ods provide strategies for efficiently solving such large-scale risk minimizatioblems, enjoying

performance comparable to an oracle method that is able to access the egérdde set. We

believe there are several interesting questions that remain open afteotkishivst, nonparametric
estimation problems, which often suffer superlinear scaling in the size ofitiae mhay provide an

interesting avenue for further study of decomposition-based methodsovw@urecent work has

addressed aspects of this challenge in the context of kernel methaasfqgrarametric regression
(Zhang et al., 2013). More generally, an understanding of the intebgtayeen statistical efficiency
and communication could provide an avenue for further research, amyitlso be interesting to
study the effects of subsampled or bootstrap-based estimators in othibuthstienvironments.
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Appendix A. The Necessity of Smoothness

Here we show that some version of the smoothness conditions presentssuimption 3 are nec-
essary for averaging methods to attain better mean-squared error thgronly then samples on
a single processor. Given the loss function (5)net 3114 1x—o) to be the count of 0 samples.
Using0; as shorthand fo ;, we see by inspection that the empirical minimi@eis

6, — o1 whenny<n/2
1— - otherwise.
0

For simplicity, we may assume thais odd. In this case, we obtain that

1 No n
[Fl(no<n/2)} —E [Znol(no>n/2)]

12y 1 D /myn 1 1 2N T n
w2 Wiw 2, (a5 2 () -z
& \i/n i—fa \1/ 2 & \i/ [n 2(n—i)

by the symmetry of the binomial. Adding and subtractﬁﬂyom the term within the braces, noting
thatP(np < n/2) = 1/2, we have the equality

woi=5 5, ()53 =5 5 ()

If Z is distributed normally with mean/2 and variance A(4n), then an asymptotic expansion of
the binomial distribution yields

()5 ()3 e[ ose 3 rom

1
>2E[Z 272|0<Z< ] n2) = Q(n"2),

the final equality following from standard calculations, sifid&Z|] = Q(n~1/2).
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Appendix B. Proof of Theorem 1

Although Theorem 1 is in terms of bounds off 8rder moments, we prove a somewhat more
general result in terms of a set @, k1, ko) moment conditions given by

E[|0f(8;X)||5] < G, E[]||02F(8;X) — 02Fo(8) ||51] < H¥,
E[L(X)] <L and E[(L(X)—E[L(X)])¢] <L

for 8 € U. (Recall the definition o) prior to Assumption 3). Doing so allows sharper control if
higher moment bounds are available. The reader should recall thraugloarguments that we
have assumed mjio, ki, ko} > 8. Throughout the proof, we udg and®; to indicate the local
empirical objective and empirical minimizer of machine 1 (which have the samdbdisin as
those of the other processors), and we recall the notatigrfdr the indicator function of the event
E.

Before beginning the proof of Theorem 1 proper, we begin with a simptpialéty that relates
the error termB@ — 6* to an average of the erroB — 8%, each of which we can bound in turn.
Specifically, a bit of algebra gives us that

2
)

s~ ==[ |5 5 0o

10 1
m2 Z |el _e*Hg] + ﬁ;EKe' _9*791 _e*>]
iZ)
1 -1
< Tgjje,- 0713+ ™Y mfor - o] 2
l
< L]0, - 03] + [E[61 6713 (19

Here we used the definition of the averaged veBtand the fact that for+ j, the vector®); and®;

are statistically independent, they are functions of independent samplesipper bound (19) illu-
minates the path for the remainder of our proof: we bound eatHh|& — 9*”%] and||E[6; — 6 Hg.
Intuitively, since our objective is locally strongly convex by Assumption 2,eémpirical minimiz-
ing vectorB; is a nearly unbiased estimator fét, which allows us to prove the convergence rates
in the theorem.

We begin by defining three events—which we (later) show hold with highgiitity—that
guarantee the closeness @f and8*. In rough terms, when these events hold, the funckpn
behaves similarly to the population rifk around the poin®*; sinceky is locally strongly convex,
the minimizerd; of F; will be close to6*. Recall that Assumption 3 guarantees the existence of a
ballU, = {6 € R9: |6 — 67|, < p} of radiusp € (0,1) such that

l[E2£(8;%) — D21 (8 x)][|, < L(x) [0 -]

for all 8,8 € U, and anyx, whereE[L(X)¥] < L*. In addition, Assumption 2 guarantees that
02Fo(8*) = Al. Now, choosing the potentially smaller radids= min{p, pA/4L}, we can define
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the three “good” events

Fo:

Sl
]

{ p; Lo <2L),

Ey = {H\DZH(G*) _ DZFO(G*)Wz < pz)\}’ and (20)

Ty = {HDH(G*)IIZ < “_SM’}

We then have the following lemma:
Lemma 6 Under the event%y, £1, andE; previously define0), we have

2[|0F1(67) ]
(I-p ~
The proof of Lemma 6 relies on some standard optimization guarantees relegigrgs to mini-
mizers of functions (e.g., Boyd and Vandenberghe, 2004, Chapt@ti®ugh some care is required
since smoothness and strong convexity hold only locally in our problem. Aartjuenent is some-
what technical, we defer it to Appendix E.
Our approach from here is to give boundskjfj6; — 6* ||§] and||E[6; — 6] H% by careful Taylor

expansions, which allows us to boufid||8; — G*HE] via our initial expansion (19). We begin by
noting that whenever the everity, £;, and%; hold, thenF;(81) = 0, and moreover, by a Taylor
series expansion aiF; betweer8* and6,, we have

0= 0OF1(81) = OF1(8%) + 0%F1(8') (8, — %)

161 —8%||, < and O?F1(8) = (1—p)Mlgxd-

where®’ = k6* + (1— k)04 for somek € [0,1]. By adding and subtracting terms, we have

0= 0F(8%) + (O?F1(0') — O%F((8%)) (81 — %)
+ (O%F1(6%) — O%Fo(87)) (81 — 0*) 4+ 02F(0%) (8, — 8%).  (21)

Sinced?Fy(8*) = Al, we can define the inverse Hessian malix := [[12F,(8*)] 2, and setting
A := 0, — 6, we multiply both sides of the Taylor expansion (21)3y* to obtain the relation

A= —310F(0") + 3 H(O2F(8%) — O?F1(0)A+ 2 1(02%F(0%) — O2F1(6°)A.  (22)

Thus, if we define the matrice® = [J2Fy(8*) — 02F1(8*) and Q = 0%F;(0*) — 0%F(®'), equal-
ity (22) can be re-written as

0 — 0" = -3 10F(0") +Z 1 (P+Q)(8,— 0%). (23)

Note that Equation (23) holds when the conditions of Lemma 6 hold, and ddgewe may simply
assert only thal{6; — 6*||, < R. Roughly, we expect the final two terms in the error expansion (23)
to be of smaller order than the first term, since we hope@hat6* — 0 and additionally that the
Hessian differences decrease to zero at a sufficiently fast rateoWéommalize this intuition.

Inspecting the Taylor expansion (23), we see that there are several ¢ a form similar to
(O2Fo(0*) — 0°F1(6%)) (8, — 6%); using the smoothness Assumption 3, we can convert these terms
into higher order terms involving onl§; — 6*. Thus, to effectively control the expansions (22)
and (23), we must show that higher order terms of the f@ifiB; — 6*|]'§], for k > 2, decrease
quickly enough im.
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B.0.1 CONTROL OFE[||91—6*\|'§]

Recalling the events (20), we defidie:= £y N £1 N ‘£ and then observe that
E[||61 — 0°[15] = El1z, |81 — 6 [|5] + E[1(ze) 182 — 67 5]

- 2E[1z) | OF1(67)]15]

< (1 p)Ak +P(E9)R
k PAVILS

where we have used the boufil—6*||, < R for all 8 € ©, from Assumption 1. Our goal is to
prove thatE[||JF;(6%)]|5] = O(n%/2) and thatP(£®) = O(n~¥/2). We move forward with a two
lemmas that lay the groundwork for proving these two facts:

Lemma 7 Under Assumption 3, there exist constants C ah(td€pendent only on the momengs k
and k respectively) such that

£y (ko Gl
E[[|OF.(67)]2°] =Cz and (24)
. ok logk/2(2d)Hk
E[|||0%F1(8%) — O?Fo(67)|||,] < C/T (25)

See Appendix F for the proof of this claim.

As an immediate consequence of Lemma 7, we see that the evgatsd £, defined by (20)
occur with reasonably high probability. Indeed, recalling tBat £y N 1 N £, Boole’s law and
the union bound imply

P(E%) = P(EU LU E3)

< P(%5) +P(£7) +P(£3)
_ Ella s L) —EL(X)]*] n 24E[|[|02F1(6) — 02Ro(6%) 3] | 29E[|OFy(6")¥]
- Lo pranks (1 p)korkogy
1 logh/?(2d)H* Gl
SCGrta—xm oz (26)

for some universal constar@s, C,,C,, where in the second-to-last line we have invoked the moment
bound in Assumption 3. Consequently, we find that

P(ES)R = O(R{(nM/2 - n~*/2 . n~*/2)  for anyk € N.
In summary, we have proved the following lemma:

Lemma 8 Let Assumptions 2 and 3 hold. For angRY with k < min{ko, ki, k2}, we have

Ef6,—6°[§ = 0 (nk/2~

Aok nte/2ynk/2 4 n"2/2) =0 (n’k/z) ,

where the order statements hold as:n+oo.
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Now recall the matrixQ = 0F{(8*) — ?F41(8') defined following Equation (22). The following
result controls the moments of its operator norm:

Lemma 9 For k < min{kz, k1, ko}/2, we haveE[[|Q]|5] = O(n~¥/2).

Proof We begin by using Jensen'’s inequality and Assumption 3 to see that

1 L /. * . k l L / * k
Q< 53 II0PF(@:X) - D2 HE X< 15 L)€~ 87

Now we apply the Cauchy-Schwarz inequality and Lemma 8, thereby obtaining

( ZLL ) [‘el_e*”ék}%=O<Lk(1_G;)k)\knk/2>,

where we have used Assumption 3 again. |

E[J|Ql3)

Lemma 8 allows us to control the first term from our initial bound (19) almost iniabelg.
Indeed, using our last Taylor expansion (23) and the definition of taet&v= FoN E1 N Ep, we
have

E[|6: — 6713 = E [ Lz, || -Z*DR(6") + TP+ Q)(81 — 6) 5] +ElL(ze) 161~ 8°|3]
<2E[Hz YOFy(6")|[3] +2E [[| 2 (P+Q) (81— 8")|5] + P(Z%)R,

where we have applied the inequaliy+ b)? < 2a® + 2b?. Again using this same inequality, then
applying Cauchy-Schwarz and Lemmas 8 and 9, we see that

E (|2 2P+ Q)61 8)3] <2/l= 5 (ENIPIZ s 6713 + EllIQUZ 161 — 873

<2z 1H|2(¢E IPIEES: — 04+ ENIQIE|0: — ] 1)

where we have used the fact that fkg ki, ko} > 8 to apply Lemma 9. Combining these results,
we obtain the upper bound

B, — 6'3] < 28 [| = 20Ry(8") 5] + 0(n°2), (27)

which completes the first part of our proof of Theorem 1.

B.0.2 CONTROL OF ||E[8; — 9*]II§

It remains to consider thﬁ]E[el—e*]Hg term from our initial error inequality (19). When the
events (20) occur, we know that all derivatives exist, so we may sa@ly apply our expansion (23)
of 6; — 0" to find that

0; — 6* = —3 10F(8") + = 1P+ Q) (8, — ")
= -3 0RO +Z M (P+Q) [ IOR(O) +Z 1 (P+Q)(81-6")]  (28)

=V
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where we have introducedas shorthand for the vector on the right hand side. Thus, with a bit of
algebraic manipulation we obtain the relation

0, —0" = 1(£)V—|— 1(@0) (61— 6*) =V+ l(gc) (61— 9*) — 1(£C)V =V+ l(gc) (61— 0" — v). (29)
Now note thaf£[[0F;(6*)] = 0 thus
EN] =E [-Z '0R(8) +Z P+ Q)= 'OF(68") + = (P +Q)(61— 6]
=E[Z}(P+QZ[(P+Q)(8:—6%) — OF1(6%)]] .

Thus, by re-substituting the appropriate quantities in (29) and applyingidmgle inequality, we
have
HE[Gl—G*H\z
< |[EZ 1 P+QzZ ! ((P+Q)(81— ") — OF(8")) H2+HE () (81— 6" —V)]|
<|[EZH(P+Q)Z *((P+Q)(61—6") — OF1(8"))]||, + E[L(zs) |81 — 67| )
+E [Lige) || -Z TOFL(6) + Z 1P+ Q)X [-OF1(6%) + (P+Q) (61— 8)]||,] .  (30)

Since||61 — 6*||, < Rby assumption, we have

E[1 e, |61 — 6°[,] < P(Z9)R Y O(Rn*/2)

for anyk < min{ko, ki, ko}, where step (i) follows from the inequality (26) oidler’'s inequality also
yields that

E [ 5740+ O R0 <Elten 1270+ @ [ 0R(E)]

< /P(Z9)E [mz P+Q| } [HZ’lDFl(e*)H‘Z‘} 1/4

Recalling Lemmas 7 and 9, we haiiél]|=-1(P+Q)||3] = O(log(d)n~2), and we similarly have

E[||Z10F(6%) Hz = 0(n~?). Lastly, we haveP(E®) = O(n "/2) for k < min{ko,k1,k2}, whence
we find that for any such,

E[1 (E°) HZ (P+Q)x 1DF1(9*)H2}:0( |og(d)n7k/4fl>.

We can similarly apply Lemma 8 to the last remaining term in the inequality (30) to obtatifoth
anyk < min{kz,ky,ko},

E [1(z)

—510R(6°) + £ 1P+ Q) [-Z LOF(6%) + = X (P+Q)(61— 6%)]| ]
O(n /2 4 pk/a-1y.

Applying these two bounds, we find that
IE6: — 6], < |[E [EH(P+QZ *((P+Q) (81— 8) — OF1(8))] [, + 0% ) (31)

for anyk such thak < min{ko, ki, kz} /2 andk < min{ko, ki, kz}/4+ 1.
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In the remainder of the proof, we show that part of the bound (31) stiists only of higher-
order terms, leaving us with an expression not invohdag- 6*. To that end, note that

E||[z4(P+Qz*(P+Q)(6:- 85| = o)

by three applications of &lder’s inequality, the fact thatAx||, < [|A|l, x|/, and Lemmas 7, 8
and 9. Coupled with our bound (31), we use the fact that b)? < 2a® + 2b? to obtain

IEB: — 672 < 2||E[Z 1P+ Q)= 10Fy(6")] |5+ O(n~?). (32)

We focus on bounding the remaining expectation. We have the followingsserieequalities:

—

B[P+ Q| |2 0R@)

=

|E[ZH(P+Q)= 'OF(8")] |,

< (B[l e+l [z toRen)])

< ([l 2+ = 2 =R ).

—
=

Here step (i) follows from Jensen’s inequality and the fact fithed|, < || Alll, ||X||,; step (ii) uses the
Cauchy-Schwarz inequality; and step (iii) follows from the fact tfaat b)? < 2a? 4 2b?. We have
already bounded the first two terms in the product in our proofs; in psatidiemma 7 guarantees
thatE[[|P]|5] < CHlogd/n, while

l 22
EllQIY <E|; 3 3 L% | w0t <o O

for some numerical consta@t(recall Lemma 9). Summarizing our bounds|g®y||, and||Q||,, we
have

JE[= P+ Q= OR (6]

22
<2z 3 (2D e ot e[|z oR@)E]. @9

From Assumption 3 we know th{|| 0Fy(6%)[|3] < G?/n and|||=~|, < 1/A, and hence we can
further simplify the bound (33) to obtain

2 202 /22(1 _ )2
C [/H?logd+L?G?/A\%(1—p)?
:)\2< 0gd + n2/ ( p)) [HZ 10f (8% X H}-i—o n-3)

for some numerical consta@} where we have applied our earlier inequality (32). Noting that we
may (without loss of generality) take < % then applying this inequality with the bound (27) on
E[||61— e*ug] we previously proved to our decomposition (19) completes the proof.
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Appendix C. Proof of Theorem 4

Our proof of Theorem 4 begins with a simple inequality that mimics our first iakgu(19) in
the proof of Theorem 1. Recall the definitions of the averaged v@gtand subsampled averaged
vectorB,. Let 8; denote the minimizer of the (an arbitrary) empirical rigk and8, denote the
minimizer of the resampled empirical rigl (from the same samples @g). Then we have

| <[ ol

1-r
Thus, parallel to our proof of Theorem 1, it suffices to bound the twuaden the decomposition (34)
separately. Specifically, we prove the following two lemmas.

0,16 21
17(2 +E]E

61—r6, "
1—r -9

2
_9*
1-r

2

2
] . (34)

2 2

Lemma 10 Under the conditions of Theorem 4,

=

2 1 M2G6  GAL2?
1—r

1
< —.
,S O(l)r(l—r)z G + N dlogd> 3 (35)

Lemma 11 Under the conditions of Theorem 4,
E |16~ 6" ~1(6;~ 87)|}3] < (2+3nE || 0?Ro(6") OR8] + 02 (36)

In conjunction, Lemmas 10 and 11 coupled with the decomposition (34) yieldeieed claim.
Indeed, applying each of the lemmas to the decomposition (34), we see that
1-r)2m

rofam ) o)

which is the statement of Theorem 4.

The remainder of our argument is devoted to establishing Lemmas 10 aneéfbte Broviding
their proofs (in Appendices C.3 and C.4 respectively), we require sortteef set-up and auxiliary
results. Throughout the rest of the proof, we use the notation

61 — I’éz

_e*
1-r

? 2+3r 2 ey —1 (|12
< G-t | 0?Fo(e") 0R(68")| 5]
2

Y=Y+ R

for some random variablesé andY’ to mean that there exists a random variablsuch thaty =

Y’ +Z andE[||Z||3] = O(n ). The symbol®, may indicate different random variables throughout
a proof and is notational shorthand for a moment-based big-O notationls@/esanark that if we
haveR[||Z||3] = O(akn%), we haveZ = ak/2®,, since(a*/2)2 = aX. For shorthand, we also say that
E[Z] = O(h(n)) if |E[Z]||, = O(h(n)), which implies that ifZ = R thenE[Z] = O(n~¥/2), since

IEZ]Il, < \/E[I|Z]|3] = o).

1. Formally, in our proof this will mean that there exist random vectoi¢’, andZ that are measurable with respect to
theo-field o(Xy, ..., Xn), whereY =Y’ +Z andIE[||Z|\§] =o(nk).
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C.1 Optimization Error Expansion

In this section, we derive a sharper asymptotic expansion of the optimizatms @ — 0*. Recall
our definition of the Kronecker product, where for vectorsi,v we haveu® v = uv'. With this
notation, we have the following expansion@f— 6*. In these lemmasR; denotes a vectat for
whichE[||Z]|3] < cn3 for a numerical constart

Lemma 12 Under the conditions of Theorem 4, we have
0, — 0" = —3 10F(0) + 2 Y(0%F(6%) — 2)=10F(6%) (37)
— I 1 0PR(6%) ((Z71OFL(8")) ® (2 1OF.(6Y)))
+ (M2G®/A\° 4 G'L2dlog(d) /A*) Rs.
We prove Lemma 12 in Appendix G. The lemma requires careful moment cavieokhe expan-
sion B; — 6%, leading to some technical difficulty, but is similar in spirit to the results leading to
Theorem 1.

An immediately analogous result to Lemma 12 follows for our sub-sampled estan&ince
we use[rn| samples to compui®, the second level estimator, we find

Lemma 13 Under the conditions of Theorem 4, we have
0, — 0" = —X 10R(0%) + = H(I%FR(8") — )2 10R,(67)
— 31 O%R(87) (27 T0R(67)) @ (21 ORx(87)))
+177 (M2G8/A° + G*L2dlog(d) /M) Ra.

C.2 Bias Correction

Now that we have given Taylor expansions that describe the behawidiir— 6* and 6, — 6%,
we can prove Lemmas 10 and 11 (though, as noted earlier, we deferabiegbiemma 11 to
Appendix C.4). The key insight is that expectations of terms involVifg(0*) are nearly the same
as expectations of terms involvirigF; (6*), except that some corrections for the sampling ratio
are necessary.

We begin by noting that

91—[‘92 g — 91—9* _rez—e*
1—r 1t 1—r
In Lemmas 12 and 13, we derived expansions for each of the rightdidaderms, and since

E[=10F(8*)] =0 and E[Z 10FR(6*)] =0,

(38)

Lemmas 12 and 13 coupled with the rewritten correction (38) yield
E[6; — 0" —r(8,—0")] = —rE[Z Y(0%R(0") — 2)= 10FR(8")]
+E[ZY(D%F(0%) — 2)Z 10OF(8%)]
+IE[Z D3R (67) (2 10R(67)) @ (X '0R(6")))]
—~E[Z10%R(6%) ((Z1OFL(8%)) @ (2 *0F1(67)))]
+0(1)r Y2 (M2G%/A® - G*L2dlog(d) /A*) n~3/2. (39)

Here the remainder terms follow because ofrth@zﬂig term on0B, — 6*.
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C.3 Proof of Lemma 10

To prove the claim in the lemma, it suffices to show that
rE[ZH(0%F(8%) — 2)Z 10 (6%)] = E[=H(0%F(8") — )x10F (87)] (40)
and

rE[Z10%Ro(6") (2 T0R(8%)) ® (2 10R(8")))]
= E[Z'0°Ro(8°) ((Z710FL(6")) @ (X7 OF1(67)))] (41)

Indeed, these two claims combined with the expansion (39) yield the bouhdn(8&mma 10
immediately.

We first consider the difference (40). To make things notationally simpkeidefine functions
A: X — R4 andB: X — RY via A(x) := - 1(0%f(6%;x) — Z) andB(x) := - 10f(6*;x). If we
letS; = {Xi,..., X} be the original samples arg&d = {VY1,..., Y} be the subsampled data set, we

must show o "
IE{(rn)z EAW‘)B(YD} = EL]Z %A(N)B(Xj)].

Since théy; are sampled without replacement (i.e., frBrdirectly), andE[A(X; )] = 0 andE[B(X)] =
0, we find thaff|A(Y;)B(Y;)] = 0 fori # j, and thus

rn

ZE — mME[A(Y1)B(Y1)].
]

In particular, we see that the equality (40) holds:

(rrrl)2 gE[A(Yi)B(Yi)] = %E[A(Yl)B(Yl)} _1

The statement (41) follows from analogous arguments.

C.4 Proof of Lemma 11
The proof of Lemma 11 follows from that of Lemmas 12 and 13. We first claah th
8- 6" =T OF(0")+ R and 8, — 0" = —Z 0FR(8") 4+ r 1%,. (42)

The proofs of both claims similar, so we focus on proving the second stated®ng the inequality
(a+b+c)? < 3(a?+b? 4 ¢?) and Lemma 13, we see that

E [0z 6+ 2 M0R(0") 5] < 3E[ |2 (02R(6%) — )z OR(0) ]
+3E |2 10R(8°) (2 10R(6) @ (£ 10R(8))) ]

+3r30(n73). (43)

3351



ZHANG, DUCHI AND WAINWRIGHT

We now bound the first two terms in inequality (43). Applying the Cauchya&ech inequality and
Lemma 7, the first term can be upper bounded as

E[|[zH0?R(6%) - 2)z '0R(6")|3)

_ . 4 _ 41\ L2
< (= |l 3 5] B [l *0Re)] ;)
= (r?)0(log?(d)n2) - r-20(n"2))"/? = r20(n2),
where the order notation subsumes the logarithmic factor in the dimension.[SiRg@®*) : R¥
RY is linear, the second term in the inequality (43) may be bounded completelyganaly as

it involves the outer produd—10F,(6*) ® Z-10F,(6*). Recalling the bound (43), we have thus
shown that

E|[[6z- 6"+ = 10R(8")[3] =r20(n"),
or 8, — 0 = —3710FR,(8%) +r~1R,. The proof of the first equality in Equation (42) is entirely

analogous.
We now apply the equalities (42) to obtain the result of the lemma. We have

E 181 -6 ~r(8 — 83| =E[|| = OF(8) + X OR(8") + Rl
Using the inequalitya+b)2 < (1+n)a2+ (1+1/n)b? for anyn > 0, we have

(a+b+c)2 < (1+n)a®+(141/n)(b+c)?
<(A4+na2+(1+1/n)(1+a)b?+ (14 1/n)(1+1/a)c?

for anyn,a > 0. Takingn = 1 anda = 1/2, we obtain(a+b+c)? < 2a? + 3b? 4-6¢2, so applying
the triangle inequality, we have

E ]| 6" —r(8;— 8)|}3] =E[|| - '0R(6) + = '0R(6") + || (44)
< 2B ||z 10R (8" |5] + 3% [[| = 20R(8") 3] + 0(n?).
SinceF, is a sub-sampled version Bf, algebraic manipulations yield
_ 112 n _ Y 1 _ 112
E[|[270R(07[13] = —E[|[F0R®"]];] = TE || 10R(E)]5) - (45)
Combining equations (44) and (45), we obtain the desired bound (36).

Appendix D. Proof of Theorem 5

We begin by recalling that 8" denotes the output of performing stochastic gradient on one machine,
then from the inequality (19) we have the upper bound

n %2 1 * *
/6" - 6°|[3] < —E[|6" - 6|3 + |E[e" - 6°])5.
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To prove the error bound (15), it thus suffices to prove the inequalities

aG?

%112
E[j6"- 63 < 55 and (46)
n #1112 [32
B8 - 81 < — 5. (a7

Before proving the theorem, we introduce some notation and a few preliniesmjts. Lety; =
Of(8'; %) be the gradient of thé" sample in stochastic gradient descent, where we consider run-
ning SGD on a single machine. We also let

n(v) = argmin{ He—vug}
00O

denote the projection of the poimbnto the domair®.
We now state a known result, which gives sharp rates on the convergétie iterate6'} in
stochastic gradient descent.

Lemma 14 (Rakhlin et al., 2012) Assume thalE[HgtHg] < G?for allt. Choosingn; = & for some
c> 1, for any te N we have

w112 aG?
E [Het—e Hz} < where o = 4c?.

With these ingredients, we can now turn to the proof of Theorem 5. Lemmave4 the
inequality (46), so it remains to prove tr@it has the smaller bound (47) on its bias. To that end,
recall the neighborhood, C © in Assumption 5, and note that

o+l _ g+ — I'I(et — Mg — 6°)
=0 — G — 6"+ Lgragy,) (MO —nugr) — (6" —nugh))
since wherB € Uy, we havel1(8) = 6. Consequently, an application of the triangle inequality gives
[E[6" — 67|, < ||E[6" —neg — 67][|, +E[[| (M(6" —negr) — (6" —ner)) 18 & Up) |-
By the definition of the projection and the fact tifht ©, we additionally have
18" —negr) — (8" —neaw) ||, < |18 = (8" —negr)) ||, < el gl

Thus, by applying t8lder’s inequality (with the conjugate choicép,q) = (4,%)) and Assump-
tion 5, we have

(6" —67)]], < [[E[6" —negr — 01|, + neElllt |2 L g2,

3/4
< |[E[6' —nege — 6|, + ne/ Elligk ] <E[1?é?¢up)]>

< [0 — g — 6], + G (B(E' # Up)) ¥

> (48)

< ||E[6" —negt — 67|, + G (
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the inequality (48) following from an application of Markov’s inequality. Bypdying Lemma 14,
we finally obtain

an 3/4
)\2p2t>
ca’/4G*2 1
A5/2p3/2 /A

[E162 -0, < |8 -~ 87, +no

= ||E[6" — e — 0], + (49)

Now we turn to controlling the rate at whid — n.g: goes to zero. Lefi(-) = f(-;X%) be
shorthand for the loss evaluated on tHedata point. By defining

re =g — Of (0) — 0%f,(6%) (6" — 0%),

a bit of algebra yields
o = Of(8") + 0% (87) (6" — %) +rt.

Since®' belongs to thes-field of Xy,..., X _1, the Hessiari]?f,(8*) is (conditionally) independent
of 8" and

Elg] = 0°Fo(8")E[6' — 07 + Elrigy,)] + Eltl g g, (50)
If 8" € U, then Taylor’s theorem implies thatis the Lagrange remainder
re= (0% (6') — O?f(8%))(6/ — %),

where®’ = k8! + (1—k)0* for somex € [0, 1]. Applying Assumption 5 and &lder’s inequality, we
find that sinced' is conditionally independent of,

E{[ritgeu,)|,] < E[I1520(0:%) - 221(@ 016~ Lpcuy
< [L(x) 6~ '] = ELox e e )

oLG?

<LE|[6 - 0"|3] < S5

On the other hand, whe ¢ U,,, we have the following sequence of inequalities:

2y £ FEITE 0 )

2 of3 (Ella 8 + BI0L©) 1+ 240 @ ) 1) (2@ £Uy)
3/4

3/4

< 33/4Y/G4+ G4+ HAR4 (B(6' ¢ Up))

(iii) aG2 \ ¥4
< —_ .
< 3(G+HR) ()\szt)

Here step (i) follows from ldlder’s inequality (again applied with the conjugatesq) = (4, %));
step (ii) follows from Jensen’s inequality, sin@+b+c)* < 33(a* 4 b*+c*); and step (i) follows
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from Markov’s inequality, as in the bounds (48) and (49). Combiningworbounds om;, we find
that

aLG? 30¥*G%¥?(G+HR) 1
Ellirellal < A%t + A3/2p3/2 34
By combining the expansion (50) with the bound (51), we find that
|E[6' —nege — 6], = [[E[(1 —neD?Fo(6%))(8" — 6") +nerd] |,

calLG? 3ca¥*G¥?(G+HR) 1
A3t2 + A5/2p3/2 t7/4

(51)

<||E[(1 = neD%Fo(8°)) (8" — 8], +

Using the earlier bound (49), this inequality then yields

cad/4G3/2 <a1/4Lel/2 4G +H R>

5162 =01, =< I~ OFFo(@) B0 0, + S | g

We now complete the proof via an inductive argument using our immediatelggirecbounds.
Our reasoning follows a similar induction given by Rakhlin et al. (2012)stFirote that by strong
convexity and our condition thaf0?F(6*)||| < H, we have

I = Ne0?Fo(8") ||| = 1= NeAmin(07Fo(8") < 1—ne)

whenever - ntH > 0. Definetg = [cH/A]; then fort > ty we obtain

B0t —6%]||, < (1—c/t)|[E[6' —

i} 1 ca¥4G%? [aY4LGY? 4G+HR
O+ 777 87 ISP (52)

For shorthand, we define two intermediate variables

cad/AG3/2 <a1/4|_Gl/2 4G+ HR)

a =|[[E(6'~67)[|, and b= \5/2 Nz T 0372

Inequality (52) then implies the inductive relatian 1 < (1—c/t)a; +b/t”/4. Now we show that
by definingB = max{toR,b/(c— 1)}, we havea, < B/t¥*. Indeed, it is clear thai; < ToR. Using
the inductive hypothesis, we then have

(1—C/t)B+ b _B(t_l)_B(C_l)_b<B(t_l)S(t+§)3/4’

&1 S g /A~ {7/ 2 =
This completes the proof of the inequality (47). |

D.0.1 REMARK

If we assuméth moment bounds instead of 4th, thatiig]]| 02 (8%; X)|||5] < H andE[[jg |§] < G¥,
we find the following analogue of the bound (52):

B[ — 67|, < (1—c/t) ||E[6" — 6],
1 ca' @G | (5474 +1)G+54/HR al/k G
+th71. = =: T N2k
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In this case, if we define

k—

co' v G | (54Y%+1) G+ 54 KHR  al/kLG2X
b= i %

1

and B= max{roR, Cb} ,
we have the same result except we obtain the bde" — 6*])5 < [3>2/n2k :

Appendix E. Proof of Lemma 6

We first prove that under the conditions given in the lemma statement, the fufeti® (1 — p)A-
strongly convex over the ball := {6 € RY:(8—0, < 3y} around6*. Indeed, fixy € U, then
use the triangle inequality to conclude that

[[0%F1(y) — O?Ro(8%)]||,, < ||| D2Fa(y) — DR (6"

pA

<Ll|y—0" —.
<Lly-6,+5

Here we used Assumption 3 on the first term and the fact that the &ydmlds on the second. By
our choice o, < pA/4L, this final term is bounded byp. In particular, we have

2 Il + I0°F(8") — D*Ro(8)

2Fo(0") = Al so O2Fy(y) = Al —pAl = (1—p)Al,

which proves thaF; is (1 — p)A-strongly convex on the ball.

In order to prove the conclusion of the lemma, we argue that dfde (locally) strongly
convey, if the functior; has small gradient at the poi8t, it must be the case that the minimizer
0, of F; is nearf*. Then we can employ reasoning similar to standard analyses of optimality for
globally strongly convex functions (e.g., Boyd and Vandenberghe4,20Bapter 9). By definition
of (the local) strong convexity on the dét for any®’ € ©, we have

2
2,65}.

R(O) > RO + (0R(©).6-0) + PR min{jo* @

Rewriting this inequality, we find that

min{ 6"~ &

28} < (1_2” [F.(6)) — Fy(6°) + (OF.(67),6 — 6")]
2

S a=pn [FL(8) — Fa(67) + [ OFL(87) |6 — 67|,] -

Dividing each side by|6’ — 6*|,, then noting that we may sét= k6 + (1—k)6* for anyk € [0, 1],
we have

% } - 2[Fu(KB1+(1-K)8") —F1(8")] | 2|[OF1(8")]],
CHP '

min< K ||6, — 6%, .
{ 161— 67|, «[[61 - K(1—p)A 61— 6%, (1—p)A

Of course,F1(01) < F1(6*) by assumption, so we find that for arye (0,1) we have the strict

inequality
5 2||OF (6|
m'”{“"el 9”2’K||el—e*u2}< a-op =
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the last inequality following from the definition of,. Since this holds for anx € (0,1), if
|81 — 6%, > 85, we may sek = &,/ (/81— 67||,, which would yield a contradiction. Thus, we
have| |6, — 6*||, < &,, and by our earlier inequalities,

o P8~ Fa(@) + [ 3R(@) o -0 < 2Tz ey o,

Dividing by |61 — 6*||, completes the proof. [

18163 <

Appendix F. Moment Bounds

In this appendix, we state two useful moment bounds, showing how theyicetaprovide a proof
of Lemma 7. The two lemmas are a vector and a non-commutative matrix variarg ofagsical
Rosenthal inequalities. We begin with the case of independent randdarsiec

Lemma 15 (de Acosta, 1981, Theorem 2.1let k> 2 and X be a sequence of independent ran-
dom vectors in a separable Banach space with ngrinand E[||X;||] < c. There exists a finite
constant ¢ such that

{3 -=][3 1)) < | (S wen)

We say that a random matrlk is symmetrically distributed iK and—X have the same distri-
bution. For such matrices, we have:

Lemma 16 (Chen et al., 2012, Theorem A.1(2)).et X € R%*9 be independent and symmetrically
distributed Hermitian matrices. Then

e[ 3.1][]" < vasss | ( 3 20

Equipped with these two auxiliary results, we turn to our proof Lemma 7. Teepttoe first
bound (24), let X k < kg and note that by Jensen’s inequality, we have

1/k
+ 2elogd <E[miax]HXi\Hk]> :

| OF(6") 5] < 238 [| | OF(6%) 1, — E[IOFw(8")11) ] + 2 E [ OF(87)11 )

Again applying Jensen’s inequality{|| 0 f (6*; X) ||§] < G?. Thus by recalling the definitiofiF, (8*) =
1sn ,0f(8%;%) and applying the inequality

E[||0F(6")]],) < E[|[OFy(8%) 342 < nY/2G,

we see that Lemma 15 impli@’s[HDFl(e*)H;] is upper bounded by

n k/2 n
2o K}Zizlmwe;m%]) +,fkizlE[Df<e*;>q>5]] + 2| DRy (67 ¢

k/2
10 1 0N 2kfle
S {(nizlmmme*;m%]) +nk/ziZlE[Df<e*?>“>5]] RE
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Applying Jensen’s inequality yields

n k/2 N
(i—IZ\E[HDf(G*,Xl)Hg]) < :]-iZ\E[”Df(e*;Xi)Hg]k/zgGk,

completes the proof of the inequality (24).

The proof of the bound (25) requires a very slightly more delicate arguimeolving sym-
metrization step. Define matricgs= 1 (02f (6*;X) — 0%F(6")). If & € {+1} are i.i.d. Rademacher
variables independent &, then for any integek in the interval[2, k], a standard symmetrization
argument (e.g., Ledoux and Talagrand, 1991, Lemma 6.3) implies that

n

222 5 o

Now we may apply Lemma 16, since the matriegg are Hermitian and symmetrically dis-
tributed; by expanding the definition of tlg, we find that

k] 1/k k] 1/k

o

E || 0%Fu(8) — 0%Ro(6) | T 5\/@”‘ (nlz _iE[(sz(e;m - DzFo(O*))2]> v

1/k
+ 4elogd (n"IE[m,ax]HDZf(B*;Xi) — DZFO(G*)\HKO .
|
Since theX are i.i.d., we have

(7 3, mcetex) - PR :

n-1/2g {(sz(e*;x) - DZFO(B*))Z} Uz'”

< n~12g DHDZf(e*;X) — DZFO(G*)H‘Z} v

by Jensen’s inequality, sindA™/2||| = || A[|*/? for semidefiniteA. Finally, noting that

R max|| 210 X) - 2R < BR[| (00 - CoFu(@)]] < ri- e

completes the proof of the second bound (25).

Appendix G. Proof of Lemma 12

The proof follows from a slightly more careful application of the Tayloraxgion (21). The starting
point in our proof is to recall the success events (20) and the joint eert EoN Ey N Ep. We
begin by arguing that we may focus on the case whielt®lds. LetC denote the right hand side
of the equality (37) except for the remaind®y term. By Assumption 3, we follow the bound (26)
(with min{ko,ki,k>} > 8) to find that

%112 —
E |1z (61— 8 Hz} = 0(Rn™),
so we can focus on the case where the joint e#eat £y N ‘E1 N E, does occur.
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Defining A = 61 — 6* for notational convenience, dB we have that for some € [0, 1], with
6 = (1-k)06;1 + k6",
0= OF1(8") + O%F(8")A+ O3F1(0') (AR A)
= OF1(8") + 02?Fy(8%)A + PR (%) (A® D)
+ (O?F1(8") — D?Fo(8°)) A+ (O%F(8) — O°Fo(6%)) (A ).

Now, we recall the definitiox = DZFO(G*), the Hessian of the risk at the optimal point, and solve
for the errorA to see that

A= —310F(0") — = HO%F(6%) — 2)A— S 1PFR(8") (AR A)

+3 Y O3R(8%) — OPFL(9)) (AR D) (53)

on the eventE. As we did in the proof of Theorem 1, specifically in deriving the remarsiqual-
ity (28), we may apply the expansion (23)&f 6; — 6* to obtain a clean asymptotic expansion of
A using (53). Recall the definitioR = 0%Fy(8*) — 0°F1(6*) for shorthand here (as in the expan-

sion (23), though we no longer requi@.
First, we claim that

1Liz)(0PRo(8%) — O°F1(0)) (A® A) = (M?G®/A® + G*L2dlog(d) /A?) Rs. (54)

To prove the above expression, we add and subfiidEt(6*) (and drop 1z for simplicity). We
must control

(0°Fo(6%) — O°F1(8")) (A @A) + (T°Fu(87) — D°Fu(8) (A ).

To begin, recall thafju@ V|, = |[|uv’ |||, = [|ully [IVIl,- By Assumption 4, on the everit we have
that%Fy is (1/n) S, M(X)-Lipschitz, so definingVl, = (1/n) S, M(X;), we have

B L | (RO - C%R(6)) (0o 3] < & M2 o - 02 ]
2 G°
M A6n3

by Holder’s inequality and Lemma 8. The remaining term we must control is theadieewdiffer-
encek[||(0°F1(8*) — 0PFy(8*)) (A® A)||3]. Define the random vector-valued functiGn= O(F; —
Fo), and letG; denote itsjth coordinate. Then by definition we have

<eM"E [je -0 < o)

(O%F1(6%) — 0PFo(8%)) (A A) = [AT(chl(e*))A AT(DZGd(e*))A]T eRY.

Therefore, by the Cauchy-Schwarz inequality and the facothak < ||Al[, [|x]3,
[( (02G;(6))A )2]
(= [0 & [z @] ) .

E[|[(CPR(6") - CPRo(@")) (B @A) 5] =

5
<2,

3359



ZHANG, DUCHI AND WAINWRIGHT

Applying Lemma 8 yields thaf[||A[|S] = O(G8/(A2n)*). Introducing the shorthand notation
g(+;x) ;= 0Of(-;x) — ORp(+), we can write

02G;(8*) = Zlngl (0%

For every coordinatg, the random matriceS%g;(6*; %) (i =1,...,n) are i.i.d. and mean zero. By
Assumption 3, we havil|0%g; (8% %) |||, < 2L(X;), whence we haVEHHDZgJ‘(e*;Xi)H‘g] < 288,
Applying Lemma 16, we obtain

E[[|0%6;(89)]] < o@)Ln 2log?(d).
and hence
(dyn3

which implies the desired result (54). From now on, terms of the f@&nwill have no larger
constants than those in the equality (54), so we ignore them.
Now we claim that

41 2
E[[[(0%(67) - OPRo(8) (A2 ) 5] < 0(2) G)\k

L) D3R8 (A®A) = O3F(67) (= 10FL(6%)) ® (Z0OF.(67))) + K. (55)
Indeed, applying the expansion (23) to the differefice 8; — 6%, we have orE that

AwA=(2OR(8Y) @ (X MOR(O7) + (2 PA) @ (2 'PD)
— (Z7'PA) @ (Z710F(8")) — (Z*0F1(8%)) © (Z7*PA).

We can bound each of the second three outer products in the equality sibdlarly; we focus on
the last for simplicity. Applying the Cauchy-Schwarz inequality, we have

1
2

E [l 0Re) @ (2 Pa)|l5] < (E |2 0R@n)[5] B [||= *Per-67)5])
From Lemmas 8 and 9, we obtain that
E [HZ*lDFl(e*)H‘Z‘} —0(n?) and E [Hzflp(el_ e*)yy;‘} -
after an additional application of Cauchy-Schwarz for the secondcéegen. This shows that
(= '0FL(6%)) ® (Z1PA) = Rs,

and a similar proof applies to the other three terms in the outer pradudét. Using the linearity of
[03F,(8*), we see that to prove the equality (55), all that is required is that

Loy O3F1(67) ((Z1OR(6%)) @ (Z1OFL(8Y))) = Rs. (56)
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For this, we apply @lder’s inequality several times. Indeed, we have
E |1z 0°R(8) (2 0R(67) @ (2 0R(67)) I3
< E[159 Y E ||| DPR(6°) ((Z10F(67) @ (2 '0R(6")) )\\8/3}

SE[]-(‘EC)}]-/‘lE H‘D3 e* H‘8/3HZ 1|:|F e* H16/3:| 3/4

2/4
< E[1z9 Y ||| °R(8)|| ] E[HZ*DH(B*)H?} —o(nt.12.n2).

For the final asymptotic bound, we used Equation (26) to bdi{dd.. ], used the fact (from As-
sumption 3) that£[L(X)8] < L8 to bound the term involving1®F(6%), and applied Lemma 7 to
control E[||[Z~10F;(6%)||§]. Thus the equality (56) holds, and this completes the proof of the equal-
ity (55).

For the final step in the lemma, we claim that

~1i5) = HOFR(07) —2)A == H(O?F1(07) — 2)Z 'OF(6%) + R. (57)

To prove (57) requires an argument completely parallel to that for oum¢Eb). As before, we use
the expansion (23) of the differenfeto obtain that orE,
—> Y O?F(0") — 2)A
=3 YO?Fy(8) — )z 'OF(8%) — £ H(OPFy(6") — Z)Z'PA.
Now apply Lemmas 8 and 9 to the final term after a few applications@éét’s inequality. To
finish the equality (57), we argue thatzd > *(0%F1(6%) — )2 *0F1(6%) = K3, which follows
exactly the line of reasoning used to prove the remainder (56).
Applying equalities (54), (55), and (57) to our earlier expansion (&§ig that
A =1 [—Z10OFR(8") — = HOPFR(8") —2)A— T 1O3F(6%) (A® D)
“HO%Fo(8") — I°F1(8))) (A A)] + Lge) A
= > '0R(6%) + 2 H(O?F(6) — D)z *OF(6%)
— I IOPFR(6) ((Z1OF(67)) ® (X 1OF1(67))) + Rs+ Lize) A

Finally, the bound (26) implies th&{1 .« [|A]|3] < P(£°)R? = O(n~*), which yields the claim.
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