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Abstract
We analyze two communication-efficient algorithms for distributed optimization in statistical set-
tings involving large-scale data sets. The first algorithm is a standard averaging method that
distributes theN data samples evenly tom machines, performs separate minimization on each
subset, and then averages the estimates. We provide a sharp analysis of this average mixture
algorithm, showing that under a reasonable set of conditions, the combined parameter achieves
mean-squared error (MSE) that decays asO(N−1+(N/m)−2). Wheneverm≤

√
N, this guaran-

tee matches the best possible rate achievable by a centralized algorithm having access to allN
samples. The second algorithm is a novel method, based on an appropriate form of bootstrap
subsampling. Requiring only a single round of communication, it has mean-squared error that
decays asO(N−1 + (N/m)−3), and so is more robust to the amount of parallelization. In ad-
dition, we show that a stochastic gradient-based method attains mean-squared error decaying as
O(N−1 +(N/m)−3/2), easing computation at the expense of a potentially slower MSE rate. We
also provide an experimental evaluation of our methods, investigating their performance both on
simulated data and on a large-scale regression problem fromthe internet search domain. In particu-
lar, we show that our methods can be used to efficiently solve an advertisement prediction problem
from the Chinese SoSo Search Engine, which involves logistic regression withN ≈ 2.4×108 sam-
ples andd ≈ 740,000 covariates.
Keywords: distributed learning, stochastic optimization, averaging, subsampling

1. Introduction

Many procedures for statistical estimation are based on a form of (regularized) empirical risk min-
imization, meaning that a parameter of interest is estimated by minimizing an objective function
defined by the average of a loss function over the data. Given the current explosion in the size and
amount of data available in statistical studies, a central challenge is to design efficient algorithms for
solving large-scale problem instances. In a centralized setting, there aremany procedures for solv-
ing empirical risk minimization problems, among them standard convex programmingapproaches
(e.g., Boyd and Vandenberghe, 2004) as well as stochastic approximation and optimization algo-
rithms (Robbins and Monro, 1951; Hazan et al., 2006; Nemirovski et al., 2009). When the size of
the data set becomes extremely large, however, it may be infeasible to store all of the data on a
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single computer, or at least to keep the data in memory. Accordingly, the focus of this paper is the
study of some distributed and communication-efficient procedures for empirical risk minimization.

Recent years have witnessed a flurry of research on distributed approaches to solving very large-
scale statistical optimization problems. Although we cannot survey the literatureadequately—the
papers Nedíc and Ozdaglar (2009), Ram et al. (2010), Johansson et al. (2009), Duchi et al. (2012a),
Dekel et al. (2012), Agarwal and Duchi (2011), Recht et al. (2011), Duchi et al. (2012b) and ref-
erences therein contain a sample of relevant work—we touch on a few important themes here. It
can be difficult within a purely optimization-theoretic setting to show explicit benefits arising from
distributed computation. In statistical settings, however, distributed computation can lead to gains in
computational efficiency, as shown by a number of authors (Agarwal and Duchi, 2011; Dekel et al.,
2012; Recht et al., 2011; Duchi et al., 2012b). Within the family of distributed algorithms, there can
be significant differences in communication complexity: different computersmust be synchronized,
and when the dimensionality of the data is high, communication can be prohibitivelyexpensive. It
is thus interesting to study distributed estimation algorithms that require fairly limited synchroniza-
tion and communication while still enjoying the greater statistical accuracy that is usually associated
with a larger data set.

With this context, perhaps the simplest algorithm for distributed statistical estimationis what we
term theaverage mixture(AVGM) algorithm. It is an appealingly simple method: givenm different
machines and a data set of sizeN, first assign to each machine a (distinct) data set of sizen= N/m,
then have each machinei compute the empirical minimizerθi on its fraction of the data, and finally
average all the parameter estimatesθi across the machines. This approach has been studied for some
classification and estimation problems by Mann et al. (2009) and McDonald etal. (2010), as well
as for certain stochastic approximation methods by Zinkevich et al. (2010).Given an empirical risk
minimization algorithm that works on one machine, the procedure is straightforward to implement
and is extremely communication efficient, requiring only a single round of communication. It is
also relatively robust to possible failures in a subset of machines and/or differences in speeds, since
there is no repeated synchronization. When the local estimators are all unbiased, it is clear that the
the AVGM procedure will yield an estimate that is essentially as good as that of an estimatorbased
on all N samples. However, many estimators used in practice are biased, and so it is natural to ask
whether the method has any guarantees in a more general setting. To the best of our knowledge,
however, no work has shown rigorously that the AVGM procedure generally has greater efficiency
than the naive approach of usingn= N/msamples on a single machine.

This paper makes three main contributions. First, in Section 3, we provide a sharp analysis of
the AVGM algorithm, showing that under a reasonable set of conditions on the population risk, it
can indeed achieve substantially better rates than the naive approach. More concretely, we provide
bounds on the mean-squared error (MSE) that decay asO((nm)−1+n−2). Whenever the number
of machinesm is less than the number of samplesn per machine, this guarantee matches the best
possible rate achievable by a centralized algorithm having access to allN = nm samples. In the
special case of optimizing log likelihoods, the pre-factor in our bound involves the trace of the
Fisher information, a quantity well-known to control the fundamental limits of statistical estimation.
We also show how the result extends to stochastic programming approaches, exhibiting a stochastic
gradient-descent based procedure that also attains convergence rates scaling asO((nm)−1), but with
slightly worse dependence on different problem-specific parameters.

Our second contribution is to develop a novel extension of simple averaging. It is based on an
appropriate form of resampling (Efron and Tibshirani, 1993; Hall, 1992; Politis et al., 1999), which
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we refer to as thesubsampled average mixture(SAVGM ) approach. At a high level, the SAVGM

algorithm distributes samples evenly amongm processors or computers as before, but instead of
simply returning the empirical minimizer, each processor further subsamples itsown data set in
order to estimate the bias of its own estimate, and returns a subsample-corrected estimate. We
establish that the SAVGM algorithm has mean-squared error decaying asO(m−1n−1+n−3). As long
asm< n2, the subsampled method again matches the centralized gold standard in the first-order
term, and has a second-order term smaller than the standard averaging approach.

Our third contribution is to perform a detailed empirical evaluation of both the AVGM and
SAVGM procedures, which we present in Sections 4 and 5. Using simulated data from normal and
non-normal regression models, we explore the conditions under which theSAVGM algorithm yields
better performance than the AVGM algorithm; in addition, we study the performance of both meth-
ods relative to an oracle baseline that uses allN samples. We also study the sensitivity of the algo-
rithms to the number of splitsmof the data, and in the SAVGM case, we investigate the sensitivity of
the method to the amount of resampling. These simulations show that both AVGM and SAVGM have
favourable performance, even when compared to the unattainable “gold standard” procedure that
has access to allN samples. In Section 5, we complement our simulation experiments with a large
logistic regression experiment that arises from the problem of predicting whether a user of a search
engine will click on an advertisement. This experiment is large enough—involving N ≈ 2.4×108

samples ind ≈ 740,000 dimensions with a storage size of approximately 55 gigabytes—that it is
difficult to solve efficiently on one machine. Consequently, a distributed approach is essential to
take full advantage of this data set. Our experiments on this problem show that SAVGM—with the
resampling and correction it provides—gives substantial performance benefits over naive solutions
as well as the averaging algorithm AVGM.

2. Background and Problem Set-up

We begin by setting up our decision-theoretic framework for empirical risk minimization, after
which we describe our algorithms and the assumptions we require for our maintheoretical results.

2.1 Empirical Risk Minimization

Let { f (·;x), x∈ X } be a collection of real-valued and convex loss functions, each defined on a set
containing the convex setΘ ⊆ R

d. Let P be a probability distribution over the sample spaceX .
Assuming that each functionx 7→ f (θ; x) is P-integrable, thepopulation risk F0 : Θ →R is given by

F0(θ) := EP[ f (θ;X)] =
∫
X

f (θ;x)dP(x).

Our goal is to estimate the parameter vector minimizing the population risk, namely the quantity

θ∗ := argmin
θ∈Θ

F0(θ) = argmin
θ∈Θ

∫
X

f (θ;x)dP(x),

which we assume to be unique. In practice, the population distributionP is unknown to us, but we
have access to a collectionS of samples from the distributionP. Empirical risk minimization is
based on estimatingθ∗ by solving the optimization problem

θ̂ ∈ argmin
θ∈Θ

{ 1
|S| ∑

x∈S

f (θ;x)
}
.
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Throughout the paper, we impose some regularity conditions on the parameter space, the risk
functionF0, and the instantaneous loss functionsf (·;x) : Θ → R. These conditions are standard in
classical statistical analysis ofM-estimators (e.g., Lehmann and Casella, 1998; Keener, 2010). Our
first assumption deals with the relationship of the parameter space to the optimal parameterθ∗.

Assumption 1 (Parameters)The parameter spaceΘ⊂R
d is a compact convex set, withθ∗ ∈ intΘ

andℓ2-radius R= max
θ∈Θ

‖θ−θ∗‖2.

In addition, the risk function is required to have some amount of curvature.We formalize this notion
in terms of the Hessian ofF0:

Assumption 2 (Local strong convexity) The population risk is twice differentiable, and there ex-
ists a parameterλ > 0 such that∇2F0(θ∗)� λId×d.

Here∇2F0(θ) denotes thed×d Hessian matrix of the population objectiveF0 evaluated atθ, and
we use� to denote the positive semidefinite ordering (i.e.,A � B means thatA−B is positive
semidefinite.) This local condition is milder than a global strong convexity condition and is required
to hold only for the population riskF0 evaluated atθ∗. It is worth observing that some type of
curvature of the risk is required for any method to consistently estimate the parametersθ∗.

2.2 Averaging Methods

Consider a data set consisting ofN = mnsamples, drawn i.i.d. according to the distributionP. In
the distributed setting, we divide thisN-sample data set evenly and uniformly at random among a
total of m processors. (For simplicity, we have assumed the total number of samples is amultiple
of m.) For i = 1, . . . ,m, we letS1,i denote the data set assigned to processori; by construction, it
is a collection ofn samples drawn i.i.d. according toP, and the samples in subsetsS1,i andS1, j are
independent fori 6= j. In addition, for each processori we define the (local) empirical distribution
P1,i and empirical objectiveF1,i via

P1,i :=
1
|S1| ∑

x∈S1,i

δx, and F1,i(θ) :=
1

|S1,i | ∑
x∈S1,i

f (θ;x).

With this notation, the AVGM algorithm is very simple to describe.

2.2.1 AVERAGE M IXTURE ALGORITHM

(1) For eachi ∈ {1, . . . ,m}, processori uses its local data setS1,i to compute the local empirical
minimizer

θ1,i ∈ argmin
θ∈Θ

{ 1
|S1,i | ∑

x∈S1,i

f (θ;x)

︸ ︷︷ ︸
F1,i(θ)

}
. (1)

(2) Thesem local estimates are then averaged together—that is, we compute

θ1 =
1
m

m

∑
i=1

θ1,i . (2)
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The subsampled average mixture (SAVGM ) algorithm is based on an additional level of sampling
on top of the first, involving a fixed subsampling rater ∈ [0,1]. It consists of the following additional
steps:

2.2.2 SUBSAMPLED AVERAGE M IXTURE ALGORITHM

(1) Each processori draws a subsetS2,i of size⌈rn⌉ by sampling uniformly at random without
replacement from its local data setS1,i .

(2) Each processori computes both the local empirical minimizersθ1,i from Equation (1) and the
empirical minimizer

θ2,i ∈ argmin
θ∈Θ

{ 1
|S2,i | ∑

x∈S2,i

f (θ;x)

︸ ︷︷ ︸
F2,i(θ)

}
.

(3) In addition to the previous average (2), the SAVGM algorithm computes the bootstrap average
θ2 := 1

m ∑m
i=1 θ2,i , and then returns the weighted combination

θSAVGM :=
θ1− rθ2

1− r
. (3)

The intuition for the weighted estimator (3) is similar to that for standard bias correction pro-
cedures using the bootstrap or subsampling (Efron and Tibshirani, 1993; Hall, 1992; Politis et al.,
1999). Roughly speaking, ifb0 = θ∗−θ1 is the bias of the first estimator, then we may approximate
b0 by the subsampled estimate of biasb1 = θ∗−θ2. Then, we use the fact thatb1 ≈ b0/r to argue
thatθ∗ ≈ (θ1− rθ2)/(1− r). The re-normalization enforces that the relative “weights” ofθ1 andθ2

sum to 1.

The goal of this paper is to understand under what conditions—and in what sense—the estima-
tors (2) and (3) approach theoracle performance, by which we mean the error of a centralized risk
minimization procedure that is given access to allN = nmsamples.

2.2.3 NOTATION

Before continuing, we define the remainder of our notation. We useℓ2 to denote the usual Euclidean
norm ‖θ‖2 = (∑d

j=1 θ2
j )

1
2 . The ℓ2-operator norm of a matrixA ∈ R

d1×d2 is its maximum singular
value, defined by

|||A|||2 := sup
v∈Rd2,‖v‖2≤1

‖Av‖2.

A convex functionF is λ-strongly convex on a setU ⊆ R
d if for arbitraryu,v∈U we have

F(u)≥ F(v)+ 〈∇F(v),u−v〉+ λ
2
‖u−v‖2

2 .

(If F is not differentiable, we may replace∇F with any subgradient ofF .) We let⊗ denote the
Kronecker product, and for a pair of vectorsu,v, we define the outer productu⊗ v = uv⊤. For a
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three-times differentiable functionF , we denote the third derivative tensor by∇3F , so that for each
u∈ domF the operator∇3F(u) : Rd×d → R

d is linear and satisfies the relation

[
∇3F(u)(v⊗v)

]
i =

d

∑
j,k=1

(
∂3

∂ui∂u j∂uk
F(u)

)
v jvk.

We denote the indicator function of an eventE by 1(E), which is 1 ifE is true and 0 otherwise.

3. Theoretical Results

Having described the AVGM and SAVGM algorithms, we now turn to statements of our main theo-
rems on their statistical properties, along with some consequences and comparison to past work.

3.1 Smoothness Conditions

In addition to our previously stated assumptions on the population risk, we require regularity con-
ditions on the empirical risk functions. It is simplest to state these in terms of the functions
θ 7→ f (θ;x), and we note that, as with Assumption 2, we require these to hold only locally around
the optimal pointθ∗, in particular within some Euclidean ballU = {θ ∈ R

d | ‖θ∗−θ‖2 ≤ ρ} ⊆ Θ
of radiusρ > 0.

Assumption 3 (Smoothness)There are finite constants G,H such that the first and the second
partial derivatives of f exist and satisfy the bounds

E[‖∇ f (θ;X)‖8
2]≤ G8 and E[

∣∣∣∣∣∣∇2 f (θ;X)−∇2F0(θ)
∣∣∣∣∣∣8

2]≤ H8 for all θ ∈U.

In addition, for any x∈ X , the Hessian matrix∇2 f (θ;x) is L(x)-Lipschitz continuous, meaning that
∣∣∣∣∣∣∇2 f (θ′;x)−∇2 f (θ;x)

∣∣∣∣∣∣
2 ≤ L(x)

∥∥θ′−θ
∥∥

2 for all θ,θ′ ∈U. (4)

We require thatE[L(X)8]≤ L8 andE[(L(X)−E[L(X)])8]≤ L8 for some finite constant L.

It is an important insight of our analysis that some type of smoothness condition on the Hessian
matrix, as in the Lipschitz condition (4), isessentialin order for simple averaging methods to work.
This necessity is illustrated by the following example:

Example 1 (Necessity of Hessian conditions)Let X be a Bernoulli variable with parameter12,
and consider the loss function

f (θ;x) =

{
θ2−θ if x = 0

θ21(θ≤0)+θ if x = 1,
(5)

where1(θ≤0) is the indicator of the event{θ ≤ 0}. The associated population risk is F0(θ) =
1
2(θ

2 + θ21(θ≤0)). Since|F ′
0(w)− F ′

0(v)| ≤ 2|w− v|, the population risk is strongly convex and
smooth, but it has discontinuous second derivative. The unique minimizerof the population risk is
θ∗ = 0, and by an asymptotic expansion given in Appendix A, it can be shown thatE[θ1,i ] =Ω(n−

1
2 ).

Consequently, the bias ofθ1 is Ω(n−
1
2 ), and theAVGM algorithm using N= mn observations must

suffer mean squared errorE[(θ1−θ∗)2] = Ω(n−1).
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The previous example establishes the necessity of a smoothness condition. However, in a certain
sense, it is a pathological case: both the smoothness condition given in Assumption 3 and the local
strong convexity condition given in Assumption 2 are relatively innocuous for practical problems.
For instance, both conditions will hold for standard forms of regression,such as linear and logistic,
as long as thepopulationdata covariance matrix is not rank deficient and the data has suitable
moments. Moreover, in the linear regression case, one hasL = 0.

3.2 Bounds for Simple Averaging

We now turn to our first theorem that provides guarantees on the statisticalerror associated with the
AVGM procedure. We recall thatθ∗ denotes the minimizer of the population objective functionF0,
and that for eachi ∈ {1, . . . ,m}, we useSi to denote a data set ofn independent samples. For eachi,
we useθi ∈ argminθ∈Θ{1

n ∑x∈Si
f (θ;x)} to denote a minimizer of the empirical risk for the data set

Si , and we define the averaged vectorθ = 1
m ∑m

i=1 θi . The following result bounds the mean-squared
error between this averaged estimate and the minimizerθ∗ of the population risk.

Theorem 1 Under Assumptions 1 through 3, the mean-squared error is upper bounded as

E

[∥∥θ−θ∗∥∥2
2

]
≤ 2

nm
E

[∥∥∇2F0(θ∗)−1∇ f (θ∗;X)
∥∥2

2

]
(6)

+
c

λ2n2

(
H2 logd+

L2G2

λ2

)
E

[∥∥∇2F0(θ∗)−1∇ f (θ∗;X)
∥∥2

2

]

+O(m−1n−2)+O(n−3),

where c is a numerical constant.

A slightly weaker corollary of Theorem 1 makes it easier to parse. In particular, note that

∥∥∇2F0(θ∗)−1∇ f (θ∗;x)
∥∥

2

(i)
≤
∣∣∣∣∣∣∇2F0(θ∗)−1

∣∣∣∣∣∣
2‖∇ f (θ∗;x)‖2

(ii)
≤ 1

λ
‖∇ f (θ∗;x)‖2 , (7)

where step (i) follows from the inequality|||Ax|||2 ≤ |||A|||‖x‖2, valid for any matrixA and vectorx;
and step (ii) follows from Assumption 2. In addition, Assumption 3 impliesE[‖∇ f (θ∗;X)‖2

2]≤ G2,
and putting together the pieces, we have established the following.

Corollary 2 Under the same conditions as Theorem 1,

E

[∥∥θ−θ∗∥∥2
2

]
≤ 2G2

λ2nm
+

cG2

λ4n2

(
H2 logd+

L2G2

λ2

)
+O(m−1n−2)+O(n−3). (8)

This upper bound shows that the leading term decays proportionally to(nm)−1, with the pre-factor
depending inversely on the strong convexity constantλ and growing proportionally with the bound
G on the loss gradient. Although easily interpretable, the upper bound (8) can be loose, since it is
based on the relatively weak series of bounds (7).

The leading term in our original upper bound (6) involves the product ofthe gradient∇ f (θ∗;X)
with the inverse Hessian. In many statistical settings, including the problem of linear regression,
the effect of this matrix-vector multiplication is to perform some type of standardization. When the
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loss f (·;x) : Θ →R is actually the negative log-likelihoodℓ(x | θ) for a parametric family of models
{Pθ}, we can make this intuition precise. In particular, under suitable regularity conditions (e.g.,
Lehmann and Casella, 1998, Chapter 6), we can define the Fisher information matrix

I(θ∗) := E

[
∇ℓ(X | θ∗)∇ℓ(X | θ∗)⊤

]
= E[∇2ℓ(X | θ∗)].

Recalling thatN = mn is the total number of samples available, let us define the neighbourhood
B2(θ, t) := {θ′ ∈ R

d : ‖θ′−θ‖2 ≤ t}. Then under our assumptions, the Hájek-Le Cam minimax
theorem (van der Vaart, 1998, Theorem 8.11) guarantees forany estimator̂θN based onN samples
that

lim
c→∞

liminf
N→∞

sup
θ∈B2(θ∗,c/

√
N)

NEθ

[∥∥θ̂N −θ
∥∥2

2

]
≥ tr(I(θ∗)−1).

In connection with Theorem 1, we obtain:

Corollary 3 In addition to the conditions of Theorem 1, suppose that the loss functions f(·;x) are
the negative log-likelihoodℓ(x | θ) for a parametric family{Pθ, θ ∈ Θ}. Then the mean-squared
error is upper bounded as

E

[∥∥θ1−θ∗∥∥2
2

]
≤ 2

N
tr(I(θ∗)−1)+

cm2 tr(I(θ∗)−1)

λ2N2

(
H2 logd+

L2G2

λ2

)
+O(mN−2),

where c is a numerical constant.

Proof Rewriting the log-likelihood in the notation of Theorem 1, we have∇ℓ(x | θ∗) = ∇ f (θ∗;x)
and all we need to note is that

I(θ∗)−1 = E

[
I(θ∗)−1∇ℓ(X | θ∗)∇ℓ(X | θ∗)⊤I(θ∗)−1

]

= E

[(
∇2F0(θ∗)−1∇ f (θ∗;X)

)(
∇2F0(θ∗)−1∇ f (θ∗;X)

)⊤ ]
.

Now apply the linearity of the trace and use the fact that tr(uu⊤) = ‖u‖2
2.

Except for the factor of two in the bound, Corollary 3 shows that Theorem 1 essentially achieves
the best possible result. The important aspect of our bound, however,is that we obtain this conver-
gence rate without calculating an estimate on allN = mn samples: instead, we calculatem inde-
pendent estimators, and then average them to attain the convergence guarantee. We remark that an
inspection of our proof shows that, at the expense of worse constants on higher order terms, we can
reduce the factor of 2/mnon the leading term in Theorem 1 to(1+ c)/mn for any constantc> 0;
as made clear by Corollary 3, this is unimprovable, even by constant factors.

As noted in the introduction, our bounds are certainly to be expected for unbiased estimators,
since in such cases averagingm independent solutions reduces the variance by 1/m. In this sense,
our results are similar to classical distributional convergence results inM-estimation: for smooth
enough problems,M-estimators behave asymptotically like averages (van der Vaart, 1998; Lehmann
and Casella, 1998), and averaging multiple independent realizations reduces their variance. How-
ever, it is often desirable to use biased estimators, and such bias introduces difficulty in the analysis,
which we explore more in the next section. We also note that in contrast to classical asymptotic re-
sults, our results are applicable to finite samples and give explicit upper bounds on the mean-squared
error. Lastly, our results are not tied to a specific model, which allows for fairly general sampling
distributions.
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3.3 Bounds for Subsampled Mixture Averaging

When the number of machinesm is relatively small, Theorem 1 and Corollary 2 show that the
convergence rate of the AVGM algorithm is mainly determined by the first term in the bound (6),
which is at most G2

λ2mn. In contrast, when the number of processorsm grows, the second term in the
bound (6), in spite of beingO(n−2), may have non-negligible effect. This issue is exacerbated when
the local strong convexity parameterλ of the riskF0 is close to zero or the Lipschitz continuity con-
stantH of ∇ f is large. This concern motivated our development of the subsampled average mixture
(SAVGM ) algorithm, to which we now return.

Due to the additional randomness introduced by the subsampling in SAVGM , its analysis requires
an additional smoothness condition. In particular, recalling the Euclideanρ-neighbourhoodU of the
optimumθ∗, we require that the loss functionf is (locally) smooth through its third derivatives.

Assumption 4 (Strong smoothness)For each x∈ X , the third derivatives of f are M(x)-Lipschitz
continuous, meaning that

∥∥(∇3 f (θ;x)−∇3 f (θ′;x)
)
(u⊗u)

∥∥
2 ≤ M(x)

∥∥θ−θ′∥∥
2‖u‖2

2 for all θ,θ′ ∈U, and u∈ R
d,

whereE[M8(X)]≤ M8 for some constant M< ∞.

It is easy to verify that Assumption 4 holds for least-squares regressionwith M = 0. It also holds
for various types of non-linear regression problems (e.g., logistic, multinomial etc.) as long as the
covariates have finite eighth moments.

With this set-up, our second theorem establishes that bootstrap sampling yields improved per-
formance:

Theorem 4 Under Assumptions 1 through 4, the outputθSAVGM = (θ1− rθ2)/(1− r) of the boot-
strapSAVGM algorithm has mean-squared error bounded as

E

[∥∥θSAVGM −θ∗∥∥2
2

]
≤ 2+3r

(1− r)2 ·
1

nm
E

[∥∥∇2F0(θ∗)−1∇ f (θ∗;X)
∥∥2

2

]
(9)

+c

(
M2G6

λ6 +
G4L2d logd

λ4

)(
1

r(1− r)2

)
n−3+O

(
1

(1− r)2m−1n−2
)

for a numerical constant c.

Comparing the conclusions of Theorem 4 to those of Theorem 1, we see that the theO(n−2)
term in the bound (6) has been eliminated. The reason for this elimination is that subsampling
at a rater reduces the bias of the SAVGM algorithm toO(n−3), whereas in contrast, the bias
of the AVGM algorithm induces terms of ordern−2. Theorem 4 suggests that the performance
of the SAVGM algorithm is affected by the subsampling rater; in order to minimize the upper
bound (9) in the regimem< N2/3, the optimal choice is of the formr ∝ C

√
m/n=Cm3/2/N where

C≈ (G2/λ2)max{MG/λ,L
√

d logd}. Roughly, as the number of machinesm becomes larger, we
may increaser, since we enjoy averaging affects from the SAVGM algorithm.

Let us consider the relative effects of having larger numbers of machines m for both the AVGM

and SAVGM algorithms, which provides some guidance to selectingm in practice. We defineσ2 =
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E[
∥∥∇2F0(θ∗)−1∇ f (θ∗;X)

∥∥2
2] to be the asymptotic variance. Then to obtain the optimal convergence

rate ofσ2/N, we must have

1
λ2 max

{
H2 logd,L2G2}m2

N2 σ2 ≤ σ2

N
or m≤ N

1
2

√
λ2

max{H2 logd,L2G2/λ2} (10)

in Theorem 1. Applying the bound of Theorem 4, we find that to obtain the same rate we require

max

{
M2G2

λ6 ,
L2d logd

λ4

}
G4m3

rN3 ≤ (1+ r)σ2

N
or m≤ N

2
3

(
λ4r(1+ r)σ2

max{M2G6/λ2,G4L2d logd}

) 1
3

.

Now suppose that we replacer with Cm3/2/N as in the previous paragraph. Under the conditions
σ2 ≈ G2 andr = o(1), we then find that

m≤ N
2
3

(
λ2σ2m3/2

G2max
{

MG/λ,L
√

d logd
}

N

) 1
3

or m≤ N
2
3

(
λ2

max
{

MG/λ,L
√

d logd
}
) 2

3

. (11)

Comparing inequalities (10) and (11), we see that in both casesm may grow polynomially with
the global sample sizeN while still guaranteeing optimal convergence rates. On one hand, this
asymptotic growth is faster in the subsampled case (11); on the other hand, the dependence on the
dimensiond of the problem is more stringent than the standard averaging case (10). As the local
strong convexity constantλ of thepopulation riskshrinks, both methods allow less splitting of the
data, meaning that the sample size per machine must be larger. This limitation is intuitive, since
lower curvature for the population risk means that the local empirical risks associated with each
machine will inherit lower curvature as well, and this effect will be exacerbated with a small local
sample size per machine. Averaging methods are, of course, not a panacea: the allowed number
of partitionsm does not grow linearly in either case, so blindly increasing the number of machines
proportionally to the total sample sizeN will not lead to a useful estimate.

In practice, an optimal choice ofr may not be apparent, which may necessitate cross validation
or another type of model evaluation. We leave as intriguing open questions whether computing
multiple subsamples at each machine can yield improved performance or reduce the variance of the
SAVGM procedure, and whether using estimates based on resampling the data with replacement, as
opposed to without replacement as considered here, can yield improved performance.

3.4 Time Complexity

In practice, the exact empirical minimizers assumed in Theorems 1 and 4 may be unavailable. In-
stead, we need to use a finite number of iterations of some optimization algorithm in order to obtain
reasonable approximations to the exact minimizers. In this section, we sketch an argument that
shows that both the AVGM algorithm and the SAVGM algorithm can use such approximate empir-
ical minimizers, and as long as the optimization error is sufficiently small, the resulting averaged
estimate achieves the same order-optimal statistical error. Here we provide the arguments only for
the AVGM algorithm; the arguments for the SAVGM algorithm are analogous.

More precisely, suppose that each processor runs a finite number of iterations of some optimiza-
tion algorithm, thereby obtaining the vectorθ′

i as an approximate minimizer of the objective function
F1,i . Thus, the vectorθ′

i can be viewed as an approximate form ofθi , and we letθ′
= 1

m ∑m
i=1 θ′

i denote
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the average of these approximate minimizers, which corresponds to the output of the approximate
AVGM algorithm. With this notation, we have

E

[∥∥θ′−θ∗∥∥2
2

] (i)
≤ 2E[

∥∥θ−θ∗∥∥2
2]+2E

[∥∥θ′−θ
∥∥2

2

] (ii)
≤ 2E[

∥∥θ−θ∗∥∥2
2]+2E[

∥∥θ′
1−θ1

∥∥2
2], (12)

where step (i) follows by triangle inequality and the elementary bound(a+b)2 ≤ 2a2+2b2; step
(ii) follows by Jensen’s inequality. Consequently, suppose that processor i runs enough iterations to
obtain an approximate minimizerθ′

1 such that

E[
∥∥θ′

i −θi
∥∥2

2] = O((mn)−2). (13)

When this condition holds, the bound (12) shows that the averageθ′
of the approximate minimizers

shares the same convergence rates provided by Theorem 1.
But how long does it take to compute an approximate minimizerθ′

i satisfying condition (13)?
Assuming processing one sample requires one unit of time, we claim that this computation can be
performed in timeO(nlog(mn)). In particular, the following two-stage strategy, involving a com-
bination of stochastic gradient descent (see the following subsection formore details) and standard
gradient descent, has this complexity:

(1) As shown in the proof of Theorem 1, with high probability, the empirical risk F1 is strongly
convex in a ballBρ(θ1) of constant radiusρ> 0 aroundθ1. Consequently, performing stochas-
tic gradient descent onF1 forO(log2(mn)/ρ2) iterations yields an approximate minimizer that
falls within Bρ(θ1) with high probability (e.g., Nemirovski et al., 2009, Proposition 2.1). Note
that the radiusρ for local strong convexity is a property of the population riskF0 we use as a
prior knowledge.

(2) This initial estimate can be further improved by a few iterations of standardgradient descent.
Under local strong convexity of the objective function, gradient descent is known to converge
at a geometric rate (see, e.g., Nocedal and Wright, 2006; Boyd and Vandenberghe, 2004),
soO(log(1/ε)) iterations will reduce the error to orderε. In our case, we haveε = (mn)−2,
and since each iteration of standard gradient descent requiresO(n) units of time, a total of
O(nlog(mn)) time units are sufficient to obtain a final estimateθ′

1 satisfying condition (13).

Overall, we conclude that the speed-up of the AVGM relative to the naive approach of processing
all N = mnsamples on one processor, is at least of orderm/ log(N).

3.5 Stochastic Gradient Descent with Averaging

The previous strategy involved a combination of stochastic gradient descent and standard gradient
descent. In many settings, it may be appealing to use only a stochastic gradient algorithm, due
to their ease of their implementation and limited computational requirements. In this section, we
describe an extension of Theorem 1 to the case in which each machine computes an approximate
minimizer using only stochastic gradient descent.

Stochastic gradient algorithms have a lengthy history in statistics, optimization, and machine
learning (Robbins and Monro, 1951; Polyak and Juditsky, 1992; Nemirovski et al., 2009; Rakhlin
et al., 2012). Let us begin by briefly reviewing the basic form of stochastic gradient descent (SGD).
Stochastic gradient descent algorithms iteratively update a parameter vector θt over time based on

3331



ZHANG, DUCHI AND WAINWRIGHT

randomly sampled gradient information. Specifically, at iterationt, a sampleXt is drawn at random
from the distributionP (or, in the case of a finite set of data{X1, . . . ,Xn}, a sampleXt is chosen from
the data set). The method then performs the following two steps:

θt+ 1
2 = θt −ηt∇ f (θt ;Xt) and θt+1 = argmin

θ∈Θ

{∥∥θ−θt+ 1
2
∥∥2

2

}
. (14)

Hereηt > 0 is a stepsize, and the first update in (14) is a gradient descent step with respect to the
random gradient∇ f (θt ;Xt). The method then projects the intermediate pointθt+ 1

2 back onto the
constraint setΘ (if there is a constraint set). The convergence of SGD methods of the form (14) has
been well-studied, and we refer the reader to the papers by Polyak and Juditsky (1992), Nemirovski
et al. (2009), and Rakhlin et al. (2012) for deeper investigations.

To prove convergence of our stochastic gradient-based averaging algorithms, we require the
following smoothness and strong convexity condition, which is an alternativeto the Assumptions 2
and 3 used previously.

Assumption 5 (Smoothness and Strong Convexity II)There exists a function L: X → R+ such
that ∣∣∣∣∣∣∇2 f (θ;x)−∇2 f (θ∗;x)

∣∣∣∣∣∣
2 ≤ L(x)‖θ−θ∗‖2 for all x ∈ X ,

andE[L2(X)]≤ L2 < ∞. There are finite constants G and H such that

E[‖∇ f (θ;X)‖4
2]≤ G4, and E[

∣∣∣∣∣∣∇2 f (θ∗;X)
∣∣∣∣∣∣4

2]≤ H4 for each fixedθ ∈ Θ.

In addition, the population function F0 is λ-strongly convex over the spaceΘ, meaning that

∇2F0(θ)� λId×d for all θ ∈ Θ.

Assumption 5 does not require as many moments as does Assumption 3, but it does require each
moment bound to hold globally, that is, over the entire spaceΘ, rather than only in a neighbourhood
of the optimal pointθ∗. Similarly, the necessary curvature—in the form of the lower bound on
the Hessian matrix∇2F0—is also required to hold globally, rather than only locally. Nonetheless,
Assumption 5 holds for many common problems; for instance, it holds for any linear regression
problem in which the covariates have finite fourth moments and the domainΘ is compact.

The averaged stochastic gradient algorithm (SGDAVGM ) is based on the following two steps:

(1) Given some constantc > 1, each machine performsn iterations of stochastic gradient de-
scent (14) on its local data set ofn samples using the stepsizeηt =

c
λt , then outputs the

resulting local parameterθ′
i .

(2) The algorithm computes the averageθn
= 1

m ∑m
i=1 θ′

i .

The following result characterizes the mean-squared error of this procedure in terms of the constants

α := 4c2 and β := max

{⌈
cH
λ

⌉
,

cα3/4G3/2

(c−1)λ5/2

(
α1/4LG1/2

λ1/2
+

4G+HR

ρ3/2

)}
.
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Theorem 5 Under Assumptions 1 and 5, the outputθn
of theSAVGM algorithm has mean-squared

error upper bounded as

E

[∥∥θn−θ∗∥∥2
2

]
≤ αG2

λ2mn
+

β2

n3/2
. (15)

Theorem 5 shows that the averaged stochastic gradient descent procedure attains the optimal
convergence rateO(N−1) as a function of the total number of observationsN = mn. The constant
and problem-dependent factors are somewhat worse than those in the earlier results we presented
in Theorems 1 and 4, but the practical implementability of such a procedure mayin some circum-
stances outweigh those differences. We also note that the second term oforderO(n−3/2) may be
reduced toO(n(2−2k)/k) for anyk≥ 4 by assuming the existence ofkth moments in Assumption 5;
we show this in passing after our proof of the theorem in Appendix D. It is not clear whether a
bootstrap correction is possible for the stochastic-gradient based estimator; such a correction could
be significant, because the termβ2/n3/2 arising from the bias in the stochastic gradient estimator
may be non-trivial. We leave this question to future work.

4. Performance on Synthetic Data

In this section, we report the results of simulation studies comparing the AVGM, SAVGM , and
SGDAVGM methods, as well as a trivial method using only a fraction of the data available on a
single machine. For each of our simulated experiments, we use a fixed total number of samples
N = 100,000, but we vary the number of parallel splitsm of the data (and consequently, the local
data set sizesn= N/m) and the dimensionalityd of the problem solved.

For our experiments, we simulate data from one of three regression models:

y= 〈u,x〉+ ε, (16)

y= 〈u,x〉+
d

∑
j=1

v jx
3
j + ε, or (17)

y= 〈u,x〉+h(x)|ε|, (18)

whereε ∼ N(0,1), andh is a function to be specified. Specifically, the data generation procedure
is as follows. For each individual simulation, we choose fixed vectoru ∈ R

d with entriesui dis-
tributed uniformly in[0,1] (and similarly forv), and we seth(x) = ∑d

j=1(x j/2)3. The models (16)
through (18) provide points on a curve from correctly-specified to grossly mis-specified models, so
models (17) and (18) help us understand the effects of subsampling in the SAVGM algorithm. (In
contrast, the standard least-squares estimator is unbiased for model (16).) The noise variableε is
always chosen as a standard Gaussian variateN(0,1), independent from sample to sample.

In our simulation experiments we use the least-squares loss

f (θ;(x,y)) :=
1
2
(〈θ,x〉−y)2.

The goal in each experiment is to estimate the vectorθ∗ minimizing F0(θ) := E[ f (θ;(X,Y))]. For
each simulation, we generateN samples according to either the model (16) or (18). For eachm∈
{2,4,8,16,32,64,128}, we estimateθ∗ = argminθ F0(θ) using a parallel method with data split into
m independent sets of sizen= N/m, specifically
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Figure 1: The error‖θ̂−θ∗‖2
2 versus number of machines, with standard errors across twenty simu-

lations, for solving least squares with data generated according to the normal model (16).
The oracle least-squares estimate using allN samples is given by the line “All,” while the
line “Single” gives the performance of the naive estimator using onlyn= N/msamples.

(i) The AVGM method

(ii) The SAVGM method with several settings of the subsampling ratior

(iii) The SGDAVGM method with stepsizeηt = d/(10(d+ t)), which gave good performance.

In addition to (i)–(iii), we also estimateθ∗ with

(iv) The empirical minimizer of a single split of the data of sizen= N/m

(v) The empirical minimizer on the full data set (the oracle solution).

4.1 Averaging Methods

For our first set of experiments, we study the performance of the averaging methods (AVGM and
SAVGM ), showing their scaling as the number of splits of data—the number of machinesm—grows
for fixed N and dimensionsd = 20 andd = 200. We use the standard regression model (16) to
generate the data, and throughout we letθ̂ denote the estimate returned by the method under consid-
eration (so in the AVGM case, for example, this is the vectorθ̂ := θ1). The data samples consist of
pairs(x,y), wherex∈R

d andy∈R is the target value. To sample eachx vector, we choose five dis-
tinct indices in{1, . . . ,d} uniformly at random, and the entries ofx at those indices are distributed
asN(0,1). For the model (16), the population optimal vectorθ∗ is u.

In Figure 1, we plot the error‖θ̂−θ∗‖2
2 of the inferred parameter vectorθ̂ for the true parameters

θ∗ versus the number of splitsm, or equivalently, the number of separate machines available for use.
We also plot standard errors (across twenty experiments) for each curve. As a baseline in each plot,
we plot as a red line the squared error‖θ̂N −θ∗‖2

2 of the centralized “gold standard,” obtained by
applying a batch method to allN samples.

From the plots in Figure 1, we can make a few observations. The AVGM algorithm enjoys
excellent performance, as predicted by our theoretical results, especially compared to the naive
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Figure 2: Comparison of AVGM and SGDAVGM methods as in Figure 1 plotted on logarithmic
scale. The plot shows‖θ̂−θ∗‖2

2−‖θN −θ∗‖2
2, whereθN is the oracle least-squares esti-

mator using allN data samples.

solution using only a fraction 1/m of the data. In particular, if̂θ is obtained by the batch method,
then AVGM is almost as good as the full-batch baseline even form as large as 128, though there is
some evident degradation in solution quality. The SGDAVGM (stochastic-gradient with averaging)
solution also yields much higher accuracy than the naive solution, but its performance degrades
more quickly than the AVGM method’s asm grows. In higher dimensions, both the AVGM and
SGDAVGM procedures have somewhat worse performance; again, this is not unexpected since in
high dimensions the strong convexity condition is satisfied with lower probability inlocal data sets.

We present a comparison between the AVGM method and the SGDAVGM method with some-
what more distinguishing power in Figure 2. For these plots, we compute the gap between the
AVGM mean-squared-error and the unparallel baseline MSE, which is the accuracy lost due to par-
allelization or distributing the inference procedure across multiple machines. Figure 2 shows that
the mean-squared error grows polynomially with the number of machinesm, which is consistent
with our theoretical results. From Corollary 3, we expect the AVGM method to suffer (lower-order)
penalties proportional tom2 asm grows, while Theorem 5 suggests the somewhat faster growth
we see for the SGDAVGM method in Figure 2. Thus, we see that the improved run-time perfor-
mance of the SGDAVGM method—requiring only a single pass through the data on each machine,
touching each datum only once—comes at the expense of some loss of accuracy, as measured by
mean-squared error.

4.2 Subsampling Correction

We now turn to developing an understanding of the SAVGM algorithm in comparison to the standard
average mixture algorithm, developing intuition for the benefits and drawbacks of the method. Be-
fore describing the results, we remark that for the standard regressionmodel (16), the least-squares
solution is unbiased forθ∗, so we expect subsampled averaging to yield little (if any) improvement.
The SAVGM method is essentially aimed at correcting the bias of the estimatorθ1, and de-biasing an
unbiased estimator only increases its variance. However, for the mis-specified models (17) and (18)
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Figure 3: The error‖θ̂−θ∗‖2
2 plotted against the number of machinesm for the AVGM and SAVGM

methods, with standard errors across twenty simulations, using the normal regression
model (16). The oracle estimator is denoted by the line “All.”
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Figure 4: The error‖θ̂−θ∗‖2
2 plotted against the number of machinesm for the AVGM and SAVGM

methods, with standard errors across twenty simulations, using the non-normal regression
model (18). The oracle estimator is denoted by the line “All.”

we expect to see some performance gains. In our experiments, we use multiplesub-sampling rates
to study their effects, choosingr ∈ {0.005,0.01,0.02,0.04}, where we recall that the output of the
SAVGM algorithm is the vector̂θ := (θ1− rθ2)/(1− r).

We begin with experiments in which the data is generated as in the previous section. That is, to
generate a feature vectorx∈d, choose five distinct indices in{1, . . . ,d} uniformly at random, and the
entries ofx at those indices are distributed asN(0,1). In Figure 3, we plot the results of simulations
comparing AVGM and SAVGM with data generated from the normal regression model (16). Both
algorithms have have low error rates, but the AVGM method is slightly better than the SAVGM

method for both values of the dimensiond and all and sub-sampling ratesr. As expected, in this
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Figure 5: The error‖θ̂−θ∗‖2
2 plotted against the number of machinesm for the AVGM and SAVGM

methods using regression model (17).

case the SAVGM method does not offer improvement over AVGM, since the estimators are unbiased.
(In Figure 3(a), we note that the standard error is in fact very small, since the mean-squared error is
only of order 10−3.)

To understand settings in which subsampling for bias correction helps, in Figure 4, we plot
mean-square error curves for the least-squares regression problem when the vectory is sampled
according to the non-normal regression model (18). In this case, the least-squares estimator is
biased forθ∗ (which, as before, we estimate by solving a larger regression problem using 10N data
samples). Figure 4 shows that both the AVGM and SAVGM method still enjoy good performance;
in some cases, the SAVGM method even beats the oracle least-squares estimator forθ∗ that uses
all N samples. Since the AVGM estimate is biased in this case, its error curve increases roughly
quadratically withm, which agrees with our theoretical predictions in Theorem 1. In contrast,we see
that the SAVGM algorithm enjoys somewhat more stable performance, with increasing benefit as the
number of machinesm increases. For example, in case ofd= 200, if we chooser = 0.01 form≤ 32,
chooser = 0.02 for m= 64 andr = 0.04 for m= 128, then SAVGM has performance comparable
with the oracle method that uses allN samples. Moreover, we see that all the values ofr—at least
for the reasonably small values we use in the experiment—provide performance improvements over
a non-subsampled distributed estimator.

For our final simulation, we plot results comparing SAVGM with AVGM in model (17), which is
mis-specified but still a normal model. We use a simpler data generating mechanism, specifically,
we drawx∼ N(0, Id×d) from a standardd-dimensional normal, andv is chosen uniformly in[0,1];
in this case, the population minimizer has the closed formθ∗ = u+3v. Figure 5 shows the results
for dimensionsd = 20 andd = 40 performed over 100 experiments (the standard errors are too
small to see). Since the model (17) is not that badly mis-specified, the performance of the SAVGM

method improves upon that of the AVGM method only for relatively large values ofm, however, the
performance of the SAVGM is always at least as good as that of AVGM.
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Feature Name Dimension Description
Query 20000 Word tokens appearing in the query.
Gender 3 Gender of the user
Keyword 20000 Word tokens appearing in the purchase keywords.
Title 20000 Word tokens appearing in the ad title.
Advertiser 39191 Advertiser’s ID
AdID 641707 Advertisement’s ID.
Age 6 Age of the user
UserFreq 25 Number of appearances of the same user.
Position 3 Position of advertisement on search page.
Depth 3 Number of ads in the session.
QueryFreq 25 Number of occurrences of the same query.
AdFreq 25 Number of occurrences of the same ad.
QueryLength 20 Number of words in the query.
TitleLength 30 Number of words in the ad title.
DespLength 50 Number of words in the ad description.
QueryCtr 150 Average click-through-rate for query.
UserCtr 150 Average click-through-rate for user.
AdvrCtr 150 Average click-through-rate for advertiser.
WordCtr 150 Average click-through-rate for keyword advertised.
UserAdFreq 20 Number of times this user sees an ad.
UserQueryFreq 20 Number of times this user performs a search.

Table 1: Features used in online advertisement prediction problem.

5. Experiments with Advertising Data

Predicting whether a user of a search engine will click on an advertisementpresented to him or
her is of central importance to the business of several internet companies, and in this section, we
present experiments studying the performance of the AVGM and SAVGM methods for this task. We
use a large data set from the Tencent search engine,soso.com (Sun, 2012), which contains 641,707
distinct advertisement items withN = 235,582,879 data samples.

Each sample consists of a so-calledimpression, which in the terminology of the information
retrieval literature (e.g., see the book by Manning et al., 2008), is a list containing a user-issued
search, the advertisement presented to the user in response to the search, and a labely∈ {+1,−1}
indicating whether the user clicked on the advertisement. The ads in our data set were presented to
23,669,283 distinct users.

Transforming an impression into a useable set of regressorsx is non-trivial, but the Tencent data
set provides a standard encoding. We list the features present in the data in Table 1, along with some
description of their meaning. Each text-based feature—that is, those made up of words, which are
Query, Keyword, and Title—is given a “bag-of-words” encoding (Manning et al., 2008). This en-
coding assigns each of 20,000 possible words an index, and if the word appears in the query (or Key-
word or Title feature), the corresponding index in the vectorx is set to 1. Words that do not appear
are encoded with a zero. Real-valued features, corresponding to the bottom fifteen features in Ta-
ble 1 beginning with “Age”, are binned into a fixed number of intervals[−∞,a1],(a1,a2] , . . . ,(ak,∞],
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Figure 6: The negative log-likelihood of the output of the AVGM, SAVGM , and stochastic methods
on the held-out data set for the click-through prediction task. (a) Performance of the
AVGM and SAVGM methods versus the number of splitsm of the data. (b) Performance
of SDCA and SGD baselines as a function of number of passes through theentire data
set.

each of which is assigned an index inx. (Note that the intervals and number thereof vary per feature,
and the dimension of the features listed in Table 1 corresponds to the number of intervals). When a
feature falls into a particular bin, the corresponding entry ofx is assigned a 1, and otherwise the en-
tries ofx corresponding to the feature are 0. Each feature has one additional value for “unknown.”
The remaining categorical features—gender, advertiser, and advertisement ID (AdID)—are also
given {0,1} encodings, where only one index ofx corresponding to the feature may be non-zero
(which indicates the particular gender, advertiser, or AdID). This combination of encodings yields
a binary-valued covariate vectorx∈ {0,1}d with d = 741,725 dimensions. Note also that the fea-
tures incorporate information about the user, advertisement, and query issued, encoding information
about their interactions into the model.

Our goal is to predict the probability of a user clicking a given advertisement as a function of
the covariates in Table 1. To do so, we use a logistic regression model to estimate the probability of
a click response

P(y= 1 | x;θ) :=
1

1+exp(−〈θ,x〉) ,

whereθ ∈ R
d is the unknown regression vector. We use the negative logarithm ofP as the loss,

incorporating a ridge regularization penalty. This combination yields instantaneous loss

f (θ;(x,y)) = log(1+exp(−y〈θ,x〉))+ λ
2
‖θ‖2

2 .

In all our experiments, we assume that the population negative log-likelihoodrisk has local strong
convexity as suggested by Assumption 2. In practice, we use a small regularization parameter
λ = 10−6 to ensure fast convergence for the local sub-problems.

For this problem, we cannot evaluate the mean-squared error‖θ̂−θ∗‖2
2, as we do not know

the true optimal parameterθ∗. Consequently, we evaluate the performance of an estimateθ̂ using
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log-loss on a held-out data set. Specifically, we perform a five-fold validation experiment, where
we shuffle the data and partition it into five equal-sized subsets. For each of our five experiments,
we hold out one partition to use as the test set, using the remaining data as the training set for
inference. When studying the AVGM or SAVGM method, we compute the local estimateθi via a
trust-region Newton-based method (Nocedal and Wright, 2006) implementedby LIBSVM (Chang
and Lin, 2011).

The data set is too large to fit in the memory of most computers: in total, four splits of the
data require 55 gigabytes. Consequently, it is difficult to provide an oracle training comparison
using the fullN samples. Instead, for each experiment, we perform 10 passes of stochastic dual
coordinate ascent (SDCA) (Shalev-Shwartz and Zhang, 2012) and 10 passes of stochastic gradient
descent (SGD) through the data set to get two rough baselines of the performance attained by the
empirical minimizer for the entire training data set. Figure 6(b) shows the hold-out set log-loss
after each of the sequential passes through the training data finishes. Note that although the SDCA
enjoys faster convergence rate on the regularized empirical risk (Shalev-Shwartz and Zhang, 2012),
the plot shows that the SGD has better generalization performance.

In Figure 6(a), we show the average hold-out set log-loss (with standard errors) of the estimator
θ1 provided by the AVGM method versus number of splits of the datam, and we also plot the log-loss
of the SAVGM method using subsampling ratios ofr ∈ {.1, .25}. The plot shows that for smallm,
both AVGM and SAVGM enjoy good performance, comparable to or better than (our proxy for) the
oracle solution using allN samples. As the number of machinesm grows, however, the de-biasing
provided by the subsampled bootstrap method yields substantial improvements over the standard
AVGM method. In addition, even withm= 128 splits of the data set, the SAVGM method gives
better hold-out set performance than performing two passes of stochastic gradient on the entire data
set ofm samples; withm= 64, SAVGM enjoys performance as strong as looping through the data
four times with stochastic gradient descent. This is striking, since doing even one pass through
the data with stochastic gradient descent gives minimax optimal convergencerates (Polyak and
Juditsky, 1992; Agarwal et al., 2012). In ranking applications, ratherthan measuring negative log-
likelihood, one may wish to use a direct measure of prediction error; to that end, Figure 7 shows
plots of the area-under-the-curve (AUC) measure for the AVGM and SAVGM methods; AUC is a
well-known measure of prediction error for bipartite ranking (Manning etal., 2008). Broadly, this
plot shows a similar story to that in Figure 6.

It is instructive and important to understand the sensitivity of the SAVGM method to the value
of the resampling parameterr. We explore this question in Figure 8 usingm= 128 splits, where
we plot the log-loss of the SAVGM estimator on the held-out data set versus the subsampling ratio
r. We choosem= 128 because more data splits provide more variable performance inr. For the
soso.com ad prediction data set, the choicer = .25 achieves the best performance, but Figure 8
suggests that mis-specifying the ratio is not terribly detrimental. Indeed, whilethe performance
of SAVGM degrades to that of the AVGM method, a wide range of settings ofr give improved
performance, and there does not appear to be a phase transition to poorperformance.

6. Discussion

Large scale statistical inference problems are challenging, and the difficulty of solving them will
only grow as data becomes more abundant: the amount of data we collect is growing much faster
than the speed or storage capabilities of our computers. Our AVGM, SAVGM , and SGDAVGM meth-
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and SAVGM methods for the click-through prediction task.
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Figure 8: The log-loss on held-out data for the SAVGM method applied withm= 128 parallel splits
of the data, plotted versus the sub-sampling rater.

ods provide strategies for efficiently solving such large-scale risk minimization problems, enjoying
performance comparable to an oracle method that is able to access the entire large data set. We
believe there are several interesting questions that remain open after this work. First, nonparametric
estimation problems, which often suffer superlinear scaling in the size of the data, may provide an
interesting avenue for further study of decomposition-based methods. Our own recent work has
addressed aspects of this challenge in the context of kernel methods fornon-parametric regression
(Zhang et al., 2013). More generally, an understanding of the interplaybetween statistical efficiency
and communication could provide an avenue for further research, and itmay also be interesting to
study the effects of subsampled or bootstrap-based estimators in other distributed environments.
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Appendix A. The Necessity of Smoothness

Here we show that some version of the smoothness conditions presented in Assumption 3 are nec-
essary for averaging methods to attain better mean-squared error than using only then samples on
a single processor. Given the loss function (5), letn0 = ∑n

i=11(Xi=0) to be the count of 0 samples.
Usingθ1 as shorthand forθ1,i , we see by inspection that the empirical minimizerθ1 is

θ1 =

{
n0
n − 1

2 whenn0 ≤ n/2

1− n
2n0

otherwise.

For simplicity, we may assume thatn is odd. In this case, we obtain that

E[θ1] =
1
4
+E

[n0

n
1(n0<n/2)

]
−E

[
n

2n0
1(n0>n/2)

]

=
1
4
+

1
2n

⌊n/2⌋

∑
i=0

(
n
i

)
i
n
− 1

2n

n

∑
i=⌈n/2⌉

(
n
i

)
n
2i

=
1
4
+

1
2n

⌊n/2⌋

∑
i=0

(
n
i

)[
i
n
− n

2(n− i)

]

by the symmetry of the binomial. Adding and subtracting1
2 from the term within the braces, noting

thatP(n0 < n/2) = 1/2, we have the equality

E[θ1] =
1
2n

⌊n/2⌋

∑
i=0

(
n
i

)[
i
n
− n

2(n− i)
+

1
2

]
=

1
2n

⌊n/2⌋

∑
i=0

(
n
i

)
i(n−2i)
2n(n− i)

.

If Z is distributed normally with mean 1/2 and variance 1/(4n), then an asymptotic expansion of
the binomial distribution yields

(
1
2

)n ⌊n/2⌋

∑
i=0

(
n
i

)
i(n−2i)
2n(n− i)

= E

[
Z(1−2Z)

2−2Z
| 0≤ Z ≤ 1

2

]
+o(n−1/2)

≥ 1
2
E

[
Z−2Z2 | 0≤ Z ≤ 1

2

]
+o(n−1/2) = Ω(n−

1
2 ),

the final equality following from standard calculations, sinceE[|Z|] = Ω(n−1/2).
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Appendix B. Proof of Theorem 1

Although Theorem 1 is in terms of bounds on 8th order moments, we prove a somewhat more
general result in terms of a set of(k0,k1,k2) moment conditions given by

E[‖∇ f (θ;X)‖k0
2 ]≤ Gk0, E[

∣∣∣∣∣∣∇2 f (θ;X)−∇2F0(θ)
∣∣∣∣∣∣k1

2 ]≤ Hk1,

E[L(X)k2]≤ Lk2 and E[(L(X)−E[L(X)])k2]≤ Lk2

for θ ∈ U . (Recall the definition ofU prior to Assumption 3). Doing so allows sharper control if
higher moment bounds are available. The reader should recall throughout our arguments that we
have assumed min{k0,k1,k2} ≥ 8. Throughout the proof, we useF1 andθ1 to indicate the local
empirical objective and empirical minimizer of machine 1 (which have the same distribution as
those of the other processors), and we recall the notation 1(E) for the indicator function of the event
E .

Before beginning the proof of Theorem 1 proper, we begin with a simple inequality that relates
the error termθ − θ∗ to an average of the errorsθi − θ∗, each of which we can bound in turn.
Specifically, a bit of algebra gives us that

E[
∥∥θ−θ∗∥∥2

2] = E

[∥∥∥∥
1
m

m

∑
i=1

θi −θ∗
∥∥∥∥

2

2

]

=
1

m2

m

∑
i=1

E[‖θi −θ∗‖2
2]+

1
m2 ∑

i 6= j

E[
〈
θi −θ∗,θ j −θ∗〉]

≤ 1
m
E[‖θ1−θ∗‖2

2]+
m(m−1)

m2 ‖E[θ1−θ∗]‖2
2

≤ 1
m
E[‖θ1−θ∗‖2

2]+‖E[θ1−θ∗]‖2
2 . (19)

Here we used the definition of the averaged vectorθ and the fact that fori 6= j, the vectorsθi andθ j

are statistically independent, they are functions of independent samples. The upper bound (19) illu-
minates the path for the remainder of our proof: we bound each ofE[‖θi −θ∗‖2

2] and‖E[θi −θ∗]‖2
2.

Intuitively, since our objective is locally strongly convex by Assumption 2, the empirical minimiz-
ing vectorθ1 is a nearly unbiased estimator forθ∗, which allows us to prove the convergence rates
in the theorem.

We begin by defining three events—which we (later) show hold with high probability—that
guarantee the closeness ofθ1 and θ∗. In rough terms, when these events hold, the functionF1

behaves similarly to the population riskF0 around the pointθ∗; sinceF0 is locally strongly convex,
the minimizerθ1 of F1 will be close toθ∗. Recall that Assumption 3 guarantees the existence of a
ball Uρ = {θ ∈ R

d : ‖θ−θ∗‖2 < ρ} of radiusρ ∈ (0,1) such that

∣∣∣∣∣∣∇2 f (θ;x)−∇2 f (θ′;x)
∣∣∣∣∣∣

2 ≤ L(x)
∥∥θ−θ′∥∥

2

for all θ,θ′ ∈ Uρ and anyx, whereE[L(X)k2] ≤ Lk2. In addition, Assumption 2 guarantees that
∇2F0(θ∗) � λI . Now, choosing the potentially smaller radiusδρ = min{ρ,ρλ/4L}, we can define
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the three “good” events

E0 :=

{
1
n

n

∑
i=1

L(Xi)≤ 2L

}
,

E1 :=

{∣∣∣∣∣∣∇2F1(θ∗)−∇2F0(θ∗)
∣∣∣∣∣∣

2 ≤
ρλ
2

}
, and (20)

E2 :=

{
‖∇F1(θ∗)‖2 ≤

(1−ρ)λδρ

2

}
.

We then have the following lemma:

Lemma 6 Under the eventsE0, E1, andE2 previously defined(20), we have

‖θ1−θ∗‖2 ≤
2‖∇F1(θ∗)‖2

(1−ρ)λ
, and ∇2F1(θ)� (1−ρ)λId×d.

The proof of Lemma 6 relies on some standard optimization guarantees relating gradients to mini-
mizers of functions (e.g., Boyd and Vandenberghe, 2004, Chapter 9),although some care is required
since smoothness and strong convexity hold only locally in our problem. As theargument is some-
what technical, we defer it to Appendix E.

Our approach from here is to give bounds onE[‖θ1−θ∗‖2
2] and‖E[θ1−θ∗]‖2

2 by careful Taylor

expansions, which allows us to boundE[
∥∥θ1−θ∗∥∥2

2] via our initial expansion (19). We begin by
noting that whenever the eventsE0, E1, andE2 hold, then∇F1(θ1) = 0, and moreover, by a Taylor
series expansion of∇F1 betweenθ∗ andθ1, we have

0= ∇F1(θ1) = ∇F1(θ∗)+∇2F1(θ′)(θ1−θ∗)

whereθ′ = κθ∗+(1−κ)θ1 for someκ ∈ [0,1]. By adding and subtracting terms, we have

0= ∇F1(θ∗)+(∇2F1(θ′)−∇2F1(θ∗))(θ1−θ∗)

+(∇2F1(θ∗)−∇2F0(θ∗))(θ1−θ∗)+∇2F0(θ∗)(θ1−θ∗). (21)

Since∇2F0(θ∗) � λI , we can define the inverse Hessian matrixΣ−1 := [∇2F0(θ∗)]−1, and setting
∆ := θ1−θ∗, we multiply both sides of the Taylor expansion (21) byΣ−1 to obtain the relation

∆ =−Σ−1∇F1(θ∗)+Σ−1(∇2F1(θ∗)−∇2F1(θ′))∆+Σ−1(∇2F0(θ∗)−∇2F1(θ∗))∆. (22)

Thus, if we define the matricesP = ∇2F0(θ∗)−∇2F1(θ∗) andQ = ∇2F1(θ∗)−∇2F1(θ′), equal-
ity (22) can be re-written as

θ1−θ∗ =−Σ−1∇F1(θ∗)+Σ−1(P+Q)(θ1−θ∗). (23)

Note that Equation (23) holds when the conditions of Lemma 6 hold, and otherwise we may simply
assert only that‖θ1−θ∗‖2 ≤ R. Roughly, we expect the final two terms in the error expansion (23)
to be of smaller order than the first term, since we hope thatθ1−θ∗ → 0 and additionally that the
Hessian differences decrease to zero at a sufficiently fast rate. We now formalize this intuition.

Inspecting the Taylor expansion (23), we see that there are several terms of a form similar to
(∇2F0(θ∗)−∇2F1(θ∗))(θ1−θ∗); using the smoothness Assumption 3, we can convert these terms
into higher order terms involving onlyθ1 − θ∗. Thus, to effectively control the expansions (22)
and (23), we must show that higher order terms of the formE[‖θ1−θ∗‖k

2], for k ≥ 2, decrease
quickly enough inn.
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B.0.1 CONTROL OFE[‖θ1−θ∗‖k
2]

Recalling the events (20), we defineE := E0∩E1∩E2 and then observe that

E[‖θ1−θ∗‖k
2] = E[1(E) ‖θ1−θ∗‖k

2]+E[1(Ec) ‖θ1−θ∗‖k
2]

≤
2k
E[1(E) ‖∇F1(θ∗)‖k

2]

(1−ρ)kλk +P(Ec)Rk

≤ 2k
E[‖∇F1(θ∗)‖k

2]

(1−ρ)kλk +P(Ec)Rk,

where we have used the bound‖θ−θ∗‖2 ≤ R for all θ ∈ Θ, from Assumption 1. Our goal is to
prove thatE[‖∇F1(θ∗)‖k

2] = O(n−k/2) and thatP(Ec) = O(n−k/2). We move forward with a two
lemmas that lay the groundwork for proving these two facts:

Lemma 7 Under Assumption 3, there exist constants C and C′ (dependent only on the moments k0

and k1 respectively) such that

E[‖∇F1(θ∗)‖k0
2 ]≤C

Gk0

nk0/2
, and (24)

E[
∣∣∣∣∣∣∇2F1(θ∗)−∇2F0(θ∗)

∣∣∣∣∣∣k1

2 ]≤C′ logk1/2(2d)Hk1

nk1/2
. (25)

See Appendix F for the proof of this claim.
As an immediate consequence of Lemma 7, we see that the eventsE1 andE2 defined by (20)

occur with reasonably high probability. Indeed, recalling thatE = E0∩E1∩E2, Boole’s law and
the union bound imply

P(Ec) = P(Ec
0 ∪Ec

1 ∪Ec
2)

≤ P(Ec
0)+P(Ec

1)+P(Ec
2)

≤ E[|1
n ∑n

i=1L(Xi)−E[L(X)]|k2]

Lk2
+

2k1E[
∣∣∣∣∣∣∇2F1(θ∗)−∇2F0(θ∗)

∣∣∣∣∣∣k1

2 ]

ρk1λk1
+

2k0E[‖∇F1(θ∗)‖k0
2 ]

(1−ρ)k0λk0δk0
ρ

≤C2
1

nk2/2
+C1

logk1/2(2d)Hk1

nk1/2
+C0

Gk0

nk0/2
(26)

for some universal constantsC0,C1,C2, where in the second-to-last line we have invoked the moment
bound in Assumption 3. Consequently, we find that

P(Ec)Rk = O(Rk(n−k1/2+n−k2/2+n−k0/2) for anyk∈ N.

In summary, we have proved the following lemma:

Lemma 8 Let Assumptions 2 and 3 hold. For any k∈ N with k≤ min{k0,k1,k2}, we have

E[‖θ1−θ∗‖k
2] = O

(
n−k/2 · Gk

(1−ρ)kλk +n−k0/2+n−k1/2+n−k2/2
)
= O

(
n−k/2

)
,

where the order statements hold as n→+∞.
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Now recall the matrixQ = ∇2F1(θ∗)−∇2F1(θ′) defined following Equation (22). The following
result controls the moments of its operator norm:

Lemma 9 For k≤ min{k2,k1,k0}/2, we haveE[|||Q|||k2] = O(n−k/2).

Proof We begin by using Jensen’s inequality and Assumption 3 to see that

|||Q|||k ≤ 1
n

n

∑
i=1

∣∣∣∣∣∣∇2 f (θ′;Xi)−∇2 f (θ∗;Xi)
∣∣∣∣∣∣k ≤ 1

n

n

∑
i=1

L(Xi)
k
∥∥θ′−θ∗∥∥k

2 .

Now we apply the Cauchy-Schwarz inequality and Lemma 8, thereby obtaining

E[|||Q|||k2]≤ E

[(
1
n

n

∑
i=1

L(Xi)
k
)2
] 1

2

E

[
‖θ1−θ∗‖2k

2

] 1
2
= O

(
Lk Gk

(1−ρ)kλk n−k/2
)
,

where we have used Assumption 3 again.

Lemma 8 allows us to control the first term from our initial bound (19) almost immediately.
Indeed, using our last Taylor expansion (23) and the definition of the eventE = E0∩E1∩E2, we
have

E[‖θ1−θ∗‖2
2] = E

[
1(E)

∥∥−Σ−1∇F1(θ∗)+Σ−1(P+Q)(θ1−θ∗)
∥∥2

2

]
+E[1(Ec) ‖θ1−θ∗‖2

2]

≤ 2E
[∥∥Σ−1∇F1(θ∗)

∥∥2
2

]
+2E

[∥∥Σ−1(P+Q)(θ1−θ∗)
∥∥2

2

]
+P(Ec)R2,

where we have applied the inequality(a+b)2 ≤ 2a2+2b2. Again using this same inequality, then
applying Cauchy-Schwarz and Lemmas 8 and 9, we see that

E

[∥∥Σ−1(P+Q)(θ1−θ∗)
∥∥2

2

]
≤ 2

∣∣∣∣∣∣Σ−1
∣∣∣∣∣∣2

2

(
E[|||P|||22‖θ1−θ∗‖2

2]+E[|||Q|||22‖θ1−θ∗‖2
2]
)

≤ 2
∣∣∣∣∣∣Σ−1

∣∣∣∣∣∣2
2

(√
E[|||P|||42]E[‖θ1−θ∗‖4

2]+

√
E[|||Q|||42]E[‖θ1−θ∗‖4

2]

)

= O(n−2),

where we have used the fact that min{k0,k1,k2} ≥ 8 to apply Lemma 9. Combining these results,
we obtain the upper bound

E[‖θ1−θ∗‖2
2]≤ 2E

[∥∥Σ−1∇F1(θ∗)
∥∥2

2

]
+O(n−2), (27)

which completes the first part of our proof of Theorem 1.

B.0.2 CONTROL OF‖E[θ1−θ∗]‖2
2

It remains to consider the‖E[θ1−θ∗]‖2
2 term from our initial error inequality (19). When the

events (20) occur, we know that all derivatives exist, so we may recursively apply our expansion (23)
of θ1−θ∗ to find that

θ1−θ∗ =−Σ−1∇F1(θ∗)+Σ−1(P+Q)(θ1−θ∗)

=−Σ−1∇F1(θ∗)+Σ−1(P+Q)
[
−Σ−1∇F1(θ∗)+Σ−1(P+Q)(θ1−θ∗)

]
︸ ︷︷ ︸

=:v

(28)
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where we have introducedv as shorthand for the vector on the right hand side. Thus, with a bit of
algebraic manipulation we obtain the relation

θ1−θ∗ = 1(E)v+1(Ec)(θ1−θ∗) = v+1(Ec)(θ1−θ∗)−1(Ec)v= v+1(Ec)(θ1−θ∗−v). (29)

Now note thatE[∇F1(θ∗)] = 0 thus

E[v] = E
[
−Σ−1∇F1(θ∗)+Σ−1(P+Q)[−Σ−1∇F1(θ∗)+Σ−1(P+Q)(θ1−θ∗)]

]

= E
[
Σ−1(P+Q)Σ−1 [(P+Q)(θ1−θ∗)−∇F1(θ∗)]

]
.

Thus, by re-substituting the appropriate quantities in (29) and applying the triangle inequality, we
have

‖E[θ1−θ∗]‖2

≤
∥∥E[Σ−1(P+Q)Σ−1((P+Q)(θ1−θ∗)−∇F1(θ∗))]

∥∥
2+
∥∥E[1(Ec)(θ1−θ∗−v)]

∥∥
2

≤
∥∥E[Σ−1(P+Q)Σ−1((P+Q)(θ1−θ∗)−∇F1(θ∗))]

∥∥
2+E[1(Ec) ‖θ1−θ∗‖2]

+E
[
1(Ec)

∥∥−Σ−1∇F1(θ∗)+Σ−1(P+Q)Σ−1 [−∇F1(θ∗)+(P+Q)(θ1−θ∗)]
∥∥

2

]
. (30)

Since‖θ1−θ∗‖2 ≤ Rby assumption, we have

E[1(Ec) ‖θ1−θ∗‖2]≤ P(Ec)R
(i)
= O(Rn−k/2)

for anyk≤ min{k2,k1,k0}, where step (i) follows from the inequality (26). Hölder’s inequality also
yields that

E
[
1(Ec)

∥∥Σ−1(P+Q)Σ−1∇F1(θ∗)
∥∥

2

]
≤ E

[
1(Ec)

∣∣∣∣∣∣Σ−1(P+Q)
∣∣∣∣∣∣

2

∥∥Σ−1∇F1(θ∗)
∥∥

2

]

≤
√
P(Ec)E

[∣∣∣∣∣∣Σ−1(P+Q)
∣∣∣∣∣∣4

2

]1/4
E

[∥∥Σ−1∇F1(θ∗)
∥∥4

2

]1/4
.

Recalling Lemmas 7 and 9, we haveE[
∣∣∣∣∣∣Σ−1(P+Q)

∣∣∣∣∣∣4
2] = O(log2(d)n−2), and we similarly have

E[
∥∥Σ−1∇F1(θ∗)

∥∥4
2] = O(n−2). Lastly, we haveP(Ec) = O(n−k/2) for k ≤ min{k0,k1,k2}, whence

we find that for any suchk,

E
[
1(Ec)

∥∥Σ−1(P+Q)Σ−1∇F1(θ∗)
∥∥

2

]
= O

(√
log(d)n−k/4−1

)
.

We can similarly apply Lemma 8 to the last remaining term in the inequality (30) to obtain that for
anyk≤ min{k2,k1,k0},

E
[
1(Ec)

∥∥−Σ−1∇F1(θ∗)+Σ−1(P+Q)
[
−Σ−1∇F1(θ∗)+Σ−1(P+Q)(θ1−θ∗)

]∥∥
2

]

= O(n−k/2+n−k/4−1).

Applying these two bounds, we find that

‖E[θ1−θ∗]‖2 ≤
∥∥E
[
Σ−1(P+Q)Σ−1((P+Q)(θ1−θ∗)−∇F1(θ∗))

]∥∥
2+O(n−k) (31)

for anyk such thatk≤ min{k0,k1,k2}/2 andk≤ min{k0,k1,k2}/4+1.
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In the remainder of the proof, we show that part of the bound (31) still consists only of higher-
order terms, leaving us with an expression not involvingθ1−θ∗. To that end, note that

E

[∥∥Σ−1(P+Q)Σ−1(P+Q)(θ1−θ∗)
∥∥2

2

]
= O(n−3)

by three applications of Ḧolder’s inequality, the fact that‖Ax‖2 ≤ |||A|||2‖x‖2, and Lemmas 7, 8
and 9. Coupled with our bound (31), we use the fact that(a+b)2 ≤ 2a2+2b2 to obtain

‖E[θ1−θ∗]‖2
2 ≤ 2

∥∥E[Σ−1(P+Q)Σ−1∇F1(θ∗)]
∥∥2

2+O(n−3). (32)

We focus on bounding the remaining expectation. We have the following series of inequalities:

∥∥E[Σ−1(P+Q)Σ−1∇F1(θ∗)]
∥∥

2

(i)
≤ E

[∣∣∣∣∣∣Σ−1(P+Q)
∣∣∣∣∣∣

2

∥∥Σ−1∇F1(θ∗)
∥∥

2

]

(ii)
≤
(
E

[∣∣∣∣∣∣Σ−1(P+Q)
∣∣∣∣∣∣2

2

]
E

[∥∥Σ−1∇F1(θ∗)
∥∥2

2

]) 1
2

(iii )
≤
(

2E
[∣∣∣∣∣∣Σ−1P

∣∣∣∣∣∣2
2+
∣∣∣∣∣∣Σ−1Q

∣∣∣∣∣∣2
2

]
E

[∥∥Σ−1∇F1(θ∗)
∥∥2

2

]) 1
2
.

Here step (i) follows from Jensen’s inequality and the fact that‖Ax‖2 ≤ |||A|||2‖x‖2; step (ii) uses the
Cauchy-Schwarz inequality; and step (iii) follows from the fact that(a+b)2 ≤ 2a2+2b2. We have
already bounded the first two terms in the product in our proofs; in particular, Lemma 7 guarantees
thatE[|||P|||22]≤CH logd/n, while

E[|||Q|||22]≤ E

[
1
n

n

∑
i=1

L(Xi)
4
] 1

2

E[‖θ1−θ∗‖4
2]

1
2 ≤C

L2G2

(1−ρ)2λ2 ·n
−1

for some numerical constantC (recall Lemma 9). Summarizing our bounds on|||P|||2 and|||Q|||2, we
have

∥∥E
[
Σ−1(P+Q)Σ−1∇F1(θ∗)

]∥∥2
2

≤ 2
∣∣∣∣∣∣Σ−1

∣∣∣∣∣∣2
2

(
2H2(logd+1)

n
+2C

L2G2

(1−ρ)2λ2n
+O(n−2)

)
E

[∥∥Σ−1∇F1(θ∗)
∥∥2

2

]
. (33)

From Assumption 3 we know thatE[‖∇F1(θ∗)‖2
2] ≤ G2/n and

∣∣∣∣∣∣Σ−1
∣∣∣∣∣∣

2 ≤ 1/λ, and hence we can
further simplify the bound (33) to obtain

‖E[θ1−θ∗]‖2
2 ≤

C
λ2

(
H2 logd+L2G2/λ2(1−ρ)2

n

)
E

[∥∥Σ−1∇F1(θ∗)
∥∥2

2

]
+O(n−3)

=
C
λ2

(
H2 logd+L2G2/λ2(1−ρ)2

n2

)
E

[∥∥Σ−1∇ f (θ∗;X)
∥∥2

2

]
+O(n−3)

for some numerical constantC, where we have applied our earlier inequality (32). Noting that we
may (without loss of generality) takeρ < 1

2, then applying this inequality with the bound (27) on
E[‖θ1−θ∗‖2

2] we previously proved to our decomposition (19) completes the proof.
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Appendix C. Proof of Theorem 4

Our proof of Theorem 4 begins with a simple inequality that mimics our first inequality (19) in
the proof of Theorem 1. Recall the definitions of the averaged vectorθ1 and subsampled averaged
vectorθ2. Let θ1 denote the minimizer of the (an arbitrary) empirical riskF1, andθ2 denote the
minimizer of the resampled empirical riskF2 (from the same samples asθ1). Then we have

E

[∥∥∥∥
θ1− rθ2

1− r
−θ∗

∥∥∥∥
2

2

]
≤
∥∥∥∥E
[

θ1− rθ2

1− r
−θ∗

]∥∥∥∥
2

2
+

1
m
E

[∥∥∥∥
θ1− rθ2

1− r
−θ∗

∥∥∥∥
2

2

]
. (34)

Thus, parallel to our proof of Theorem 1, it suffices to bound the two terms in the decomposition (34)
separately. Specifically, we prove the following two lemmas.

Lemma 10 Under the conditions of Theorem 4,

∥∥∥∥E
[

θ1− rθ2

1− r
−θ∗

]∥∥∥∥
2

2
≤ O(1)

1
r(1− r)2

(
M2G6

λ6 +
G4L2

λ4 d logd

)
1
n3 . (35)

Lemma 11 Under the conditions of Theorem 4,

E

[
‖θ1−θ∗− r(θ2−θ∗)‖2

2

]
≤ (2+3r)E

[∥∥∇2F0(θ∗)−1∇F1(θ∗)
∥∥2

2

]
+O(n−2) (36)

In conjunction, Lemmas 10 and 11 coupled with the decomposition (34) yield the desired claim.
Indeed, applying each of the lemmas to the decomposition (34), we see that

E

[∥∥∥∥
θ1− rθ2

1− r
−θ∗

∥∥∥∥
2

2

]
≤ 2+3r

(1− r)2m
E

[∥∥∇2F0(θ∗)−1∇F1(θ∗)
∥∥2

2

]

+O

(
1

(1− r)2m−1n−2
)
+O

(
1

r(1− r)2n−3
)
,

which is the statement of Theorem 4.
The remainder of our argument is devoted to establishing Lemmas 10 and 11. Before providing

their proofs (in Appendices C.3 and C.4 respectively), we require some further set-up and auxiliary
results. Throughout the rest of the proof, we use the notation

Y =Y′+Rk

for some random variablesY andY′ to mean that there exists a random variableZ such thatY =
Y′+Z andE[‖Z‖2

2] = O(n−k).1 The symbolRk may indicate different random variables throughout
a proof and is notational shorthand for a moment-based big-O notation. We also remark that if we
haveE[‖Z‖2

2] = O(akn−k), we haveZ = ak/2Rk, since(ak/2)2 = ak. For shorthand, we also say that
E[Z] = O(h(n)) if ‖E[Z]‖2 = O(h(n)), which implies that ifZ = Rk thenE[Z] = O(n−k/2), since

‖E[Z]‖2 ≤
√
E[‖Z‖2

2] = O(n−k/2).

1. Formally, in our proof this will mean that there exist random vectorsY, Y′, andZ that are measurable with respect to
theσ-field σ(X1, . . . ,Xn), whereY =Y′+Z andE[‖Z‖2

2] = O(n−k).

3349



ZHANG, DUCHI AND WAINWRIGHT

C.1 Optimization Error Expansion

In this section, we derive a sharper asymptotic expansion of the optimization errorsθ1−θ∗. Recall
our definition of the Kronecker product⊗, where for vectorsu,v we haveu⊗ v = uv⊤. With this
notation, we have the following expansion ofθ1−θ∗. In these lemmas,R3 denotes a vectorZ for
whichE[‖Z‖2

2]≤ cn−3 for a numerical constantc.

Lemma 12 Under the conditions of Theorem 4, we have

θ1−θ∗ =−Σ−1∇F1(θ∗)+Σ−1(∇2F1(θ∗)−Σ)Σ−1∇F1(θ∗) (37)

−Σ−1∇3F0(θ∗)
(
(Σ−1∇F1(θ∗))⊗ (Σ−1∇F1(θ∗))

)

+
(
M2G6/λ6+G4L2d log(d)/λ4)R3.

We prove Lemma 12 in Appendix G. The lemma requires careful moment controlover the expan-
sion θ1 − θ∗, leading to some technical difficulty, but is similar in spirit to the results leading to
Theorem 1.

An immediately analogous result to Lemma 12 follows for our sub-sampled estimators. Since
we use⌈rn⌉ samples to computeθ2, the second level estimator, we find

Lemma 13 Under the conditions of Theorem 4, we have

θ2−θ∗ =−Σ−1∇F2(θ∗)+Σ−1(∇2F2(θ∗)−Σ)Σ−1∇F2(θ∗)

−Σ−1∇3F0(θ∗)
(
(Σ−1∇F2(θ∗))⊗ (Σ−1∇F2(θ∗))

)

+ r−
3
2
(
M2G6/λ6+G4L2d log(d)/λ4)R3.

C.2 Bias Correction

Now that we have given Taylor expansions that describe the behaviourof θ1 − θ∗ and θ2 − θ∗,
we can prove Lemmas 10 and 11 (though, as noted earlier, we defer the proof of Lemma 11 to
Appendix C.4). The key insight is that expectations of terms involving∇F2(θ∗) are nearly the same
as expectations of terms involving∇F1(θ∗), except that some corrections for the sampling ratior
are necessary.

We begin by noting that

θ1− rθ2

1− r
−θ∗ =

θ1−θ∗

1− r
− r

θ2−θ∗

1− r
. (38)

In Lemmas 12 and 13, we derived expansions for each of the right handside terms, and since

E[Σ−1∇F1(θ∗)] = 0 and E[Σ−1∇F2(θ∗)] = 0,

Lemmas 12 and 13 coupled with the rewritten correction (38) yield

E[θ1−θ∗− r(θ2−θ∗)] =−rE[Σ−1(∇2F2(θ∗)−Σ)Σ−1∇F2(θ∗)]

+E[Σ−1(∇2F1(θ∗)−Σ)Σ−1∇F1(θ∗)]

+ rE[Σ−1∇3F0(θ∗)
(
(Σ−1∇F2(θ∗))⊗ (Σ−1∇F2(θ∗))

)
]

−E[Σ−1∇3F0(θ∗)
(
(Σ−1∇F1(θ∗))⊗ (Σ−1∇F1(θ∗))

)
]

+O(1)r−1/2(M2G6/λ6+G4L2d log(d)/λ4)n−3/2. (39)

Here the remainder terms follow because of ther−3/2R3 term onθ2−θ∗.
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C.3 Proof of Lemma 10

To prove the claim in the lemma, it suffices to show that

rE[Σ−1(∇2F2(θ∗)−Σ)Σ−1∇F2(θ∗)] = E[Σ−1(∇2F1(θ∗)−Σ)Σ−1∇F1(θ∗)] (40)

and

rE[Σ−1∇3F0(θ∗)
(
(Σ−1∇F2(θ∗))⊗ (Σ−1∇F2(θ∗))

)
]

= E[Σ−1∇3F0(θ∗)
(
(Σ−1∇F1(θ∗))⊗ (Σ−1∇F1(θ∗))

)
] (41)

Indeed, these two claims combined with the expansion (39) yield the bound (35) in Lemma 10
immediately.

We first consider the difference (40). To make things notationally simpler, we define functions
A : X → R

d×d andB : X → R
d via A(x) := Σ−1(∇2 f (θ∗;x)−Σ) andB(x) := Σ−1∇ f (θ∗;x). If we

let S1 = {X1, . . . ,Xn} be the original samples andS2 = {Y1, . . . ,Yrn} be the subsampled data set, we
must show

rE

[
1

(rn)2

rn

∑
i, j

A(Yi)B(Yj)

]
= E

[
1
n2

n

∑
i, j

A(Xi)B(Xj)

]
.

Since theYi are sampled without replacement (i.e., fromPdirectly), andE[A(Xi)] = 0 andE[B(Xi)] =
0, we find thatE[A(Yi)B(Yj)] = 0 for i 6= j, and thus

rn

∑
i, j

E[A(Yi)B(Yj)] =
rn

∑
i=1

E[A(Yi)B(Yi)] = rnE[A(Y1)B(Y1)].

In particular, we see that the equality (40) holds:

r
(rn)2

rn

∑
i, j

E[A(Yi)B(Yj)] =
r
rn

E[A(Y1)B(Y1)] =
1
n
E[A(X1)B(X1)]

=
1
n2

n

∑
i, j

E[A(Xi)B(Xj)].

The statement (41) follows from analogous arguments.

C.4 Proof of Lemma 11

The proof of Lemma 11 follows from that of Lemmas 12 and 13. We first claim that

θ1−θ∗ =−Σ−1∇F1(θ∗)+R2 and θ2−θ∗ =−Σ−1∇F2(θ∗)+ r−1R2. (42)

The proofs of both claims similar, so we focus on proving the second statement. Using the inequality
(a+b+c)2 ≤ 3(a2+b2+c2) and Lemma 13, we see that

E

[∥∥θ2−θ∗+Σ−1∇F2(θ∗)
∥∥2

2

]
≤ 3E

[∥∥Σ−1(∇2F2(θ∗)−Σ)Σ−1∇F2(θ∗)
∥∥2

2

]

+3E
[∥∥Σ−1∇3F0(θ∗)

(
(Σ−1∇F2(θ∗))⊗ (Σ−1∇F2(θ∗))

)∥∥2
2

]

+3r−3O(n−3). (43)
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We now bound the first two terms in inequality (43). Applying the Cauchy-Schwarz inequality and
Lemma 7, the first term can be upper bounded as

E

[∥∥Σ−1(∇2F2(θ∗)−Σ)Σ−1∇F2(θ∗)
∥∥2

2

]

≤
(
E

[∣∣∣∣∣∣Σ−1(∇2F2(θ∗)−Σ)
∣∣∣∣∣∣4

2

]
E

[∥∥Σ−1∇F2(θ∗)
∥∥4

2

])1/2

=
(
r−2)O(log2(d)n−2) · r−2O(n−2)

)1/2
= r−2O(n−2),

where the order notation subsumes the logarithmic factor in the dimension. Since∇3F0(θ∗) : Rd2 →
R

d is linear, the second term in the inequality (43) may be bounded completely analogously as
it involves the outer productΣ−1∇F2(θ∗)⊗Σ−1∇F2(θ∗). Recalling the bound (43), we have thus
shown that

E

[∥∥θ2−θ∗+Σ−1∇F2(θ∗)
∥∥2

2

]
= r−2O(n−2),

or θ2 − θ∗ = −Σ−1∇F2(θ∗) + r−1R2. The proof of the first equality in Equation (42) is entirely
analogous.

We now apply the equalities (42) to obtain the result of the lemma. We have

E

[
‖θ1−θ∗− r(θ2−θ∗)‖2

2

]
= E

[∥∥−Σ−1∇F1(θ∗)+ rΣ−1∇F2(θ∗)+R2
∥∥2

2

]
.

Using the inequality(a+b)2 ≤ (1+η)a2+(1+1/η)b2 for anyη ≥ 0, we have

(a+b+c)2 ≤ (1+η)a2+(1+1/η)(b+c)2

≤ (1+η)a2+(1+1/η)(1+α)b2+(1+1/η)(1+1/α)c2

for anyη,α ≥ 0. Takingη = 1 andα = 1/2, we obtain(a+b+c)2 ≤ 2a2+3b2+6c2, so applying
the triangle inequality, we have

E

[
‖θ1−θ∗− r(θ2−θ∗)‖2

2

]
= E

[∥∥−Σ−1∇F1(θ∗)+ rΣ−1∇F2(θ∗)+R2
∥∥2

2

]
(44)

≤ 2E
[∥∥Σ−1∇F1(θ∗)

∥∥2
2

]
+3r2

E

[∥∥Σ−1∇F2(θ∗)
∥∥2

2

]
+O(n−2).

SinceF2 is a sub-sampled version ofF1, algebraic manipulations yield

E

[∥∥Σ−1∇F2(θ∗)
∥∥2

2

]
=

n
rn

E

[∥∥Σ−1∇F1(θ∗)
∥∥2

2

]
=

1
r
E

[∥∥Σ−1∇F1(θ∗)
∥∥2

2

]
. (45)

Combining equations (44) and (45), we obtain the desired bound (36).

Appendix D. Proof of Theorem 5

We begin by recalling that ifθn denotes the output of performing stochastic gradient on one machine,
then from the inequality (19) we have the upper bound

E[
∥∥θn−θ∗∥∥2

2]≤
1
m
E[‖θn−θ∗‖2

2]+‖E[θn−θ∗]‖2
2 .

3352



COMMUNICATION -EFFICIENT ALGORITHMS FORSTATISTICAL OPTIMIZATION

To prove the error bound (15), it thus suffices to prove the inequalities

E[‖θn−θ∗‖2
2]≤

αG2

λ2n
, and (46)

‖E[θn−θ∗]‖2
2 ≤

β2

n3/2
. (47)

Before proving the theorem, we introduce some notation and a few preliminaryresults. Letgt =
∇ f (θt ;Xt) be the gradient of thetth sample in stochastic gradient descent, where we consider run-
ning SGD on a single machine. We also let

Π(v) := argmin
θ∈Θ

{
‖θ−v‖2

2

}

denote the projection of the pointv onto the domainΘ.
We now state a known result, which gives sharp rates on the convergence of the iterates{θt} in

stochastic gradient descent.

Lemma 14 (Rakhlin et al., 2012)Assume thatE[‖gt‖2
2]≤ G2 for all t. Choosingηt =

c
λt for some

c≥ 1, for any t∈ N we have

E

[∥∥θt −θ∗∥∥2
2

]
≤ αG2

λ2t
where α = 4c2.

With these ingredients, we can now turn to the proof of Theorem 5. Lemma 14 gives the
inequality (46), so it remains to prove thatθn

has the smaller bound (47) on its bias. To that end,
recall the neighborhoodUρ ⊂ Θ in Assumption 5, and note that

θt+1−θ∗ = Π(θt −ηtgt −θ∗)

= θt −ηtgt −θ∗+1(θt+1 6∈Uρ)
(
Π(θt −ηtgt)− (θt −ηtgt)

)

since whenθ ∈Uρ, we haveΠ(θ) = θ. Consequently, an application of the triangle inequality gives
∥∥E[θt+1−θ∗]

∥∥
2 ≤

∥∥E[θt −ηtgt −θ∗]
∥∥

2+E[
∥∥(Π(θt −ηtgt)− (θt −ηtgt))1(θt+1 /∈Uρ)

∥∥
2].

By the definition of the projection and the fact thatθt ∈ Θ, we additionally have
∥∥Π(θt −ηtgt)− (θt −ηtgt)

∥∥
2 ≤

∥∥θt − (θt −ηtgt))
∥∥

2 ≤ ηt ‖gt‖2 .

Thus, by applying Ḧolder’s inequality (with the conjugate choices(p,q) = (4, 4
3)) and Assump-

tion 5, we have
∥∥E[θt+1−θ∗]

∥∥
2 ≤

∥∥E[θt −ηtgt −θ∗]
∥∥

2+ηtE[‖gt‖21(θt+1 6∈Uρ)]

≤
∥∥E[θt −ηtgt −θ∗]

∥∥
2+ηt

4
√

E[‖gt‖4
2]

(
E[14/3

(θt 6∈Uρ)
]

)3/4

≤
∥∥E[θt −ηtgt −θ∗]

∥∥
2+ηtG

(
P(θt 6∈Uρ)

)3/4

≤
∥∥E[θt −ηtgt −θ∗]

∥∥
2+ηtG

(
E
∥∥θt+1−θ∗∥∥2

2

ρ2

)3/4

, (48)
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the inequality (48) following from an application of Markov’s inequality. By applying Lemma 14,
we finally obtain

∥∥E[θt+1−θ∗]
∥∥

2 ≤
∥∥E[θt −ηtgt −θ∗]

∥∥
2+ηtG

(
αG2

λ2ρ2t

)3/4

=
∥∥E[θt −ηtgt −θ∗]

∥∥
2+

cα3/4G5/2

λ5/2ρ3/2
· 1

t7/4
. (49)

Now we turn to controlling the rate at whichθt − ηtgt goes to zero. Letft(·) = f (·;Xt) be
shorthand for the loss evaluated on thetth data point. By defining

rt = gt −∇ ft(θ∗)−∇2 ft(θ∗)(θt −θ∗),

a bit of algebra yields
gt = ∇ ft(θ∗)+∇2 ft(θ∗)(θt −θ∗)+ rt .

Sinceθt belongs to theσ-field of X1, . . . ,Xt−1, the Hessian∇2 ft(θ∗) is (conditionally) independent
of θt and

E[gt ] = ∇2F0(θ∗)E[θt −θ∗]+E[rt1(θt∈Uρ)]+E[rt1(θt /∈Uρ)]. (50)

If θt ∈Uρ, then Taylor’s theorem implies thatrt is the Lagrange remainder

rt = (∇2 ft(θ′)−∇2 ft(θ∗))(θ′−θ∗),

whereθ′ = κθt +(1−κ)θ∗ for someκ ∈ [0,1]. Applying Assumption 5 and Ḧolder’s inequality, we
find that sinceθt is conditionally independent ofXt ,

E

[∥∥∥rt1(θt∈Uρ)

∥∥∥
2

]
≤ E

[∣∣∣∣∣∣∇2 f (θ′;Xt)−∇2 f (θ∗;Xt)
∣∣∣∣∣∣∥∥θt −θ∗∥∥

21(θt∈Uρ)

]

≤ E

[
L(Xt)

∥∥θt −θ∗∥∥2
2

]
= E[L(Xt)]E[

∥∥θt −θ∗∥∥2
2]

≤ LE
[∥∥θt −θ∗∥∥2

2

]
≤ αLG2

λ2t
.

On the other hand, whenθt 6∈Uρ, we have the following sequence of inequalities:

E

[∥∥∥rt1(θt 6∈Uρ)

∥∥∥
2

] (i)
≤ 4
√
E[‖rt‖4

2]
(
P(θt 6∈Uρ)

)3/4

(ii)
≤ 4

√
33
(
E[‖gt‖4

2]+E[‖∇ ft(θ∗)‖4
2]+E[‖∇2 ft(θ∗)(θt −θ∗)‖4

2]
)(

P(θt 6∈Uρ)
)3/4

≤ 33/4 4
√

G4+G4+H4R4
(
P(θt 6∈Uρ)

)3/4

(iii )
≤ 3(G+HR)

(
αG2

λ2ρ2t

)3/4

.

Here step (i) follows from Ḧolder’s inequality (again applied with the conjugates(p,q) = (4, 4
3));

step (ii) follows from Jensen’s inequality, since(a+b+c)4 ≤ 33(a4+b4+c4); and step (iii) follows
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from Markov’s inequality, as in the bounds (48) and (49). Combining ourtwo bounds onrt , we find
that

E[‖rt‖2]≤
αLG2

λ2t
+

3α3/4G3/2(G+HR)

λ3/2ρ3/2
· 1

t3/4
. (51)

By combining the expansion (50) with the bound (51), we find that
∥∥E[θt −ηtgt −θ∗]

∥∥
2 =

∥∥E[(I −ηt∇2F0(θ∗))(θt −θ∗)+ηtrt ]
∥∥

2

≤
∥∥E[(I −ηt∇2F0(θ∗))(θt −θ∗)]

∥∥
2+

cαLG2

λ3t2 +
3cα3/4G3/2(G+HR)

λ5/2ρ3/2
· 1

t7/4
.

Using the earlier bound (49), this inequality then yields

∥∥E[θt+1−θ∗]
∥∥

2 ≤
∣∣∣∣∣∣I −ηt∇tF0(θ∗)

∣∣∣∣∣∣
2

∥∥E[θt −θ∗]
∥∥

2+
cα3/4G3/2

λ5/2t7/4

(
α1/4LG1/2

λ1/2t1/4
+

4G+HR

ρ3/2

)
.

We now complete the proof via an inductive argument using our immediately preceding bounds.
Our reasoning follows a similar induction given by Rakhlin et al. (2012). First, note that by strong
convexity and our condition that

∣∣∣∣∣∣∇2F0(θ∗)
∣∣∣∣∣∣≤ H, we have

∣∣∣∣∣∣I −ηt∇2F0(θ∗)
∣∣∣∣∣∣= 1−ηtλmin(∇2F0(θ∗)≤ 1−ηtλ

whenever 1−ηtH ≥ 0. Defineτ0 = ⌈cH/λ⌉; then fort ≥ t0 we obtain

∥∥E[θt+1−θ∗]
∥∥

2 ≤ (1−c/t)
∥∥E[θt −θ∗]

∥∥
2+

1

t7/4
· cα3/4G3/2

λ5/2

(
α1/4LG1/2

λ1/2t1/4
+

4G+HR

ρ3/2

)
. (52)

For shorthand, we define two intermediate variables

at =
∥∥E(θt −θ∗)

∥∥
2 and b=

cα3/4G3/2

λ5/2

(
α1/4LG1/2

λ1/2
+

4G+HR

ρ3/2

)
.

Inequality (52) then implies the inductive relationat+1 ≤ (1− c/t)at +b/t7/4. Now we show that
by definingβ = max{τ0R,b/(c−1)}, we haveat ≤ β/t3/4. Indeed, it is clear thata1 ≤ τ0R. Using
the inductive hypothesis, we then have

at+1 ≤
(1−c/t)β

t3/4
+

b

t7/4
=

β(t −1)

t7/4
− β(c−1)−b

t2 ≤ β(t −1)

t7/4
≤ β

(t +1)3/4
.

This completes the proof of the inequality (47). �

D.0.1 REMARK

If we assumekth moment bounds instead of 4th, that is,E[
∣∣∣∣∣∣∇2 f (θ∗;X)

∣∣∣∣∣∣k
2]≤Hk andE[‖gt‖k

2]≤Gk,
we find the following analogue of the bound (52):

∥∥E[θt+1−θ∗]
∥∥

2 ≤ (1−c/t)
∥∥E[θt −θ∗]

∥∥
2

+
1

t
2k−1

k

· cα
k−1

k G
2k−2

k

λ
3k−2

k

[(
541/k+1

)
G+541/kHR

ρ
2k−2

k

+
α1/kLG2/k

λ2/kt1/k

]
.
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In this case, if we define

b=
cα

k−1
k G

2k−2
k

λ
3k−2

k

[(
541/k+1

)
G+541/kHR

ρ
2k−2

k

+
α1/kLG2/k

λ2/k

]
and β = max

{
τ0R,

b
c−1

}
,

we have the same result except we obtain the bound‖E[θn−θ∗]‖2
2 ≤ β2/n

2k−2
k .

Appendix E. Proof of Lemma 6

We first prove that under the conditions given in the lemma statement, the function F1 is (1−ρ)λ-
strongly convex over the ballU :=

{
θ ∈ R

d : ‖θ−θ∗‖2 < δρ
}

aroundθ∗. Indeed, fixγ ∈ U , then
use the triangle inequality to conclude that

∣∣∣∣∣∣∇2F1(γ)−∇2F0(θ∗)
∣∣∣∣∣∣

2 ≤
∣∣∣∣∣∣∇2F1(γ)−∇2F1(θ∗)

∣∣∣∣∣∣
2+
∣∣∣∣∣∣∇2F1(θ∗)−∇2F0(θ∗)

∣∣∣∣∣∣
2

≤ L‖γ−θ∗‖2+
ρλ
2
.

Here we used Assumption 3 on the first term and the fact that the eventE1 holds on the second. By
our choice ofδρ ≤ ρλ/4L, this final term is bounded byλρ. In particular, we have

∇2F0(θ∗)� λI so ∇2F1(γ)� λI −ρλI = (1−ρ)λI ,

which proves thatF1 is (1−ρ)λ-strongly convex on the ballU .
In order to prove the conclusion of the lemma, we argue that sinceF1 is (locally) strongly

convex, if the functionF1 has small gradient at the pointθ∗, it must be the case that the minimizer
θ1 of F1 is nearθ∗. Then we can employ reasoning similar to standard analyses of optimality for
globally strongly convex functions (e.g., Boyd and Vandenberghe, 2004, Chapter 9). By definition
of (the local) strong convexity on the setU , for anyθ′ ∈ Θ, we have

F1(θ′)≥ F1(θ∗)+
〈
∇F1(θ∗),θ′−θ∗〉+ (1−ρ)λ

2
min

{∥∥θ∗−θ′∥∥2
2 ,δ

2
ρ

}
.

Rewriting this inequality, we find that

min
{∥∥θ∗−θ′∥∥2

2 ,δ
2
ρ

}
≤ 2

(1−ρ)λ
[
F1(θ′)−F1(θ∗)+

〈
∇F1(θ∗),θ′−θ∗〉]

≤ 2
(1−ρ)λ

[
F1(θ′)−F1(θ∗)+‖∇F1(θ∗)‖2

∥∥θ′−θ∗∥∥
2

]
.

Dividing each side by‖θ′−θ∗‖2, then noting that we may setθ′ = κθ1+(1−κ)θ∗ for anyκ∈ [0,1],
we have

min

{
κ‖θ1−θ∗‖2 ,

δ2
ρ

κ‖θ1−θ∗‖2

}
≤ 2[F1(κθ1+(1−κ)θ∗)−F1(θ∗)]

κ(1−ρ)λ‖θ1−θ∗‖2
+

2‖∇F1(θ∗)‖2

(1−ρ)λ
.

Of course,F1(θ1) < F1(θ∗) by assumption, so we find that for anyκ ∈ (0,1) we have the strict
inequality

min

{
κ‖θ1−θ∗‖2 ,

δ2
ρ

κ‖θ1−θ∗‖2

}
<

2‖∇F1(θ∗)‖2

(1−ρ)λ
≤ δρ,
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the last inequality following from the definition ofE2. Since this holds for anyκ ∈ (0,1), if
‖θ1−θ∗‖2 > δρ, we may setκ = δρ/‖θ1−θ∗‖2, which would yield a contradiction. Thus, we
have‖θ1−θ∗‖2 ≤ δρ, and by our earlier inequalities,

‖θ1−θ∗‖2
2 ≤

2
(1−ρ)λ

[F1(θ1)−F1(θ∗)+‖∇F1(θ∗)‖2‖θ1−θ∗‖2]≤
2‖∇F1(θ∗)‖2

(1−ρ)λ
‖θ1−θ∗‖2 .

Dividing by ‖θ1−θ∗‖2 completes the proof. �

Appendix F. Moment Bounds

In this appendix, we state two useful moment bounds, showing how they combine to provide a proof
of Lemma 7. The two lemmas are a vector and a non-commutative matrix variant of the classical
Rosenthal inequalities. We begin with the case of independent random vectors:

Lemma 15 (de Acosta, 1981, Theorem 2.1)Let k≥ 2 and Xi be a sequence of independent ran-
dom vectors in a separable Banach space with norm‖·‖ andE[‖Xi‖k] < ∞. There exists a finite
constant Ck such that

E

[∣∣∣∣
∥∥∥∥

n

∑
i=1

Xi

∥∥∥∥−E

[∥∥∥∥
n

∑
i=1

Xi

∥∥∥∥
]∣∣∣∣

k]
≤Ck



(

n

∑
i=1

E[‖Xi‖2]

)k/2

+
n

∑
i=1

E[‖Xi‖k]


 .

We say that a random matrixX is symmetrically distributed ifX and−X have the same distri-
bution. For such matrices, we have:

Lemma 16 (Chen et al., 2012, Theorem A.1(2))Let Xi ∈R
d×d be independent and symmetrically

distributed Hermitian matrices. Then

E

[∣∣∣∣
∣∣∣∣
∣∣∣∣

n

∑
i=1

Xi

∣∣∣∣
∣∣∣∣
∣∣∣∣
k]1/k

≤
√

2elogd

∣∣∣∣
∣∣∣∣
∣∣∣∣
( n

∑
i=1

E
[
X2

i

])1/2∣∣∣∣
∣∣∣∣
∣∣∣∣+2elogd

(
E[max

i
|||Xi |||k]

)1/k

.

Equipped with these two auxiliary results, we turn to our proof Lemma 7. To prove the first
bound (24), let 2≤ k≤ k0 and note that by Jensen’s inequality, we have

E[‖∇F1(θ∗)‖k
2]≤ 2k−1

E

[∣∣‖∇F1(θ∗)‖2−E[‖∇F1(θ∗)‖2]
∣∣k
]
+2k−1

E [‖∇F1(θ∗)‖2]
k .

Again applying Jensen’s inequality,E[‖∇ f (θ∗;X)‖2
2]≤G2. Thus by recalling the definition∇F1(θ∗)=

1
n ∑n

i=1 ∇ f (θ∗;Xi) and applying the inequality

E[‖∇F1(θ∗)‖2]≤ E[‖∇F1(θ∗)‖2
2]

1/2 ≤ n−1/2G,

we see that Lemma 15 impliesE
[
‖∇F1(θ∗)‖k

2

]
is upper bounded by

2k−1Ck



(

1
n2

n

∑
i=1

E[‖∇ f (θ;Xi)‖2
2]

)k/2

+
1
nk

n

∑
i=1

E[‖∇ f (θ∗;Xi)‖k
2]


+2k−1

E[‖∇F1(θ∗)‖2]
k

≤ 2k−1 Ck

nk/2



(

1
n

n

∑
i=1

E[‖∇ f (θ∗;Xi)‖2
2]

)k/2

+
1

nk/2

n

∑
i=1

E[‖∇ f (θ∗;Xi)‖k
2]


+ 2k−1Gk

nk/2
.
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Applying Jensen’s inequality yields

(
1
n

n

∑
i=1

E[‖∇ f (θ∗;Xi)‖2
2]

)k/2

≤ 1
n

n

∑
i=1

E[‖∇ f (θ∗;Xi)‖2
2]

k/2 ≤ Gk,

completes the proof of the inequality (24).
The proof of the bound (25) requires a very slightly more delicate argument involving sym-

metrization step. Define matricesZi =
1
n

(
∇2 f (θ∗;Xi)−∇2F0(θ∗)

)
. If εi ∈{±1} are i.i.d. Rademacher

variables independent ofZi , then for any integerk in the interval[2,k2], a standard symmetrization
argument (e.g., Ledoux and Talagrand, 1991, Lemma 6.3) implies that

E

[∣∣∣∣
∣∣∣∣
∣∣∣∣

n

∑
i=1

Zi

∣∣∣∣
∣∣∣∣
∣∣∣∣
k]1/k

≤ 2E

[∣∣∣∣
∣∣∣∣
∣∣∣∣

n

∑
i=1

εiZi

∣∣∣∣
∣∣∣∣
∣∣∣∣
k]1/k

.

Now we may apply Lemma 16, since the matricesεiZi are Hermitian and symmetrically dis-
tributed; by expanding the definition of theZi , we find that

E

[∣∣∣∣∣∣∇2F1(θ∗)−∇2F0(θ∗)
∣∣∣∣∣∣k
]1/k

≤ 5
√

logd

∣∣∣∣
∣∣∣∣
∣∣∣∣
(

1
n2

n

∑
i=1

E[(∇2 f (θ;Xi)−∇2F0(θ∗))2]

)1/2∣∣∣∣
∣∣∣∣
∣∣∣∣

+4elogd

(
n−k

E[max
i

∣∣∣∣∣∣∇2 f (θ∗;Xi)−∇2F0(θ∗)
∣∣∣∣∣∣k]
)1/k

.

Since theXi are i.i.d., we have

∣∣∣∣
∣∣∣∣
∣∣∣∣
(

1
n2

n

∑
i=1

E[(∇2 f (θ;Xi)−∇2F0(θ∗))2]

)1/2∣∣∣∣
∣∣∣∣
∣∣∣∣=
∣∣∣∣
∣∣∣∣
∣∣∣∣n

−1/2
E

[(
∇2 f (θ∗;X)−∇2F0(θ∗)

)2
]1/2

∣∣∣∣
∣∣∣∣
∣∣∣∣

≤ n−1/2
E

[∣∣∣∣∣∣∇2 f (θ∗;X)−∇2F0(θ∗)
∣∣∣∣∣∣2
]1/2

by Jensen’s inequality, since
∣∣∣∣∣∣A1/2

∣∣∣∣∣∣= |||A|||1/2 for semidefiniteA. Finally, noting that

1
nkE

[
max

i

∣∣∣∣∣∣∇2 f (θ∗;Xi)−∇2F0(θ∗)
∣∣∣∣∣∣k
]
≤ n

nkE

[∣∣∣∣∣∣∇2 f (θ∗;X)−∇2F0(θ∗)
∣∣∣∣∣∣k
]
≤ n1−kHk

completes the proof of the second bound (25).

Appendix G. Proof of Lemma 12

The proof follows from a slightly more careful application of the Taylor expansion (21). The starting
point in our proof is to recall the success events (20) and the joint eventE := E0∩E1∩E2. We
begin by arguing that we may focus on the case whereE holds. LetC denote the right hand side
of the equality (37) except for the remainderR3 term. By Assumption 3, we follow the bound (26)
(with min{k0,k1,k2} ≥ 8) to find that

E

[
1(Ec) ‖θ1−θ∗‖2

2

]
= O

(
R2n−4) ,

so we can focus on the case where the joint eventE = E0∩E1∩E2 does occur.
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Defining ∆ = θ1− θ∗ for notational convenience, onE we have that for someκ ∈ [0,1], with
θ′ = (1−κ)θ1+κθ∗,

0= ∇F1(θ∗)+∇2F1(θ∗)∆+∇3F1(θ′)(∆⊗∆)

= ∇F1(θ∗)+∇2F0(θ∗)∆+∇3F0(θ∗)(∆⊗∆)

+(∇2F1(θ∗)−∇2F0(θ∗))∆+(∇3F1(θ′)−∇3F0(θ∗))(∆⊗∆).

Now, we recall the definitionΣ = ∇2F0(θ∗), the Hessian of the risk at the optimal point, and solve
for the error∆ to see that

∆ =−Σ−1∇F1(θ∗)−Σ−1(∇2F1(θ∗)−Σ)∆−Σ−1∇3F1(θ∗)(∆⊗∆)

+Σ−1(∇3F0(θ∗)−∇3F1(θ′))(∆⊗∆) (53)

on the eventE . As we did in the proof of Theorem 1, specifically in deriving the recursive equal-
ity (28), we may apply the expansion (23) of∆ = θ1−θ∗ to obtain a clean asymptotic expansion of
∆ using (53). Recall the definitionP = ∇2F0(θ∗)−∇2F1(θ∗) for shorthand here (as in the expan-
sion (23), though we no longer requireQ).

First, we claim that

1(E)(∇3F0(θ∗)−∇3F1(θ′))(∆⊗∆) =
(
M2G6/λ6+G4L2d log(d)/λ4)R3. (54)

To prove the above expression, we add and subtract∇3F1(θ∗) (and drop 1(E) for simplicity). We
must control

(∇3F0(θ∗)−∇3F1(θ∗))(∆⊗∆)+(∇3F1(θ∗)−∇3F1(θ′))(∆⊗∆).

To begin, recall that|||u⊗v|||2 =
∣∣∣∣∣∣uv⊤

∣∣∣∣∣∣
2 = ‖u‖2‖v‖2. By Assumption 4, on the eventE we have

that∇3F1 is (1/n)∑n
i=1M(Xi)-Lipschitz, so definingMn = (1/n)∑n

i=1M(Xi), we have

E

[
1(E)

∥∥(∇3F1(θ∗)−∇3F1(θ′)
)
(∆⊗∆)

∥∥2
2

]
≤ E

[
M2

n

∥∥θ∗−θ′∥∥2
2‖∆‖4

2

]

≤ E
[
M8

n

]1/4
E

[
‖θ1−θ∗‖8

2

]3/4
≤ O(1)M2 G6

λ6n3

by Hölder’s inequality and Lemma 8. The remaining term we must control is the derivative differ-
enceE[‖(∇3F1(θ∗)−∇3F0(θ∗))(∆⊗∆)‖2

2]. Define the random vector-valued functionG= ∇(F1−
F0), and letG j denote itsjth coordinate. Then by definition we have

(∇3F1(θ∗)−∇3F0(θ∗))(∆⊗∆) =
[
∆⊤(∇2G1(θ∗))∆ · · · ∆⊤(∇2Gd(θ∗))∆

]⊤
∈ R

d.

Therefore, by the Cauchy-Schwarz inequality and the fact thatx⊤Ax≤ |||A|||2‖x‖2
2,

E

[∥∥(∇3F1(θ∗)−∇3F0(θ∗))(∆⊗∆)
∥∥2

2

]
=

d

∑
j=1

E

[(
∆⊤(∇2G j(θ∗))∆

)2
]

≤
d

∑
j=1

(
E

[
‖∆‖8

2

]
E

[∣∣∣∣∣∣∇2G j(θ∗)
∣∣∣∣∣∣4

2

])1/2
.
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Applying Lemma 8 yields thatE[‖∆‖8
2] = O(G8/(λ2n)4). Introducing the shorthand notation

g(·;x) := ∇ f (·;x)−∇F0(·), we can write

∇2G j(θ∗) =
1
n

n

∑
i=1

∇2g j(θ∗;Xi)

For every coordinatej, the random matrices∇2g j(θ∗;Xi) (i = 1, . . . ,n) are i.i.d. and mean zero. By

Assumption 3, we have
∣∣∣∣∣∣∇2g j(θ∗;Xi)

∣∣∣∣∣∣
2 ≤ 2L(Xi), whence we haveE[

∣∣∣∣∣∣∇2g j(θ∗;Xi)
∣∣∣∣∣∣8

2]≤ 28L8.
Applying Lemma 16, we obtain

E

[∣∣∣∣∣∣∇2G j(θ∗)
∣∣∣∣∣∣4

2

]
≤ O(1)L4n−2 log2(d),

and hence

E

[∥∥(∇3F1(θ∗)−∇3F0(θ∗))(∆⊗∆)
∥∥2

2

]
≤ O(1)

G4L2

λ4 d log(d)n−3,

which implies the desired result (54). From now on, terms of the formR3 will have no larger
constants than those in the equality (54), so we ignore them.

Now we claim that

1(E)∇3F1(θ∗)(∆⊗∆) = ∇3F1(θ∗)((Σ−1∇F1(θ∗))⊗ (Σ−1∇F1(θ∗)))+R3. (55)

Indeed, applying the expansion (23) to the difference∆ = θ1−θ∗, we have onE that

∆⊗∆ = (Σ−1∇F1(θ∗))⊗ (Σ−1∇F1(θ∗))+(Σ−1P∆)⊗ (Σ−1P∆)

− (Σ−1P∆)⊗ (Σ−1∇F1(θ∗))− (Σ−1∇F1(θ∗))⊗ (Σ−1P∆).

We can bound each of the second three outer products in the equality above similarly; we focus on
the last for simplicity. Applying the Cauchy-Schwarz inequality, we have

E

[∣∣∣∣∣∣(Σ−1∇F1(θ∗))⊗ (Σ−1P∆)
∣∣∣∣∣∣2

2

]
≤
(
E

[∥∥Σ−1∇F1(θ∗)
∥∥4

2

]
E

[∥∥Σ−1P(θ1−θ∗)
∥∥4

2

]) 1
2
.

From Lemmas 8 and 9, we obtain that

E

[∥∥Σ−1∇F1(θ∗)
∥∥4

2

]
= O(n−2) and E

[∥∥Σ−1P(θ1−θ∗)
∥∥4

2

]
= O(n−4)

after an additional application of Cauchy-Schwarz for the second expectation. This shows that

(Σ−1∇F1(θ∗))⊗ (Σ−1P∆) = R3,

and a similar proof applies to the other three terms in the outer product∆⊗∆. Using the linearity of
∇3F1(θ∗), we see that to prove the equality (55), all that is required is that

1(Ec)∇3F1(θ∗)
(
(Σ−1∇F1(θ∗))⊗ (Σ−1∇F1(θ∗))

)
= R3. (56)
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For this, we apply Ḧolder’s inequality several times. Indeed, we have

E

[∥∥1(Ec)∇3F1(θ∗)
(
(Σ−1∇F1(θ∗))⊗ (Σ−1∇F1(θ∗))

)∥∥2

2

]

≤ E[1(Ec)]
1/4

E

[∥∥∇3F1(θ∗)
(
(Σ−1∇F1(θ∗))⊗ (Σ−1∇F1(θ∗))

)∥∥8/3
2

]3/4

≤ E[1(Ec)]
1/4

E

[∣∣∣∣∣∣∇3F1(θ∗)
∣∣∣∣∣∣8/3∥∥Σ−1∇F1(θ∗)

∥∥16/3
2

]3/4

≤ E[1(Ec)]
1/4

E

[∣∣∣∣∣∣∇3F1(θ∗)
∣∣∣∣∣∣8
]1/4

E

[∥∥Σ−1∇F1(θ∗)
∥∥8

2

]2/4
= O(n−1 ·L2 ·n−2).

For the final asymptotic bound, we used Equation (26) to boundE[1(Ec)], used the fact (from As-
sumption 3) thatE[L(X)8] ≤ L8 to bound the term involving∇3F1(θ∗), and applied Lemma 7 to
controlE[‖Σ−1∇F1(θ∗)‖8

2]. Thus the equality (56) holds, and this completes the proof of the equal-
ity (55).

For the final step in the lemma, we claim that

−1(E)Σ−1(∇2F1(θ∗)−Σ)∆ = Σ−1(∇2F1(θ∗)−Σ)Σ−1∇F1(θ∗)+R3. (57)

To prove (57) requires an argument completely parallel to that for our claim (55). As before, we use
the expansion (23) of the difference∆ to obtain that onE ,

−Σ−1(∇2F1(θ∗)−Σ)∆

= Σ−1(∇2F1(θ∗)−Σ)Σ−1∇F1(θ∗)−Σ−1(∇2F1(θ∗)−Σ)Σ−1P∆.

Now apply Lemmas 8 and 9 to the final term after a few applications of Hölder’s inequality. To
finish the equality (57), we argue that 1(Ec)Σ−1(∇2F1(θ∗)− Σ)Σ−1∇F1(θ∗) = R3, which follows
exactly the line of reasoning used to prove the remainder (56).

Applying equalities (54), (55), and (57) to our earlier expansion (53) yields that

∆ = 1(E)

[
−Σ−1∇F1(θ∗)−Σ−1(∇2F1(θ∗)−Σ)∆−Σ−1∇3F1(θ∗)(∆⊗∆)

+Σ−1(∇3F0(θ∗)−∇3F1(θ′))(∆⊗∆)
]
+1(Ec)∆

=−Σ−1∇F1(θ∗)+Σ−1(∇2F1(θ∗)−Σ)Σ−1∇F1(θ∗)

−Σ−1∇3F1(θ∗)
(
(Σ−1∇F1(θ∗))⊗ (Σ−1∇F1(θ∗))

)
+R3+1(Ec)∆.

Finally, the bound (26) implies thatE[1(Ec) ‖∆‖2
2]≤ P(Ec)R2 = O(n−4), which yields the claim.
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