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Abstract

Despite the simplicity of the Naive Bayes classifier, it has continued to perform well against more

sophisticated newcomers and has remained, therefore, of great interest to the machine learning

community. Of numerous approaches to refining the naive Bayes classifier, attribute weighting has

received less attention than it warrants. Most approaches, perhaps influenced by attribute weighting

in other machine learning algorithms, use weighting to place more emphasis on highly predictive

attributes than those that are less predictive. In this paper, we argue that for naive Bayes attribute

weighting should instead be used to alleviate the conditional independence assumption. Based on

this premise, we propose a weighted naive Bayes algorithm, called WANBIA, that selects weights

to minimize either the negative conditional log likelihood or the mean squared error objective func-

tions. We perform extensive evaluations and find that WANBIA is a competitive alternative to state

of the art classifiers like Random Forest, Logistic Regression and A1DE.

Keywords: classification, naive Bayes, attribute independence assumption, weighted naive Bayes

classification

1. Introduction

Naive Bayes (also known as simple Bayes and Idiot’s Bayes) is an extremely simple and remarkably

effective approach to classification learning (Lewis, 1998; Hand and Yu, 2001). It infers the proba-

bility of a class label given data using a simplifying assumption that the attributes are independent

given the label (Kononenko, 1990; Langley et al., 1992). This assumption is motivated by the need

to estimate high-dimensional multi-variate probabilities from the training data. If there is sufficient

data present for every possible combination of attribute values, direct estimation of each relevant

multi-variate probability will be reliable. In practice, however, this is not the case and most com-
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binations are either not represented in the training data or not present in sufficient numbers. Naive

Bayes circumvents this predicament by its conditional independence assumption. Surprisingly, it

has been shown that the prediction accuracy of naive Bayes compares very well with other more

complex classifiers such as decision trees, instance-based learning and rule learning, especially

when the data quantity is small (Hand and Yu, 2001; Cestnik et al., 1987; Domingos and Pazzani,

1996; Langley et al., 1992).

In practice, naive Bayes’ attribute independence assumption is often violated, and as a result

its probability estimates are often suboptimal. A large literature addresses approaches to reducing

the inaccuracies that result from the conditional independence assumption. Such approaches can be

placed into two categories. The first category comprises semi-naive Bayes methods. These methods

are aimed at enhancing naive Bayes’ accuracy by relaxing the assumption of conditional indepen-

dence between attributes given the class label (Langley and Sage, 1994; Friedman and Goldszmidt,

1996; Zheng et al., 1999; Cerquides and De Mántaras, 2005a; Webb et al., 2005, 2011; Zheng et al.,

2012). The second category comprises attribute weighting methods and has received relatively little

attention (Hilden and Bjerregaard, 1976; Ferreira et al., 2001; Hall, 2007). There is some evidence

that attribute weighting appears to have primarily been viewed as a means of increasing the influ-

ence of highly predictive attributes and discounting attributes that have little predictive value. This

is not so much evident from the explicit motivation stated in the prior work, but rather from the man-

ner in which weights have been assigned. For example, weighting by mutual information between

an attribute and the class is directly using a measure of how predictive is each individual attribute

(Zhang and Sheng, 2004). In contrast, we argue that the primary value of attribute weighting is its

capacity to reduce the impact on prediction accuracy of violations of the assumption of conditional

attribute independence.

Contributions of this paper are two-fold:

• This paper reviews the state of the art in weighted naive Bayesian classification. We provide a

compact survey of existing techniques and compare them using the bias-variance decomposi-

tion method of Kohavi and Wolpert (1996). We also use Friedman test and Nemenyi statistics

to analyze error, bias, variance and root mean square error.

• We present novel algorithms for learning attribute weights for naive Bayes. It should be noted

that the motivation of our work differs from most previous attribute weighting methods. We

view weighting as a way to reduce the effects of the violations of the attribute independence

assumption on which naive Bayes is based. Also, our work differs from semi-naive Bayes

methods, as we weight the attributes rather than modifying the structure of naive Bayes.

We propose a weighted naive Bayes algorithm, Weighting attributes to Alleviate Naive Bayes’ Inde-

pendence Assumption (WANBIA), that introduces weights in naive Bayes and learns these weights

in a discriminative fashion that is minimizing either the negative conditional log likelihood or the

mean squared error objective functions. Naive Bayes probabilities are set to be their maximum a

posteriori (MAP) estimates.

The paper is organized as follows: we provide a formal description of the weighted naive Bayes

model in Section 2. Section 3 provides a survey of related approaches. Our novel techniques for

learning naive Bayes weights are described in Section 4 where we also discuss their connection

with naive Bayes and Logistic Regression in terms of parameter optimization. Section 5 presents

experimental evaluation of our proposed methods and their comparison with related approaches.

Section 6 presents conclusions and directions for future research.
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Notation Description

P(e) the unconditioned probability of event e

P(e |g) conditional probability of event e given g

P̂(•) an estimate of P(•)
a the number of attributes

n the number of data points in D

x = 〈x1, . . . ,xa〉 an object (a-dimensional vector) and x ∈ D

y ∈ Y the class label for object x

|Y | the number of classes

D = {x(1), . . . ,x(n)} data consisting of n objects

L = {y(1), . . . ,y(n)} labels of data points in D

Xi discrete set of values for attribute i

|Xi| the cardinality of attribute i

v = 1
a ∑i |Xi| the average cardinality of the attributes

Table 1: List of symbols used

2. Weighted Naive Bayes

We wish to estimate from a training sample D consisting of n objects, the probability P(y |x) that

an example x ∈ D belongs to a class with label y ∈ Y . All the symbols used in this work are listed

in Table 1. From the definition of conditional probability we have

P(y |x) = P(y,x)/P(x). (1)

As P(x) = ∑
|Y |
i=1 P(yi,x), we can always estimate P(y|x) in Equation 1 from the estimates of P(y,x)

for each class as:

P(y,x)/P(x) =
P(y,x)

∑
|Y |
i=1 P(yi,x)

. (2)

In consequence, in the remainder of this paper we consider only the problem of estimating P(y,x).

Naive Bayes estimates P(y,x) by assuming the attributes are independent given the class, result-

ing in the following formula:

P̂(y,x) = P̂(y)
a

∏
i=1

P̂(xi |y). (3)

Weighted naive Bayes extends the above by adding a weight to each attribute. In the most general

case, this weight depends on the attribute value:

P̂(y,x) = P̂(y)
a

∏
i=1

P̂(xi|y)wi,xi . (4)

Doing this results in ∑a
i |Xi| weight parameters (and is in some cases equivalent to a “binarized

logistic regression model” see Section 4 for a discussion). A second possibility is to give a single

weight per attribute:

P̂(y,x) = P̂(y)
a

∏
i=1

P̂(xi |y)wi . (5)
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One final possibility is to set all weights to a single value:

P̂(y,x) = P̂(y)

(

a

∏
i=1

P̂(xi |y)
)w

. (6)

Equation 5 is a special case of Equation 4, where ∀i, j wi j =wi, and Equation 6 is a special case

of Equation 5 where ∀i wi =w. Unless explicitly stated, in this paper we intend the intermediate

form when we refer to attribute weighting, as we believe it provides an effective trade-off between

computational complexity and inductive power.

Appropriate weights can reduce the error that results from violations of naive Bayes’ conditional

attribute independence assumption. Trivially, if data include a set of a attributes that are identical

to one another, the error due to the violation of the conditional independence assumption can be

removed by assigning weights that sum to 1.0 to the set of attributes in the set. For example, the

weight for one of the attributes, xi could be set to 1.0, and that of the remaining attributes that are

identical to xi set to 0.0. This is equivalent to deleting the remaining attributes. Note that, any

assignment of weights such that their sum is 1.0 for the a attributes will have the same effect, for

example, we could set the weights of all a attributes to 1/a.

Attribute weighting is strictly more powerful than attribute selection, as it is possible to obtain

identical results to attribute selection by setting the weights of selected attributes to 1.0 and of

discarded attributes to 0.0, and assignment of other weights can create classifiers that cannot be

expressed using attribute selection.

2.1 Dealing with Dependent Attributes by Weighting: A Simple Example

This example shows the relative performance of naive Bayes and weighted naive Bayes as we vary

the conditional dependence between attributes. In particular it demonstrates how optimal assign-

ment of weights will never result in higher error than attribute selection or standard naive Bayes,

and that for certain violations of the attribute independence assumption it can result in lower error

than either.

We will constrain ourselves to a binary class problem with two binary attributes. We quantify

the conditional dependence between the attributes using the Conditional Mutual Information (CMI):

I(X1,X2|Y ) = ∑
y

∑
x2

∑
x1

P(x1,x2,y) log
P(x1,x2|y)

P(x1|y)P(x2|y)
.

The results of varying the conditional dependence between the attributes on the performance of the

different classifiers in terms of their Root Mean Squared Error (RMSE) is shown in Figure 1.

To generate these curves, we varied the probabilities P(y|x1,x2) and P(x1,x2) and plotted average

results across distinct values of the Conditional Mutual Information. For each of the 4 possible

attribute value combinations (x1,x2) ∈ {(0,0),(0,1),(1,0),(1,1)}, we selected values for the class

probability given the attribute value combination from the set: P(y|x1,x2) ∈ {0.25,0.75}. Note

that P(¬y|x1,x2) = 1−P(y|x1,x2), so this process resulted in 24 possible assignments to the vector

P(y|•,•).
We then set the values for the attribute value probabilities P(x1,x2) by fixing the marginal dis-

tributions to a half P(x1)= P(x2)= 1/2, and varying the correlation between the attributes using
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Figure 1: Variation of Error of naive Bayes, selective naive Bayes, weighted naive Bayes and classi-

fier based only on prior probabilities of the class as a function of conditional dependence

(conditional mutual information) between the two attributes.

Pearson’s correlation coefficient, denoted ρ, as follows:1

P(X1 = 0,X2 = 0) = P(X1 = 1,X2 = 1) =
(1+ρ)

4
,

P(X1 = 0,X2 = 1) = P(X1 = 1,X2 = 0) =
(1−ρ)

4
,

where −1 ≤ ρ ≤ 1.

Note that when ρ=−1 the attributes are perfectly anti-correlated (x1=¬x2), when ρ=0 the attributes

are independent (since the joint distribution P(x1,x2) is uniform) and when ρ=1 the attributes are

perfectly correlated.

For the graph, we increased values of ρ in increments of 0.00004, resulting in 50000 distribu-

tions (vectors) for P(•,•) for each vector P(y|•,•). Near optimal weights (w1,w2) for the weighted

naive Bayes classifier were found using grid search over the range {{0.0,0.1,0.2, . . . ,0.9,1.0}×
{0.0,0.1,0.2, . . . ,0.9,1.0}}. Results in Figure 1 are plotted by taking average across conditional

mutual information values, with a window size of 0.1.

1. Note that from the definition of Pearson’s correlation coefficient we have:

ρ =
E[(X1−E[X1])(X2−E[X2])]

√

E[(X1−E[X1])2]E[(X2−E[X2])2]
= 4P(X1 = 1,X2 = 1)−1,

since E[X1] = E[X2] = P(1) = 1/2 and E[X1X2] = P(X1 = 1,X2 = 1).
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We compare the expected RMSE of naive Bayes (w1=1,w2=1), weighted naive Bayes, naive

Bayes based on feature 1 only (selective Bayes with w1 =1,w2 =0), naive Bayes based on feature

2 only (selective Bayes with w1 = 0,w2 = 1), and naive Bayes using only the prior (equivalent to

weighted naive Bayes with both weights set to 0.0). It can be seen that when conditional mutual

information (CMI) is small, naive Bayes performs better than selective naive Bayes and the prior

classifier. Indeed, when CMI is 0.0, naive Bayes is optimal. As CMI is increased, naive Bayes

performance deteriorates compared to selective naive Bayes. Weighted naive Bayes, on the other

hand, has the best performance in all circumstances. Due to the symmetry of the problem, the two

selective Bayes classifiers give exactly the same results.

Note that in this experiment we have used the optimal weights to calculate the results. We have

shown that weighted naive Bayes is capable of expressing more accurate classifiers than selective

naive Bayes. In the remaining sections we will examine and evaluate techniques for learning from

data the weights those models require.

3. Survey of Attribute Weighting and Selecting Methods for Naive Bayes

Attribute weighting is well-understood in the context of nearest-neighbor learning methods and is

used for reducing bias in high-dimensional problems due to the presence of redundant or irrelevant

features (Friedman, 1994; Guyon et al., 2004). It is also used for mitigating the effects of the curse-

of-dimensionality which results in exponential increase in the required training data as the number

of features are increased (Bellman, 1957). Attribute weighting for naive Bayes is comparatively less

explored.

Before discussing these techniques, however, it is useful to briefly examine the closely related

area of feature selection for naive Bayes. As already pointed out, weighting can achieve feature

selection by settings weights to either 0.0 or 1.0, and so can be viewed as a generalization of feature

selection.

Langley and Sage (1994) proposed the Selective Bayes (SB) classifier, using feature selection

to accommodate redundant attributes in the prediction process and to augment naive Bayes with

the ability to exclude attributes that introduce dependencies. The technique is based on searching

through the entire space of all attribute subsets. For that, they use a forward sequential search

with a greedy approach to traverse the search space. That is, the algorithm initializes the subset of

attributes to an empty set, and the accuracy of the resulting classifier, which simply predicts the most

frequent class, is saved for subsequent comparison. On each iteration, the method considers adding

each unused attribute to the subset on a trial basis and measures the performance of the resulting

classifier on the training data. The attribute that most improves the accuracy is permanently added

to the subset. The algorithm terminates when addition of any attribute results in reduced accuracy,

at which point it returns the list of current attributes along with their ranks. The rank of the attribute

is based on the order in which they are added to the subset.

Similar to Langley and Sage (1994), Correlation-based Feature Selection (CFS) used a corre-

lation measure as a metric to determine the relevance of the attribute subset (Hall, 2000). It uses

a best-first search to traverse through feature subset space. Like SB, it starts with an empty set

and generates all possible single feature expansions. The subset with highest evaluation is selected

and expanded in the same manner by adding single features. If expanding a subset results in no

improvement, the search drops back to the next best unexpanded subset and continues from there.

1952



ALLEVIATING NB ATTRIBUTE INDEPENDENCE ASSUMPTION BY ATTRIBUTE WEIGHTING

The best subset found is returned when the search terminates. CFS uses a stopping criterion of five

consecutive fully expanded non-improving subsets.

There has been a growing trend in the use of decision trees to improve the performance of other

learning algorithms and naive Bayes classifiers are no exception. For example, one can build a naive

Bayes classifier by using only those attributes appearing in a C4.5 decision tree. This is equivalent to

giving zero weights to attributes not appearing in the decision tree. The Selective Bayesian Classifier

(SBC) of Ratanamahatana and Gunopulos (2003) also employs decision trees for attribute selection

for naive Bayes. Only those attributes appearing in the top three levels of a decision tree are selected

for inclusion in naive Bayes. Since decision trees are inherently unstable, five decision trees (C4.5)

are generated on samples generated by bootstrapping 10% from the training data. Naive Bayes is

trained on an attribute set which comprises the union of attributes appearing in all five decision

trees.

One of the earliest works on weighted naive Bayes is by Hilden and Bjerregaard (1976), who

used weighting of the form of Equation 6. This strategy uses a single weight and therefore is not

strictly performing attribute weighting. Their approach is motivated as a means of alleviating the

effects of violations of the attribute independence assumption. Setting w to unity is appropriate when

the conditional independence assumption is satisfied. However, on their data set (acute abdominal

pain study in Copenhagen by Bjerregaard et al. 1976), improved classification was obtained when w

was small, with an optimum value as low as 0.3. The authors point out that if symptom variables of

a clinical field trial are not independent, but pair-wise correlated with independence between pairs,

then w = 0.5 will be the correct choice since using w = 1 would make all probabilities the square

of what they ought be. Looking at the optimal value of w = 0.3 for their data set, they suggested

that out of ten symptoms, only three are providing independent information. The value of w was

obtained by maximizing the log-likelihood over the entire testing sample.

Zhang and Sheng (2004) used the gain ratio of an attribute with the class labels as its weight.

Their formula is shown in Equation 7. The gain ratio is a well-studied attribute weighting tech-

nique and is generally used for splitting nodes in decision trees (Duda et al., 2006). The weight

of each attribute is set to the gain ratio of the attribute relative to the average gain ratio across all

attributes. Note that, as a result of the definition at least one (possibly many) of the attributes have

weights greater than 1, which means that they are not only attempting to lessen the effects of the

independence assumption—otherwise they would restrict the weights to be no more than one.

wi =
GR(i)

1
a ∑a

i=1 GR(i)
. (7)

The gain ratio of an attribute is then simply the Mutual Information between that attribute and the

class label divided by the entropy of that attribute:

GR(i) =
I(Xi,Y )

H(Xi)
=

∑y ∑x1
P(x1,y) log

P(x1,y)
P(x1)P(y)

∑x1
P(x1) log 1

P(x1)

.

Several other wrapper-based methods are also proposed in Zhang and Sheng (2004). For example,

they use a simple hill climbing search to optimize weight w using Area Under Curve (AUC) as an

evaluation metric. Another Markov-Chain-Monte-Carlo (MCMC) method is also proposed.

An attribute weighting scheme based on differential evolution algorithms for naive Bayes clas-

sification have been proposed in Wu and Cai (2011). First, a population of attribute weight vectors
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is randomly generated, weights in the population are constrained to be between 0 and 1. Second,

typical genetic algorithmic steps of mutation and cross-over are performed over the the population.

They defined a fitness function which is used to determine if mutation can replace the current in-

dividual (weight vector) with a new one. Their algorithm employs a greedy search strategy, where

mutated individuals are selected as offspring only if the fitness is better than that of target individual.

Otherwise, the target is maintained in the next iteration.

A scheme used in Hall (2007) is similar in spirit to SBC where the weight assigned to each at-

tribute is inversely proportional to the minimum depth at which they were first tested in an unpruned

decision tree. Weights are stabilized by averaging across 10 decision trees learned on data samples

generated by bootstrapping 50% from the training data. Attributes not appearing in the decision

trees are assigned a weight of zero. For example, one can assign weight to an attribute i as:

wi =
1

T

T

∑
t

1√
dti

. (8)

where dti is the minimum depth at which the attribute i appears in decision tree t, and T is the

total number of decision trees generated. To understand whether the improvement in naive Bayes

accuracy was due to attribute weighting or selection, a variant of the above approach was also

proposed where all non-zero weights are set to one. This is equivalent to SBC except using a

bootstrap size of 50% with 10 iterations.

Both SB and CFS are feature selection methods. Since selecting an optimal number of features

is not trivial, Hall (2007) proposed to use SB and CFS for feature weighting in naive Bayes. For

example, the weight of an attribute i can be defined as:

wi =
1√
ri

. (9)

where ri is the rank of the feature based on SB and CFS feature selection.

The feature weighting method proposed in Ferreira et al. (2001) is the only one to use Equa-

tion 4, weighting each attribute value rather than each attribute. They used entropy-based dis-

cretization for numeric attributes and assigned a weight to each partition (value) of the attribute

that is proportional to its predictive capability of the class. Different weight functions are proposed

to assign weights to the values. These functions measure the difference between the distribution

over classes for the particular attribute-value pair and a “baseline class distribution”. The choice of

weight function reduces to a choice of baseline distribution and the choice of measure quantifying

the difference between the distributions. They used two simple baseline distribution schemes. The

first assumes equiprobable classes, that is, uniform class priors. In that case the weight of for value

j of the attribute i can be written as:

wi j ∝

(

∑
y

|P(y|Xi= j)− 1

|Y | |
α

)1/α

.

where P(y|Xi = j) denotes the probability that the class is y given that the i-th attribute of a data

point has value j. Alternatively, the baseline class distribution can be set to the class probabilities

across all values of the attribute (i.e., the class priors). The weighing function will take the form:

wi j ∝

(

∑
y

|P(y|Xi= j)−P(y|Xi 6=miss) |α

)1/α

.
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where P(y|Xi 6=miss) is the class prior probability across all data points for which the attribute i

is not missing. Equation 10 and 10 assume an Lα distance metric where α = 2 corresponds to the

L2 norm. Similarly, they have also proposed to use distance based on Kullback-Leibler divergence

between the two distributions to set weights.

Many researchers have investigated techniques for extending the basic naive Bayes indepen-

dence model with a small number of additional dependencies between attributes in order to im-

prove classification performance (Zheng and Webb, 2000). Popular examples of such semi-naive

Bayes methods include Tree-Augmented Naive Bayes (TAN) (Friedman et al., 1997) and ensemble

methods such as Averaged n-Dependence Estimators (AnDE) (Webb et al., 2011). While detailed

discussion of these methods is beyond the scope of this work, we will describe both TAN and AnDE

in Section 5.10 for the purposes of empirical comparison.

Semi-naive Bayes methods usually limit the structure of the dependency network to simple

structures such as trees, but more general graph structures can also be learnt. Considerable research

has been done in the area of learning general Bayesian Networks (Greiner et al., 2004; Grossman and

Domingos, 2004; Roos et al., 2005), with techniques differing on whether the network structure is

chosen to optimize a generative or discriminative objective function, and whether the same objective

is also used for optimizing the parameters of the model. Indeed optimizing network structure using

a discriminative objective function can quickly become computationally challenging and thus recent

work in this area has looked at efficient heuristics for discriminative structure learning (Pernkopf

and Bilmes, 2010) and at developing decomposable discriminative objective functions (Carvalho

et al., 2011).

In this paper we are interested in improving performance of the NB classifier by reducing the

effect of attribute independence violations through attribute weighting. We do not attempt to identify

the particular dependencies between attributes that cause the violations and thus are not attempting

to address the much harder problem of inducing the dependency network structure. While it is

conceivable that semi-naive Bayes methods and more general Bayesian Network classifier learning

could also benefit from attribute weighting, we leave its investigation to future work.

A summary of different methods compared in this research is given in Table 2.

4. Weighting to Alleviate the Naive Bayes Independence Assumption

In this section, we will discuss our proposed methods to incorporate weights in naive Bayes.

4.1 WANBIA

Many previous approaches to attribute weighting for naive Bayes have found weights using some

form of mechanism that increases the weights of attributes that are highly predictive of the class

and decreases the weights of attributes that are less predictive of the class. We argue that this is

not appropriate. Naive Bayes delivers Bayes optimal classification if the attribute independence

assumption holds. Weighting should only be applied to remedy violations of the attribute indepen-

dence assumption. For example, consider the case where there are three attributes, x1, x2 and x3,

such that x1 and x2 are conditionally independent of one another given the class and x3 is an exact

copy of x1 (and hence violates the independence assumption). Irrespective of any measure of how

well these three attributes each predict the class, Bayes optimal classification will be obtained by

setting the weights of x1 and x3 to sum to 1.0 and setting the weight of x2 to 1.0. In contrast, a

method that uses a measure such as mutual information with the class to weight the attribute will
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Name Description

Naive Bayes.

NB Naive Bayes Classifier.

Weighted Naive Bayes (using Typical Feature Weighting Methods).

GRW Use gain ratio as attribute weights in naive Bayes, shown in Equation 7 (Zhang and Sheng, 2004).

SBC Assign weight to attribute i as given in Equation 8 where L = 5 with a bootstrap size of 10%. Also di = 0 if

di > 3 (Ratanamahatana and Gunopulos, 2003).

MH Assign weight to attribute i as given in Equation 8 where L = 10 with a bootstrap size of 50% (Hall, 2007).

SB Use Selective Bayes method to determine the rank of individual features and assign weights according to Equa-

tion 9 (Langley and Sage, 1994).

CFS Use correlation-based feature selection method to determine the rank of individual features and assign weights

according to Equation 9 (Langley and Sage, 1994; Hall, 2007).

Selective Naive Bayes (using Typical Feature Selection Methods).

SBC-FS Similar to SBC except wi = 1 if wi > 0.

MH-FS Similar to MH except wi = 1 if wi > 0 (Hall, 2007).

Weighted Naive Bayes (Ferreira et al., 2001).

FNB-d1 Weights computed per attribute value using Equation 10 with α = 2.

FNB-d2 Weights computed per attribute value using Equation 10 with α = 2.

Semi-naive Bayes Classifiers.

AnDE Average n-Dependent Estimator (Webb et al., 2011).

TAN Tree Augmented Naive Bayes (Friedman et al., 1997).

State of the Art Classification Techniques.

RF Random Forests (Breiman, 2001).

LR Logistic Regression (Roos et al., 2005).

Weighted Naive Bayes (Proposed Methods, will be discussed in Section 4).

WANBIACLL Naive Bayes weights obtained by maximizing Conditional Log-Likelihood.

WANBIAMSE Naive Bayes weights obtained by minimizing Mean-Square-Error.

Table 2: Summary of techniques compared in this research.

reduce the accuracy of the classifier relative to using uniform weights in any situation where x1 and

x3 receive higher weights than x2.

Rather than selecting weights based on measures of predictiveness, we suggest it is more prof-

itable to pursue approaches such as those of Zhang and Sheng (2004) and Wu and Cai (2011) that

optimize the weights to improve the prediction performance of the weighted classifier as a whole.

Following from Equations 1, 2 and 5, let us re-define the weighted naive Bayes model as:

P̂(y|x;π,Θ,w) =
πy ∏i θwi

Xi=xi|y
∑y′ πy′ ∏i θwi

Xi=xi|y′
, (10)

with constraints:

∑y πy=1 and ∀y,i ∑ j θXi=xi|y=1,

where

• {πy,θXi=xi|y} are naive Bayes parameters.

• π ∈ [0,1] |Y | is a class probability vector.

• The matrix Θ consist of class and attribute-dependent probability vectors θi,y ∈ [0,1] |Xi | .

• w is a vector of class-independent weights, wi for each attribute i.
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Our proposed method WANBIA is inspired by Cerquides and De Mántaras (2005b) where weights

of different classifiers in an ensemble are calculated by maximizing the conditional log-likelihood

(CLL) of the data. We will follow their approach of maximizing the CLL of the data to determine

weights w in the model. In doing so, we will make the following assumptions:

• Naive Bayes parameters (πy,θXi=xi|y) are fixed. Hence we can write P̂(y|x;π,Θ,w) in Equa-

tion 10 as P̂(y|x;w).

• Weights lie in the interval between zero and one and hence w ∈ [0,1]a.

For notational simplicity, we will write conditional probabilities as θxi|y instead of θXi=xi|y. Since

our prior is constant, let us define our supervised posterior as follows:

P̂(L |D,w) =
|D |

∏
j=1

P̂(y( j)|x( j);w). (11)

Taking the log of Equation 11, we get the Conditional Log-Likelihood (CLL) function, so our

objective function can be defined as:

CLL(w) = log P̂(L |D,w) (12)

=
|D |

∑
j=1

log P̂(y( j)|x( j);w)

=
|D |

∑
j=1

log
γyx(w)

∑y′ γy′x(w)
,

where

γyx(w) = πy ∏
i

θwi

xi|y.

The proposed method WANBIACLL is aimed at solving the following optimization problem: find

the weights w that maximizes the objective function CLL(w) in Equation 12 subject to 0 ≤ wi ≤
1 ∀i. We can solve the problem by using the L-BFGS-M optimization procedure (Zhu et al., 1997).

In order to do that, we need to be able to assess CLL(w) in Equation 12 and its gradient.

Before calculating the gradient of CLL(w) with respect to w, let us find out the gradient of

γyx(w) with respect to wi, we can write:

∂

∂wi

γyx(w) = (πy ∏
i′ 6=i

θ
wi′
xi′ |y

)
∂

∂wi

θwi

xi|y

= (πy ∏
i′ 6=i

θ
wi′
xi′ |y

) θwi

xi|y log(θxi|y)

= γyx(w) log(θxi|y). (13)

Now, we can write the gradient of CLL(w) as:

∂

∂wi

CLL(w) =
∂

∂wi
∑

x∈D

(

log(γyx(w))− log(∑
y′

γy′x(w))

)
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= ∑
x∈D

(

γyx(w) log(θxi|y)

γyx(w)
− ∑y′ γy′x(w) log(θxi|y′)

∑y′ γy′x(w)

)

= ∑
x∈D

(

log(θxi|y)−∑
y′

P̂(y′|x;w) log(θxi|y′)

)

. (14)

WANBIACLL evaluates the function in Equation 12 and its gradient in Equation 14 to determine

optimal values of weight vector w.

Instead of maximizing the supervised posterior, one can also minimize Mean Square Error

(MSE). Our second proposed weighting scheme WANBIAMSE is based on minimizing the MSE

function. Based on MSE, we can define our objective function as follows:

MSE(w) =
1

2
∑

x( j)∈D

∑
y

(P(y|x( j))− P̂(y|x( j)))2, (15)

where we define

P(y|x( j)) =

{

1 if y = y( j)

0 otherwise
.

The gradient of MSE(w) in Equation 15 with respect to w can be derived as:

∂MSE(w)

∂wi

=−∑
x∈D

∑
y

(

P(y|x)−P̂(y|x)
) ∂P̂(y|x)

∂wi

, (16)

where

∂P̂(y|x)
∂wi

=

∂
∂wi

γyx(w)

∑y′ γy′x(w)
−

γyx(w) ∂
∂wi

∑y′ γy′x(w)

(∑y′ γy′x(w))2

=
1

∑y′ γy′x(w)

(

∂γyx(w)

∂wi

− P̂(y|x)∑
y′

∂γy′x(w)

∂wi

)

.

Following from Equation 13, we can write:

∂P̂(y|x)
∂wi

=
1

∑y′ γy′x(w)

(

γyx(w) log(θxi|y)− P̂(y|x)∑
y′

γy′x(w) log(θxi|y′)

)

= P̂(y|x) log(θxi|y)− P̂(y|x)∑
y′

P̂(y′|x) log(θxi|y′)

= P̂(y|x)
(

log(θxi|y)−∑
y′

P̂(y′|x) log(θxi|y′)

)

. (17)

Plugging the value of
∂P̂(y|x)

∂wi
from Equation 17 in Equation 16, we can write the gradient as:

∂MSE(w)

∂wi

= − ∑
x∈D

∑
y

(

P(y|x)− P̂(y|x)
)

P̂(y|x)
(

log(θxi|y)−∑
y′

P̂(y′|x) log(θxi|y′)

)

. (18)
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WANBIAMSE evaluates the function in Equation 15 and its gradient in Equation 18 to determine

the optimal value of weight vector w.

4.2 Connections with Logistic Regression

In this section, we will re-visit naive Bayes to illustrate WANBIA’s connection with the logistic

regression.

4.2.1 BACKGROUND: NAIVE BAYES AND LOGISTIC REGRESSION

As discussed in Section 2 and 4.1, the naive Bayes (NB) model for estimating P(y|x) is parame-

terized by a class probability vector π ∈ [0,1] |Y | and a matrix Θ, consisting of class and attribute

dependent probability vectors θi,y ∈ [0,1]|Xi|. The NB model thus contains

( |Y | −1)+ |Y | ∑
i

(|Xi|−1)

free parameters, which are estimated by maximizing the likelihood function:

P(D,L ;π,Θ) = ∏
j

P(y( j),x( j)),

or the posterior over model parameters (in which case they are referred to as maximum a posteriori

or MAP estimates). Importantly, these estimates can be calculated analytically from attribute-value

count vectors.

Meanwhile a multi-class logistic regression model is parameterized by a vector α ∈ R |Y | and

matrix B ∈ R |Y |×a each consisting of real values, and can be written as:

PLR(y|x;α,B) =
exp(αy +∑i βi,yxi)

∑y′ exp(αy′ +∑i βi,y′xi)
,

where

α1=0 & ∀i βi,1=0.

The constraints arbitrarily setting all parameters for y= 1 to the value zero are necessary only to

prevent over-parameterization. The LR model, therefore, has:

( |Y | −1)× (1+a)

free parameters. Rather than maximizing the likelihood, LR parameters are estimated by maximiz-

ing the conditional likelihood of the class labels given the data:

P(L |D;α,B) = ∏
j

P(y( j)|x( j)),

or the corresponding posterior distribution. Estimating the parameters in this fashion requires search

using gradient-based methods.

Mathematically the relationship between the two models is simple. One can compare the mod-

els, by considering that the “multiplicative contribution” of an attribute value xi in NB is found
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by simply looking up the corresponding parameter θXi=xi|y in Θ, while for LR it is calculated as

exp(βi,yxi), that is, by taking the exponent of the product of the value with an attribute (but not

value) dependent parameter βi,y from B .2

4.2.2 PARAMETERS OF WEIGHTED ATTRIBUTE NAIVE BAYES

The WANBIA model is an extension of the NB model where we introduce a weight vector w∈ [0,1]a

containing a class-independent weight wi for each attribute i. The model as written in Equation 10

includes the NB model as a special case (where w = 1). We do not treat the NB parameters of

the model as free however, but instead fix them to their MAP estimates (assuming the weights

were all one), which can be computed analytically and therefore does not require any search. We

then estimate the parameter vector w by maximizing the Conditional Log Likelihood (CLL) or by

minimizing the Mean Squared Error (MSE).3

Thus in terms of the number of parameters that needs to be estimated using gradient-based

search, a WANBIA model can be considered to have a free parameters, which is always less than the

corresponding LR model with ( |Y | −1)(1+a) free parameters to be estimated. Thus for a binary

class problems containing only binary attributes, WANBIA has 1 less free parameter than LR, but

for multi-class problems with binary attributes it results in a multiplicative factor of |Y | −1 fewer

parameters. Since parameter estimation using CLL or MSE (or even Hinge Loss) requires search,

fewer free parameters to estimate means faster learning and therefore scaling to larger problems.

For problems containing non-binary attributes, WANBIA allows us to build (more expressive)

non-linear classifiers, which are not possible for Logistic Regression unless one “binarizes” all

attributes, with the resulting blow-out in the number of free parameters as mentioned above. One

should note that LR can only operate on nominal data by binarizing it. Therefore, on discrete

problems with nominal data, WANBIA offers significant advantage in terms of the number of free

parameters.

Lest the reader assume that the only goal of this work is to find a more computationally effi-

cient version of LR, we note that the real advantage of the WANBIA model is to make use of the

information present in the easy to compute naive Bayes MAP estimates to guide the search toward

reasonable settings for parameters of a model that is not hampered by the assumption of attribute

independence.

A summary of the comparison of naive Bayes, WANBIA and Logistic Regression is given in

Table 3.

5. Experiments

In this section, we compare the performance of our proposed methods WANBIACLL and

WANBIAMSE with state of the art classifiers, existing semi-naive Bayes methods and weighted

naive Bayes methods based on both attribute selection and attribute weighting. The performance is

analyzed in terms of 0-1 loss, root mean square error (RMSE), bias and variance on 73 natural do-

mains from the UCI repository of machine learning (Frank and Asuncion, 2010). Table 4 describes

the details of each data set used, including the number of instances, attributes and classes.

2. Note that unlike the NB model, the LR model does not require that the domain of attribute values be discrete. Non-

discrete data can also be handled by Naive Bayes models, but a different parameterization for the distribution over

attribute values must be used.

3. Note that we cannot maximize the Log Likelihood (LL) since the model is not generative.
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Naive Bayes WANBIA Logistic Regression

Approach Estimate parameters

by maximizing the

likelihood function

P(D,L)

Estimate parameters

by maximizing condi-

tional log-likelihood

P(L |D) or minimizing

Mean-Squared-Error

Estimate parameters

by maximizing con-

ditional likelihood

P(L |D)

Form P̂(y|x;π,Θ) P̂(y|x;π,Θ,w) P̂(y|x;α,B)

Formula
πy ∏i θxi|i,y

∑y′ πy′ ∏i θxi |i,y′

πy ∏i θ
wi
xi|i,y

∑y′ πy′ ∏i θ
wi
xi |i,y′

exp(αy+∑i βi,yxi)

∑y′ exp(αy′+∑i βi,y′ xi)

Constraints π ∈ [0,1] |Y | ,
θi,y ∈ [0,1]|Xi|,∑y πy =
1,∀y,i ∑ j θXi=xi|y=1

π ∈ [0,1] |Y | ,
θi,y ∈ [0,1]|Xi|,
w ∈ [0,1]a,∑y πy =
1,∀y,i ∑ j θXi=xi|y=1

α1 = 0,∀i βi,1 = 0

No. of ‘Fixed’ Param-

eters

( |Y | − 1) +
|Y | ∑i( |Xi | −1)

( |Y | − 1) +
|Y | ∑i( |Xi | −1)

None

No. of ‘Fixed’ Param-

eters (Binary Case)

1+(2×a) 1+(2×a) None

Strategy to calculate

Fixed Parameters

π and Θ are fixed to

their MAP estimates

π and Θ are fixed to

their MAP estimates

when w = 1

Not applicable

No. of ‘Free’ Parame-

ters

None a ( |Y | −1)× (1+a)

No. of ‘Free’ Parame-

ters (Binary case)

None a (1+a)

Table 3: Comparison of naive Bayes, weighted naive Bayes and Logistic Regression

This section is organized as follows: we will discuss our experimental methodology with details

on statistics employed and miscellaneous issues in Section 5.1. Section 5.2 illustrates the impact

of a single weight on bias, variance, 0-1 loss and RMSE of naive Bayes as shown in Equation 6.

The performance of our two proposed weighting methods WANBIACLL and WANBIAMSE is

compared in Section 5.3. We will discuss the calibration performance of WANBIA in Section 5.4.

In Section 5.5, we will discuss results when the proposed methods are constrained to learn only a

single weight. In Section 5.6 and 5.7, WANBIACLL and WANBIAMSE are compared with naive

Bayes where weights are induced through various feature weighting and feature selection schemes

respectively. We compare the performance of our proposed methods with per-attribute value weight

learning method of Ferreira et al. (2001) in Section 5.8. We will discuss the significance of these

results in Section 5.9. The performance of our proposed methods is compared with state of the

art classifiers like Average n-Dependent Estimators (AnDE), Tree Augmented Networks (TAN),

Random Forests (RF) and Logistic Regression (LR) in Section 5.10, 5.11 and 5.12 respectively.

Results are summarized in Section 5.13.

5.1 Experimental Methodology

The experiments are conducted in the Weka work-branch (version 3.5.7) on data sets described in

Table 4. Each algorithm is tested on each data set using 20 rounds of 2-fold cross validation. We

employed Friedman and Nemenyi tests with a significance level of 0.05 to evaluate the performance
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Domain Case Att Class Domain Case Att Class

Abalone 4177 9 3 MAGIC Gamma Telescope 19020 11 2

Adult 48842 15 2 Mushrooms 8124 23 2

Annealing 898 39 6 Musk1 476 167 2

Audiology 226 70 24 Musk2 6598 167 2

Auto Imports 205 26 7 Nettalk(Phoneme) 5438 8 52

Balance Scale 625 5 3 New-Thyroid 215 6 3

Breast Cancer (Wisconsin) 699 10 2 Nursery 12960 9 5

Car Evaluation 1728 8 4 Optical Digits 5620 49 10

Census-Income (KDD) 299285 40 2 Page BlocksClassification 5473 11 5

Chess 551 40 2 Pen Digits 10992 17 10

Connect-4 Opening 67557 43 3 Pima Indians Diabetes 768 9 2

Contact-lenses 24 5 3 Pioneer 9150 37 57

Contraceptive Method Choice 1473 10 3 Poker-hand 1175067 11 10

Covertype 581012 55 7 Postoperative Patient 90 9 3

Credit Screening 690 16 2 Primary Tumor 339 18 22

Cylinder 540 40 2 Promoter Gene Sequences 106 58 2

Dermatology 366 35 6 Satellite 6435 37 6

Echocardiogram 131 7 2 Segment 2310 20 7

German 1000 21 2 Sick-euthyroid 3772 30 2

Glass Identification 214 10 3 Sign 12546 9 3

Haberman’s Survival 306 4 2 Sonar Classification 208 61 2

Heart Disease (Cleveland) 303 14 2 Spambase 4601 58 2

Hepatitis 155 20 2 Splice-junction Gene Sequences 3190 62 3

Horse Colic 368 22 2 Statlog (Shuttle) 58000 10 7

House Votes 84 435 17 2 Syncon 600 61 6

Hungarian 294 14 2 Teaching Assistant Evaluation 151 6 3

Hypothyroid(Garavan) 3772 30 4 Thyroid 9169 30 20

Ionosphere 351 35 2 Tic-Tac-Toe Endgame 958 10 2

Iris Classification 150 5 3 Vehicle 846 19 4

King-rook-vs-king-pawn 3196 37 2 Volcanoes 1520 4 4

Labor Negotiations 57 17 2 Vowel 990 14 11

LED 1000 8 10 Wall-following 5456 25 4

Letter Recognition 20000 17 26 Waveform-5000 5000 41 3

Liver Disorders (Bupa) 345 7 2 Wine Recognition 178 14 3

Localization 164860 7 3 Yeast 1484 9 10

Lung Cancer 32 57 3 Zoo 101 17 7

Lymphography 148 19 4

Table 4: Data sets

of each algorithm. The experiments were conducted on a Linux machine with 2.8 GHz processor

and 16 GB of RAM.

5.1.1 TWO-FOLD CROSS-VALIDATION BIAS-VARIANCE ESTIMATION

The Bias-variance decomposition provides valuable insights into the components of the error of

learned classifiers. Bias denotes the systematic component of error, which describes how closely

the learner is able to describe the decision surfaces for a domain. Variance describes the component

of error that stems from sampling, which reflects the sensitivity of the learner to variations in the

training sample (Kohavi and Wolpert, 1996; Webb, 2000). There are a number of different bias-

variance decomposition definitions. In this research, we use the bias and variance definitions of

Kohavi and Wolpert (1996) together with the repeated cross-validation bias-variance estimation

method proposed by Webb (2000). Kohavi and Wolpert define bias and variance as follows:

bias2 =
1

2
∑

y∈Y

(

P(y|x)− P̂(y |x)
)2
,
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and

variance =
1

2

(

1− ∑
y∈Y

P̂(y |x)2

)

.

In the method of Kohavi and Wolpert (1996), which is the default bias-variance estimation

method in Weka, the randomized training data are randomly divided into a training pool and a test

pool. Each pool contains 50% of the data. 50 (the default number in Weka) local training sets, each

containing half of the training pool, are sampled from the training pool. Hence, each local training

set is only 25% of the full data set. Classifiers are generated from local training sets and bias,

variance and error are estimated from the performance of the classifiers on the test pool. However,

in this work, the repeated cross-validation bias-variance estimation method is used as it results in the

use of substantially larger training sets. Only two folds are used because, if more than two are used,

the multiple classifiers are trained from training sets with large overlap, and hence the estimation of

variance is compromised. A further benefit of this approach relative to the Kohavi Wolpert method

is that every case in the training data is used the same number of times for both training and testing.

A reason for performing bias/variance estimation is that it provides insights into how the learn-

ing algorithm will perform with varying amount of data. We expect low variance algorithms to have

relatively low error for small data and low bias algorithms to have relatively low error for large data

(Damien and Webb, 2002).

5.1.2 STATISTICS EMPLOYED

We employ the following statistics to interpret results:

• Win/Draw/Loss (WDL) Record - When two algorithms are compared, we count the number

of data sets for which one algorithm performs better, equally well or worse than the other on a

given measure. A standard binomial sign test, assuming that wins and losses are equiprobable,

is applied to these records. We assess a difference as significant if the outcome of a one-tailed

binomial sign test is less than 0.05.

• Average - The average (arithmetic mean) across all data sets provides a gross indication of

relative performance in addition to other statistics. In some cases, we normalize the results

with respect to one of our proposed method’s results and plot the geometric mean of the ratios.

• Significance (Friedman and Nemenyi) Test - We employ the Friedman and the Nemenyi

tests for comparison of multiple algorithms over multiple data sets (Demšar, 2006; Friedman,

1937, 1940). The Friedman test is a non-parametric equivalent of the repeated measures

ANOVA (analysis of variance). We follow the steps below to compute results:

– Calculate the rank of each algorithm for each data set separately (assign average ranks

in case of a tie). Calculate the average rank of each algorithm.

– Compute the Friedman statistics as derived in Kononenko (1990) for the set of average

ranks:

FF =
(D−1)χ2

F

D(g−1)−χ2
F

, (19)
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where

χ2
F =

12D

g(g+1)

(

∑
i

R2
i −

g(g+1)2

4

)

,

g is the number of algorithms being compared, D is the number of data sets and Ri is the

average rank of the i-th algorithm.

– Specify the null hypothesis. In our case the null hypothesis is that there is no difference

in the average ranks.

– Check if we can reject the null hypothesis. One can reject the null hypothesis if the

Friedman statistic (Equation 19) is larger than the critical value of the F distribution

with g−1 and (g−1)(D−1) degrees of freedom for α = 0.05.

– If null hypothesis is rejected, perform Nemenyi tests which is used to further analyze

which pairs of algorithms are significantly different. Let di j be the difference between

the average ranks of the ith algorithm and jth algorithm. We assess the difference be-

tween the algorithms to be significant if di j > critical difference (CD) = q0.05

√

g(g+1)
6D

,

where q0.05 are the critical values that are calculated by dividing the values in the row

for the infinite degree of freedom of the table of Studentized range statistics (α = 0.05)

by
√

2.

5.1.3 MISCELLANEOUS ISSUES

This section explains other issues related to the experiments.

• Probability Estimates - The base probabilities of each algorithm are estimated using m-

estimation, since in our initial experiments it leads to more accurate probabilities than Laplace

estimation for naive Bayes and weighted naive Bayes. In the experiments, we use m = 1.0,

computing the conditional probability as:

P̂(xi|y) =
Nxi,y +

m
|Xi|

(Ny −N?)+m
, (20)

where Nxi,y is the count of data points with attribute value xi and class label y, Ny is the count

of data points with class label y, N? is the number of missing values of attribute i.

• Numeric Values - To handle numeric attributes we tested the following techniques in our

initial experiments:

– Quantitative attributes are discretized using three bin discretization.

– Quantitative attributes are discretized using Minimum Description Length (MDL) dis-

cretization (Fayyad and Keki, 1992).

– Kernel Density Estimation (KDE) computing the probability of numeric attributes as:

P̂(xi|y) =
1

n
∑

x( j)∈D

exp

(

||x j
i − xi||2

λ2

)

.
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NB vs. NBw

W/D/L w=0.1 w=0.2 w=0.3 w=0.4 w=0.5 w=0.6 w=0.7 w=0.8 w=0.9 w=1.0

0/1 Loss 61/2/10 58/1/14 53/1/19 51/3/19 46/3/24 39/5/29 36/8/29 28/11/34 23/12/38 0/73/0

<0.001 <0.001 <0.001 <0.001 0.011 0.532 0.457 0.525 0.072 2

NB vs. NBw

W/D/L w=0.1 w=0.2 w=0.3 w=0.4 w=0.5 w=0.6 w=0.7 w=0.8 w=0.9 w=1.0

RMSE 53/1/19 44/1/28 37/1/35 26/1/46 21/1/51 18/1/54 17/1/55 13/1/59 12/2/59 0/73/0

<0.001 0.076 0.906 0.024 <0.001 <0.001 <0.001 <0.001 <0.001 2

NB vs. NBw

W/D/L w=0.1 w=0.2 w=0.3 w=0.4 w=0.5 w=0.6 w=0.7 w=0.8 w=0.9 w=1.0

Bias 59/2/12 54/1/18 51/3/19 49/3/21 48/5/20 44/4/25 43/6/24 35/9/29 29/14/30 0/73/0

<0.001 <0.001 <0.001 <0.001 <0.001 0.029 0.027 0.532 1 2

NB vs. NBw

W/D/L w=0.1 w=0.2 w=0.3 w=0.4 w=0.5 w=0.6 w=0.7 w=0.8 w=0.9 w=1.0

Variance 39/1/33 38/3/32 30/7/36 31/4/38 30/6/37 31/4/38 23/11/39 22/18/33 25/18/30 0/73/0

0.556 0.550 0.538 0.470 0.463 0.470 0.055 0.177 0.590 2

Table 5: Win/Draw/Loss comparison of NB with weighted NB of form Equation 6

– k-Nearest neighbor (k-NN) estimation to compute the probability of numeric attributes.

The probabilities are computed using Equation 20, where Nxi,y and Ny are calculated

over a neighborhood spanning k neighbors of xi. We use k = 10, k = 20 and k = 30.

While a detailed analysis of the results of this comparison is beyond the scope of this work,

we summarize our findings as follows: the k-NN approach with k = 50 achieved the best

0-1 loss results in terms of Win/Draw/Loss. The k-NN with k = 20 resulted in the best bias

performance, KDE in the best variance and MDL discretization in best RMSE performance.

However, we found KDE and k-NN schemes to be extremely slow at classification time. We

found that MDL discretization provides the best trade-off between the accuracy and compu-

tational efficiency. Therefore, we chose to discretize numeric attributes with MDL scheme.

• Missing Values - For the results reported in from Section 5.2 to Section 5.9, the missing val-

ues of any attributes are incorporated in probability computation as depicted in Equation 20.

Starting from Section 5.10, missing values are treated as a distinct value. The motivation be-

hind this is to have a fair comparison between WANBIA and other state of the art classifiers,

for instance, Logistic Regression and Random Forest.

• Notation - We will categorize data sets in terms of their size. For example, data sets with in-

stances ≤ 1000, > 1000 and ≤ 10000, > 10000 are denoted as bottom size, medium size and

top size respectively. We will report results on these sets to discuss suitability of a classifier

for data sets of different sizes.

5.2 Effects of a Single Weight on Naive Bayes

In this section, we will employ the Win/Draw/Loss record (WDL) and simple arithmetic mean to

summarize the effects of weights on naive Bayes’ classification performance. Table 5 compares the

WDL of naive Bayes in Equation 3 with weighted naive Bayes in Equation 6 as the weight w is

varied from 0.1 to 1.0. The WDL are presented for 0-1 loss, RMSE, bias and variance. The results

reveal that higher value of w, for example, w = 0.9 results in significantly better performance in

1965



ZAIDI, CERQUIDES, CARMAN AND WEBB

terms of 0-1 loss and RMSE and non-significantly better performance in terms of bias and variance

as compared to the lower values.

Averaged (arithmetic mean) 0-1 loss, RMSE, bias and variance results across 73 data sets as

a function of weight are plotted in Figure 2 and 3. As can be seen from the figures that as w
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Figure 2: Averaged 0-1 Loss (2(a)), RMSE (2(b)) across 73 data sets, as function of w.
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Figure 3: Averaged Bias (3(a)) Variance (3(b)) across 73 data sets, as function of w.

is increased from 0.1 to 1.0, bias decreases and variance increases. It is hard to characterize 0-1

loss and RMSE curves in Figure 2. 0-1 loss is decreased as we increase the value of w and is

almost constant when w > 0.7. However, RMSE drops as w is increased to 0.5 and then increases

for w > 0.5. As the results are averaged across 73 data sets, it is hard to say anything conclusive,

however, we conjecture that the optimal value of 0.5 for w in case of RMSE metric suggests that in

most data sets, only half of the attributes are providing independent information.

5.3 Mean-Square-Error versus Conditional-Log-Likelihood Objective Function

The Win/Draw/Loss comparison of our two proposed methods WANBIACLL and WANBIAMSE

is given in Table 6. It can be seen that WANBIAMSE has significantly better bias but significantly

worst variance than WANBIACLL. Also, WANBIAMSE wins on the majority of data sets in terms

of 0-1 loss and RMSE but the results are not significant. The two methods are also compared against

naive Bayes in Table 7. The two versions of WANBIA win significantly in terms of bias, 0-1 loss

and RMSE against naive Bayes.
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WANBIACLL vs. WANBIAMSE

W/D/L p

Bias 19/10/44 0.002

Variance 42/7/24 0.035

0-1 Loss 26/8/39 0.136

RMSE 28/12/33 0.608

Table 6: Win/Draw/Loss: WANBIACLL versus WANBIAMSE

WANBIACLL vs. NB WANBIAMSE vs. NB

W/D/L p W/D/L p

Bias 55/7/11 <0.001 57/7/9 <0.001

Variance 24/8/41 0.046 24/7/42 0.035

0-1 Loss 46/8/19 0.001 49/7/17 <0.001

RMSE 55/8/10 <0.001 54/6/13 <0.001

Table 7: Win/Draw/Loss: WANBIACLL versus NB, WANBIAMSE versus NB

Since the performance of WANBIAMSE and WANBIACLL is similar, from the following

section onwards, for simplicity we will only consider WANBIAMSE when comparing with other

weighted NB and state of the art classification methods and denote it by WANBIA.

5.4 Comparing the Calibration of WANBIA and NB Probability Estimates

One benefit of Bayesian classifiers (and indeed also Logistic Regression) over Support Vector Ma-

chine and Decision-Tree based classifiers is that the former implicitly produce interpretable confi-

dence values for each classification in the form of class membership probability estimates P̂(y|x).
Unfortunately, the probability estimates that naive Bayes produces can often be poorly calibrated as

a result of the conditional independence assumption. Whenever the conditional independence as-

sumption is violated, which is usually the case in practice, the probability estimates tend to be more

extreme (closer to zero or one) than they should otherwise be. In other words, the NB classifier

tends to be more confident in its class membership predictions than is warranted given the training

data. Poor calibration and over-confidence do not always affect performance in terms of 0-1 Loss,

but in many applications accurate estimates of the probability of x belonging to class y are needed

(Zadrozny and Elkan, 2002).

Since, WANBIA is based on alleviating the attribute-independence assumption, it also corrects

for naive Bayes’ poor calibration as can be seen in Figure 4.

Formally, we say a classifier is well-calibrated (Murphy and Winkler, 1977), if the empirical

class membership probability P̃(y|P̂(y|x)) conditioned on the predicted probability P̂(y|x) converges

to the latter, as the number of training examples goes to infinity. Putting it more simply, if we

count the number of data points for which a classifier assigned a particular class probability of say

P̂(y|x) = 0.3, then if the classifier is well-calibrated we would expect approximately 30% of these

data points to be members of class y in the data set.
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Figure 4 shows reliability diagrams showing the relative calibration for naive Bayes and WANBIA

(DeGroot and Fienbert, 1982). Reliability diagrams plot empirical class membership probability

P̃(y|P̂(y|x)) versus predicted class membership probability for P̂(y|x) at various levels of the latter.

If a classifier is well-calibrated, all points will lie on the diagonal indicating that estimates are equal

to their empirical probability. In the diagrams, the empirical probability P̃(y|P̂(y|x) = p) is the ratio

of the number of training points with predicted probability p belonging to class y to the total number

of training points with predicted probability p. Since, the number of different predicted values is

large as compared to the number of data points, we can not calculate reliable empirical probabilities

for each data point, but instead bin the predicted values along the x-axis. For plots in Figure 4, we

have used a bin size of 0.05.

Reliability diagrams are shown for sample data sets Adult, Census-income, Connect-4, Local-

ization, Magic, Page-blocks, Pendigits, Satellige and Sign. One can see that WANBIA often attains

far better calibrated class membership probability estimates.
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Figure 4: Reliability diagrams of naive Bayes and WANBIA on nine data sets.

5.5 Single versus Multiple Naive Bayes Weights Learning

To study the effect of single versus multiple weight learning for naive Bayes (naive Bayes in Equa-

tion 5 versus naive Bayes in Equation 6), we constrained WANBIA to learn only a single weight for

all attributes. The method is denoted by WANBIA-S and compared with WANBIA and naive Bayes

in Table 8.

It can be seen that learning multiple weights result in significantly better 0-1 loss, bias and

RMSE as compared to learning a single weight but significantly worst variance. This is again
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vs. WANBIA vs. NB

W/D/L p W/D/L p

Bias 5/7/61 <0.001 27/18/28 1

Variance 46/7/20 0.001 29/21/23 0.488

0-1 Loss 17/7/49 <0.001 30-18/25 0.590

RMSE 19/7/47 <0.001 52/15/6 <0.001

Table 8: Win/Draw/Loss: WANBIA-S vs. WANBIA and NB

the effect of the bias-variance trade-off. Learning multiple weights result in lowering the bias

but increases the variance of classification. As can be seen from the table, the performance of

WANBIA-S compared to NB is fairly even in terms of 0-1 loss, bias and variance and WDL re-

sults are non-significant. However, RMSE is significantly improved as WANBIA-S improves naive

Bayes probability estimates on 52 of the 73 data sets.

5.6 WANBIA versus Weighted Naive Bayes Using Feature Weighting Methods

The Win/Draw/Loss results of WANBIA against GRW, SBC, MH and CFS weighting NB tech-

niques are given in Table 9. It can be seen that WANBIA has significantly better 0-1 loss, bias and

RMSE than all other methods. Variance is, however, worst comparing to GRW, CFS and SB.

vs. GRW vs. SBC vs. MH vs. CFS vs. SB

Bias 60/0/13 64/1/8 62/3/8 63/4/6 61/5/7

p <0.001 0.048 <0.001 0.048 <0.001

Variance 31/1/41 46/1/26 28/2/43 21/4/48 29/3/41

p 0.288 0.012 0.095 0.001 0.188

0-1 Loss 58/0/15 66/1/6 57/2/14 50/3/20 52/3/18

p <0.001 <0.001 <0.001 <0.001 <0.001

RMSE 65/1/7 62/2/9 54/2/17 50/4/19 52/3/18

p <0.001 <0.001 <0.001 <0.001 <0.001

Table 9: Win/Draw/Loss: WANBIA versus Feature Weighting Methods

5.7 WANBIA versus Selective Naive Bayes

In this section, we will compare WANBIA performance with that of selective naive Bayes classifiers

SBC-FS and MH-FS. The Win/Draw/Loss results are given in Table 10. It can be seen that WANBIA

has significantly better 0-1 loss, bias and RMSE as compared to SBC-FS and MH-FS. It also has

better variance as compared to the other methods.

5.8 WANBIA versus Ferreira et al. Approach

WANBIA comparison with Ferreira et al. (2001) approaches FNB-d1 and FNB-d2 in terms of 0-1

loss, RMSE, bias and variance is given in Table 11. WANBIA has significantly better 0-1 loss, bias

and RMSE and non-significantly worst variance as compared to the other methods.
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vs. SBC-FS vs. MH-FS

W/D/L p W/D/L p

Bias 58/3/12 <0.001 58/6/9 <0.001

Variance 52/3/18 <0.001 37/6/30 0.463

0-1 Loss 65/3/5 <0.001 56/6/11 <0.001

RMSE 65/3/5 <0.001 64/5/4 <0.001

Table 10: Win/Draw/Loss: WANBIACLL, WANBIAMSE vs. SBC-FS and MH-FS

vs. FNB-d1 vs. FNB-d2

W/D/L p W/D/L p

Bias 70/2/1 <0.001 64/1/8 <0.001

Variance 27/3/43 0.072 30/1/42 0.194

0-1 Loss 58/2/13 <0.001 59/1/13 <0.001

RMSE 56/1/16 <0.001 59/1/13 <0.001

Table 11: Win/Draw/Loss: WANBIA vs. FNB-d1 and FNB-d2

5.9 Discussion

In this section, we discuss the significance of the results presented in the Sections 5.6, 5.7 and 5.8

using Friedman and Nemenyi tests. Following the graphical representation of Demšar (2006), we

show the comparison of techniques WANBIA, GRW, SBC, MH, CFS, SB, FNB-d1, FNB-d2, SBC-

FS and MH-FS against each other on each metric, that is, 0-1 loss, RMSE, bias and variance.

We plot the algorithms on a vertical line according to their ranks, the lower the better. Ranks

are also displayed on a parallel vertical line. Critical difference is also plotted. Algorithms are

connected by a line if their differences are not significant. This comparison involves 10 (a = 10)

algorithms with 73 (D = 73) data sets. The Friedman statistic is distributed according to the F

distribution with a− 1 = 9 and (a− 1)(D− 1) = 648 degrees of freedom. The critical value of

F(9,648) for α = 0.05 is 1.8943. The Friedman statistics for 0-1 loss, bias, variance and RMSE

in our experiments are 18.5108, 24.2316, 9.7563 and 26.6189 respectively. Therefore, the null

hypotheses were rejected. The comparison using Nemenyi test on bias, variance, 0-1 loss and

RMSE is shown in Figure 5.9.

As can be seen from the figure, the rank of WANBIA is significantly better than that of other

techniques in terms of the 0-1 loss and bias. WANBIA ranks first in terms of RMSE but its score is

not significantly better better than that of SB. Variance-wise, FNB-d1, GRW, CFS, FNB-d2 and MH

have the top five ranks with performance not significantly different among them, whereas WANBIA

stands eighth, with rank not significantly different from GRW, fnbd1, MH, SB, fnbd2 and MH-FS.

5.10 WANBIA versus Semi-naive Bayes Classification

In this section, we will compare WANBIA with semi-naive Bayes methods Tree Augmented Naive

Bayes (TAN) and Average n-Dependence Estimators (AnDE). AnDE provides a family of classifi-

cation algorithms that includes naive Bayes when n = 0. As n increases, bias decreases and variance

of classification increases. We will constrain to A1DE in this work. A1DE relaxes NB’s attribute

independence assumption by (only) making each attribute independent given the class and one at-
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Figure 5: 0-1 Loss, RMSE, Bias, Variance comparison of 10 algorithms (GRW, SBC, MH, CFS,

SB, SBC-FS, MH-FS, FNB-d1, FNB-d2, WANBIA) with the Nemenyi test on 73 data

sets. CD = 1.4778.
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Figure 6: Averaged learning time (left) and classification time (right) of TAN, A1DE and WANBIA

on all 73, Top, Medium and Bottom size data sets. Results are normalized with respect to

WANBIA and geometric mean is reported.

tribute, the super-parent. This results in a one-dependence classifier. A1DE is an ensemble of these

one-dependence classifiers. As A1DE is based on learning without search, every attribute takes a

turn to be a super-parent. A1DE estimates by averaging over all estimates of P(y,x), that is:

P̂(y,x) =
1

a

a

∑
i=1

P̂(y,xi)P̂(x|y,xi).

Similarly, TAN augments the naive Bayes structure by allowing each attribute to depend on at most

one non-class attribute. Unlike A1DE, it is not an ensemble and uses an extension of the Chow-Liu

tree that uses conditional mutual information to find a maximum spanning tree as a classifier. The

estimate is:

P̂(y,x) = P̂(y)
a

∏
i=1

P̂(xi|y,π(xi)),

where π(xi) is the parent of attribute xi.

Bias-variance analysis of WANBIA with respect to TAN and A1DE is given in Table 12 showing

that WANBIA has similar bias-variance performance to A1DE and significantly better variance

performance to TAN with slightly worst bias. Considering, TAN is a low bias high variance learner,

it should be suitable for large data. This can be seen in Table 13 where TAN has significantly better

0-1 Loss and RMSE performance than WANBIA on large data sets and significantly worst on small.

The average learning and classification time comparison of WANBIA and TAN is given in Figure 6

and scatter of the actual time values is given in Figures 7 and 8. Even though, TAN is competitive

to WANBIA in terms of learning time (training TAN involves a simple optimization step), we claim

that WANBIA’s improved performance on medium and small size data sets is very encouraging.

WANBIA has similar bias-variance profile to A1DE and one can expect it to perform more

or less like A1DE. This can be seen from the 0-1 Loss and RMSE comparison results given in

Table 14. Most of the results are not significant, except on large data sets where A1DE is more

effective. However, this improved performance for larger data sets has a toll associated with it.

As can be seen from Figure 6 (right) and Figure 8, A1DE is extremely computationally expensive

especially at (critical) classification time. Even though, WANBIA and A1DE performs in a similar
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vs. TAN vs. A1DE

W/D/L p W/D/L p

Bias 31/2/40 0.342 35/3/35 1.09

Variance 61/2/10 <0.001 35/3/35 1.09

Table 12: Win/Draw/Loss: Bias-variance analysis of WANBIA, TAN and A1DE

Size

All Top Medium Bottom

0-1 Loss 48/2/23 2/0/10 14/1/6 32/1/7

p 0.004 0.038 0.115 <0.001

RMSE 46/1/26 2/0/10 14/1/6 30/0/10

p 0.024 0.038 0.115 0.002

Table 13: Win/Draw/Loss: WANBIA versus TAN

fashion on small and medium size data sets, WANBIA offers a huge improvement over the state

of the art by offering a faster algorithm at classification time. Note, that training A1DE does not

involve any optimization step and hence offers a fast training step as compared to other traditional

learning algorithms.

Size

All Top Medium Bottom

0-1 Loss 31/4/38 2/1/9 10/1/10 19/2/19

p 0.470 0.065 1.176 1.128

RMSE 30/3/40 2/0/10 9/1/11 19/2/19

p 0.282 0.038 0.823 1.128

Table 14: Win/Draw/Loss: WANBIA versus A1DE

5.11 WANBIA versus Random Forest

Random Forest (RF) (Breiman, 2001) is considered to be a state of the art classification scheme.

RFs consist of multiple decision trees, each tree is trained on data selected at random but with

replacement from the original data (bagging). For example, if there are N data points, select N

data points at random with replacement. If there are n attributes, a number m is specified, such

that m < n. At each node of the decision tree, m attributes are randomly selected out of n and are

evaluated, the best being used to split the node. Each tree is grown to its largest possible size and

no pruning is done. Classifying an instance encompasses passing it through each decision tree and

the output is determined by the mode of the output of decision trees. We used 100 decision trees in

this work.

Bias-variance comparison of WANBIA and RF in Table 15 suggests that RF is a low bias and

high variance classifier. Like TAN, one can expect it to work extremely well on large data sets.

This is evident from Table 16 where 0-1 Loss and RMSE of RF and WANBIA is compared. Note,

we were unable to compute results for RF on our two largest data sets Poker-hand and Covertype
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Figure 7: Learning time comparison of NB, A1DE, TAN, RF, LR and WANBIA on all 73 data sets.

Results are normalized with respect to WANBIA and log-ratios are plotted.
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Figure 8: Classification time comparison of NB, A1DE, TAN, RF, LR and WANBIA on all 73 data

sets. Results are normalized with respect to WANBIA and log-ratios are plotted.
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Figure 9: Averaged learning time (left) and classification time (right) of RF and WANBIA on all 73,

Top, Medium and Bottom size data sets. Results are normalized with respect to WANBIA

and geometric mean is reported.

(Table 4). Even with 32 GB of RAM, Weka exhausted heap memory during cross-validation ex-

periments on RF for these data sets. However, due to its low bias one would expect RF to beat

WANBIA on these two data sets, resulting in W/D/L of 2/0/10 and 3/0/9 on largest data sets for

0-1 Loss and RMSE with a significance of 0.038 and 0.146.

vs. RF

W/D/L p

Bias 21/2/48 0.001

Variance 53/3/16 <0.001

Table 15: Win/Draw/Loss: Bias-variance analysis of WANBIA and RF

Size

All Top Medium Bottom

0-1 Loss 38/1/32 2/0/8 7/1/13 29/0/11

p 0.550 0.109 0.263 0.006

RMSE 42/1/28 3/0/7 12/1/8 27/0/13

p 0.119 0.343 0.503 0.038

Table 16: Win/Draw/Loss: WANBIA versus RF

On smaller data sets WANBIA has a better 0-1 Loss performance and significantly better RMSE

than RF. This is packaged with WANBIA’s far superior learning and classification timings over RF

as can be seen from Figures 7, 8 and 9,. This makes WANBIA an excellent alternative to RF

especially for small data.

5.12 WANBIA versus Logistic Regression

In this section, we compare the performance of WANBIA with state of the art discriminative classi-

fier Logistic Regression (LR). We implemented LR as described in Roos et al. (2005). The following
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objective function is optimized:

CLL(β) =
|D|

∑
j=1

log P̂(y|x)

=
|D |

∑
j=1

(

βT
y x− log

(

K

∑
k′=1

exp(βT
k′x)

))

.

The gradient of CLL(β) is:

∂CLL(β)

∂βi,k
=

|D |

∑
j=1

δ(y = k)xi −
exp(βT

k x)

∑K
k′=1 exp(βT

k′x)
xi

=
|D |

∑
j=1

(

δ(y = k)− P̂(k |x)
)

xi.

The same L-BFGS-M optimization procedure of Zhu et al. (1997) that is used for optimizing

WANBIA parameters is used to learn LR parameters. For L2 regularization, the following objective

function is optimized:

CLL(β) =
|D|

∑
j=1

log P̂(y|x)+C‖β‖2,

where the value of C is found using 3-fold cross validation over the training data by searching C

from the list: {10−6,10−5,10−4,10−3,10−2,10−1,100,101,102,103,104,105,106}. The value of C

resulting in lowest 0-1 error is chosen.

Table 17 compares the bias and variance of WANBIA with respect to LR and regularized LR.

Like RF, LR is a low bias classifier. Regularizing LR reduces its variance at the expense of increas-

ing its bias. However, it is encouraging to see that WANBIA still has lower variance than regularized

LR winning on 47, drawing on five and losing only on 20 data sets.

vs. LR vs. Regularized LR

W/D/L p W/D/L p

Bias 18/3/51 <0.001 10/2/60 <0.001

Variance 50/5/17 <0.001 47/5/20 0.001

Table 17: Win/Draw/Loss: Bias-variance analysis of WANBIA, LR and regularized LR

The error of WANBIA is compared with LR in Table 18. It can be seen that LR is superior to

WANBIA on large data sets. Regularized LR is very difficult to beat as can be seen from Table 19.

Regularized LR results in significantly better performance on not only large but also on medium

size data sets. However, WANBIA still maintains its effectiveness on small data. This is, again,

extremely encouraging. The comparison of LR and WANBIA’s learning and classification time is

given in Figures 7, 8 and 10. Note, that we have only reported timing results for un-regularized LR,

which is more efficient than regularized LR. The regularized results are given in the appendix, but

are not compared as, due to their computational intensity, they were computed on a Grid comprising
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Size

All Top Medium Bottom

0-1 Loss 32/3/37 0/1/11 6/1/13 26/1/13

p 0.630 <0.001 0.167 0.053

RMSE 40/4/28 0/1/11 8/1/11 32/2/6

p 0.181 <0.001 0.647 <0.001

Table 18: Win/Draw/Loss: WANBIA versus LR

Size

All Top Medium Bottom

0-1 Loss 20/2/50 0/1/11 2/1/17 21/0/19

p <0.001 <0.001 <0.001 0.874

RMSE 30/2/40 0/1/11 3/1/16 27/0/13

p 0.282 <0.001 0.004 0.038

Table 19: Win/Draw/Loss: WANBIA versus Regularized LR
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Figure 10: Averaged learning time (left) and classification time (right) of LR and WANBIA on all

73, Top, Medium and Bottom size data sets. Results are normalized with respect to

WANBIA and geometric mean is reported.

computers with 4 GB of RAM and 2.0 Ghz processor. Since the environment was not controlled,

we do not include them in our comparison.

Logistic Regression’s better performance on large data sets and marginally better performance

on medium size data sets has a computational cost associated with it. This can be seen in Figure 7.

A cross-validation procedure to tune C parameters, as required for regularization, increases already

relatively high costs to new heights. Therefore, WANBIA can be viewed as a substitute over LR for

medium size and regularized LR on smaller data sets.

5.13 Summary of Experimental Results

We summarize our results as follows:
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• WANBIA is shown to greatly improve upon naive Bayes’ generalization performance. This

performance gain is attributed to the fact that WANBIA successfully alleviates the conditional

attribute independence assumption. Traditionally, NB is preferred for small and medium size

data due to its high bias and low variance. Our results suggest that WANBIA is likely to be

preferable to NB for small and medium size data sets.

• WANBIA has significantly better 0-1 loss, RMSE, bias and variance than most existing

weighted naive Bayes schemes based on attribute selection and attribute weighting. As a

result, WANBIA sets a new standard for attribute weighing for naive Bayes.

• WANBIA is competitive to state-of-the-art semi-naive Bayes methods TAN and A1DE. WANBIA

has an edge over TAN on medium and small data sets, whereas its computational efficiency

makes it a useful alternative over A1DE. However, it is credible that WANBIA’s strategy for

alleviating NB’s attribute independence assumption is complementary to A1DE and TAN,

allowing both to be applied to obtain even better classification accuracy.

• WANBIA performs significantly better on smaller data sets compared to Random Forest with

100 decision trees. While Random Forest is likely to be more accurate on larger data sets,

WANBIA provides a computationally efficient alternative that may be attractive when com-

putational burden is an issue.

• WANBIA is more accurate than both regularized and unregularized Logistic Regression on

smaller data. Also, for multi-class and multi-valued data, WANBIA is based on optimizing

far fewer parameters and, therefore, is computationally more efficient than LR.

6. Conclusions and Further Research

In this work we have introduced weighting schemes to incorporate weights in naive Bayes. Our work

has been primarily motivated by the observation that naive Bayes conditional attribute independence

assumption is often violated and, therefore, it is useful to alleviate it. We build an argument that

in current research, weighting in naive Bayes has been viewed as a way of enhancing the impact

of attributes that are highly correlated with the class. We argue that weighting provides a natural

framework for alleviating the attribute independence assumption. Our two proposed naive Bayes

weighting methods WANBIACLL and WANBIAMSE fix naive Bayes’ parameters to be the MAP

estimates and learn weights by maximizing conditional log-likelihood and minimizing Mean Square

Error respectively. This scheme results in the need to optimize significantly fewer parameters than

LR.

Conditional log likelihood and mean square error are not the only objective functions that can

be optimized to learn weights for WANBIA. One can use, for instance, Hinge Loss (generally

used with SVM) and exponential loss (boosting). Another alternative is using a different form of

mean square error that is 1
2 ∑x( j) ∈|D | (1− P̂(y|x))2 instead of 1

2 ∑x( j)∈|D | ∑y(P(y|x)− P̂(y|x))2. A

comparison of WANBIA trained using these objective functions has been left to future work.

In interpreting the results presented in this work, it is important to keep in mind that attribute

weighting and semi-naive Bayesian relaxation of the attribute independence assumption are mu-

tually compatible. It remains a direction for future research to explore techniques for attribute

weighting in the context of semi-naive Bayes classifiers.
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We have constrained ourselves in this work to weighting of the form of Equation 5. It will

be interesting to optimize weights as in Equation 4, that is, optimizing a weight for each attribute’s

value. A next step will be to learn a weight for each attribute value per class and a weight for the prior

probabilities. Such a variant of WANBIA would have the same number of parameters to optimize

as Logistic Regression. For example, for i-th attribute and y-th class, weight term constitutes βi,y

for LR and wi logθxi|y for WANBIA.

In conclusion, with modest computation, WANBIA substantially decreases the bias of naive

Bayes without unduly increasing its variance. The resulting classifier is highly competitive with the

state of the art when learning from small and medium size data sets.
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Appendix A. Code and Detailed Results

The code of the methods proposed in this work can be obtained from the website,

http://sourceforge.net/projects/rawnaivebayes/. This appendix presents the detailed re-

sults for Error (Table 20), RMSE (Table 21), Bias (Table 22), Variance (Table 23), Train time

(Table 24) and Test time (Table 25).
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A1DE LR LR-Reg NB WANBIACLL WANBIAMSE RF100 TAN

Mush 0.0003 0 0 0.0261 0.0012 0.001 0 0.0004

Shuttle 0.0012 0.0004 0.0004 0.004 0.0014 0.0012 0.0009 0.001

Pioneer 0.0025 0.0079 0.0079 0.0036 0.0002 0.0001 0.0008 0.0057

Syncon 0.0033 0.0102 0.0107 0.0133 0.0114 0.0118 0.0127 0.0115

Hypo 0.0115 0.0062 0.0049 0.0146 0.0083 0.0082 0.0122 0.0187

Wine 0.0174 0.0185 0.0199 0.014 0.0079 0.0112 0.0211 0.0225

Anneal 0.0188 0.0117 0.0094 0.0361 0.0199 0.019 0.0122 0.0266

Pendigits 0.0197 0.0413 0.0288 0.1179 0.1038 0.1018 0.0339 0.0411

Dermatology 0.0213 0.0288 0.031 0.0201 0.019 0.021 0.0367 0.0434

Sick 0.0263 0.0269 0.0256 0.0312 0.0263 0.0264 0.0263 0.0272

Page-blocks 0.0305 0.0368 0.0318 0.0609 0.0373 0.0351 0.0309 0.0412

Optdigits 0.033 0.0533 0.0396 0.0763 0.0642 0.0658 0.0458 0.0487

Bcw 0.0371 0.0471 0.0409 0.0266 0.0343 0.0368 0.0386 0.0513

Segment 0.0388 0.055 0.0479 0.0752 0.0502 0.0505 0.0413 0.0528

Splice-c4.5 0.0404 0.0692 0.045 0.0463 0.0411 0.04 0.0489 0.0613

New-thyroid 0.0423 0.0514 0.0528 0.0374 0.0398 0.0412 0.0479 0.0514

Musk2 0.0438 0.0207 0.0143 0.0784 0.0399 0.04 0.0385 0.0494

Labor 0.0465 0.0737 0.0816 0.0544 0.0544 0.0561 0.0939 0.0842

Wall-following 0.0479 0.0118 0.0085 0.0957 0.0219 0.0206 0.0216 0.0693

House-votes-84 0.0555 0.0493 0.0461 0.0976 0.0452 0.0463 0.0416 0.0649

Iris 0.0577 0.057 0.0573 0.0553 0.053 0.0543 0.056 0.0587

Zoo 0.0629 0.0663 0.0683 0.0713 0.0723 0.0757 0.0743 0.0931

Spambase 0.0662 0.0626 0.0588 0.0979 0.0626 0.0611 0.0575 0.0689

Ionosphere 0.0701 0.0869 0.0818 0.0868 0.0779 0.0746 0.0766 0.0781

Nursery 0.0744 0.0747 0.0747 0.0979 0.0979 0.0979 0.0248 0.0686

Thyroid 0.0752 0.0683 0.0642 0.1116 0.1061 0.0994 0.075 0.0855

Musk1 0.0869 0.0877 0.0811 0.1325 0.0649 0.0666 0.0683 0.0763

Kr-vs-kp 0.0915 0.0277 0.0286 0.1267 0.0696 0.0622 0.0128 0.0772

Census-income 0.0986 0.0433 0.0433 0.2355 0.0462 0.0461 0.0494 0.0574

Letter-recog 0.1025 0.1639 0.1495 0.2563 0.2484 0.2475 0.0902 0.151

Car 0.1069 0.0742 0.0733 0.156 0.156 0.156 0.0772 0.081

Satellite 0.1092 0.1807 0.1175 0.1751 0.1553 0.1514 0.1085 0.1179

Chess 0.1318 0.1233 0.1242 0.1364 0.1338 0.132 0.1074 0.106

Waveform-5000 0.1427 0.147 0.1386 0.1918 0.1556 0.1565 0.1558 0.1825

Crx 0.1427 0.1564 0.1396 0.1449 0.138 0.1402 0.1581 0.1651

Sonar 0.144 0.1784 0.1637 0.1519 0.1688 0.1671 0.1704 0.1683

Adult 0.1491 0.1274 0.1274 0.159 0.1306 0.1303 0.1466 0.1387

Hungarian 0.1592 0.1811 0.181 0.1585 0.1701 0.1692 0.1874 0.166

Hepatitis 0.1619 0.1923 0.17 0.1574 0.1452 0.149 0.1606 0.1713

Lyn 0.1669 0.1986 0.1858 0.1666 0.1801 0.1797 0.1909 0.2257

Magic 0.1696 0.1538 0.1537 0.2169 0.172 0.1716 0.1674 0.1619

Cleveland 0.171 0.1863 0.1766 0.1693 0.1764 0.179 0.1908 0.1909

Glass3 0.1724 0.2007 0.1776 0.1871 0.1757 0.1778 0.1951 0.1846

Autos 0.1983 0.2154 0.2059 0.2554 0.23 0.2302 0.1937 0.2437

Promoters 0.1986 0.1241 0.1302 0.1387 0.1358 0.1363 0.1519 0.2325

Horse-colic 0.2107 0.2726 0.1798 0.2126 0.1622 0.1659 0.1789 0.2236

Pid 0.2193 0.2197 0.2198 0.2215 0.2151 0.2152 0.2536 0.2249

Vowel 0.2199 0.2413 0.2371 0.3931 0.3617 0.3646 0.1674 0.2781

Cylinder-bands 0.237 0.24 0.2277 0.2559 0.2591 0.2659 0.2702 0.3761

Covtype-mod 0.2413 0.2571 0.2571 0.3117 0.2912 0.2907 0.2512

Connect-4 0.244 0.2425 0.2425 0.2792 0.2727 0.2726 0.1875 0.2368

Ttt 0.2502 0.0247 0.0181 0.2902 0.2731 0.2714 0.0765 0.2484

German 0.2535 0.2575 0.2526 0.2532 0.257 0.2571 0.2684 0.2838

Phoneme 0.263 0.2544 0.2068 0.3035 0.2587 0.2607 0.1789 0.3484

Led 0.265 0.2694 0.2659 0.2632 0.2633 0.2648 0.2802 0.2702

Balance-scale 0.2682 0.2655 0.2626 0.2594 0.2594 0.2594 0.271 0.2661

Haberman 0.2714 0.2708 0.2709 0.2714 0.2714 0.2714 0.2709 0.2722

Vehicle 0.2761 0.2845 0.2723 0.3765 0.3289 0.3288 0.2742 0.2764

Sign 0.279 0.32 0.3204 0.3593 0.3589 0.3568 0.2038 0.2747

Audio 0.3288 0.2677 0.2396 0.3305 0.292 0.2942 0.3009 0.3361

Volcanoes 0.3309 0.3309 0.3309 0.3309 0.3309 0.3309 0.3309 0.3309

Echocardiogram 0.3328 0.3355 0.3351 0.3206 0.3298 0.3302 0.3489 0.3477

Contact-lenses 0.3563 0.2958 0.3604 0.3438 0.3417 0.3458 0.3438 0.4292

Localization 0.359 0.4584 0.4584 0.4939 0.4902 0.49 0.2976 0.3564

Post-operative 0.375 0.425 0.3006 0.3728 0.3611 0.3528 0.3972 0.3706

Bupa 0.3843 0.3843 0.3967 0.3843 0.3843 0.3843 0.3817 0.3843

Yeast 0.4086 0.4064 0.4059 0.4115 0.4068 0.4084 0.421 0.4096

Abalone 0.4562 0.4623 0.4656 0.4794 0.4647 0.4643 0.4823 0.4687

Poker-hand 0.4643 0.4988 0.4988 0.4988 0.4988 0.4988 0.329

Cmc 0.4791 0.447 0.4478 0.4828 0.4695 0.4654 0.4976 0.465

Tae 0.5146 0.5351 0.5334 0.5182 0.5189 0.5096 0.547 0.5344

Lung-cancer 0.5281 0.5578 0.5953 0.5203 0.5484 0.5563 0.6 0.4969

Ptn 0.5383 0.6444 0.5476 0.5388 0.5456 0.542 0.6 0.5872

Mean 0.1781 0.1817 0.1736 0.2033 0.1886 0.1885 0.1688 0.1890

Mean Rank 3.7465 4.5273 3.5000 5.7328 4.2534 4.2808 4.3356 5.6232

Table 20: Error

1980



ALLEVIATING NB ATTRIBUTE INDEPENDENCE ASSUMPTION BY ATTRIBUTE WEIGHTING

A1DE LR LR-Reg NB WANBIACLL WANBIAMSE RF100 TAN

Pioneer 0.0086 0.0156 0.0140 0.0102 0.0025 0.0017 0.0361 0.0129

Mush 0.0136 0.007 0.007 0.14 0.0403 0.0379 0.009 0.0167

Shuttle 0.0167 0.0111 0.0107 0.0309 0.0178 0.0169 0.0142 0.0154

Syncon 0.0299 0.0526 0.0551 0.0632 0.0554 0.0578 0.1145 0.0557

Pendigits 0.0556 0.0888 0.0672 0.1418 0.1256 0.1248 0.0979 0.0802

Hypo 0.0713 0.0549 0.0473 0.0775 0.0642 0.0637 0.0715 0.0885

Dermatology 0.0722 0.0931 0.0954 0.0713 0.069 0.0723 0.1303 0.1016

Anneal 0.0725 0.0609 0.0537 0.0958 0.0735 0.0741 0.0691 0.0797

Optdigits 0.0747 0.0999 0.0787 0.1159 0.099 0.1007 0.1494 0.0906

Letter-recog 0.0754 0.1001 0.0914 0.1193 0.1136 0.1135 0.0896 0.0916

Thyroid 0.0759 0.0754 0.0706 0.097 0.0867 0.0854 0.077 0.0805

Phoneme 0.0881 0.0998 0.0782 0.0951 0.086 0.0865 0.0731 0.0986

Wine 0.0917 0.1042 0.1251 0.0819 0.0656 0.0736 0.1311 0.1105

Segment 0.0957 0.1234 0.1017 0.1357 0.1032 0.1045 0.1061 0.1097

Page-blocks 0.0987 0.1116 0.0986 0.1431 0.1038 0.1027 0.0974 0.1165

Zoo 0.1171 0.1333 0.1279 0.1247 0.1253 0.1264 0.1279 0.1381

New-thyroid 0.14 0.1797 0.1741 0.1327 0.1411 0.1425 0.156 0.1577

Splice-c4.5 0.1435 0.212 0.1955 0.1536 0.1462 0.1447 0.2599 0.176

Wall-following 0.1461 0.0734 0.0598 0.2081 0.0901 0.0897 0.1206 0.1762

Audio 0.1484 0.146 0.13 0.1486 0.1354 0.135 0.1361 0.1414

Sick 0.1551 0.1483 0.1445 0.1681 0.1458 0.1452 0.1487 0.1499

Nursery 0.1583 0.1464 0.1464 0.1771 0.1771 0.1771 0.101 0.1425

Iris 0.1628 0.19 0.2162 0.165 0.1609 0.1637 0.1813 0.1678

Vowel 0.169 0.2057 0.1831 0.2206 0.2116 0.2123 0.1581 0.1886

Bcw 0.1766 0.2143 0.1844 0.1586 0.1649 0.1737 0.1796 0.1996

Satellite 0.1776 0.2449 0.1685 0.2374 0.1926 0.1916 0.1682 0.1838

Labor 0.1792 0.2567 0.2682 0.1961 0.2082 0.2143 0.2824 0.2481

Ptn 0.1816 0.2329 0.1809 0.1824 0.1811 0.1811 0.1899 0.1829

Led 0.1995 0.2025 0.2067 0.1988 0.199 0.1991 0.2091 0.2034

Musk2 0.2041 0.14 0.11 0.2766 0.1733 0.1786 0.1752 0.2169

House-votes-84 0.207 0.2191 0.1926 0.2987 0.185 0.1873 0.1846 0.2253

Car 0.2085 0.1655 0.1628 0.2293 0.2293 0.2293 0.1782 0.1849

Localization 0.2091 0.233 0.233 0.2386 0.2381 0.2381 0.1939 0.2095

Covtype-mod 0.2183 0.2259 0.2259 0.2494 0.239 0.2389 0.2243

Autos 0.22 0.244 0.2202 0.2512 0.2281 0.2284 0.2041 0.2371

Poker-hand 0.2217 0.2382 0.2382 0.2382 0.2382 0.2382 0.2124

Spambase 0.2323 0.2182 0.2115 0.2949 0.22 0.22 0.2215 0.2396

Yeast 0.2333 0.2348 0.2343 0.2341 0.2338 0.2338 0.2421 0.2353

Ionosphere 0.2529 0.29 0.2649 0.2868 0.2533 0.2595 0.2403 0.2651

Lyn 0.2542 0.3101 0.2729 0.2585 0.2539 0.2551 0.2701 0.2886

Waveform-5000 0.2586 0.2647 0.2671 0.3274 0.2697 0.2698 0.3036 0.2941

Kr-vs-kp 0.2715 0.1533 0.1547 0.3049 0.269 0.2673 0.1268 0.2383

Musk1 0.2731 0.2926 0.2568 0.3468 0.2263 0.2292 0.262 0.2515

Census-income 0.278 0.1807 0.1807 0.4599 0.1867 0.1866 0.1928 0.2083

Glass3 0.294 0.3453 0.3138 0.3118 0.3032 0.3061 0.3146 0.3034

Vehicle 0.3046 0.3235 0.2989 0.3867 0.3238 0.3239 0.3016 0.3045

Chess 0.3081 0.3121 0.3017 0.3143 0.3113 0.3113 0.2771 0.2787

Balance-scale 0.3229 0.3128 0.3672 0.3276 0.3276 0.3276 0.3181 0.3242

Adult 0.3247 0.2967 0.2967 0.3405 0.3 0.2999 0.3274 0.3091

Volcanoes 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326

Crx 0.3353 0.3483 0.3319 0.3414 0.3194 0.3213 0.3437 0.354

Sonar 0.3367 0.4163 0.3586 0.3507 0.3365 0.3364 0.3518 0.3366

Connect-4 0.3382 0.3361 0.3361 0.3592 0.3559 0.3559 0.3057 0.3322

Magic 0.3491 0.337 0.3372 0.3916 0.3568 0.3567 0.3571 0.3425

Hungarian 0.3503 0.3781 0.3678 0.3659 0.3428 0.3436 0.369 0.3441

Sign 0.3508 0.3731 0.3734 0.3968 0.3899 0.3897 0.3104 0.3499

Cleveland 0.354 0.3729 0.3606 0.3642 0.353 0.355 0.3696 0.372

Hepatitis 0.3544 0.4358 0.3725 0.3589 0.3353 0.3368 0.3375 0.359

Pid 0.3907 0.3888 0.3896 0.3949 0.3884 0.3888 0.4247 0.3911

Promoters 0.3948 0.3271 0.3281 0.333 0.3277 0.3253 0.3983 0.444

Contact-lenses 0.395 0.4356 0.431 0.3846 0.3845 0.3853 0.4098 0.4477

Ttt 0.4037 0.1385 0.1293 0.4336 0.4262 0.4254 0.2916 0.4098

Horse-colic 0.4115 0.5142 0.3703 0.4227 0.3577 0.36 0.3762 0.4219

German 0.4168 0.4234 0.4145 0.4202 0.4151 0.4156 0.4211 0.4469

Abalone 0.4198 0.4208 0.4368 0.4641 0.4206 0.4204 0.4539 0.4268

Haberman 0.4212 0.4213 0.4248 0.4212 0.4212 0.4212 0.4214 0.4213

Post-operative 0.4281 0.4777 0.4085 0.4233 0.4191 0.4174 0.4399 0.4204

Cmc 0.4349 0.4288 0.4289 0.4463 0.4312 0.4309 0.4739 0.4358

Cylinder-bands 0.4451 0.4831 0.4161 0.4661 0.4587 0.4621 0.4157 0.4794

Echocardiogram 0.4506 0.467 0.4553 0.4491 0.4459 0.4461 0.4574 0.4627

Bupa 0.4863 0.4863 0.4878 0.4863 0.4863 0.4863 0.4862 0.4861

Tae 0.5093 0.553 0.5023 0.5135 0.5075 0.4979 0.4939 0.4857

Lung-cancer 0.5698 0.5945 0.5689 0.564 0.5707 0.5711 0.4732 0.5033

Mean 0.2461 0.2544 0.2403 0.2705 0.2462 0.2468 0.2469 0.2528

Mean Rank 3.6712 5.1301 3.7397 6.0684 3.8082 4.0342 4.4657 5.0821

Table 21: RMSE

1981



ZAIDI, CERQUIDES, CARMAN AND WEBB

A1DE LR LR-Reg NB WANBIACLL WANBIAMSE RF100 TAN

Mush 0.0002 0 0 0.023 0.001 0.001 0 0.0001

Pioneer 0.0003 0.0024 0.0028 0.0011 0 0 0 0.001

Shuttle 0.0007 0.0002 0.0003 0.003 0.0011 0.0009 0.0006 0.0006

Syncon 0.002 0.005 0.0054 0.0104 0.0068 0.007 0.008 0.0055

Hypo 0.0084 0.0029 0.0026 0.0101 0.0061 0.0061 0.0083 0.012

Dermatology 0.0104 0.0135 0.0168 0.0108 0.0071 0.0082 0.019 0.013

Wine 0.012 0.0115 0.0132 0.0118 0.003 0.0039 0.01 0.0102

Anneal 0.0124 0.005 0.0042 0.0256 0.0135 0.012 0.006 0.0137

Pendigits 0.0133 0.0167 0.0162 0.1081 0.0939 0.0915 0.0216 0.0296

Labor 0.0168 0.0318 0.039 0.0167 0.0175 0.0167 0.0409 0.0201

Page-blocks 0.0231 0.0228 0.0244 0.0525 0.0327 0.0304 0.0217 0.0336

Optdigits 0.0233 0.0237 0.0232 0.0666 0.0513 0.0503 0.0294 0.0348

Sick 0.0237 0.0224 0.0219 0.0284 0.0227 0.0231 0.0194 0.023

Segment 0.0253 0.0289 0.0284 0.0633 0.0396 0.0391 0.0253 0.0334

Musk2 0.0265 0.0101 0.0065 0.0718 0.0299 0.0274 0.028 0.0386

Bcw 0.0274 0.0284 0.0301 0.0249 0.0269 0.0275 0.0301 0.0254

Wall-following 0.0285 0.0059 0.004 0.0854 0.0165 0.0156 0.0122 0.0499

New-thyroid 0.0303 0.0298 0.0306 0.0295 0.0273 0.0283 0.0285 0.0268

Splice-c4.5 0.0307 0.0362 0.0326 0.0382 0.0316 0.0294 0.0272 0.038

Zoo 0.0334 0.0332 0.0321 0.0394 0.0363 0.0384 0.0356 0.0468

House-votes-84 0.0466 0.0271 0.0262 0.0913 0.0364 0.0358 0.0327 0.0444

Iris 0.0466 0.0401 0.0442 0.0503 0.0402 0.0412 0.0398 0.0464

Musk1 0.0578 0.0463 0.0431 0.1165 0.0394 0.0399 0.0328 0.0543

Ionosphere 0.0579 0.057 0.056 0.0807 0.0592 0.0542 0.0624 0.0647

Thyroid 0.0595 0.0434 0.0453 0.0979 0.0944 0.0851 0.0516 0.0634

Spambase 0.0601 0.0452 0.0482 0.0949 0.0551 0.0532 0.0432 0.0588

Car 0.0605 0.0523 0.0519 0.1076 0.1076 0.1076 0.0389 0.0474

Nursery 0.0656 0.0684 0.0682 0.0904 0.0904 0.0904 0.0086 0.0543

Letter-recog 0.0684 0.0967 0.1013 0.2196 0.2134 0.2122 0.049 0.1041

Kr-vs-kp 0.0716 0.0192 0.0197 0.1067 0.0567 0.0519 0.0063 0.0619

Satellite 0.0831 0.0855 0.09 0.1684 0.1428 0.1386 0.0874 0.09

Census-income 0.0862 0.041 0.041 0.2319 0.0454 0.0453 0.0416 0.052

Promoters 0.0872 0.0585 0.0613 0.0683 0.0604 0.0599 0.0552 0.0773

Chess 0.0943 0.0772 0.0813 0.0989 0.0974 0.0955 0.0548 0.0551

Vowel 0.0985 0.1 0.1121 0.2287 0.222 0.2224 0.0756 0.1069

Autos 0.1164 0.1087 0.1068 0.1791 0.1427 0.1384 0.1111 0.1464

Waveform-5000 0.1176 0.1112 0.1134 0.1828 0.1404 0.1403 0.1114 0.1212

Sonar 0.1179 0.101 0.1016 0.1314 0.1137 0.1094 0.1045 0.1044

Crx 0.1206 0.1103 0.1079 0.1253 0.1108 0.1106 0.117 0.1185

Lyn 0.1234 0.1155 0.1183 0.1257 0.1169 0.1132 0.1288 0.1232

Hepatitis 0.1242 0.1007 0.1012 0.1294 0.0958 0.095 0.1071 0.1112

Glass3 0.1378 0.1289 0.1226 0.1597 0.1424 0.1425 0.1348 0.1269

Adult 0.1401 0.1207 0.1208 0.1544 0.127 0.1267 0.1109 0.1263

Hungarian 0.1426 0.1291 0.1354 0.1487 0.1373 0.1361 0.1346 0.1166

Phoneme 0.1465 0.1264 0.1264 0.1965 0.1758 0.1763 0.1102 0.1877

Cleveland 0.1505 0.1357 0.1438 0.1548 0.1423 0.1406 0.1304 0.1416

Cylinder-bands 0.1522 0.1464 0.1464 0.1814 0.142 0.1456 0.208 0.2912

Magic 0.1605 0.1446 0.1443 0.2115 0.1656 0.1651 0.1244 0.147

Horse-colic 0.1619 0.1403 0.1344 0.182 0.1275 0.1293 0.1345 0.1452

Balance-scale 0.1721 0.17 0.1665 0.1633 0.1633 0.1633 0.1731 0.1707

Pid 0.1979 0.1895 0.1872 0.2047 0.1873 0.1886 0.1802 0.1816

Ttt 0.1996 0.0171 0.0162 0.2493 0.2354 0.2349 0.027 0.1701

Vehicle 0.1998 0.1765 0.1821 0.3066 0.2463 0.2446 0.1827 0.196

German 0.1998 0.1932 0.1953 0.2101 0.2058 0.2053 0.197 0.1917

Contact-lenses 0.209 0.158 0.2094 0.2069 0.2015 0.2042 0.1748 0.3408

Haberman 0.2106 0.2124 0.2206 0.2106 0.2106 0.2106 0.2107 0.2107

Audio 0.219 0.1478 0.1424 0.2185 0.1758 0.1744 0.173 0.1662

Covtype-mod 0.2208 0.2474 0.2474 0.3034 0.2867 0.2858 0.2299

Connect-4 0.225 0.2346 0.2346 0.2643 0.2628 0.2627 0.1427 0.2226

Led 0.2278 0.2269 0.2245 0.2262 0.2264 0.2265 0.2278 0.2257

Echocardiogram 0.2447 0.2372 0.239 0.2578 0.235 0.2329 0.2256 0.2356

Sign 0.257 0.2927 0.2924 0.3432 0.3411 0.3388 0.154 0.2505

Post-operative 0.2915 0.2715 0.2848 0.2805 0.2792 0.2766 0.3007 0.2685

Localization 0.3179 0.4368 0.4368 0.4717 0.4693 0.4698 0.2047 0.3097

Tae 0.3305 0.3306 0.3311 0.3649 0.3636 0.3583 0.3315 0.3385

Volcanoes 0.3309 0.3309 0.3309 0.3309 0.3309 0.3309 0.3309 0.3309

Bupa 0.3396 0.3396 0.3146 0.3396 0.3396 0.3396 0.3451 0.3396

Abalone 0.3425 0.3457 0.3406 0.4201 0.3795 0.3785 0.3257 0.3361

Lung-cancer 0.3473 0.3714 0.384 0.352 0.3495 0.3525 0.3804 0.2834

Yeast 0.3672 0.3651 0.3655 0.3745 0.373 0.3722 0.336 0.3495

Ptn 0.3826 0.3667 0.3681 0.384 0.386 0.3791 0.3876 0.3708

Cmc 0.3907 0.3689 0.3677 0.4237 0.3941 0.3908 0.3383 0.3425

Poker-hand 0.4423 0.4988 0.4988 0.4988 0.4988 0.4988 0.2356

Mean 0.1366 0.1293 0.1305 0.1677 0.1486 0.1477 0.1151 0.1334

Mean Rank 4.7397 3.3561 3.5958 7.0136 5.0273 4.5342 3.3424 4.3901

Table 22: Bias

1982



ALLEVIATING NB ATTRIBUTE INDEPENDENCE ASSUMPTION BY ATTRIBUTE WEIGHTING

A1DE LR LR-Reg NB WANBIACLL WANBIAMSE RF100 TAN

Volcanoes 0 0 0 0 0 0 0 0

Mush 0.0001 0 0 0.0031 0.0002 0 0 0.0003

Shuttle 0.0005 0.0002 0.0002 0.001 0.0003 0.0003 0.0003 0.0004

Syncon 0.0013 0.0051 0.0054 0.0029 0.0047 0.0048 0.0047 0.006

Pioneer 0.0022 0.0055 0.002 0.0024 0.0002 0.0001 0.0007 0.0046

Sick 0.0026 0.0045 0.0037 0.0028 0.0036 0.0032 0.0069 0.0041

Hypo 0.0031 0.0033 0.0023 0.0045 0.0021 0.0021 0.0039 0.0067

Wine 0.0054 0.007 0.0068 0.0023 0.0049 0.0073 0.0111 0.0123

Spambase 0.0061 0.0174 0.0106 0.003 0.0075 0.0079 0.0143 0.0101

Anneal 0.0063 0.0067 0.0051 0.0105 0.0064 0.007 0.0062 0.0129

Pendigits 0.0063 0.0247 0.0126 0.0097 0.0099 0.0103 0.0124 0.0114

Page-blocks 0.0074 0.014 0.0073 0.0083 0.0046 0.0047 0.0092 0.0076

Nursery 0.0089 0.0063 0.0065 0.0074 0.0074 0.0074 0.0162 0.0143

House-votes-84 0.0089 0.0222 0.0199 0.0063 0.0088 0.0106 0.0089 0.0206

Adult 0.009 0.0066 0.0066 0.0045 0.0036 0.0036 0.0357 0.0124

Magic 0.0091 0.0092 0.0094 0.0054 0.0064 0.0065 0.043 0.0149

Optdigits 0.0096 0.0297 0.0164 0.0097 0.0128 0.0155 0.0165 0.0139

Bcw 0.0097 0.0187 0.0109 0.0017 0.0074 0.0093 0.0085 0.0259

Splice-c4.5 0.0097 0.0331 0.0125 0.0081 0.0095 0.0106 0.0217 0.0234

Dermatology 0.0109 0.0153 0.0142 0.0093 0.0119 0.0128 0.0178 0.0305

Iris 0.011 0.0169 0.0131 0.0051 0.0128 0.0131 0.0162 0.0123

New-thyroid 0.012 0.0216 0.0222 0.0079 0.0124 0.0129 0.0194 0.0246

Ionosphere 0.0122 0.0299 0.0258 0.0061 0.0187 0.0205 0.0142 0.0134

Census-income 0.0124 0.0023 0.0023 0.0036 0.0008 0.0008 0.0078 0.0055

Segment 0.0135 0.0261 0.0195 0.0119 0.0107 0.0115 0.016 0.0194

Thyroid 0.0157 0.0249 0.0189 0.0137 0.0117 0.0143 0.0234 0.0221

Hungarian 0.0166 0.052 0.0455 0.0098 0.0327 0.0331 0.0528 0.0494

Musk2 0.0173 0.0106 0.0078 0.0066 0.0099 0.0126 0.0105 0.0108

Connect-4 0.0189 0.0079 0.0079 0.0149 0.0098 0.0099 0.0448 0.0142

Wall-following 0.0194 0.0059 0.0045 0.0103 0.0054 0.005 0.0094 0.0194

Kr-vs-kp 0.0199 0.0085 0.009 0.02 0.0129 0.0103 0.0065 0.0153

Covtype-mod 0.0205 0.0097 0.0097 0.0082 0.0045 0.0049 0.0213

Cleveland 0.0205 0.0506 0.0327 0.0145 0.0341 0.0384 0.0603 0.0493

Pid 0.0214 0.0302 0.0326 0.0168 0.0278 0.0266 0.0734 0.0432

Poker-hand 0.022 0 0 0 0 0 0.0935

Sign 0.022 0.0273 0.028 0.0161 0.0178 0.0179 0.0498 0.0242

Crx 0.0221 0.0462 0.0317 0.0196 0.0272 0.0297 0.0411 0.0467

Waveform-5000 0.0251 0.0358 0.0253 0.009 0.0152 0.0162 0.0443 0.0613

Satellite 0.0261 0.0952 0.0275 0.0067 0.0124 0.0129 0.0211 0.0279

Sonar 0.0261 0.0773 0.0621 0.0206 0.055 0.0577 0.066 0.0639

Musk1 0.0291 0.0414 0.0379 0.016 0.0255 0.0267 0.0355 0.0219

Zoo 0.0295 0.0331 0.0362 0.0319 0.036 0.0374 0.0387 0.0463

Labor 0.0297 0.0419 0.0426 0.0377 0.0369 0.0394 0.053 0.0641

Letter-recog 0.0341 0.0672 0.0482 0.0367 0.035 0.0353 0.0413 0.0469

Glass3 0.0346 0.0718 0.055 0.0275 0.0333 0.0353 0.0603 0.0576

Led 0.0372 0.0425 0.0414 0.037 0.0369 0.0383 0.0523 0.0445

Chess 0.0375 0.0461 0.043 0.0374 0.0363 0.0366 0.0526 0.0509

Hepatitis 0.0378 0.0915 0.0688 0.028 0.0493 0.0541 0.0535 0.0601

Localization 0.041 0.0217 0.0216 0.0222 0.0209 0.0202 0.0929 0.0467

Yeast 0.0413 0.0413 0.0404 0.037 0.0338 0.0362 0.0849 0.0602

Lyn 0.0435 0.0831 0.0675 0.0408 0.0632 0.0665 0.0621 0.1025

Bupa 0.0448 0.0448 0.0821 0.0448 0.0448 0.0448 0.0366 0.0448

Car 0.0464 0.0219 0.0214 0.0484 0.0484 0.0484 0.0383 0.0336

Horse-colic 0.0488 0.1322 0.0453 0.0307 0.0347 0.0366 0.0445 0.0785

Ttt 0.0506 0.0075 0.0018 0.0409 0.0377 0.0365 0.0495 0.0783

German 0.0537 0.0643 0.0573 0.0431 0.0511 0.0517 0.0714 0.0921

Haberman 0.0608 0.0584 0.0503 0.0608 0.0608 0.0608 0.0602 0.0615

Vehicle 0.0763 0.1079 0.0901 0.0699 0.0826 0.0842 0.0915 0.0803

Autos 0.0819 0.1067 0.0991 0.0763 0.0873 0.0918 0.0825 0.0973

Post-operative 0.0835 0.1535 0.0158 0.0923 0.0819 0.0761 0.0965 0.1021

Cylinder-bands 0.0848 0.0936 0.0813 0.0745 0.117 0.1203 0.0622 0.0849

Echocardiogram 0.0881 0.0983 0.0961 0.0628 0.0948 0.0973 0.1233 0.1121

Cmc 0.0885 0.0781 0.0801 0.0591 0.0754 0.0747 0.1593 0.1225

Balance-scale 0.0961 0.0955 0.0962 0.0962 0.0962 0.0962 0.0979 0.0954

Audio 0.1097 0.1199 0.0972 0.112 0.1162 0.1199 0.1279 0.1699

Promoters 0.1113 0.0656 0.0689 0.0704 0.0755 0.0764 0.0967 0.1552

Abalone 0.1136 0.1166 0.125 0.0594 0.0852 0.0858 0.1566 0.1327

Phoneme 0.1165 0.128 0.0804 0.107 0.0829 0.0844 0.0687 0.1606

Vowel 0.1214 0.1413 0.125 0.1643 0.1397 0.1422 0.0918 0.1712

Contact-lenses 0.1473 0.1378 0.151 0.1368 0.1401 0.1417 0.169 0.0884

Ptn 0.1557 0.2777 0.1796 0.1548 0.1595 0.1629 0.2124 0.2164

Lung-cancer 0.1808 0.1864 0.2113 0.1683 0.1989 0.2037 0.2196 0.2135

Tae 0.184 0.2045 0.2024 0.1533 0.1552 0.1513 0.2156 0.196

Mean 0.0415 0.0525 0.0430 0.0357 0.0400 0.0409 0.0537 0.0556

Mean Rank 3.8150 5.7054 4.6712 2.8082 3.0821 3.9520 5.6917 6.2739

Table 23: Variance
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A1DE LR LR-Reg NB WANBIACLL WANBIAMSE RF100 TAN

Contact-lenses 0.075 0.117 13.765 0.067 0.063 0.074 0.621 0.071

Haberman 0.098 0.114 2.67 0.088 0.08 0.077 0.655 0.096

Tae 0.098 0.895 39.861 0.086 0.111 0.131 0.965 0.097

Echocardiogram 0.098 0.198 7.756 0.086 0.108 0.116 0.733 0.092

New-thyroid 0.099 0.2 13.392 0.093 0.121 0.132 0.679 0.1

Post-operative 0.099 0.294 14.513 0.083 0.111 0.106 0.762 0.101

Bupa 0.099 0.112 3.486 0.097 0.084 0.087 0.693 0.101

Iris 0.099 0.166 6.629 0.088 0.115 0.123 0.661 0.099

Wine 0.1 0.231 10.128 0.096 0.189 0.236 0.735 0.108

Labor 0.1 0.166 16.176 0.085 0.132 0.154 0.663 0.105

Glass3 0.1 0.556 48.909 0.089 0.159 0.178 1.018 0.108

Zoo 0.104 0.368 17.779 0.088 0.193 0.268 0.737 0.124

Cleveland 0.106 0.662 41.424 0.105 0.2 0.234 1.258 0.119

Hungarian 0.107 0.94 67.985 0.1 0.269 0.319 1.233 0.118

Balance-scale 0.108 0.232 10.895 0.1 0.091 0.086 1.072 0.115

Hepatitis 0.111 0.335 17.759 0.095 0.2 0.231 0.843 0.114

Led 0.113 5.203 325.834 0.105 0.341 0.444 2.831 0.13

House-votes-84 0.115 0.341 16.883 0.103 0.246 0.329 1.039 0.129

Pid 0.116 0.253 14.32 0.107 0.225 0.23 2.152 0.118

Volcanoes 0.12 2.48 109.075 0.114 0.111 0.116 1.045 0.123

Yeast 0.121 33.068 1091.32 0.111 0.598 0.714 3.914 0.14

Lyn 0.121 0.407 24.48 0.094 0.262 0.345 0.883 0.118

Ttt 0.121 0.577 62.348 0.113 0.202 0.203 2.26 0.127

Horse-colic 0.124 1.581 78.819 0.108 0.376 0.385 1.373 0.147

Crx 0.125 4.24 171.602 0.108 0.668 0.637 2.097 0.145

Car 0.128 6.549 469.286 0.117 0.123 0.127 2.556 0.137

Cmc 0.129 6.639 243.93 0.117 0.535 0.579 5.766 0.139

Ptn 0.131 181.979 3127.046 0.094 0.965 1.278 3.086 0.144

Bcw 0.132 0.423 20.418 0.106 0.312 0.398 1.059 0.138

Vowel 0.137 18.835 1901.16 0.114 0.921 1.313 3.79 0.164

Vehicle 0.14 37.456 1051.993 0.115 0.729 0.962 3.98 0.167

German 0.145 3.33 326.224 0.12 0.556 0.559 3.468 0.168

Autos 0.156 1.821 212.885 0.096 0.675 0.93 1.22 0.175

Ionosphere 0.16 0.611 36.326 0.113 0.363 1.045 1.151 0.218

Chess 0.161 5.658 308.214 0.123 0.65 0.756 3.069 0.212

Sonar 0.162 1.51 150.955 0.12 0.356 0.429 1.794 0.227

Abalone 0.168 16.021 883.628 0.146 1.953 1.972 14.309 0.195

Dermatology 0.183 1.792 168.475 0.111 1.84 3.228 1.403 0.243

Promoters 0.192 0.616 24.846 0.106 0.395 0.411 0.86 0.31

Lung-cancer 0.192 1.035 65.012 0.098 0.311 0.246 0.772 0.214

Page-blocks 0.22 77.192 3062.031 0.166 3.405 3.923 6.038 0.233

Anneal 0.235 4.306 555.919 0.124 7.262 10.031 2.345 0.294

Segment 0.256 11.027 1455.738 0.136 4.472 5.516 4.545 0.347

Nursery 0.268 43.87 2885.603 0.237 0.476 0.507 17.253 0.307

Sign 0.271 97.373 3309.138 0.257 2.234 3.712 29.188 0.308

Sick 0.274 18.226 1497.482 0.195 13.786 15.394 7.901 0.412

Hypo 0.293 7.452 809.711 0.193 15.659 21.443 5.492 0.415

Kr-vs-kp 0.303 27.203 1483.335 0.195 6.525 8.376 9.458 0.533

Mush 0.349 4.495 587.965 0.235 3.97 7.46 5.825 0.506

Audio 0.379 31.293 6576.503 0.125 4.846 8.245 3.003 0.616

Magic 0.408 84.379 4453.728 0.32 4.507 4.668 56.51 0.48

Pendigits 0.462 37.11 4665.818 0.248 13.162 19.172 25.167 0.735

Syncon 0.466 6.798 816.926 0.135 5.481 6.478 2.129 0.769

Waveform-5000 0.474 107.506 7163.793 0.237 5.051 6.559 19.181 0.917

Thyroid 0.555 1839.199 42695.323 0.273 187.224 272.806 35.287 0.915

Phoneme 0.565 2430.18 78868.508 0.15 12.683 15.977 36.345 0.736

Cylinder-bands 0.623 8.705 1006.751 0.119 1.788 1.828 3.009 0.586

Splice-c4.5 0.664 7.369 963.412 0.229 9.889 14.683 11.431 1.376

Spambase 0.665 106.084 6027.538 0.256 12.773 17.797 17.634 1.417

Musk1 0.707 3.631 837.027 0.188 11.641 23.526 4.597 1.508

Letter-recog 0.788 5570.466 892.459 0.363 73.676 96.965 87.782 1.336

Wall-following 0.876 13.34 2915.697 0.198 4.933 6.254 12.4 1.276

Shuttle 0.993 61.266 5237.291 0.756 37.254 47.905 63.185 1.291

Satellite 1.02 1534.966 9646.135 0.255 16.169 26.975 18.788 2.135

Adult 1.025 720.394 31035.38 0.74 33.376 41.734 199.569 1.465

Optdigits 1.375 50.882 6635.504 0.303 116.538 152.671 28.835 3.203

Localization 1.977 6113.835 226842.296 1.834 92.014 98.267 938.448 2.259

Connect-4 4.695 2218.933 95760.528 1.748 91.768 108.129 691.22 10.542

Covtype-mod 10.856 25589.054 519389.101 7.295 683.568 843.389 15.292

Poker-hand 15.15 32887.718 751710.215 12.815 59.807 66.984 18.964

Musk2 19.881 56.031 19571.881 0.583 54.759 198.24 27.884 36.344

Census-income 20.808 11189.489 438360.993 7.233 1082.365 1129.399 2307.386 50.237

Pioneer 309.15 835.65 8835.12 0.328 658.631 564.602 296.181 671.052

Mean 5.50 1262.10 14865.08 0.58 45.85 53.01 71.17 11.43

Mean Rank 2.2941 6.4109 7.9726 1.1369 4.0958 5.1095 5.8356 3.1438

Table 24: Train time
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A1DE LR LR-Reg NB WANBIACLL WANBIAMSE RF100 TAN

Contact-lenses 0.006 0.0015 0.003 0.001 0.003 0.002 0.005 0.005

Post-operative 0.017 0.0075 0.009 0.005 0.004 0.009 0.011 0.015

Labor 0.018 0.0045 0.006 0.007 0.005 0.005 0.006 0.01

Iris 0.02 0.0045 0.015 0.01 0.007 0.006 0.022 0.016

Tae 0.021 0.0075 0.0105 0.008 0.009 0.006 0.021 0.021

New-thyroid 0.023 0.003 0.0135 0.006 0.007 0.009 0.023 0.018

Echocardiogram 0.024 0.0045 0.015 0.006 0.006 0.004 0.022 0.013

Bupa 0.028 0.0075 0.024 0.007 0.01 0.009 0.018 0.018

Hepatitis 0.029 0.006 0.012 0.009 0.009 0.007 0.022 0.019

Glass3 0.029 0.009 0.021 0.009 0.008 0.006 0.039 0.023

Haberman 0.029 0.006 0.0225 0.008 0.008 0.011 0.013 0.019

Wine 0.031 0.006 0.018 0.008 0.006 0.008 0.019 0.018

Zoo 0.033 0.0135 0.0105 0.005 0.004 0.006 0.016 0.014

Lyn 0.033 0.0105 0.015 0.009 0.007 0.008 0.022 0.018

Cleveland 0.036 0.012 0.021 0.012 0.006 0.008 0.05 0.023

Balance-scale 0.036 0.012 0.045 0.01 0.012 0.018 0.087 0.022

Pid 0.039 0.009 0.0285 0.013 0.009 0.011 0.145 0.023

Hungarian 0.039 0.006 0.033 0.009 0.008 0.009 0.053 0.022

Lung-cancer 0.041 0 0.0015 0.002 0.003 0.005 0.005 0.009

Bcw 0.045 0.0105 0.0225 0.013 0.012 0.007 0.06 0.025

Volcanoes 0.048 0.018 0.0495 0.023 0.02 0.02 0.08 0.033

Tt 0.051 0.015 0.0675 0.014 0.014 0.012 0.183 0.027

House-votes-84 0.052 0.012 0.015 0.009 0.011 0.01 0.055 0.021

Autos 0.053 0.0105 0.018 0.015 0.009 0.006 0.036 0.018

Car 0.053 0.024 0.057 0.019 0.022 0.022 0.264 0.033

Promoters 0.057 0.0045 0.012 0.008 0.005 0.003 0.013 0.013

Horse-colic 0.057 0.012 0.018 0.009 0.012 0.012 0.058 0.024

Crx 0.058 0.0165 0.0375 0.014 0.009 0.01 0.12 0.026

Ptn 0.06 0.0165 0.201 0.02 0.011 0.012 0.135 0.035

Cmc 0.061 0.0135 0.0405 0.017 0.012 0.01 0.471 0.035

Led 0.062 0.018 0.054 0.017 0.014 0.016 0.29 0.036

Vowel 0.064 0.027 0.1125 0.022 0.019 0.022 0.298 0.045

Yeast 0.068 0.03 0.081 0.027 0.02 0.02 0.391 0.042

Ionosphere 0.073 0.0105 0.015 0.007 0.01 0.005 0.046 0.021

Dermatology 0.075 0.0105 0.036 0.017 0.01 0.01 0.059 0.026

Vehicle 0.075 0.009 0.1965 0.02 0.016 0.011 0.21 0.036

Sonar 0.079 0.003 0.0255 0.009 0.007 0.008 0.044 0.026

German 0.085 0.0105 0.093 0.018 0.011 0.015 0.218 0.029

Abalone 0.091 0.0345 0.1155 0.026 0.026 0.023 1.793 0.046

Chess 0.101 0.0135 0.045 0.014 0.011 0.011 0.165 0.026

Cylinder-bands 0.103 0.0105 0.033 0.017 0.012 0.011 0.095 0.028

Page-blocks 0.165 0.066 0.2535 0.046 0.041 0.04 0.868 0.081

Segment 0.192 0.039 0.1545 0.035 0.034 0.034 0.446 0.07

Anneal 0.193 0.0225 0.0645 0.024 0.023 0.021 0.147 0.047

Sign 0.256 0.105 0.2835 0.07 0.065 0.071 5.943 0.114

Nursery 0.291 0.138 0.4845 0.099 0.094 0.095 3.54 0.159

Sick 0.307 0.048 0.21 0.038 0.036 0.036 0.943 0.072

Audio 0.343 0.024 0.114 0.024 0.023 0.024 0.087 0.068

Syncon 0.351 0.0195 0.0855 0.023 0.02 0.02 0.092 0.046

Kr-vs-kp 0.359 0.042 0.1365 0.036 0.037 0.037 1.02 0.066

Hypo 0.395 0.0615 0.1905 0.05 0.045 0.05 0.603 0.099

Magic 0.409 0.1455 0.4125 0.096 0.092 0.088 10.413 0.161

Mush 0.439 0.093 0.261 0.063 0.061 0.065 0.788 0.109

Phoneme 0.465 0.3885 1.2345 0.259 0.24 0.245 3.489 0.479

Wall-following 0.716 0.081 0.2115 0.061 0.063 0.064 1.179 0.13

Pendigits 0.808 0.231 0.6675 0.178 0.173 0.173 4.234 0.352

Waveform-5000 0.848 0.078 0.291 0.073 0.064 0.064 1.834 0.133

Musk1 0.929 0.0165 0.0675 0.023 0.021 0.021 0.104 0.049

Splice-c4.5 1.088 0.066 0.192 0.058 0.057 0.059 0.924 0.122

Spambase 1.223 0.0825 0.2685 0.073 0.068 0.066 1.727 0.123

Adult 1.458 0.4635 1.3635 0.318 0.295 0.301 22.379 0.522

Shuttle 1.709 0.831 2.4285 0.561 0.55 0.558 7.409 0.965

Satellite 1.989 0.114 0.39 0.123 0.122 0.122 1.901 0.273

Thyroid 2.261 0.372 0.9375 0.359 0.361 0.357 5.804 0.853

Letter-recog 2.664 0.906 0.918 0.697 0.702 0.699 11.936 1.484

Localization 3.515 3.1875 8.5485 1.947 1.879 1.895 93.887 2.782

Optdigits 5.117 0.2145 0.657 0.24 0.232 0.235 2.463 0.598

Connect-4 12.134 1.2315 2.4525 0.972 0.965 0.978 47.681 1.849

Pioneer 23.738 2.8455 7.3455 1.649 1.453 1.462 7.09 16.145

Covtype-mod 25.162 10.251 10.251 7.245 7.112 7.196 12.344

Musk2 33.621 0.2325 0.714 0.24 0.245 0.245 1.193 0.549

Poker-hand 39.21 21.9015 21.9015 15.605 15.603 15.118 24.526

Census-income 50.673 4.839 10.836 3.92 3.933 3.845 131.887 6.667

Mean 2.945 0.679 1.041 0.489 0.481 0.475 5.319 1.000

Mean Rank 7.1438 2.9794 5.9383 2.9315 2.1027 2.2191 7.2465 5.4383

Table 25: Test time
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