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Abstract

The CUR matrix decomposition and the Nyström approximation are two important low-rank matrix

approximation techniques. The Nyström method approximates a symmetric positive semidefinite

matrix in terms of a small number of its columns, while CUR approximates an arbitrary data matrix

by a small number of its columns and rows. Thus, CUR decomposition can be regarded as an

extension of the Nyström approximation.

In this paper we establish a more general error bound for the adaptive column/row sampling

algorithm, based on which we propose more accurate CUR and Nyström algorithms with expected

relative-error bounds. The proposed CUR and Nyström algorithms also have low time complexity

and can avoid maintaining the whole data matrix in RAM. In addition, we give theoretical analysis

for the lower error bounds of the standard Nyström method and the ensemble Nyström method.

The main theoretical results established in this paper are novel, and our analysis makes no special

assumption on the data matrices.

Keywords: large-scale matrix computation, CUR matrix decomposition, the Nyström method,

randomized algorithms, adaptive sampling

1. Introduction

Large-scale matrices emerging from stocks, genomes, web documents, web images and videos

everyday bring new challenges in modern data analysis. Most efforts have been focused on manipu-

lating, understanding and interpreting large-scale data matrices. In many cases, matrix factorization

methods are employed for constructing parsimonious and informative representations to facilitate

computation and interpretation. A principled approach is the truncated singular value decompo-

sition (SVD) which finds the best low-rank approximation of a data matrix. Applications of SVD

such as eigenfaces (Sirovich and Kirby, 1987; Turk and Pentland, 1991) and latent semantic analysis

(Deerwester et al., 1990) have been illustrated to be very successful.
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However, using SVD to find basis vectors and low-rank approximations has its limitations.

As pointed out by Berry et al. (2005), it is often useful to find a low-rank matrix approximation

which posses additional structures such as sparsity or nonnegativity. Since SVD or the standard QR

decomposition for sparse matrices does not preserve sparsity in general, when the sparse matrix is

large, computing or even storing such decompositions becomes challenging. Therefore it is useful to

compute a low-rank matrix decomposition which preserves such structural properties of the original

data matrix.

Another limitation of SVD is that the basis vectors resulting from SVD have little concrete

meaning, which makes it very difficult for us to understand and interpret the data in question. An

example of Drineas et al. (2008) and Mahoney and Drineas (2009) has well shown this viewpoint;

that is, the vector [(1/2)age−(1/
√

2)height+(1/2)income], the sum of the significant uncorrelated

features from a data set of people’s features, is not particularly informative. Kuruvilla et al. (2002)

have also claimed: “it would be interesting to try to find basis vectors for all experiment vectors,

using actual experiment vectors and not artificial bases that offer little insight.” Therefore, it is

of great interest to represent a data matrix in terms of a small number of actual columns and/or

actual rows of the matrix. Matrix column selection and the CUR matrix decomposition provide such

techniques.

1.1 Matrix Column Selection

Column selection has been extensively studied in the theoretical computer science (TCS) and nu-

merical linear algebra (NLA) communities. The work in TCS mainly focuses on choosing good

columns by randomized algorithms with provable error bounds (Frieze et al., 2004; Deshpande

et al., 2006; Drineas et al., 2008; Deshpande and Rademacher, 2010; Boutsidis et al., 2011; Gu-

ruswami and Sinop, 2012). The focus in NLA is then on deterministic algorithms, especially the

rank-revealing QR factorizations, that select columns by pivoting rules (Foster, 1986; Chan, 1987;

Stewart, 1999; Bischof and Hansen, 1991; Hong and Pan, 1992; Chandrasekaran and Ipsen, 1994;

Gu and Eisenstat, 1996; Berry et al., 2005). In this paper we focus on randomized algorithms for

column selection.

Given a matrix A ∈ R
m×n, column selection algorithms aim to choose c columns of A to con-

struct a matrix C ∈ R
m×c such that ‖A−CC†A‖ξ achieves the minimum. Here “ξ = 2,” “ξ = F ,”

and “ξ = ∗” respectively represent the matrix spectral norm, the matrix Frobenius norm, and the

matrix nuclear norm, and C† denotes the Moore-Penrose inverse of C. Since there are (n
c) possible

choices of constructing C, selecting the best subset is a hard problem.

In recent years, many polynomial-time approximate algorithms have been proposed. Among

them we are especially interested in those algorithms with multiplicative upper bounds; that is,

there exists a polynomial function f (m,n,k,c) such that with c (≥ k) columns selected from A the

following inequality holds

‖A−CC†A‖ξ ≤ f (m,n,k,c)‖A−Ak‖ξ

with high probability (w.h.p.) or in expectation w.r.t. C. We call f the approximation factor. The

bounds are strong when f = 1+ε for an error parameter ε—they are known as relative-error bounds.

Particularly, the bounds are called constant-factor bounds when f does not depend on m and n (Ma-

honey, 2011). The relative-error bounds and constant-factor bounds of the CUR matrix decomposi-

tion and the Nyström approximation are similarly defined.
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However, the column selection method, also known as the A ≈ CX decomposition in some

applications, has its limitations. For a large sparse matrix A, its submatrix C is sparse, but the

coefficient matrix X ∈ R
c×n is not sparse in general. The CX decomposition suffices when m≫ n,

because X is small in size. However, when m and n are near equal, computing and storing the dense

matrix X in RAM becomes infeasible. In such an occasion the CUR matrix decomposition is a very

useful alternative.

1.2 The CUR Matrix Decomposition

The CUR matrix decomposition problem has been widely discussed in the literature (Goreinov

et al., 1997a,b; Stewart, 1999; Tyrtyshnikov, 2000; Berry et al., 2005; Drineas and Mahoney, 2005;

Mahoney et al., 2008; Bien et al., 2010), and it has been shown to be very useful in high dimensional

data analysis. Particularly, a CUR decomposition algorithm seeks to find a subset of c columns of

A to form a matrix C ∈ R
m×c, a subset of r rows to form a matrix R ∈ R

r×n, and an intersection

matrix U ∈Rc×r such that ‖A−CUR‖ξ is small. Accordingly, we use Ã = CUR to approximate A.

Drineas et al. (2006) proposed a CUR algorithm with additive-error bound. Later on, Drineas

et al. (2008) devised a randomized CUR algorithm which has relative-error bound w.h.p. if suffi-

ciently many columns and rows are sampled. Mackey et al. (2011) established a divide-and-conquer

method which solves the CUR problem in parallel. The CUR algorithms guaranteed by relative-

error bounds are of great interest.

Unfortunately, the existing CUR algorithms usually require a large number of columns and rows

to be chosen. For example, for an m×n matrix A and a target rank k≪min{m,n}, the subspace sam-

pling algorithm (Drineas et al., 2008)—a classical CUR algorithm—requires O(kε−2 logk) columns

and O(kε−4 log2 k) rows to achieve relative-error bound w.h.p. The subspace sampling algorithm

selects columns/rows according to the statistical leverage scores, so the computational cost of this

algorithm is at least equal to the cost of the truncated SVD of A, that is, O(mnk) in general. How-

ever, maintaining a large scale matrix in RAM is often impractical, not to mention performing SVD.

Recently, Drineas et al. (2012) devised fast approximation to statistical leverage scores which can

be used to speedup the subspace sampling algorithm heuristically—yet no theoretical results have

been reported that the leverage scores approximation can give provably efficient subspace sampling

algorithm.

The CUR matrix decomposition problem has a close connection with the column selection prob-

lem. Especially, most CUR algorithms such as those of Drineas and Kannan (2003); Drineas et al.

(2006, 2008) work in a two-stage manner where the first stage is a standard column selection pro-

cedure. Despite their strong resemblance, CUR is a harder problem than column selection because

“one can get good columns or rows separately” does not mean that one can get good columns

and rows together. If the second stage is naı̈vely solved by a column selection algorithm on AT ,

then the approximation factor will trivially be
√

2 f 1 (Mahoney and Drineas, 2009). Thus, more

sophisticated error analysis techniques for the second stage are indispensable in order to achieve

relative-error bound.

1. It is because ‖A−CUR‖2
F = ‖A−CC†A+CC†A−CC†AR†R‖2

F = ‖(I−CC†)A‖2
F + ‖CC†(A−AR†R)‖2

F ≤
‖A−CC†A‖2

F +‖A−AR†R‖2
F ≤ 2 f 2‖A−Ak‖2

F , where the second equality follows from (I−CC†)T CC† = 0.
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1.3 The Nyström Methods

The Nyström approximation is closely related to CUR, and it can potentially benefit from the ad-

vances in CUR techniques. Different from CUR, the Nyström methods are used for approximating

symmetric positive semidefinite (SPSD) matrices. The methods approximate an SPSD matrix only

using a subset of its columns, so they can alleviate computation and storage costs when the SPSD

matrix in question is large in size. In fact, the Nyström methods have been extensively used in the

machine learning community. For example, they have been applied to Gaussian processes (Williams

and Seeger, 2001), kernel SVMs (Zhang et al., 2008), spectral clustering (Fowlkes et al., 2004), ker-

nel PCA (Talwalkar et al., 2008; Zhang et al., 2008; Zhang and Kwok, 2010), etc.

The Nyström methods approximate any SPSD matrix in terms of a subset of its columns. Specif-

ically, given an m×m SPSD matrix A, they require sampling c (< m) columns of A to construct an

m× c matrix C. Since there exists an m×m permutation matrix Π such that ΠC consists of the first

c columns of ΠAΠT , we always assume that C consists of the first c columns of A without loss of

generality. We partition A and C as

A =

[
W AT

21

A21 A22

]

and C =

[
W

A21

]

,

where W and A21 are of sizes c× c and (m−c)× c, respectively. There are three models which are

defined as follows.

• The Standard Nyström Method. The standard Nyström approximation to A is

Ãnys
c = CW†CT =

[
W AT

21

A21 A21W†AT
21

]

. (1)

Here W† is called the intersection matrix. The matrix (Wk)
†, where k ≤ c and Wk is the best

k-rank approximation to W, is also used as an intersection matrix for constructing approxi-

mations with even lower rank. But using W† results in a tighter approximation than using

(Wk)
† usually.

• The Ensemble Nyström Method (Kumar et al., 2009). It selects a collection of t samples,

each sample C(i), (i = 1, · · · , t), containing c columns of A. Then the ensemble method com-

bines the samples to construct an approximation in the form of

Ãens
t,c =

t

∑
i=1

µ(i)C(i)W(i)†
C(i)T

, (2)

where µ(i) are the weights of the samples. Typically, the ensemble Nyström method seeks

to find out the weights by minimizing ‖A− Ãens
t,c ‖F or ‖A− Ãens

t,c ‖2. A simple but effective

strategy is to set the weights as µ(1) = · · ·= µ(t) = 1
t
.

• The Modified Nyström Method (proposed in this paper). It is defined as

Ãimp
c = C

(
C†A(C†)T

)
CT .

This model is not strictly the Nyström method because it uses a quite different intersection

matrix C†A(C†)T . It costs O(mc2) time to compute the Moore-Penrose inverse C† and m2c
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flops to compute matrix multiplications. The matrix multiplications can be executed very

efficiently in multi-processor environment, so ideally computing the intersection matrix costs

time only linear in m. This model is more accurate (which will be justified in Section 4.3

and 4.4) but more costly than the conventional ones, so there is a trade-off between time and

accuracy when deciding which model to use.

Here and later, we call those which use intersection matrix W† or (Wk)
† the conventional Nyström

methods, including the standard Nyström and the ensemble Nyström.

To generate effective approximations, much work has been built on the upper error bounds of the

sampling techniques for the Nyström method. Most of the work, for example, Drineas and Mahoney

(2005), Li et al. (2010), Kumar et al. (2009), Jin et al. (2011), and Kumar et al. (2012), studied the

additive-error bound. With assumptions on matrix coherence, better additive-error bounds were ob-

tained by Talwalkar and Rostamizadeh (2010), Jin et al. (2011), and Mackey et al. (2011). However,

as stated by Mahoney (2011), additive-error bounds are less compelling than relative-error bounds.

In one recent work, Gittens and Mahoney (2013) provided a relative-error bound for the first time,

where the bound is in nuclear norm.

However, the error bounds of the previous Nyström methods are much weaker than those of

the existing CUR algorithms, especially the relative-error bounds in which we are more interested

(Mahoney, 2011). Actually, as will be proved in this paper, the lower error bounds of the standard

Nyström method and the ensemble Nyström method are even much worse than the upper bounds

of some existing CUR algorithms. This motivates us to improve the Nyström method by borrowing

the techniques in CUR matrix decomposition.

1.4 Contributions and Outline

The main technical contribution of this work is the adaptive sampling bound in Theorem 5, which

is an extension of Theorem 2.1 of Deshpande et al. (2006). Theorem 2.1 of Deshpande et al. (2006)

bounds the error incurred by projection onto column or row space, while our Theorem 5 bounds the

error incurred by the projection simultaneously onto column space and row space. We also show

that Theorem 2.1 of Deshpande et al. (2006) can be regarded as a special case of Theorem 5.

More importantly, our adaptive sampling bound provides an approach for improving CUR and

the Nyström approximation: no matter which relative-error column selection algorithm is employed,

Theorem 5 ensures relative-error bounds for CUR and the Nyström approximation. We present the

results in Corollary 7.

Based on the adaptive sampling bound in Theorem 5 and its corollary 7, we provide a concrete

CUR algorithm which beats the best existing algorithm—the subspace sampling algorithm—both

theoretically and empirically. The CUR algorithm is described in Algorithm 2 and analyzed in

Theorem 8. In Table 1 we present a comparison between our proposed CUR algorithm and the

subspace sampling algorithm. As we see, our algorithm requires much fewer columns and rows

to achieve relative-error bound. Our method is more scalable for it works on only a few columns

or rows of the data matrix in question; in contrast, the subspace sampling algorithm maintains the

whole data matrix in RAM to implement SVD.

Another important application of the adaptive sampling bound is to yield an algorithm for the

modified Nyström method. The algorithm has a strong relative-error upper bound: for a target rank

k, by sampling 2k
ε2

(
1+o(1)

)
columns it achieves relative-error bound in expectation. The results are

shown in Theorem 10.

2733



WANG AND ZHANG

#column (c) #row (r) time space

Adaptive 2k
ε

(
1+o(1)

)
c
ε

(
1+ ε

)
Roughly O

(
nk2ε−4

)
+TMultiply

(
mnkε−1

)
O
(

max{mc,nr}
)

Subspace O

(
k logk

ε2

)

O

(
c logc

ε2

)

O
(
mnk

)
O(mn)

Table 1: Comparisons between our adaptive sampling based CUR algorithm and the best existing

algorithm—the subspace sampling algorithm of Drineas et al. (2008).

‖A−Ã‖F

maxi, j |ai j|
‖A−Ã‖2

maxi, j |ai j|
‖A−Ã‖∗

maxi, j |ai j|
‖A−Ã‖F

‖A−Ak‖F

‖A−Ã‖2

‖A−Ak‖2

‖A−Ã‖∗
‖A−Ak‖∗

Standard Ω
(

m
√

k
c

)
Ω
(

m
c

)
Ω
(
m− c

)
Ω
(√

1+ mk
c2

)

Ω
(

m
c

)
Ω
(
1+ k

c

)

Ensemble Ω
(

m
√

k
c

)
– Ω

(
m− c

)
Ω
(√

1+ mk
c2

)

– Ω
(
1+ k

c

)

Table 2: Lower bounds of the standard Nyström method and the ensemble Nyström method. The

blanks indicate the lower bounds are unknown to us. Here m denotes the column/row

number of the SPSD matrix, c denotes the number of selected columns, and k denotes the

target rank.

Finally, we establish a collection of lower error bounds of the standard Nyström and the ensem-

ble Nyström that use W† as the intersection matrix. We show the lower bounds in Theorem 12 and

Table 3; here Table 2 briefly summarizes the lower bounds in Table 3. From the table we can see

that the upper error bound of our adaptive sampling algorithm for the modified Nyström method is

even better than the lower bounds of the conventional Nyström methods.2

The remainder of the paper is organized as follows. In Section 2 we give the notation that will be

used in this paper. In Section 3 we survey the previous work on the randomized column selection,

CUR matrix decomposition, and Nyström approximation. In Section 4 we present our theoretical

results and corresponding algorithms. In Section 5 we empirically evaluate our proposed CUR and

Nyström algorithms. Finally, we conclude our work in Section 6. All proofs are deferred to the

appendices.

2. Notation

First of all, we present the notation and notion that are used here and later. We let Im denote the

m×m identity matrix, 1m denote the m×1 vector of ones, and 0 denote a zero vector or matrix with

appropriate size. For a matrix A = [ai j] ∈Rm×n, we let a(i) be its i-th row, a j be its j-th column, and

Ai: j be a submatrix consisting of its i to j-th columns (i≤ j).

Let ρ = rank(A)≤min{m,n} and k ≤ ρ. The singular value decomposition (SVD) of A can be

written as

A =
ρ

∑
i=1

σA,iuA,iv
T
A,i = UAΣAVT

A =
[

UA,k UA,k⊥
]
[

ΣA,k 0

0 ΣA,k⊥

][
VT

A,k

VT
A,k⊥

]

,

2. This can be valid because the lower bounds in Table 2 do not hold when the intersection matrix is not W†.
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where UA,k (m×k), ΣA,k (k×k), and VA,k (n×k) correspond to the top k singular values. We denote

Ak = UA,kΣA,kVT
A,k which is the best (or closest) rank-k approximation to A. We also use σi(A) =

σA,i to denote the i-th largest singular value. When A is SPSD, the SVD is identical to the eigenvalue

decomposition, in which case we have UA = VA.

We define the matrix norms as follows. Let ‖A‖1 =∑i, j |ai j| be the ℓ1-norm, ‖A‖F =(∑i, j a2
i j)

1/2 =

(∑i σ2
A,i)

1/2 be the Frobenius norm, ‖A‖2 = maxx∈Rn,‖x‖2=1 ‖Ax‖2 = σA,1 be the spectral norm, and

‖A‖∗ = ∑i σA,i be the nuclear norm. We always use ‖ · ‖ξ to represent ‖ · ‖2, ‖ · ‖F , or ‖ · ‖∗.
Based on SVD, the statistical leverage scores of the columns of A relative to the best rank-k

approximation to A is defined as

ℓ
[k]
j =

∥
∥v

( j)
A,k

∥
∥2

2
, j = 1, · · · ,n. (3)

We have that ∑n
j=1 ℓ

[k]
j = k. The leverage scores of the rows of A are defined according to UA,k. The

leverage scores play an important role in low-rank matrix approximation. Informally speaking, the

columns (or rows) with high leverage scores have greater influence in rank-k approximation than

those with low leverage scores.

Additionally, let A† = VA,ρΣ−1
A,ρUT

A,ρ be the Moore-Penrose inverse of A (Ben-Israel and Gre-

ville, 2003). When A is nonsingular, the Moore-Penrose inverse is identical to the matrix inverse.

Given matrices A ∈ R
m×n, X ∈ R

m×p, and Y ∈ R
q×n, XX†A = UXUT

XA ∈ R
m×n is the projection

of A onto the column space of X, and AY†Y = AVYVT
Y ∈ R

m×n is the projection of A onto the row

space of Y.

Finally, we discuss the computational costs of the matrix operations mentioned above. For an

m×n general matrix A (assume m≥ n), it takes O(mn2) flops to compute the full SVD and O(mnk)
flops to compute the truncated SVD of rank k (< n). The computation of A† also takes O(mn2)
flops. It is worth mentioning that, although multiplying an m×n matrix by an n×p matrix runs

in mnp flops, it can be easily performed in parallel (Halko et al., 2011). In contrast, implementing

operations like SVD and QR decomposition in parallel is much more difficult. So we denote the time

complexity of such a matrix multiplication by TMultiply(mnp), which can be tremendously smaller

than O(mnp) in practice.

3. Previous Work

In Section 3.1 we present an adaptive sampling algorithm and its relative-error bound established by

Deshpande et al. (2006). In Section 3.2 we highlight the near-optimal column selection algorithm

of Boutsidis et al. (2011) which we will use in our CUR and Nyström algorithms for column/row

sampling. In Section 3.3 we introduce two important CUR algorithms. In Section 3.4 we introduce

the only known relative-error algorithm for the standard Nyström method.

3.1 The Adaptive Sampling Algorithm

Adaptive sampling is an effective and efficient column sampling algorithm for reducing the error

incurred by the first round of sampling. After one has selected a small subset of columns (denoted

C1), an adaptive sampling method is used to further select a proportion of columns according to

the residual of the first round, that is, A−C1C
†
1A. The approximation error is guaranteed to be

decreasing by a factor after the adaptive sampling (Deshpande et al., 2006). We show the result of

Deshpande et al. (2006) in the following lemma.
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Lemma 1 (The Adaptive Sampling Algorithm) (Deshpande et al., 2006) Given a matrix A ∈
R

m×n, we let C1 ∈ R
m×c1 consist of c1 columns of A, and define the residual B = A−C1C

†
1A.

Additionally, for i = 1, · · · ,n, we define

pi = ‖bi‖2
2/‖B‖2

F .

We further sample c2 columns i.i.d. from A, in each trial of which the i-th column is chosen with

probability pi. Let C2 ∈ R
m×c2 contain the c2 sampled columns and let C = [C1,C2] ∈ R

m×(c1+c2).

Then, for any integer k > 0, the following inequality holds:

E‖A−CC†A‖2
F ≤ ‖A−Ak‖2

F +
k

c2

‖A−C1C
†
1A‖2

F ,

where the expectation is taken w.r.t. C2.

We will establish in Theorem 5 a more general and more useful error bound for this adaptive

sampling algorithm. It can be shown that Lemma 1 is a special case of Theorem 5.

3.2 The Near-Optimal Column Selection Algorithm

Boutsidis et al. (2011) proposed a relative-error column selection algorithm which requires only

c = 2kε−1(1+o(1)) columns get selected. Boutsidis et al. (2011) also proved the lower bound of

the column selection problem which shows that no column selection algorithm can achieve relative-

error bound by selecting less than c= kε−1 columns. Thus this algorithm is near optimal. Though an

optimal algorithm recently proposed by Guruswami and Sinop (2012) attains the the lower bound,

this algorithm is quite inefficient in comparison with the near-optimal algorithm. So we prefer to

use the near-optimal algorithm in our CUR and Nyström algorithms for column/row sampling.

The near-optimal algorithm consists of three steps: the approximate SVD via random projection

(Boutsidis et al., 2011; Halko et al., 2011), the dual set sparsification algorithm (Boutsidis et al.,

2011), and the adaptive sampling algorithm (Deshpande et al., 2006). We describe the near-optimal

algorithm in Algorithm 1 and present the theoretical analysis in Lemma 2.

Lemma 2 (The Near-Optimal Column Selection Algorithm) Given a matrix A ∈ R
m×n of rank

ρ, a target rank k (2≤ k < ρ), and 0 < ε < 1. Algorithm 1 selects

c =
2k

ε

(

1+o(1)
)

columns of A to form a matrix C ∈ R
m×c, then the following inequality holds:

E‖A−CC†A‖2
F ≤ (1+ ε)‖A−Ak‖2

F ,

where the expectation is taken w.r.t. C. Furthermore, the matrix C can be obtained in O
(
mk2ε−4/3+

nk3ε−2/3
)
+TMultiply

(
mnkε−2/3

)
time.

This algorithm has the merits of low time complexity and space complexity. None of the three

steps—the randomized SVD, the dual set sparsification algorithm, and the adaptive sampling—

requires loading the whole of A into RAM. All of the three steps can work on only a small subset

of the columns of A. Though a relative-error algorithm recently proposed by Guruswami and Sinop

(2012) requires even fewer columns, it is less efficient than the near-optimal algorithm.
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Algorithm 1 The Near-Optimal Column Selection Algorithm of Boutsidis et al. (2011).

1: Input: a real matrix A ∈ R
m×n, target rank k, error parameter ε ∈ (0,1], target column number c =

2k
ε

(
1+o(1)

)
;

2: Compute approximate truncated SVD via random projection such that Ak ≈ ŨkΣ̃kṼk;

3: Construct U← columns of (A− ŨkΣ̃kṼk); V ← columns of ṼT
k ;

4: Compute s← Dual Set Spectral-Frobenius Sparsification Algorithm (U, V , c−2k/ε);

5: Construct C1← ADiag(s), and then delete the all-zero columns;

6: Residual matrix D← A−C1C
†
1A;

7: Compute sampling probabilities: pi = ‖di‖2
2/‖D‖2

F , i = 1, · · · ,n;

8: Sampling c2 = 2k/ε columns from A with probability {p1, · · · , pn} to construct C2;

9: return C = [C1,C2].

3.3 Previous Work in CUR Matrix Decomposition

We introduce in this section two highly effective CUR algorithms: one is deterministic and the other

is randomized.

3.3.1 THE SPARSE COLUMN-ROW APPROXIMATION (SCRA)

Stewart (1999) proposed a deterministic CUR algorithm and called it the sparse column-row ap-

proximation (SCRA). SCRA is based on the truncated pivoted QR decomposition via a quasi Gram-

Schmidt algorithm. Given a matrix A ∈ R
m×n, the truncated pivoted QR decomposition procedure

deterministically finds a set of columns C ∈ R
m×c by column pivoting, whose span approximates

the column space of A, and computes an upper triangular matrix TC ∈ R
c×c that orthogonalizes

those columns. SCRA runs the same procedure again on AT to select a set of rows R ∈ R
r×n and

computes the corresponding upper triangular matrix TR ∈ R
r×r. Let C = QCTC and RT = QRTR

denote the resulting truncated pivoted QR decomposition. The intersection matrix is computed by

U = (TT
CTC)

−1CT ART (TT
RTR)

−1. According to our experiments, this algorithm is quite effective

but very time expensive, especially when c and r are large. Moreover, this algorithm does not have

data-independent error bound.

3.3.2 THE SUBSPACE SAMPLING CUR ALGORITHM

Drineas et al. (2008) proposed a two-stage randomized CUR algorithm which has a relative-error

bound with high probability (w.h.p.). In the first stage the algorithm samples c columns of A to

construct C, and in the second stage it samples r rows from A and C simultaneously to construct R

and W and let U = W†. The sampling probabilities in the two stages are proportional to the leverage

scores of A and C, respectively. That is, in the first stage the sampling probabilities are proportional

to the squared ℓ2-norm of the rows of VA,k; in the second stage the sampling probabilities are

proportional to the squared ℓ2-norm of the rows of UC. That is why it is called the subspace sampling

algorithm. Here we show the main results of the subspace sampling algorithm in the following

lemma.

Lemma 3 (Subspace Sampling for CUR ) Given an m×n matrix A and a target rank k≪min{m,n},
the subspace sampling algorithm selects c = O(kε−2 logk log(1/δ)) columns and r =
O
(
cε−2 logc log(1/δ)

)
rows without replacement. Then

‖A−CUR‖F =
∥
∥A−CW†R

∥
∥

F
≤ (1+ ε)‖A−Ak‖F ,
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holds with probability at least 1− δ, where W contains the rows of C with scaling. The running

time is dominated by the truncated SVD of A, that is, O(mnk).

3.4 Previous Work in the Nyström Approximation

In a very recent work, Gittens and Mahoney (2013) established a framework for analyzing errors

incurred by the standard Nyström method. Especially, the authors provided the first and the only

known relative-error (in nuclear norm) algorithm for the standard Nyström method. The algorithm

is described as follows and, its bound is shown in Lemma 4.

Like the CUR algorithm in Section 3.3.2, the Nyström algorithm also samples columns by the

subspace sampling of Drineas et al. (2008). Each column is selected with probability p j =
1
k
ℓ
[k]
j

with replacement, where ℓ
[k]
1 , · · · , ℓ[k]m are leverage scores defined in (3). After column sampling, C

and W are obtained by scaling the selected columns, that is,

C = A(SD) and W = (SD)T A(SD).

Here S ∈ R
m×c is a column selection matrix that si j = 1 if the i-th column of A is the j-th column

selected, and D ∈ R
c×c is a diagonal scaling matrix satisfying d j j =

1√
cpi

if si j = 1.

Lemma 4 (Subspace Sampling for the Nyström Approximation) Given an m×m SPSD matrix

A and a target rank k≪ m, the subspace sampling algorithm selects

c = 3200ε−1k log(16k/δ)

columns without replacement and constructs C and W by scaling the selected columns. Then the

inequality
∥
∥A−CW†CT

∥
∥
∗ ≤ (1+ ε)‖A−Ak‖∗,

holds with probability at least 0.6−δ.

4. Main Results

We now present our main results. We establish a new error bound for the adaptive sampling al-

gorithm in Section 4.1. We apply adaptive sampling to the CUR and modified Nyström problems,

obtaining effective and efficient CUR and Nyström algorithms in Section 4.2 and Section 4.3 respec-

tively. In Section 4.4 we study lower bounds of the conventional Nyström methods to demonstrate

the advantages of our approach. Finally, in Section 4.5 we show that our expected bounds can

extend to with high probability (w.h.p.) bounds.

4.1 Adaptive Sampling

The relative-error adaptive sampling algorithm is originally established in Theorem 2.1 of Desh-

pande et al. (2006) (see also Lemma 1 in Section 3.1). The algorithm is based on the following idea:

after selecting a proportion of columns from A to form C1 by an arbitrary algorithm, the algorithm

randomly samples additional c2 columns according to the residual A−C1C
†
1A. Here we prove a

new and more general error bound for the same adaptive sampling algorithm.
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Theorem 5 (The Adaptive Sampling Algorithm) Given a matrix A ∈ R
m×n and a matrix C ∈

R
m×c such that rank(C) = rank(CC†A) = ρ (ρ≤ c≤ n). We let R1 ∈Rr1×n consist of r1 rows of A,

and define the residual B = A−AR
†
1R1. Additionally, for i = 1, · · · ,m, we define

pi = ‖b(i)‖2
2/‖B‖2

F .

We further sample r2 rows i.i.d. from A, in each trial of which the i-th row is chosen with probability

pi. Let R2 ∈ R
r2×n contain the r2 sampled rows and let R = [RT

1 ,R
T
2 ]

T ∈ R
(r1+r2)×n. Then we have

E‖A−CC†AR†R‖2
F ≤ ‖A−CC†A‖2

F +
ρ

r2

‖A−AR
†
1R1‖2

F ,

where the expectation is taken w.r.t. R2.

Remark 6 This theorem shows a more general bound for adaptive sampling than the original one in

Theorem 2.1 of Deshpande et al. (2006). The original one bounds the error incurred by projection

onto the column space of C, while Theorem 5 bounds the error incurred by projection onto the

column space of C and row space of R simultaneously—such situation rises in problems such as

CUR and the Nyström approximation. It is worth pointing out that Theorem 2.1 of Deshpande et al.

(2006) is a direct corollary of this theorem when C = Ak (i.e., c = n, ρ = k, and CC†A = Ak).

As discussed in Section 1.2, selecting good columns or rows separately does not ensure good

columns and rows together for CUR and the Nyström approximation. Theorem 5 is thereby im-

portant for it guarantees the combined effect column and row selection. Guaranteed by Theorem 5,

any column selection algorithm with relative-error bound can be applied to CUR and the Nyström

approximation. We show the result in the following corollary.

Corollary 7 (Adaptive Sampling for CUR and the Nyström Approximation) Given a matrix A∈
R

m×n, a target rank k (≪m,n), and a column selection algorithm Acol which achieves relative-error

upper bound by selecting c≥C(k,ε) columns. Then we have the following results for CUR and the

Nyström approximation.

(1) By selecting c ≥C(k,ε) columns of A to construct C and r1 = c rows to construct R1, both

using algorithm Acol, followed by selecting additional r2 = c/ε rows using the adaptive sam-

pling algorithm to construct R2, the CUR matrix decomposition achieves relative-error upper

bound in expectation:

E
∥
∥A−CUR

∥
∥

F
≤ (1+ ε)

∥
∥A−Ak

∥
∥

F
,

where R =
[
RT

1 ,R
T
2

]T
and U = C†AR†.

(2) Suppose A is an m×m symmetric matrix. By selecting c1 ≥ C(k,ε) columns of A to con-

struct C1 using Acol and selecting c2 = c1/ε columns of A to construct C2 using the adaptive

sampling algorithm, the modified Nyström method achieves relative-error upper bound in

expectation:

E
∥
∥A−CUCT

∥
∥

F
≤ (1+ ε)

∥
∥A−Ak

∥
∥

F
,

where C =
[
C1,C2

]
and U = C†A

(
C†

)T
.

Based on Corollary 7, we attempt to solve CUR and the Nyström by adaptive sampling algo-

rithms. We present concrete algorithms in Section 4.2 and 4.3.
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Algorithm 2 Adaptive Sampling for CUR.

1: Input: a real matrix A ∈ R
m×n, target rank k, ε ∈ (0,1], target column number c = 2k

ε

(
1+o(1)

)
, target

row number r = c
ε (1+ ε);

2: Select c = 2k
ε

(
1+o(1)

)
columns of A to construct C ∈ R

m×c using Algorithm 1;

3: Select r1 = c rows of A to construct R1 ∈ R
r1×n using Algorithm 1;

4: Adaptively sample r2 = c/ε rows from A according to the residual A−AR
†
1R1;

5: return C, R = [RT
1 ,R

T
2 ]

T , and U = C†AR†.

4.2 Adaptive Sampling for CUR Matrix Decomposition

Guaranteed by the novel adaptive sampling bound in Theorem 5, we combine the near-optimal col-

umn selection algorithm of Boutsidis et al. (2011) and the adaptive sampling algorithm for solving

the CUR problem, giving rise to an algorithm with a much tighter theoretical bound than exist-

ing algorithms. The algorithm is described in Algorithm 2 and its analysis is given in Theorem 8.

Theorem 8 follows immediately from Lemma 2 and Corollary 7.

Theorem 8 (Adaptive Sampling for CUR) Given a matrix A ∈ R
m×n and a positive integer k≪

min{m,n}, the CUR algorithm described in Algorithm 2 randomly selects c = 2k
ε (1+o(1)) columns

of A to construct C ∈Rm×c, and then selects r = c
ε(1+ε) rows of A to construct R ∈Rr×n. Then we

have

E‖A−CUR‖F = E‖A−C(C†AR†)R‖F ≤ (1+ ε)‖A−Ak‖F .

The algorithm costs time O
(
(m+ n)k3ε−2/3 +mk2ε−2 + nk2ε−4

)
+ TMultiply

(
mnkε−1

)
to compute

matrices C, U and R.

When the algorithm is executed in a single-core processor, the time complexity of the CUR al-

gorithm is linear in mn; when executed in multi-processor environment where matrix multiplication

is performed in parallel, ideally the algorithm costs time only linear in m+n. Another advantage of

this algorithm is that it avoids loading the whole m×n data matrix A into RAM. Neither the near-

optimal column selection algorithm nor the adaptive sampling algorithm requires loading the whole

of A into RAM. The most space-expensive operation throughout this algorithm is computation of

the Moore-Penrose inverses of C and R, which requires maintaining an m×c matrix or an r×n ma-

trix in RAM. To compute the intersection matrix C†AR†, the algorithm needs to visit each entry

of A, but it is not RAM expensive because the multiplication can be done by computing C†a j for

j = 1, · · · ,n separately. The above analysis is also valid for the Nyström algorithm in Theorem 10.

Remark 9 If we replace the near-optimal column selection algorithm in Theorem 8 by the optimal

algorithm of Guruswami and Sinop (2012), it suffices to select c = kε−1(1+o(1)) columns and r =
cε−1(1+ε) rows totally. But the optimal algorithm is less efficient than the near-optimal algorithm.

4.3 Adaptive Sampling for the Nyström Approximation

Theorem 5 provides an approach for bounding the approximation errors incurred by projection

simultaneously onto column space and row space. Thus this approach can be applied to solve the

modified Nyström method. The following theorem follows directly from Lemma 2 and Corollary 7.
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‖A−Ã‖F
maxi, j |ai j |

‖A−Ã‖2
maxi, j |ai j |

‖A−Ã‖∗
maxi, j |ai j |

Standard 0.99

√

m− c− k+ k
(

m+99k
c+99k

)2 0.99(m+99)
c+99

0.99(m− c)
(
1+ k

c+99k

)

Ensemble 0.99

√

(m−2c+ c
t
− k)+ k

(m−c+ c
t +99k

c+99k

)2
– 0.99(m− c)

(
1+ k

c+99k

)

‖A−Ã‖F
‖A−Ak‖F

‖A−Ã‖2
‖A−Ak‖2

‖A−Ã‖∗
‖A−Ak‖∗

Standard
√

1+ m2k−c3

c2(m−k)
m
c

m−c
m−k

(
1+ k

c

)

Ensemble

√

m−2c+c/t−k

m−k

(

1+ k(m−2c+c/t)
c2

)

– m−c
m−k

(
1+ k

c

)

Table 3: Lower bounds of the standard Nyström method and the ensemble Nyström method. The

blanks indicate the lower bounds are unknown to us. Here m denotes the column/row

number of the SPSD matrix, c denotes the number of selected columns, and k denotes the

target rank.

Theorem 10 (Adaptive Sampling for the Modified Nyström Method) Given a symmetric matrix

A ∈ R
m×m and a target rank k, with c1 = 2k

ε

(
1 + o(1)

)
columns sampled by Algorithm 1 and

c2 = c1/ε columns sampled by the adaptive sampling algorithm, that is, with totally c= 2k
ε2

(
1+o(1)

)

columns being sampled, the approximation error incurred by the modified Nyström method is upper

bounded by

E
∥
∥A−CUCT

∥
∥

F
≤ E

∥
∥
∥A−C

(

C†A(C†)T
)

CT
∥
∥
∥

F
≤ (1+ ε)‖A−Ak‖F .

The algorithm costs time O
(
mk2ε−4 +mk3ε−2/3

)
+TMultiply

(
m2kε−2

)
in computing C and U.

Remark 11 The error bound in Theorem 10 is the only Frobenius norm relative-error bound for the

Nyström approximation at present, and it is also a constant-factor bound. If one uses the optimal

column selection algorithm of Guruswami and Sinop (2012), which is less efficient, the error bound

is further improved: only c = k
ε2 (1+o(1)) columns are required. Furthermore, the theorem requires

the matrix A to be symmetric, which is milder than the SPSD requirement made in the previous work.

This is yet the strongest result for the Nyström approximation problem—much stronger than

the best possible algorithms for the conventional Nyström method. We will illustrate this point by

revealing the lower error bounds of the conventional Nyström methods.

4.4 Lower Error Bounds of the Conventional Nyström Methods

We now demonstrate to what an extent our modified Nyström method is superior over the conven-

tional Nyström methods (namely the standard Nyström defined in (1) and the ensemble Nyström

in (2)) by showing the lower error bounds of the conventional Nyström methods. The conventional

Nyström methods work no better than the lower error bounds unless additional assumptions are

made on the original matrix A. We show in Theorem 12 the lower error bounds of the conventional

Nyström methods; the results are briefly summarized previously in Table 2.

To derive lower error bounds, we construct two adversarial cases for the Nyström methods. To

derive the spectral norm lower bounds, we use an SPSD matrix B whose diagonal entries equal to 1
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and off-diagonal entries equal to α ∈ [0,1). For the Frobenius norm and nuclear norm bounds, we

construct an m×m block diagonal matrix A which has k diagonal blocks, each of which is m
k
× m

k
in

size and constructed in the same way as B. For the lower bounds on
‖A−Ã‖ξ

maxi, j |ai j| , α is set to be constant;

for the bounds on
‖A−Ã‖ξ

‖A−Ak‖ξ
, α is set to be α→ 1. The detailed proof of Theorem 12 is deferred to

Appendix C.

Theorem 12 (Lower Error Bounds of the Nyström Methods) Assume we are given an SPSD ma-

trix A ∈R
m×m and a target rank k. Let Ak denote the best rank-k approximation to A. Let Ã denote

either the rank-c approximation to A constructed by the standard Nyström method in (1), or the

approximation constructed by the ensemble Nyström method in (2) with t non-overlapping samples,

each of which contains c columns of A. Then there exists an SPSD matrix such that for any sampling

strategy the approximation errors of the conventional Nyström methods, that is, ‖A− Ã‖ξ, (ξ = 2,

F , or “∗”), are lower bounded by some factors which are shown in Table 3.

Remark 13 The lower bounds in Table 3 (or Table 2) show the conventional Nyström methods can

be sometimes very ineffective. The spectral norm and Frobenius norm bounds even depend on m, so

such bounds are not constant-factor bounds. Notice that the lower error bounds do not meet if W†

is replaced by C†A(C†)T , so our modified Nyström method is not limited by such lower bounds.

4.5 Discussions of the Expected Relative-Error Bounds

The upper error bounds established in this paper all hold in expectation. Now we show that the

expected error bounds immediately extend to w.h.p. bounds using Markov’s inequality. Let the

random variable X = ‖A− Ã‖F/‖A−Ak‖F denote the error ratio, where

Ã = CUR or CUCT .

Then we have E(X)≤ 1+ ε by the preceding theorems. By applying Markov’s inequality we have

that

P
(
X > 1+ sε

)
<

E(X)

1+ sε
<

1+ ε

1+ sε
,

where s is an arbitrary constant greater than 1. Repeating the sampling procedure for t times and

letting X(i) correspond to the error ratio of the i-th sample, we obtain an upper bound on the failure

probability:

P

(

min
i
{X(i)}> 1+ sε

)

= P

(

X(i) > 1+ sε ∀i = 1, · · · , t
)

<
( 1+ ε

1+ sε

)t

, δ, (4)

which decays exponentially with t. Therefore, by repeating the sampling procedure multiple times

and choosing the best sample, our CUR and Nyström algorithms are also guaranteed with w.h.p.

relative-error bounds. It follows directly from (4) that, by repeating the sampling procedure for

t ≥ 1+ ε

(s−1)ε
log

(1

δ

)

times, the inequality

‖A− Ã‖F ≤ (1+ sε)‖A−Ak‖F
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holds with probability at least 1−δ.

For instance, we let s = 1+ log(1/δ), then by repeating the sampling procedure for t ≥ 1+1/ε

times, the inequality

‖A− Ã‖F ≤
(

1+ ε+ ε log(1/δ)
)

‖A−Ak‖F

holds with probability at least 1−δ.

For another instance, we let s = 2, then by repeating the sampling procedure for t ≥ (1 +
1/ε) log(1/δ) times, the inequality

‖A− Ã‖F ≤ (1+2ε)‖A−Ak‖F

holds with probability at least 1−δ.

5. Empirical Analysis

In Section 5.1 we empirical evaluate our CUR algorithms in comparison with the algorithms in-

troduced in Section 3.3. In Section 5.2 we conduct empirical comparisons between the standard

Nyström and our modified Nyström, and comparisons among three sampling algorithms. We report

the approximation error incurred by each algorithm on each data set. The error ratio is defined by

Error Ratio =
‖A− Ã‖F

‖A−Ak‖F

,

where Ã = CUR for the CUR matrix decomposition, Ã = CW†CT for the standard Nyström

method, and Ã = C
(
C†A(C†)T

)
CT for the modified Nyström method.

We conduct experiments on a workstation with two Intel Xeon 2.40GHz CPUs, 24GB RAM,

and 64bit Windows Server 2008 system. We implement the algorithms in MATLAB R2011b, and

use the MATLAB function ‘svds’ for truncated SVD. To compare the running time, all the compu-

tations are carried out in a single thread by setting ‘maxNumCompThreads(1)’ in MATLAB.

5.1 Comparison among the CUR Algorithms

In this section we empirically compare our adaptive sampling based CUR algorithm (Algorithm 2)

with the subspace sampling algorithm of Drineas et al. (2008) and the deterministic sparse column-

row approximation (SCRA) algorithm of Stewart (1999). For SCRA, we use the MATLAB code

released by Stewart (1999). As for the subspace sampling algorithm, we compute the leverages

scores exactly via the truncated SVD. Although the fast approximation to leverage scores (Drineas

et al., 2012) can significantly speedup subspace sampling, we do not use it because the approxima-

tion has no theoretical guarantee when applied to subspace sampling.

Data Set Type Size #Nonzero Entries Source

Enron Emails text 39,861×28,102 3,710,420 Bag-of-words, UCI

Dexter text 20,000×2,600 248,616 Guyon et al. (2004)

Farm Ads text 54,877×4,143 821,284 Mesterharm and Pazzani (2011)

Gisette handwritten digit 13,500×5,000 8,770,559 Guyon et al. (2004)

Table 4: A summary of the data sets for CUR matrix decomposition.
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Figure 1: Results of the CUR algorithms on the Enron data set.
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Figure 2: Results of the CUR algorithms on the Dexter data set.
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Figure 3: Results of the CUR algorithms on the Farm Ads data set.
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Figure 4: Results of the CUR algorithms on the Gisette data set.
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We conduct experiments on four UCI data sets (Frank and Asuncion, 2010) which are sum-

marized in Table 4. Each data set is represented as a data matrix, upon which we apply the CUR

algorithms. According to our analysis, the target rank k should be far less than m and n, and the

column number c and row number r should be strictly greater than k. For each data set and each

algorithm, we set k = 10 or 50, and c = ak, r = ac, where a ranges in each set of experiments. We

repeat each of the two randomized algorithms 10 times, and report the minimum error ratio and the

total elapsed time of the 10 rounds. We depict the error ratios and the elapsed time of the three CUR

matrix decomposition algorithms in Figures 1, 2, 3, and 4.

We can see from Figures 1, 2, 3, and 4 that our adaptive sampling based CUR algorithm has

much lower approximation error than the subspace sampling algorithm in all cases. Our adaptive

sampling based algorithm is better than the deterministic SCRA on the Farm Ads data set and the

Gisette data set, worse than SCRA on the Enron data set, and comparable to SCRA on the Dexter

data set. In addition, the experimental results match our theoretical analysis in Section 4 very well.

The empirical results all obey the theoretical relative-error upper bound

‖A−CUR‖F

‖A−Ak‖F

≤ 1+
2k

c

(
1+o(1)

)
= 1+

2

a

(
1+o(1)

)
.

As for the running time, the subspace sampling algorithm and our adaptive sampling based

algorithm are much more efficient than SCRA, especially when c and r are large. Our adaptive

sampling based algorithm is comparable to the subspace sampling algorithm when c and r are

small; however, our algorithm becomes less efficient when c and r are large. This is due to the

following reasons. First, the computational cost of the subspace sampling algorithm is dominated

by the truncated SVD of A, which is determined by the target rank k and the size and sparsity of the

data matrix. However, the cost of our algorithm grows with c and r. Thus, our algorithm becomes

less efficient when c and r are large. Second, the truncated SVD operation in MATLAB, that is,

the ‘svds’ function, gains from sparsity, but our algorithm does not. The four data sets are all very

sparse, so the subspace sampling algorithm has advantages. Third, the truncated SVD functions are

very well implemented by MATLAB (not in MATLAB language but in Fortran/C). In contrast, our

algorithm is implemented in MATLAB language, which is usually less efficient than Fortran/C.

5.2 Comparison among the Nyström Algorithms

In this section we empirically compare our adaptive sampling algorithm (in Theorem 10) with some

other sampling algorithms including the subspace sampling of Drineas et al. (2008) and the uniform

sampling, both without replacement. We also conduct comparison between the standard Nyström

and our modified Nyström, both use the three sampling algorithms to select columns.

We test the algorithms on three data sets which are summarized in Table 5. The experiment

setting follows Gittens and Mahoney (2013). For each data set we generate a radial basis function

(RBF) kernel matrix A which is defined by

ai j = exp

(

− ‖xi−x j‖2
2

2σ2

)

,

where xi and x j are data instances and σ is a scale parameter. Notice that the RBF kernel is dense

in general. We set σ = 0.2 or 1 in our experiments. For each data set with different settings of σ,

we fix a target rank k = 10, 20 or 50 and vary c in a very large range. We will discuss the choice
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Data Set #Instances #Attributes Source

Abalone 4,177 8 UCI (Frank and Asuncion, 2010)

Wine Quality 4,898 12 UCI (Cortez et al., 2009)

Letters 5,000 16 Statlog (Michie et al., 1994)

‖A−Ak‖F/‖A‖F
m
k std

(
ℓ[k]

)

k = 10 k = 20 k = 50 k = 10 k = 20 k = 50

Abalone (σ = 0.2) 0.4689 0.3144 0.1812 0.8194 0.6717 0.4894

Abalone (σ = 1.0) 0.0387 0.0122 0.0023 0.5879 0.8415 1.3830

Wine Quality (σ = 0.2) 0.8463 0.7930 0.7086 1.8703 1.6490 1.3715

Wine Quality (σ = 1.0) 0.0504 0.0245 0.0084 0.3052 0.5124 0.8067

Letters (σ = 0.2) 0.9546 0.9324 0.8877 5.4929 3.9346 2.6210

Letters (σ = 1.0) 0.1254 0.0735 0.0319 0.2481 0.2938 0.3833

Table 5: A summary of the data sets for the Nyström approximation. In the second tabular std
(
ℓ[k]

)

denotes the standard deviation of the statistical leverage scores of A relative to the best

rank-k approximation to A. We use the normalization factor m
k

because m
k
mean

(
ℓ[k]

)
= 1.

of σ and k in the following two paragraphs. We run each algorithm for 10 times, and report the the

minimum error ratio as well as the total elapsed time of the 10 repeats. The results are shown in

Figures 5, 6, and 7.

Table 5 provides useful implications on choosing the target rank k. In Table 5,
‖A−Ak‖F

‖A‖F
denotes

ratio that is not captured by the best rank-k approximation to the RBF kernel, and the parameter

σ has an influence on the ratio ‖A−Ak‖F/‖A‖F . When σ is large, the RBF kernel can be well

approximated by a low-rank matrix, which implies that (i) a small k suffices when σ is large, and (ii)

k should be set large when σ is small. So the settings (σ = 1, k = 10) and (σ = 0.2, k = 50) are more

reasonable than the rest. Let us take the RBF kernel in the Abalone data set as an example. When

σ = 1, the rank-10 approximation well captures the kernel, so k can be safely set as small as 10;

when σ = 0.2, the target rank k should be set large, say larger than 50, otherwise the approximation

is rough.

The standard deviation of the leverage scores reflects whether the advanced importance sam-

pling techniques such as the subspace sampling and adaptive sampling are useful. Figures 5, 6, and 7

show that the advantage of the subspace sampling and adaptive sampling over the uniform sampling

is significant whenever the standard deviation of the leverage scores is large (see Table 5), and vise

versa. Actually, as reflected in Table 5, the parameter σ influences the homogeneity/heterogeneity

of the leverage scores. Usually, when σ is small, the leverage scores become heterogeneous, and

the effect of choosing “good” columns is significant.

The experimental results also show that the subspace sampling and adaptive sampling algo-

rithms significantly outperform the uniform sampling when c is reasonably small, say c < 10k. This

indicates that the subspace sampling and adaptive sampling algorithms are good at choosing “good”

columns as basis vectors. The effect is especially evident on the RBF kernel with the scale param-

eter σ = 0.2, where the leverage scores are heterogeneous. In most cases our adaptive sampling

algorithm achieves the lowest approximation error among the three algorithms. The error ratios of

our adaptive sampling for the modified Nyström are in accordance with the theoretical bound in
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(b) σ = 0.2, k = 20, and c = ak.
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(c) σ = 0.2, k = 50, and c = ak.
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3 6 9 12 15 18 21 24 27 30
0

0.1

0.2

0.3

0.4

0.5

E
rr

o
r 

R
a
ti
o

a

Approximation Error

Uniform Sampling (standard)

Uniform Sampling (modified)

Subspace Sampling (standard)

Subspace Sampling (modified)

Adaptive + Near−Optimal (standard)

Adaptive + Near−Optimal (modified)

(e) σ = 1, k = 20, and c = ak.

3 6 9 12 15 18 21 24 27 30
0

0.2

0.4

0.6

0.8

1

E
rr

o
r 

R
a
ti
o

a

Approximation Error

Uniform Sampling (standard)

Uniform Sampling (modified)

Subspace Sampling (standard)

Subspace Sampling (modified)

Adaptive + Near−Optimal (standard)

Adaptive + Near−Optimal (modified)

(f) σ = 1, k = 50, and c = ak.

Figure 5: Results of the Nyström algorithms on the RBF kernel in the Abalone data set.
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(c) σ = 0.2, k = 50, and c = ak.
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Figure 6: Results of the Nyström algorithms on the RBF kernel in the Wine Quality data set.
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(c) σ = 0.2, k = 50, and c = ak.
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Figure 7: Results of the Nyström algorithms on the RBF kernel in the Letters data set.
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Theorem 10; that is,

‖A−CUCT‖F

‖A−Ak‖F

≤ 1+

√

2k

c

(
1+o(1)

)
= 1+

√

2

a

(
1+o(1)

)
.

As for the running time, our adaptive sampling algorithm is more efficient than the subspace sam-

pling algorithm. This is partly because the RBF kernel matrix is dense, and hence the subspace

sampling algorithm costs O(m2k) time to compute the truncated SVD.

Furthermore, the experimental results show that using U = C†A(C†)T as the intersection matrix

(denoted by “modified” in the figures) always leads to much lower error than using U=W† (denoted

by “standard”). However, our modified Nyström method costs more time to compute the intersection

matrix than the standard Nyström method costs. Recall that the standard Nyström costs O(c3) time

to compute U = W† and that the modified Nyström costs O(mc2)+TMultiply(m
2c) time to compute

U=C†A(C†)T . So the users should make a trade-off between time and accuracy and decide whether

it is worthwhile to sacrifice extra computational overhead for the improvement in accuracy by using

the modified Nyström method.

6. Conclusion

In this paper we have built a novel and more general relative-error bound for the adaptive sampling

algorithm. Accordingly, we have devised novel CUR matrix decomposition and Nyström approxi-

mation algorithms which demonstrate significant improvement over the classical counterparts. Our

relative-error CUR algorithm requires only c = 2kε−1(1+o(1)) columns and r = cε−1(1+ε) rows

selected from the original matrix. To achieve relative-error bound, the best previous algorithm—

the subspace sampling algorithm—requires c = O(kε−2 logk) columns and r = O(cε−2 logc) rows.

Our modified Nyström method is different from the conventional Nyström methods in that it uses a

different intersection matrix. We have shown that our adaptive sampling algorithm for the modified

Nyström achieves relative-error upper bound by sampling only c = 2kε−2(1+o(1)) columns, which

even beats the lower error bounds of the standard Nyström and the ensemble Nyström. Our proposed

CUR and Nyström algorithms are scalable because they need only to maintain a small fraction of

columns or rows in RAM, and their time complexities are low provided that matrix multiplication

can be highly efficiently executed. Finally, the empirical comparison has also demonstrated the

effectiveness and efficiency of our algorithms.
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Appendix A. The Dual Set Sparsification Algorithm

For the sake of self-contained, we attach the dual set sparsification algorithm and describe some im-

plementation details. The deterministic dual set sparsification algorithm is established by Boutsidis

et al. (2011) and severs as an important step in the near-optimal column selection algorithm (de-

scribed in Lemma 2 and Algorithm 1 in this paper). We show the dual set sparsification algorithm
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Algorithm 3 Deterministic Dual Set Spectral-Frobenius Sparsification Algorithm.

1: Input: U = {xi}n
i=1 ⊂ R

l , (l < n); V = {vi}n
i=1 ⊂ R

k, with ∑n
i=1 viv

T
i = Ik (k < n); k < r < n;

2: Initialize: s0 = 0, A0 = 0;

3: Compute ‖xi‖2
2 for i = 1, · · · ,n, and then compute δU =

∑n
i=1 ‖xi‖22

1−
√

k/r
;

4: for τ = 0 to r−1 do

5: Compute the eigenvalue decomposition of Aτ;

6: Find any index j in {1, · · · ,n} and compute a weight t > 0 such that

δ−1
U ‖x j‖2

2 ≤ t−1 ≤
vT

j

(

Aτ− (Lτ +1)Ik

)−2

v j

φ(Lτ +1,Aτ)−φ(Lτ,Aτ)
−vT

j

(

Aτ− (Lτ +1)Ik

)−1

v j;

where

φ(L,A) =
k

∑
i=1

(

λi(A)−L
)−1

, Lτ = τ−
√

rk;

7: Update the j-th component of sτ and Aτ: sτ+1[ j] = sτ[ j]+ t, Aτ+1 = Aτ + tv jv
T
j ;

8: end for

9: return s =
1−
√

k/r

r
sr.

algorithm in Algorithm 3 and its bounds in Lemma 14, and we also analyze the time complexity

using our defined notation.

Lemma 14 (Dual Set Spectral-Frobenius Sparsification) Let U = {x1, · · · ,xn}⊂R
l (l < n) con-

tain the columns of an arbitrary matrix X ∈ R
l×n. Let V = {v1, · · · ,vn} ⊂ R

k (k < n) be a decom-

positions of the identity, that is, ∑n
i=1 viv

T
i = Ik. Given an integer r with k < r < n, Algorithm 3

deterministically computes a set of weights si ≥ 0 (i = 1, · · · ,n) at most r of which are non-zero,

such that

λk

( n

∑
i=1

siviv
T
i

)

≥
(

1−
√

k

r

)2

and tr
( n

∑
i=1

sixix
T
i

)

≤ ‖X‖2
F .

The weights si can be computed deterministically in O
(
rnk2

)
+TMultiply

(
nl
)

time.

Here we mention some implementation issues of Algorithm 3 which were not described in detail

by Boutsidis et al. (2011). In each iteration the algorithm performs once eigenvalue decomposition:

Aτ = WΛWT . Here Aτ is guaranteed to be SPSD in each iteration. Since

(

Aτ−αIk

)q

= WDiag
(

(λ1−α)q, · · · ,(λk−α)q
)

WT ,

(Aτ− (Lτ +1)Ik)
q can be efficiently computed based on the eigenvalue decomposition of Aτ. With

the eigenvalues at hand, φ(L,Aτ) can also be computed directly.

The algorithm runs in r iterations. In each iteration, the eigenvalue decomposition of Aτ requires

O(k3), and the n comparisons in Line 6 each requires O(k2). Moreover, computing ‖xi‖2
2 for each

xi requires TMultiply(nl). Overall, the running time of Algorithm 3 is at most O(rk3)+O(rnk2)+
TMultiply(nl) = O(rnk2)+TMultiply(nl).

The near-optimal column selection algorithm described in Lemma 2 has three steps: random-

ized SVD via random projection which costs O
(
mk2ε−4/3

)
+ TMultiply

(
mnkε−2/3

)
time, the dual
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set sparsification algorithm which costs O
(
nk3ε−2/3

)
+ TMultiply

(
mn

)
time, and the adaptive sam-

pling algorithm which costs O
(
mk2ε−4/3

)
+TMultiply

(
mnkε−2/3

)
time. Therefore, the near-optimal

column selection algorithm costs totally O
(
mk2ε−4/3 +nk3ε−2/3

)
+TMultiply

(
mnkε−2/3

)
time.

Appendix B. Proofs of the Adaptive Sampling Bounds

We present the proofs of Theorem 5, Corollary 7, Theorem 8, and Theorem 10 in Appendices B.1,

B.2, B.3, and B.4, respectively.

B.1 The Proof of Theorem 5

Theorem 5 can be equivalently expressed in Theorem 15. In order to stick to the column space

convention throughout this paper, we prove Theorem 15 instead of Theorem 5.

Theorem 15 (The Adaptive Sampling Algorithm) Given a matrix A ∈ R
m×n and a matrix R ∈

R
r×n such that rank(R) = rank(AR†R) = ρ (ρ ≤ r ≤ m), let C1 ∈ R

m×c1 consist of c1 columns of

A, and define the residual B = A−C1C
†
1A. For i = 1, · · · ,n, let

pi = ‖bi‖2
2/‖B‖2

F ,

where bi is the i-th column of the matrix B. Sample further c2 columns from A in c2 i.i.d. trials,

where in each trial the i-th column is chosen with probability pi. Let C2 ∈ R
m×c2 contain the c2

sampled columns and C = [C1,C2] ∈ R
m×(c1+c2) contain the columns of both C1 and C2, all of

which are columns of A. Then the following inequality holds:

E‖A−CC†AR†R‖2
F ≤ ‖A−AR†R‖2

F +
ρ

c2

‖A−C1C
†
1A‖2

F .

where the expectation is taken w.r.t. C2.

Proof With a little abuse of symbols, we use bold uppercase letters to denote random matrices and

bold lowercase to denote random vectors, without distinguishing between random matrices/vectors

and non-random matrices/vectors.

We denote the j-th column of VAR†R,ρ ∈ R
n×ρ as v j, and the (i, j)-th entry of VAR†R,ρ as vi j.

Define random vectors x j,(l) ∈ R
m such that for j = 1, · · · ,n and l = 1, · · · ,c2,

x j,(l) =
vi j

pi

bi =
vi j

pi

(

ai−C1C
†
1ai

)

with probability pi, for i = 1, · · · ,n,

Notice that x j,(l) is a linear function of a column of A sampled from the above defined distribution.

We have that

E[x j,(l)] =
n

∑
i=1

pi

vi j

pi

bi = Bv j,

E‖x j,(l)‖2
2 =

n

∑
i=1

pi

v2
i j

p2
i

‖bi‖2
2 =

n

∑
i=1

v2
i j

‖bi‖2
2/‖B‖2

F

‖bi‖2
2 = ‖B‖2

F .
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Then we let x j =
1
c2

∑
c2

l=1 x j,(l), we have

E[x j] = E[x j,(l)] = Bv j,

E‖x j−Bv j‖2
2 = E

∥
∥
∥x j−E[x j]

∥
∥
∥

2

2
=

1

c2

E

∥
∥
∥x j,(l)−E[x j,(l)]

∥
∥
∥

2

2
=

1

c2

E‖x j,(l)−Bv j‖2
2.

According to the construction of x1, · · · ,xρ, we define the c2 columns of A to be C2 ∈ R
m×c2 . Note

that all the random vectors x1 · · · ,xρ lie in the subspace span(C1)+ span(C2). We define random

vectors

w j = C1C
†
1AR†Rv j +x j = C1C

†
1Av j +x j, for j = 1, · · · ,ρ,

where the second equality follows from Lemma 16; that is, AR†Rv j = Av j if v j is one of the

top ρ right singular vectors of AR†R. Then we have that any set of random vectors {w1, · · · ,wρ}
lies in span(C) = span(C1)+ span(C2). Let W = [w1, · · · ,wρ] be a random matrix, we have that

span(W)⊂ span(C). The expectation of w j is

E[w j] = C1C
†
1Av j +E[x j] = C1C

†
1Av j +Bv j = Av j,

therefore we have that

w j−Av j = x j−Bv j.

The expectation of ‖w j−Av j‖2
2 is

E‖w j−Av j‖2
2 = E‖x j−Bv j‖2

2 =
1

c2

E‖x j,(l)−Bv j‖2
2

=
1

c2

E‖x j,(l)‖2
2−

2

c2

(Bv j)
T
E[x j,(l)]+

1

c2

‖Bv j‖2
2

=
1

c2

E‖x j,(l)‖2
2−

1

c2

‖Bv j‖2
2 =

1

c2

‖B‖2
F −

1

c2

‖Bv j‖2
2

≤ 1

c2

‖B‖2
F . (5)

To complete the proof, we denote

F = (
ρ

∑
q=1

σ−1
q wquT

q )AR†R,

where σq is the q-th largest singular value of AR†R and uq is the corresponding left singular vector

of AR†R. The column space of F is contained in span(W) (⊂ span(C)), and thus

‖AR†R−CC†AR†R‖2
F ≤ ‖AR†R−WW†AR†R‖2

F ≤ ‖AR†R−F‖2
F .

We use F to bound the error ‖AR†R−CC†AR†R‖2
F . That is,

E‖A−CC†AR†R‖2
F = E‖A−AR†R+AR†R−CC†AR†R‖2

F

= E

[

‖A−AR†R‖2
F +‖AR†R−CC†AR†R‖2

F

]

(6)

≤ ‖A−AR†R‖2
F +E‖AR†R−F‖2

F ,

2754



IMPROVING CUR MATRIX DECOMPOSITION AND THE NYSTRÖM APPROXIMATION

where (6) is due to that A(I−R†R) is orthogonal to (I−CC†)AR†R. Since AR†R and F both lie on

the space spanned by the right singular vectors of AR†R (i.e., {v j}ρ
j=1), we decompose AR†R−F

along {v j}ρ
j=1, obtaining that

E‖A−CC†AR†R‖2
F ≤ ‖A−AR†R‖2

F +E‖AR†R−F‖2
F ,

= ‖A−AR†R‖2
F +

ρ

∑
j=1

E

∥
∥
∥(AR†R−F)v j

∥
∥
∥

2

2

= ‖A−AR†R‖2
F +

ρ

∑
j=1

E

∥
∥
∥AR†Rv j− (

ρ

∑
q=1

σ−1
q wquT

q )σ ju j

∥
∥
∥

2

2

= ‖A−AR†R‖2
F +

ρ

∑
j=1

E

∥
∥
∥AR†Rv j−w j

∥
∥
∥

2

2

= ‖A−AR†R‖2
F +

ρ

∑
j=1

E‖Av j−w j‖2
2 (7)

≤ ‖A−AR†R‖2
F +

ρ

c2

‖B‖2
F , (8)

where (7) follows from Lemma 16 and (8) follows from (5).

Lemma 16 We are given a matrix A ∈ R
m×n and a matrix R ∈ R

r×n such that rank(AR†R) =
rank(R) = ρ (ρ ≤ r ≤ m). Letting v j ∈ R

n be the j-th top right singular vector of AR†R, we have

that

AR†Rv j = Av j, for j = 1, · · · ,ρ.

Proof First let VR,ρ ∈ R
n×ρ contain the top ρ right singular vectors of R. Then the projection of

A onto the row space of R is AR†R = AVR,ρVT
R,ρ. Let the thin SVD of AVR,ρ ∈ R

m×ρ be ŨΣ̃ṼT ,

where Ṽ ∈ R
ρ×ρ. Then the compact SVD of AR†R is

AR†R = AVR,ρVT
R,ρ = ŨΣ̃ṼT VT

R,ρ.

According to the definition, v j is the j-th column of (VR,ρṼ) ∈ R
n×ρ. Thus v j lies on the column

space of VR,ρ, and v j is orthogonal to VR,ρ⊥. Finally, since A−AR†R = AVR,ρ⊥VT
R,ρ⊥, we have

that v j is orthogonal to A−AR†R, that is, (A−AR†R)v j = 0, which directly proves the lemma.

B.2 The Proof of Corollary 7

Since C is constructed by columns of A and the column space of C is contained in the column space

of A, we have rank(CC†A) = rank(C) = ρ ≤ c. Consequently, the assumptions of Theorem 5 are

satisfied. The assumptions in turn imply

‖A−CC†A‖F ≤ (1+ ε)‖A−Ak‖F ,

‖A−AR
†
1R1‖F ≤ (1+ ε)‖A−Ak‖F ,
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and c/r2 = ε. It then follows from Theorem 5 that

ER

∥
∥A−CC†AR†R

∥
∥2

F
= ER1

[

ER2

[

‖A−CC†AR†R‖2
F

∣
∣
∣R1

]]

≤ ER1

[

‖A−CC†A‖2
F +

ρ

r2

‖A−AR
†
1R1‖2

F

]

≤ ‖A−CC†A‖2
F +

c

r2

(1+ ε)‖A−Ak‖2
F

= ‖A−CC†A‖2
F + ε(1+ ε)‖A−Ak‖2

F .

Furthermore, we have that

[

E‖A−CUR‖F

]2

≤ E‖A−CUR‖2
F = EC,R‖A−CC†AR†R‖2

F

= EC

[

ER

[

‖A−CC†AR†R‖2
F

∣
∣
∣C

]]

≤ EC

[

‖A−CC†A‖2
F + ε(1+ ε)‖A−Ak‖2

F

]

≤ (1+ ε)2‖A−Ak‖2
k ,

which yields the error bound for CUR matrix decomposition.

When the matrix A is symmetric, the matrix CT
1 consists of the rows A, and thus we can use The-

orem 15 (which is identical to Theorem 5) to prove the error bound for the Nyström approximation.

By replacing R in Theorem 15 by CT
1 , we have that

E
∥
∥A−CC†A(C†

1)
T

CT
1

∥
∥2

F
≤

∥
∥A−A(C†

1)
T

CT
1

∥
∥2

F
+

c1

c2

∥
∥A−C1C

†
1A

∥
∥2

F

=
(

1+
c1

c2

)∥
∥A−C1C

†
1A

∥
∥2

F
,

where the expectation is taken w.r.t. C2. Together with the inequality

∥
∥A−CC†A(C†)

T
CT

∥
∥2

F
≤

∥
∥A−CC†A(C†

1)
T

CT
1

∥
∥2

F

given by Lemma 17, we have that

EC1,C2

∥
∥A−CC†A(C†)

T
CT

∥
∥2

F
≤ EC1,C2

∥
∥A−CC†A(C†

1)
T

CT
1

∥
∥2

F

=
(

1+
c1

c2

)

EC1

∥
∥A−C1C

†
1A

∥
∥2

F

= (1+ε)2
∥
∥A−Ak

∥
∥2

F
.

Hence E
∥
∥A−CC†A(C†)

T
CT

∥
∥

F
≤
[

E
∥
∥A−CC†A(C†)

T
CT

∥
∥2

F

]− 1
2 ≤ (1+ε)

∥
∥A−Ak

∥
∥

F
.

Lemma 17 Given an m×m matrix A and an m×c matrix C = [C1,C2], the following inequality

holds:
∥
∥A−CC†A(C†)

T
CT

∥
∥2

F
≤

∥
∥A−CC†A(C†

1)
T

CT
1

∥
∥2

F
.
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Proof Let PCA=CC†A denote the projection of A onto the column space of C, and P̄C = Im−CC†

denote the projector onto the space orthogonal to the column space of C. It has been shown by Halko

et al. (2011) that, for any matrix A, if span(M)⊂ span(N), then the following inequalities hold:

‖PMA‖ξ ≤ ‖PNA‖ξ and ‖P̄MA‖ξ ≥ ‖P̄NA‖ξ.

Accordingly, AP T
RT = AR†R is the projection of A onto the row space of R∈Rr×n. We further have

that

‖A−PCAP
T
C‖2

F = ‖A−PCA+PCA−PCAP
T
C‖2

F

= ‖P̄CA+PCAP̄
T
C‖2

F = ‖P̄CA‖2
F +‖PCAP̄

T
C‖2

F

and

‖A−PCAP
T
C1
‖2

F = ‖A−PCA+PCA−PCAP
T
C1
‖2

F

= ‖P̄CA+PCAP̄
T
C1
‖2

F = ‖P̄CA‖2
F +‖PCAP̄

T
C1
‖2

F ,

where the last equalities follow from PC ⊥ P̄C. Since span(C1)⊂ span(C), we have ‖PCAP̄ T
C1
‖2

F ≥
‖PCAP̄ T

C‖2
F , which proves the lemma.

B.3 The Proof of Theorem 8

The error bound follows directly from Lemma 2 and Corollary 7. The near-optimal column se-

lection algorithm costs O
(
mk2ε−4/3 + nk3ε−2/3

)
+ TMultiply

(
mnkε−2/3

)
time to construct C and

O
(
nk2ε−4/3+mk3ε−2/3

)
+TMultiply

(
mnkε−2/3

)
time to construct R1. Then the adaptive sampling al-

gorithm costs O
(
nk2ε−2

)
+TMultiply

(
mnkε−1

)
time to construct R2. Computing the Moore-Penrose

inverses of C and R costs O(mc2)+O(nr2) = O
(
mk2ε−2 + nk2ε−4

)
time. The multiplication of

C†AR† costs TMultiply(mnc) = TMultiply(mnkε−1) time. So the total time complexity is O
(
(m +

n)k3ε−2/3 +mk2ε−2 +nk2ε−4
)
+TMultiply

(
mnkε−1

)
.

B.4 The Proof of Theorem 10

The error bound follows immediately from Lemma 2 and Corollary 7. The near-optimal col-

umn selection algorithm costs O
(
mk2ε−4/3 +mk3ε−2/3

)
+TMultiply

(
m2kε−2/3

)
time to select c1 =

O(kε−1) columns of A construct C1. Then the adaptive sampling algorithm costs O
(
mk2ε−2

)
+

TMultiply

(
m2kε−1

)
time to select c2 = O(kε−2) columns construct C2. Finally it costs O(mc2) +

TMultiply(m
2c)=O(mk2ε−4)+TMultiply

(
m2kε−2

)
time to construct the intersection matrix U=C†A(C†)T .

So the total time complexity is O
(
mk2ε−4 +mk3ε−2/3

)
+TMultiply

(
m2kε−2

)
.

Appendix C. Proofs of the Lower Error Bounds

In Appendix C.1 we construct two adversarial cases which will be used throughout this appendix.

In Appendix C.2 we prove the lower bounds of the standard Nyström method. In Appendix C.3 we

prove the lower bounds of the ensemble Nyström method. Theorems 20, 21, 22, 24, and 25 are used

for proving Theorem 12.
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C.1 Construction of the Adversarial Cases

We now consider the construction of adversarial cases for the spectral norm bounds and the Frobe-

nius norm and nuclear norm bounds, respectively.

C.1.1 THE ADVERSARIAL CASE FOR THE SPECTRAL NORM BOUND

We construct an m×m positive definite matrix B as follows:

B = (1−α)Im +α1m1T
m =








1 α · · · α

α 1 · · · α
...

...
. . .

...

α α · · · 1







=

[
W BT

21

B21 B22

]

, (9)

where α ∈ [0,1). It is easy to verify xT Bx > 0 for any nonzero x ∈ R
m. We show some properties

of B in Lemma 18.

Lemma 18 Let Bk be the best rank-k approximation to the matrix B defined in (9). Then we have

that

‖B‖F =
√

m2α2 +m(1−α2), ‖B−Bk‖F =
√

m− k (1−α),

‖B‖2 = 1+mα−α , ‖B−Bk‖2 = 1−α,

‖B‖∗ = m, ‖B−Bk‖∗ = (m− k)(1−α),

where 1≤ k ≤ m−1.

Proof The squared Frobenius norm of B is

‖B‖2
F = ∑

i, j

b2
i j = m+(m2−m)α2.

Then we study the singular values of B. Since B is SPSD, here we do not distinguish between its

singular values and eigenvalues.

The spectral norm, that is, the largest singular value, of B is

‖B‖2 = σ1 = λ1 = max
‖x‖2≤1

xT Bx = max
‖x‖2≤1

(1−α)‖x‖2
2 +α(1T

mx)2 = 1−α+mα,

where the maximum is attained when x = 1√
m

1m. Thus u1 =
1√
m

1m is the top singular vector of B.

Then the projection of B onto the subspace orthogonal to u1 is

B1⊥ , B−B1 = B−σ1u1uT
1 =

1−α

m
(mIm−1m1T

m).

Then for all j > 1, the j-th top eigenvalue σ j and eigenvector u j, that is, the singular value and

singular vector, of B satisfy

σ ju j = Bu j = B1⊥u j =
1−α

m

(
mu j− (1T

mu j)1m

)
=

1−α

m
(mu j−0),
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where the last equality follows from u j ⊥ u1, that is, 1T
mu j = 0. Thus σ j = 1−α, and

‖B−Bk‖2 = σk+1 = 1−α

for all 1≤ k < m. Finally we have that

‖B−Bk‖2
F = ‖B‖2

F −
k

∑
i=1

σ2
i = (m− k)(1−α)2,

‖B−Bk‖∗ = (m− k)σ2 = (m− k)(1−α),

‖B‖∗ =
m

∑
i=1

σi = (1+mα−α)+(m−1)(1−α) = m,

which complete our proofs.

C.1.2 THE ADVERSARIAL CASE FOR THE FROBENIUS NORM AND NUCLEAR NORM BOUNDS

Then we construct another adversarial case for proving the Frobenius norm and nuclear norm

bounds. Let B be a p× p matrix with diagonal entries equal to one and off-diagonal entries equal to

α. Let m = kp and we construct an m×m block diagonal matrix A as follows:

A = BlkDiag(B, · · · ,B
︸ ︷︷ ︸

k blocks

) =








B 0 · · · 0

0 B · · · 0
...

...
. . .

...

0 0 · · · B








. (10)

Lemma 19 Let Ak be the best rank-k approximation to the matrix A defined in (10). Then we have

that

σ1(A) = · · · = σk(A) = 1+ pα−α,

σk+1(A) = · · · = σm(A) = 1−α,
∥
∥A−Ak

∥
∥

F
= (1−α)

√
m− k,

∥
∥A−Ak

∥
∥
∗ = (1−α)(m− k).

Lemma 19 can be easily proved using Lemma 18.

C.2 Lower Bounds of the Standard Nyström Method

Theorem 20 For an m×m matrix B with diagonal entries equal to one and off-diagonal entries

equal to α ∈ [0,1), the approximation error incurred by the standard Nyström method is lower

bounded by

∥
∥B− B̃nys

c

∥
∥

F
≥ (1−α)

√

(m− c)
(

1+
m+ c+ 2

α −2

(c+ 1−α
α )2

)

,

∥
∥B− B̃nys

c

∥
∥

2
≥

(1−α)
(

m+ 1−α
α

)

c+ 1−α
α

,

∥
∥B− B̃nys

c

∥
∥
∗ ≥ (m− c)(1−α)

1+ cα

1+ cα−α
.
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Furthermore, the matrix (B− B̃
nys
c ) is SPSD.

Proof The matrix B is partitioned as in (9). The residual of the Nyström approximation is

‖B− B̃nys
c ‖ξ = ‖B22−B21W†BT

21‖ξ, (11)

where ξ = 2, F , or ∗. Since W = (1−α)Ic +α1c1T
c is nonsingular when α ∈ [0,1), so W† = W−1.

We apply the Sherman-Morrison-Woodbury formula

(A+BCD)−1 = A−1−A−1B(C−1 +DA−1B)−1DA−1

to compute W†, yielding

W† =
1

1−α
Ic−

α

(1−α)(1−α+ cα)
1c1T

c .

According to the construction, B21 is an (m−c)×c matrix with all entries equal to α, it follows that

B21W†BT
21 is an (m−c)×(m−c) matrix with all entries equal to

η , α21T
c W†1c =

cα2

1−α+ cα
. (12)

Then we obtain that

B22−B21W†BT
21 = (1−α)Im−c +(α−η)1m−c1T

m−c. (13)

It is easy to check that η≤ α≤ 1, thus the matrix (1−α)Im−c +(α−η)1m−c1T
m−c is SPSD, and so

is (B− B̃
nys
c ).

Combining (11) and (13), we have that

‖B− B̃nys
c ‖2

F =
∥
∥(1−α)Im−c +(α−η)1m−c1T

m−c

∥
∥2

F

= (m−c)
(
1−η

)2
+
(

(m−c)2− (m−c)
)(

α−η
)2

= (m−c)(1−α)2
(

1+
α2(m+c)+2(α−α2)

(1−α+cα)2

)

= (m−c)(1−α)2
(

1+
m+c+ 2

α −2

(c+ 1−α
α )2

)

, (14)

which proves the Frobenius norm of the residual.

Now we compute the spectral norm of the residual. Based on the results above we have that

∥
∥B− B̃nys

c

∥
∥

2
=

∥
∥(1−α)Im−c +(α−η)1m−c1T

m−c

∥
∥

2
.

Similar to the proof of Lemma 18, it is easily obtained that 1√
m−c

1m−c is the top singular vector of

the SPSD matrix (1−α)Im−c +(α−η)1m−c1T
m−c, so the top singular value is

σ1

(
B− B̃nys

c

)
= (m− c)(α−η)+1−α =

(1−α)
(

m+ 1−α
α

)

c+ 1−α
α

, (15)
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which proves the spectral norm bound because ‖B− B̃
nys
c ‖2 = σ1

(
B− B̃

nys
c

)
.

It is also easy to show the rest singular values obey

σ2

(
B− B̃nys

c

)
= · · · = σm−c

(
B− B̃nys

c

)
≥ 0,

σm−c+1

(
B− B̃nys

c

)
= · · · = σm

(
B− B̃nys

c

)
= 0.

Thus we have, for i = 2, · · · ,m− c,

σ2
i

(
B− B̃nys

c

)
=
‖B− B̃

nys
c ‖2

F −σ2
1

(
B− B̃

nys
c

)

m− c−1
= (1−α)2.

The nuclear norm of the residual
(
B− B̃

nys
c

)
is

‖B− B̃nys
c ‖∗ =

m

∑
i=1

σ
(
B− B̃nys

c

)

= σ1

(
B− B̃nys

c

)
+(m− c−1)σ2

(
B− B̃nys

c

)

= (m− c)(1−η)

= (m− c)(1−α)
(

1+
1

c+ 1−α
α

)

. (16)

The theorem follows from equalities (14), (15), and (16).

Now we use the matrix A constructed in (10) to show the Frobenius norm and nuclear norm

lower bound. The bound is stronger than the one in Theorem 20 by a factor of k.

Theorem 21 For the m×m SPSD matrix A defined in (10), the approximation error incurred by

the standard Nyström method is lower bounded by

∥
∥A−CW†CT

∥
∥

F
≥ (1−α)

√

m− c− k+
k(m+ 1−α

α k)2

(c+ 1−α
α k)2

,

∥
∥A−CW†CT

∥
∥
∗ ≥ (1−α)(m− c)

(

1+
k

c+ 1−α
α k

)

,

where k < m is an arbitrary positive integer.

Proof Let C consist of c column sampled from A and Ĉi consist of ci columns sampled from the i-th

block diagonal matrix in A. Without loss of generality, we assume Ĉi consists of the first ci columns

of B, and accordingly Ŵi consists of the top left ci× ci block of B. Thus C = BlkDiag
(
Ĉ1, · · · , Ĉk

)
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and W = BlkDiag
(
Ŵ1, · · · ,Ŵk

)
.

Ãnys
c = CW†C =






Ĉ1 0
. . .

0 Ĉk











Ŵ1 0
. . .

0 Ŵk






†




ĈT
1 0

. . .

0 ĈT
k






=






Ĉ1 0
. . .

0 Ĉk











Ŵ
†
1 0

. . .

0 Ŵ
†
k











ĈT
1 0

. . .

0 ĈT
k






=






Ĉ1Ŵ
†
1ĈT

1 0
. . .

0 ĈkŴ
†
kĈT

k




 . (17)

Then it follows from Theorem 20 that

∥
∥A− Ãnys

c

∥
∥2

F
=

k

∑
i=1

∥
∥B− ĈiŴ

†
i ĈT

i

∥
∥2

F

=
k

∑
i=1

(p− ci)(1−α)2
(

1+
p+ ci +2 1−α

α

(ci +
1−α

α )2

)

= (1−α)2
k

∑
i=1

( p̂− ĉi)
(

1+
p̂+ ĉi

ĉ2
i

)

= (1−α)2
(

m− c− k+ p̂2
k

∑
i=1

ĉ−2
i

)

,

where p̂ = p+ 1−α
α and ĉi = ci+

1−α
α . Since ∑k

i=1 ĉi = c+ 1−α
α k , ĉ, the term ∑k

i=1 ĉ−2
i is minimized

when ĉ1 = · · ·= ĉk. Thus ∑k
i=1 ĉ−2

i = k k2

ĉ2 = k3ĉ−2. Finally we have that

∥
∥A− Ãnys

c

∥
∥2

F
= (1−α)2

(

m− c− k+ p̂2
k

∑
i=1

ĉ−2
i

)

≥ (1−α)2
(

m− c− k+
k(m+ 1−α

α k)2

(c+ 1−α
α k)2

)

,

by which the Frobenius norm bound follows.

Since the matrices B− ĈiŴ
†
i ĈT

i are all SPSD by Theorem 20, so the matrix (A− Ã
nys
c ) is also

SPSD. We have that

∥
∥A− Ãnys

c

∥
∥
∗ =

k

∑
i=1

∥
∥B− ĈiŴ

†
i ĈT

i

∥
∥
∗

≥ (1−α)
k

∑
i=1

(p− ci)
(

1+
1

ci +
1−α

α

)

≥ (1−α)k (
m

k
− c

k
)
(

1+
1

c/k+ 1−α
α

)

= (1−α)(m− c)
(

1+
k

c+ 1−α
α k

)

,
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where the former inequality follows from Theorem 20, and the latter inequality follows by mini-

mizing w.r.t. c1, · · · ,ck subjecting to c1 + · · ·+ ck = c.

Theorem 22 There exists an m×m SPSD matrix A such that the approximation error incurred by

the standard Nyström method is lower bounded by

∥
∥A−CW†CT

∥
∥

F∥
∥A−Ak

∥
∥

F

≥
√

1+
m2k− c3

c2(m− k)
,

‖A−CW†CT‖2

‖A−Ak‖2

≥ m

c
,

‖A−CW†CT‖∗
‖A−Ak‖∗

≥ m− c

m− k

(

1+
k

c

)

,

where k < m is an arbitrary positive integer.

Proof For the spectral norm bound we use the matrix A constructed in (9) and set α→ 1, then it fol-

lows directly from Lemma 18 and Theorem 20. For the Frobenius norm and nuclear norm bounds,

we use the matrix A constructed in (10) and set α→ 1, then it follows directly from Lemma 19 and

Theorem 21.

C.3 Lower Bounds of the Ensemble Nyström Method

The ensemble Nyström method (Kumar et al., 2009) is previously defined in (2). To derive lower

bounds of the ensemble Nyström method, we assume that the t samples are non-overlapping. Ac-

cording to the construction of the matrix B in (9), each of the t non-overlapping samples are equally

“important”, so without loss of generality we set the t samples with equal weights: µ(1) = · · · =
µ(t) = 1

t
.

Lemma 23 Assume that the ensemble Nyström method selects a collection of t samples, each sam-

ple C(i) (i = 1, · · · , t) contains c columns of B without overlapping. For an m×m matrix B with all

diagonal entries equal to one and off-diagonal entries equal to α ∈ [0,1), the approximation error

incurred by the ensemble Nyström method is lower bounded by

∥
∥B− B̃ens

t,c

∥
∥

F
≥ (1−α)

√
(

m−2c+
c

t

)(

1+
m+ c

t
+ 2

α −2

(c+ 1−α
α )2

)

,

∥
∥B− B̃ens

t,c

∥
∥
∗ ≥ (1−α)(m− c)

c+ 1
α

c+ 1−α
α

.

where B̃ens
t,c = 1

t ∑t
i=1 C(i)W(i)†

C(i)T
. Furthermore, the matrix (B− B̃ens

t,c ) is SPSD.

Proof We use the matrix B constructed in (9). It is easy to check that W(1) = · · · = W(t), so we

use the notation W instead. We assume that the samples contain the firs tc columns of B and each

sample contains neighboring columns, that is,

B =
[
C(1), · · · ,C(t), B(tc+1):m

]
.
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Figure 8: An illustration of the matrix B−Bens
t,c for the ensemble Nyström method where B is de-

fined in (9). Here we set m = 100, c = 20, α = 0.8, and t = 3. For the ensemble Nyström

method without overlapping, the matrix B−Bens
t,c can always be partitioned into four re-

gions as annotated.

If a sample C contains the first c columns of B, then

CW†CT =

[
W BT

21

B21 B21W†BT
21

]

and B−CW†CT =

[
0 0

0 B22−B21W†BT
21

]

;

otherwise, after permuting the rows and columns of B−CW†CT , we get the same result:

Π
(
B−CW†CT

)
ΠT = B−Π

(
CW†CT

)
ΠT =

[
0 0

0 B22−B21W†BT
21

]

,

where Π is a permutation matrix. As was shown in Equation (12), B21W†BT
21 is an (m−c)×(m−c)

matrix with all entries equal to

η =
cα2

1−α+ cα
.

Based on the properties of the matrix B−C(i)W(i)†
C(i)T

, we study the values of the entries of

B− B̃ens
t,c . We can express it as

B− B̃ens
t,c = B− 1

t

t

∑
i=1

C(i)W(i)†
C(i)T

=
1

t

t

∑
i=1

(

B−C(i)W†C(i)T
)

, (18)

and then a discreet examination reveals that B− B̃ens
t,c can be partitioned into four kinds of regions

as illustrated in Figure 8. We annotate the regions in the figure and summarize the values of entries

in each region in the table below. (Region 1 and 4 are further partitioned into diagonal entries and

off-diagonal entries.)
Region 1 (diag) 1 (off-diag) 2 3 4 (diag) 4 (off-diag)

#Entries tc tc2− tc (tc)2− tc2 2tc(m− tc) m− tc (m− tc)2− (m− tc)

Value t−1
t (1−η) t−1

t (α−η) t−2
t (α−η) t−1

t (α−η) 1−η α−η
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Now we do summation over the entries of B− B̃ens
t,c to compute its squared Frobenius norm:

∥
∥B− B̃ens

t,c

∥
∥2

F
= tc

[ t−1

t
(1−η)

]2

+ · · ·+
[
(m− tc)2− (m− tc)

]
(α−η)2

= (1−α)(1+α−2η)(m−2c+
c

t
)+(α−η)2

(

4c2−4cm+m2 +
2cm−3c2

t

)

= (1−α)2
(

m−2c+
c

t

)

+
(1−α)2

(c+ 1−α
α )2

[

(m−2c+
c

t
)
( 2

α
−2+m

)
+

c(m− c)

t

]

≥ (1−α)2
(

m−2c+
c

t

)(

1+
m+ c

t
+ 2

α −2

(c+ 1−α
α )2

)

,

where the last inequality follows from
c(m−c)

t
= c

t

(

(m−2c+ c
t
)+(c− c

t
)
)

≥ c
t

(

m−2c+ c
t

)

.

Furthermore, since the matrices B−C(i)W†C(i)T
are all SPSD by Theorem 20, so their sum is

also SPSD. Then the SPSD property of (B− B̃ens
t,c ) follows from (18). Therefore, the nuclear norm

of (B− B̃ens
t,c ) equals to the matrix trace, that is,

∥
∥B− B̃ens

t,c

∥
∥
∗ = tr

(
B− B̃ens

t,c

)

= tc · t−1

t
(1−η)+(m− tc) · (1−η)

= (1−α)(m− c)
c+ 1

α

c+ 1−α
α

,

which proves the nuclear norm bound in the lemma.

Theorem 24 Assume that the ensemble Nyström method selects a collection of t samples, each

sample C(i) (i = 1, · · · , t) contains c columns of A without overlapping. For a the matrix A defined

in (10), the approximation error incurred by the ensemble Nyström method is lower bounded by

∥
∥A− Ãens

t,c

∥
∥

F
≥ (1−α)

√
(

m−2c+
c

t
− k

)

+ k

(
m− c+ c

t
+ k 1−α

α

c+ k 1−α
α

)2

,

∥
∥A− Ãens

t,c

∥
∥
∗ ≥ (1−α)(m− c)

c+ 1
α k

c+ 1−α
α k

,

where Ãens
t,c = 1

t ∑t
i=1 C(i)W(i)†

C(i)T
.

Proof According to the construction of A in (10), the i-th sample C(i) is also block diagonal. We

denote it by C(i) = BlkDiag
(
Ĉ
(i)
1 , · · · , Ĉ(i)

k

)
. Akin to (17), we have

Ãens
t,c =







1
t ∑t

i=1 Ĉ
(i)
1 Ŵ

†
1

(
Ĉ
(i)
1

)T
0

. . .

0 1
t ∑t

i=1 Ĉ
(i)
k Ŵ

†
k

(
Ĉ
(i)
k

)T







.
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Thus the approximation error of the ensemble Nyström method is

∥
∥
∥A− Ãens

t,c

∥
∥
∥

2

F
=

k

∑
j=1

∥
∥
∥B− 1

t

t

∑
i=1

Ĉ
(i)
j Ŵ

†
j

(
Ĉ
(i)
j

)T
∥
∥
∥

2

F

≥ (1−α)2
k

∑
j=1

(

p−2c j +
c j

t

)(

1+
p+

c j

t
+ 2

α −2

(c j +
1−α

α )2

)

= (1−α)2

[(

m−2c+
c

t

)

+
k

∑
j=1

(

p−2c j +
c j

t

) p+
c j

t
+ 2(1−α)

α

(c j +
1−α

α )2

]

,

where the inequality follows from Lemma 23, and the last equality follows from ∑k
j=1 c j = c and

kp = m. The summation in the last equality equals to

k

∑
j=1

[(

p+
c j

t
+

2(1−α)

α

)

−2
(

c j +
1−α

α

)] p+
c j

t
+ 2(1−α)

α

(c j +
1−α

α )2

= −k+
k

∑
j=1

(
p+

c j

t
+ 2(1−α)

α

c j +
1−α

α

−1

)2

≥ −k+ k

(
m− c+ c

t
+ k 1−α

α

c+ k 1−α
α

)2

.

Here the inequality holds because the function is minimized when c1 = · · ·= ck = c/k. Finally we

have that

∥
∥
∥A− Ãens

t,c

∥
∥
∥

2

F
≥ (1−α)2

[(

m−2c+
c

t
− k

)

+ k

(
m− c+ c

t
+ k 1−α

α

c+ k 1−α
α

)2]

,

which proves the Frobenius norm bound in the theorem.

Furthermore, since the matrix B− 1
t ∑t

i=1 Ĉ
(i)
j Ŵ

†
j

(
Ĉ
(i)
j

)T
is SPSD by Lemma 23, so the block

diagonal matrix (A− Ãens
t,c ) is also SPSD. Thus we have

∥
∥A− Ãens

t,c

∥
∥
∗ = (1−α)∑

i=1

(p− ci)
ci +

1
α

ci +
1−α

α

≥ (1−α)(m− c)
(

1+
k

c+ 1−α
α k

)

,

which proves the nuclear norm bound in the theorem.

Theorem 25 Assume that the ensemble Nyström method selects a collection of t samples, each

sample C(i) (i = 1, · · · , t) contains c columns of A without overlapping. Then there exists an m×m

SPSD matrix A such that the relative-error ratio of the ensemble Nyström method is lower bounded

by

‖A− Ãens
t,c ‖F

‖A−Ak‖F

≥
√

m−2c+ c/t− k

m− k

(

1+
k(m−2c+ c/t)

c2

)

,

‖A− Ãens
t,c ‖∗

‖A−Ak‖∗
≥ m− c

m− k

(

1+
k

c

)

,

where Ãens
t,c = 1

t ∑t
i=1 C(i)W(i)†

C(i)T
.
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Proof The theorem follows directly from Theorem 24 and Lemma 19 by setting α→ 1.
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