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Abstract

We consider learning on graphs, guided by kernels that encode similarity between vertices. Our fo-

cus is on random walk kernels, the analogues of squared exponential kernels in Euclidean spaces.

We show that on large, locally treelike graphs these have some counter-intuitive properties, specif-

ically in the limit of large kernel lengthscales. We consider using these kernels as covariance func-

tions of Gaussian processes. In this situation one typically scales the prior globally to normalise the

average of the prior variance across vertices. We demonstrate that, in contrast to the Euclidean case,

this generically leads to significant variation in the prior variance across vertices, which is undesir-

able from a probabilistic modelling point of view. We suggest the random walk kernel should be

normalised locally, so that each vertex has the same prior variance, and analyse the consequences of

this by studying learning curves for Gaussian process regression. Numerical calculations as well as

novel theoretical predictions for the learning curves using belief propagation show that one obtains

distinctly different probabilistic models depending on the choice of normalisation. Our method for

predicting the learning curves using belief propagation is significantly more accurate than previous

approximations and should become exact in the limit of large random graphs.

Keywords: Gaussian process, generalisation error, learning curve, cavity method, belief propaga-

tion, graph, random walk kernel

1. Introduction

Gaussian processes (GPs) have become a workhorse for probabilistic inference that has been de-

veloped in a wide range of research fields under various guises (see for example Kleijnen, 2009;

Handcock and Stein, 1993; Neal, 1996; Meinhold and Singpurwalla, 1983). Their success and wide

adoption can be attributed mainly to their intuitive nature and ease of use. They owe their intu-

itiveness to being one of a large family of kernel methods that implicitly map lower dimensional

spaces with non-linear relationships to higher dimensional spaces where (hopefully) relationships

are linear. This feat is achieved by using a kernel, which also encodes the types of functions that the

GP prefers a priori. The ease of use of GPs is due to the simplicity of implementation, at least in the

basic setting, where prior and posterior distributions are both Gaussian and can be written explicitly.

An important question for any machine learning method is how ‘quickly’ the method can gen-

eralise its prediction of a rule to the entire domain of the rule (i.e., how many examples are required

to achieve a particular generalisation error). This is encapsulated in the learning curve, which traces

average error versus number of examples. Learning curves have been studied for a variety of infer-
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ence methods and are well understood for parametric models (Seung et al., 1992; Amari et al., 1992;

Watkin et al., 1993; Opper and Haussler, 1995; Haussler et al., 1996; Freeman and Saad, 1997) but

rather less is known for non-parametric models such as GPs. In the case of GP regression, re-

search has predominantly focused on leaning curves for input data from Euclidean spaces (Sollich,

1999a,b; Opper and Vivarelli, 1999; Williams and Vivarelli, 2000; Malzahn and Opper, 2003; Sol-

lich, 2002; Sollich and Halees, 2002; Sollich and Williams, 2005), but there are many domains for

which the input data has a discrete structure. One of the simplest cases is the one where inputs are

vertices on a graph, with connections on the graph encoding similarity relations between different

inputs. Examples could include the internet, social networks, protein networks and financial mar-

kets. Such discrete input spaces with graph structure are becoming more important, and therefore

so is an understanding of GPs, and machine learning techniques in general, on these spaces.

In this paper we expand on earlier work in Sollich et al. (2009) and Urry and Sollich (2010)

and focus on predicting the learning curves of GPs used for regression (where outputs are from the

whole real line) on large sparse graphs, using the random walk kernel (Kondor and Lafferty, 2002;

Smola and Kondor, 2003).

The rest of this paper will be structured as follows. In Section 2 we begin by analysing the

random walk kernel, in particular with regard to the dependence on its lengthscale parameter, and

study the approach to the fully correlated limit. With a better understanding of the random walk

kernel in hand, we proceed in Section 3 to an analysis of the use of the random walk kernel for

GP regression on graphs. We begin in Section 3.2 by looking at how kernel normalisation affects

the prior probability over functions. We show that the more frequently used global normalisation

of a kernel by its average prior variance is inappropriate for the highly location dependent random

walk kernel, and suggest normalisation to uniform local prior variance as a remedy. To understand

how this affects GP regression using random walk kernels quantitatively, we extend first in Section

3.4 an existing approximation to the learning curve in terms of kernel eigenvalues (Sollich, 1999a;

Opper and Malzahn, 2002) to the discrete input case, allowing for arbitrary normalisation. This

approximation turns out to be accurate only in the initial and asymptotic regimes of the learning

curve.

The core of our analysis begins in Section 4 with the development of an improved learning

curve approximation based on belief propagation. We first apply this, in Section 4.1, to the case

of globally normalised kernels as originally proposed. The belief propagation analysis for global

normalisation also acts as a useful warm-up for the extension to the prediction of learning curves for

the locally normalised kernel setting, which we present in Section 4.3. In both sections we compare

our predictions to numerical simulations, finding good agreement that improves significantly on the

eigenvalue approximation. Finally, to emphasise the distinction between the use of globally and

locally normalised kernels in GP regression, we study qualitatively the case of model mismatch,

with a GP with a globally normalised kernel as the teacher and a GP with a locally normalised

kernel as the student, or visa versa. The resulting learning curves show that the priors arising from

the two different normalisations are fundamentally different; the learning curve can become non-

monotonic and develop a maximum as a result of the mismatch. We conclude in Section 6 by

summarising our results and discussing further potentially fruitful avenues of research.
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1.1 Main Results

In this paper we will derive three key results; that normalisation of a kernel by its average prior vari-

ance leads to a complicated relationship between the prior variances and the local graph structure;

that by fixing the scale to be equal everywhere using a local prescription Ci j = Ĉi j/
√

ĈiiĈ j j results

in a fundamentally different probabilistic model; and that we can derive accurate predictions of the

learning curves of Gaussian processes on graphs with a random walk kernel for both normalisations

over a broad range of graphs and parameters. The last result is surprising since in continuous spaces

this is only possible for a few very restrictive cases.

2. The Random Walk Kernel

A wide range of machine learning techniques like Gaussian processes capture prior correlations

between points in an input space by mapping to a higher dimensional space, where correlations

can be represented by a linear combination of ‘features’ (see, e.g., Rasmussen and Williams, 2005;

Müller et al., 2001; Cristianini and Shawe-Taylor, 2000). Direct calculation of correlations in this

high dimensional space is avoided using the ‘kernel trick’, where the kernel function implicitly

calculates inner products in feature space. The widespread use of, and therefore extensive research

in, kernel based machine learning has resulted in kernels being developed for a wide range of input

spaces (see Genton, 2002, and references therein). We focus in this paper on the class of kernels

introduced in Kondor and Lafferty (2002). These make use of the normalised graph Laplacian to

define correlations between vertices of a graph.

We denote a generic graph by G(V ,E) with a vertex set V = {1, . . . ,V} and edge set E . We

encode the connection structure of G using an adjacency matrix A, where Ai j = 1 if vertex i is

connected to j, and 0 otherwise; we exclude self-loops so that Aii = 0. We denote the number of

edges connected to vertex i, known as the degree, by di = ∑ j Ai j and define the degree matrix D as

a diagonal matrix of the vertex degrees, that is, Di j = diδi j. The class of kernels created in Kondor

and Lafferty (2002) is constructed using the normalised Laplacian, L = I −D−1/2AD−1/2 (see

Chung, 1996) as a replacement for the Laplacian in continuous spaces. Of particular interest is the

diffusion kernel and its easier to calculate approximation, the random walk kernel. Both of these

kernels can be viewed as an approximation to the ubiquitous squared exponential kernel that is used

in continuous spaces. The direct graph equivalent of the squared exponential kernel is given by the

diffusion kernel (Kondor and Lafferty, 2002). It is defined as

C = exp

(

−1

2
σ2L

)

, σ > 0, (1)

where σ sets the length-scale of the kernel. Unlike in continuous spaces, the exponential in the

diffusion kernel is costly to calculate. To avoid this, Smola and Kondor (2003) proposed as a

cheaper approximation the random walk kernel

C =
(

I−a−1L
)p

=
(

(1−a−1)I+a−1D−1/2AD−1/2
)p

, a > 2, p ∈ N. (2)

This gives back the diffusion kernel in the limit a, p → ∞ whilst keeping p/a = σ2/2 fixed. The

random walk kernel derives its name from its use of random walks to express correlations between
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vertices. Explicitly, a binomial expansion of Equation (2) gives

C =
p

∑
q=0

(

p

q

)

(1−a−1)p−q(a−1)q(D−1/2AD−1/2)q

=D−1/2
p

∑
q=0

(

p

q

)

(1−a−1)p−q(a−1)q(AD−1)qD1/2.

(3)

The matrix AD−1 is a random walk transition matrix: (AD−1)i j is the probability of being at vertex

i after one random walk step starting from vertex j. Apart from the pre- and post-multiplication by

D−1/2 and D1/2, the kernel C is therefore a q-step random walk transition matrix, averaged over the

number of steps q distributed as q ∼ Binomial(p,a−1). Equivalently one can interpret the random

walk kernel as a p-step lazy random walk, where at each step the walker stays at the current vertex

with probability (1−a−1) and moves to a neighbouring vertex with probability a−1.

Using either interpretation, one sees that p/a is the lengthscale over which the random walk

can diffuse along the graph, and hence the lengthscale describing the typical maximum range of the

random walk kernel. In the limit of large p, where this lengthscale diverges, the kernel should rep-

resent full correlation across all vertices. One can see that this is the case by observing that for large

p, a random walk on a graph will approach its stationary distribution, p∞ ∝ De, e = (1, . . . ,1)T .

The q-step transition matrix for large q is therefore (AD−1)q ≈ p∞e
T = DeeT , representing the

fact that the random walk becomes stationary independently of the starting vertex. This gives, for

p → ∞, the kernel C ∝ D1/2eeTD1/2, that is, Ci j ∝ d
1/2
i d

1/2
j . This corresponds to full correla-

tion across vertices as expected; explicitly, if f is a Gaussian process on the graph with covariance

matrix D1/2eeTD1/2, then f = vD1/2e with v a single Gaussian degree of freedom.

We next consider how random walk kernels on graphs approach the fully correlated case, and

show that even for ‘simple’ graphs the convergence to this limit is non-trivial. Before we do so, we

note an additional peculiarity of random walk kernels compared to their Euclidean counterparts: in

addition to the maximum range lengthscale p/a discussed so far, they have a diffusive lengthscale

σ = (2p/a)1/2, which is suggested for large p and a by the lengthscale of the corresponding diffu-

sion kernel (1). This diffusive lengthscale will appear in our analysis of learning curves in the large

p-limit Section 3.4.1.

2.1 The d-Regular Tree: A Concrete Example

To begin our discussion of the dependence of the random walk kernel on the lengthscale p/a, we

first look at how this kernel behaves on a d-regular graph sampled uniformly from the set of all

d-regular graphs. Here d-regular means that all vertices have degree di = d. For a large enough

number of vertices V , typical cycles in such a d-regular graph are also large, of length O(logV ),
and can be neglected for calculation of the kernel when V → ∞. We therefore begin by assuming

the graph is an infinite tree, and assess later how the cycles that do exist on random d-regular graphs

cause departures from this picture.

A d-regular tree is a graph where each vertex has degree d with no cycles; it is unique up to

permutations of the vertices. Since all vertices on the tree are equivalent, the random walk kernel

Ci j can only depend on the distance between vertices i and j, that is, the smallest number of steps on

the graph required to get from one vertex to the other. Denoting the value of a p-step lazy random

walk kernel for vertices a distance l apart by Cl,p, we can determine these values by recursion over
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p as follows:

Cl,p=0 = δl,0, γp+1C0,p+1 =

(

1− 1

a

)

C0,p +
1

a
C1,p,

γp+1Cl,p+1 =
1

ad
Cl−1,p +

(

1− 1

a

)

Cl,p +
d −1

ad
Cl+1,p l ≥ 1.

(4)

Here γp is chosen to achieve the desired normalisation of the prior variance for every p. We will

normalise so that C0,p = 1.

Figure 1 (left) shows the results obtained by iterating Equation (4) numerically for a 3-regular

tree with a = 2. As expected the kernel becomes longer-ranged initially as p is increased, but seems

to approach a non-trivial limiting form. This can be calculated analytically and is given by (see

Appendix A)

Cl,p→∞ =

[

1+
l(d −2)

d

]

1

(d −1)l/2
. (5)

Equation (5) can be derived by taking the σ2 → ∞ limit of the integral expression for the diffusion

kernel from Chung and Yau (1999) whilst preserving normalisation of the kernel (see Appendix

A.1 for further details). Alternatively the result (5) can be obtained by rewriting the random walk

in terms of shells, that is, grouping vertices according to distance l from a chosen central vertex.

The number of vertices in the l-th shell, or shell volume, is vl = d(d − 1)l−1 for l ≥ 1 and v0 = 1.

Introducing Rl,p =Cl,p
√

vl , Equation (4) can be written in the form

Rl,p=0 = δl,0, γp+1R0,p+1 =

(

1− 1

a

)

R0,p +
1

a
√

d
R1,p,

γp+1Rl,p+1 =

√
d −1

ad
Rl−1,p +

(

1− 1

a

)

Rl,p +

√
d −1

ad
Rl+1,p l ≥ 1.

(6)

This is just the un-normalised diffusion equation for a biased random walk on a one dimensional

lattice with a reflective boundary at 0. This has been solved in Monthus and Texier (1996), and

mapping this solution back to Cl,p gives (5) (see Appendix A.2 for further details).

To summarise thus far, the analysis on a d-regular tree shows that, for large p, the random walk

kernel does not approach the expected fully correlated limit: because all vertices have the same

degree this limit would correspond to Cl,p→∞ = 1. On the other hand, on a d-regular graph with any

finite number V of vertices, the fully correlated limit must necessarily be approached as p → ∞. As

a large regular graph is locally treelike, the difference must arise from the existence of long cycles

in a regular graph.

To estimate when the existence of cycles will start to affect the kernel, consider first a d-regular

tree truncated at depth l. This will have V = 1+∑l
i=1 d(d −1)i−1 = O(d(d −1)l−1) vertices. On a

d-regular graph with the same number of vertices, we therefore expect to encounter cycles after a

number of steps, taken along the graph, of order l. In the random walk kernel the typical number of

steps is p/a, so effects of cycles should appear once p/a becomes larger than

p

a
≈ log(V )

log(d −1)
. (7)

Figure 1 (right) shows a comparison between C1,p as calculated from Equation (4) for a 3-regular

tree and its analogue on random 3-regular graphs of finite size, which we call K1,p. We define this

1805



URRY AND SOLLICH

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

C
l,

p

l

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

K
1
,p

p/a

log(V )/ log(d −1)

p = 1
p = 2
p = 3
p = 4
p = 5

p = 10
p = 20
p = 50

p = 100
p = 200
p = 500

p = ∞
a = 2, V = ∞

a = 2, V = 500
a = 4, V = ∞

a = 4, V = 500

Figure 1: (Left) Random walk kernel Cl,p on a 3-regular tree plotted against distance l for increasing

number of steps p and a = 2. (Right) Comparison between numerical results for the

average nearest neighbour kernel K1,p on random 3-regular graphs with the result C1,p on

a 3-regular tree, calculated numerically by iteration of (4).

analogue as the average of Ci j/
√

CiiC j j over all pairs of neighbouring vertices on a fixed graph,

averaged further over a number of randomly generated regular graphs. The square root accounts

for the fact that local kernel values Cii can vary slightly on a regular graph because of cycles, while

they are the same for all vertices of a regular tree. Looking at Figure 1 (right) one sees that, as

expected from the arguments above, the nearest neighbour kernel value for the 3-regular graph,

K1,p, coincides with its analogue C1,p on the 3-regular tree for small p. When p/a crosses the

threshold (7), cycles in the regular graph become important and the two curves separate. For larger

p, the kernel value for neighbouring vertices approaches the fully correlated limit K1,p → 1 on a

regular graph, while on a regular tree one has the non-trivial limit C1,p → 2
√

d −1/d from (5).

In conclusion of our analysis of random walk kernels, we have seen that these kernels have

an unusual dependence on their lengthscale p/a. In particular, kernel values for vertices a short

distance apart can remain significantly below the fully correlated limit, even if p/a is large. That

limit is approached only once p/a becomes larger than the graph size-dependent threshold (7), at

which point cycles become important. We have focused here on random regular graphs, but the

same qualitative behaviour should be observed also on graphs with a non-trivial distribution of

vertex degrees di.

3. Learning Curves for Gaussian Process Regression

Having reached a better understanding of the random walk kernel we now study its application

in machine learning. In particular we focus on the use of the random walk kernel for regression

with Gaussian processes. We will begin, for completeness, with an introduction to GPs for regres-
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sion. For a more comprehensive discussion of GPs for machine learning we direct the reader to

Rasmussen and Williams (2005).

3.1 Gaussian Process Regression: Kernels as Covariance Functions

Gaussian process regression is a Bayesian inference technique that constructs a posterior distribution

over a function space, P( f |x,y), given training input locations x= (x1, . . . ,xN)
T and corresponding

function value outputs y = (y1, . . . ,yN)
T. The posterior is constructed from a prior distribution P( f )

over the function space and the likelihood P(y| f ,x) to generate the observed output values from

function f by using Bayes’ theorem

P( f |x,y) = P(y| f ,x)P( f )∫
d f ′P(y| f ′,x)P( f ′)

.

In the GP setting the prior is chosen to be a Gaussian process, where any finite number of function

values has a joint Gaussian distribution, with a covariance matrix with entries given by a covariance

function or kernel C(x,x′) and with a mean vector with entries given by a mean function µ(x). For

simplicity we will focus on zero mean GPs1 and a Gaussian likelihood, which amounts to assuming

that training outputs are corrupted by independent and identically distributed Gaussian noise. Under

these assumptions all distributions are Gaussian and can be calculated explicitly. If we assume we

are given training data {(xµ,yµ)|µ= 1, . . . ,N} where yµ is the value of the target or ‘teacher’ function

at input location xµ, corrupted by additive Gaussian noise with variance σ2, the posterior distribution

is then given by another Gaussian process with mean and covariance functions

f̄ (x) = k(x)TK−1y, (8)

Cov(x,x′) =C(x,x′)−k(x)TK−1k(x′), (9)

where k(x) = (C(x1,x), . . . ,C(xN ,x))
T and Kµν =C(xµ,xν)+δµνσ2. With the posterior in the form

of a Gaussian process, predictions are simple. Assuming a squared loss function, the optimal pre-

diction of the outputs is given by f̄ (x) and a measure of uncertainty in the prediction is provided by

Cov(x,x)1/2.

Equations (8) and (9) illustrate that, in the setting of GP regression, kernels are used to change

the type of function preferred by the Gaussian process prior, and correspondingly the posterior. The

kernel can encode prior beliefs about smoothness properties, lengthscale and expected amplitude of

the function we are trying to predict. Of particular importance for the discussion below, C(x,x) gives

the prior variance of the function f at input x, so that C(x,x)1/2 sets the typical function amplitude

or scale.

3.2 Kernel Normalisation

Conventionally one fixes the desired scale of the kernel using a global normalisation: denoting

the unnormalised kernel by Ĉ(x,x′) one scales C(x,x′) = Ĉ(x,x′)/κ to achieve a desired average

of C(x,x) across input locations x. In Euclidean spaces one typically uses translationally invariant

kernels like the squared exponential kernel. For these, C(x,x) is the same for all input locations x

and so global normalisation is sufficient to fix a spatially uniform scale for the prior amplitude. In

the case of kernels on graphs, on the other hand, the local connectivity structure around each vertex

1. In the discussion and analysis that follows, generalisation to non-zero mean GPs is straightforward.

1807



URRY AND SOLLICH

can be different. Since information about correlations ‘propagates’ only along graph edges, graph

kernels are not generally translation invariant. In particular, there can be large variation among the

prior variances at different vertices. This is usually undesirable in a probabilistic model, unless one

has strong prior knowledge to justify such variation. For the random walk kernel, the local prior

variances are the diagonal entries of Equation (3). These are directly related to the probability of

return of a lazy random walk on a graph, which depends sensitively on the local graph structure.

This dependence is in general non-trivial, and not just expressible through, for example, the degree

of the local vertex. It seems difficult to imagine a scenario where such a link between prior variances

and local graph structures could be justified by prior knowledge.

To emphasise the issue, Figure 2 shows examples of distributions of local prior variances Cii

for random walk kernels globally normalised to an average prior variance of unity.2 The distribu-

tions are peaked around the desired value of unity but contain many ‘outliers’ from vertices with

abnormally low or high prior variance. Figure 2 (left) shows the distribution of Cii for a large

single instance of an Erdős-Rényi random graph (Erdős and Rényi, 1959). In such graphs, each

edge is present independently of all others with some fixed probability, giving a Poisson distribu-

tion of degrees pλ(d) = λd exp(−λ)/d!; for the figure we chose average degree λ = 3. Figure 2

(right) shows analogous results for a generalised random graph with power law mixing distribution

(Britton et al., 2006). Generalised random graphs are an extension of Erdős-Rényi random graphs

where different edges are assigned different probabilities of being present. By appropriate choice

of these probabilities (Britton et al., 2006), one can generate a degree distribution that is a superpo-

sition of Poisson distributions, p(d) =
∫

dλ pλ(d)p(λ). We have taken a shifted Pareto distribution,

p(λ) = αλα
m/λα+1 with exponent α = 2.5 and lower cutoff λm = 2 for the distribution of the means.

Looking first at Figure 2 (left), we know that large Erdős-Rényi graphs are locally tree-like

and hence one might expect that this would lead to relatively uniform local prior variances. As

shown in the figure, however, even for such tree-like graphs large variations can exist in the lo-

cal prior variances. To give some specific examples, the large spike near 0 is caused by single

disconnected vertices and the smaller spike at around 6.8 arises from two-vertex (single edge) dis-

connected subgraphs. Single vertex subgraphs have an atypically small prior variance since, for a

single disconnected vertex i, before normalisation Cii = (1−a−1)p which is the q = 0 contribution

from Equation (3). Other vertices in the graph will get additional contributions from q ≥ 1 and so

have a larger prior variance. This effect will become more pronounced as p is increased and the

binomial weights assign less weight to the q = 0 term.

Somewhat surprisingly at first sight, the opposite effect is seen for two-vertex disconnected

subgraphs as shown by the spike around Cii = 6.8 in Figure 2 (left). For vertices on such subgraphs,

Cii = ∑
⌊p/2⌋
q=0

(

p
2q

)

a−2q(1− a−1)p−2q, which is an atypically large return probability: after any even

number of steps, the walker must always return to its starting vertex. A similar situation would

occur on vertices at the centre of a star. This illustrates that local properties of a vertex alone, like

its degree, do not constrain the prior variance. In a two-vertex disconnected subgraph both vertices

have degree 1. But there will generically be other vertices of degree 1 that are dangling ends of a

large connected graph component, and these will not have similarly elevated return probabilities.

Thus, local graph structure is intertwined in a complex manner with local prior variance.

The black line in Figure 2 (left) shows theoretical predictions (see Section 4.2) for the prior

variance distribution in the large graph limit. There is significant fine structure in the various peaks,

2. We use Cii again here, instead of C(i, i) as in our general discussion of GPs; the subscript notation is more intuitive

because the covariance function on a graph is just a V ×V matrix.
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on which theory and simulations agree well where the latter give reliable statistics. The decay from

the mean is roughly exponential (see linear-log plot in inset), emphasizing that the distribution of

local prior variances is not only rather broad but can also have large tails.

For the power law random graph, Figure 2 (right), the broad features of the distribution of local

prior variances Cii are similar: a peak at the desired value of unity, overlaid by spikes which again

come from single and two-vertex disconnected subgraphs. The inset shows that the tail beyond the

mean is roughly exponential again, but with a slower decay; this is to be expected since power law

graphs exhibit many more different local structures with a significantly larger probability than is

the case for Erdős-Rényi graphs. Accordingly, the distribution of the Cii also has a larger standard

deviation than for the Erdős-Rényi case. The maximum values of Cii that we see in these two specific

graph instances follow the same trend, with maxiCii ≈ 40 for the power law graph and maxiCii ≈ 15

for the Erdős-Rényi graph. Such large values would constitute rather unrealistic prior assumptions

about the scaling of the target function at these vertices.

To summarise, Figure 2 shows that after global normalisation a random walk kernel can retain a

large spread in the local prior variances, with the latter depending on the graph structure in a compli-

cated manner. We propose that to overcome this one should use a local normalisation. For a desired

prior variance c this means normalising according to Ci j = cĈi j/(κiκ j)
1/2 with local normalisation

constants κi = Ĉii; here Ĉi j is the unnormalised kernel matrix as before. This guarantees that all

vertices have exactly equal prior variance as in the Euclidean case, that is, all vertices have a prior

variance of c. No uncontrolled local variation in the scaling of the function prior then remains, and

the computational overhead of local over global normalisation is negligible. Graphically, if we were

to normalise the kernel to unity according to the local prescription, a plot of prior variances like the

one in Figure 2 would be a delta peak centred at 1.

The effect of this normalisation on the behaviour of GP regression is a key question for the

remainder of this paper; numerical simulation results are shown in Section 3.3 below, while our

theoretical analysis is described in Section 4.

3.3 Predicting the Learning Curve

The performance of non-parametric methods such as GPs can be characterised by studying the

learning curve,

ε(N) =

〈〈〈〈

1

V

V

∑
i=1

(

gi −〈 fi〉f |x,y
)2

〉

y|g,x

〉

g

〉

x

〉

G

,

defined as the average squared error between the student and teacher’s predictions f = ( f1, . . . , fV )
T

and g = (g1, . . . ,gV )
T respectively, averaged over the student’s posterior distribution given the data

f |x,y, the outputs given the teacher y|g,x, the teacher functions g, and the input locations x.

This gives the average generalisation error as a function of the number of training examples. For

simplicity we will assume that the input distribution is uniform across the vertices of the graph.

Because we are analysing GP regression on graphs, after the averages discussed so far the gen-

eralisation error will still depend on the structure of the specific graph considered. We therefore

include an additional average, over all graphs in a random graph ensemble G . We consider graph

ensembles defined by the distribution of degrees di: we specify a degree sequence {d1, . . . ,dV}, or,

for large V , equivalently a degree distribution p(d), and pick uniformly at random any one of the

graphs that has this degree distribution. The actual shape of the degree distribution is left arbitrary,
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Figure 2: (Left) Grey: histogram of prior variances for the globally normalised random walk kernel

with a = 2, p = 10 on a single instance of an Erdős-Rényi graph with mean degree λ = 3

and V = 10000 vertices. Black: prediction for this distribution in the large graph limit

(see Section 4.2). Inset: Linear-log plot of the tail of the distribution. (Right) As (left)

but for a power law generalised random graph with exponent 2.5 and cutoff 2.

as long as it has finite mean. Our analysis therefore has broad applicability, including in particu-

lar the graph types already mentioned above (d-regular graphs, where p(d′) = δdd′ , Erdős-Rényi

graphs, power law generalised random graphs).

For this paper, as is typical for learning curve studies, we will assume that teacher and stu-

dent have the same prior distribution over functions, and likewise that the assumed Gaussian noise

of variance σ2 reflects the actual noise process corrupting the training data. This is known as the

matched case.3 Under this assumption the generalisation error becomes the Bayes error, which

given that we are considering squared error simplifies to the posterior variance of the student aver-

aged over data sets and graphs (Rasmussen and Williams, 2005). Since we only need the posterior

variance we shift f so that the posterior mean is 0; fi is then just the deviation of the function value

at vertex i from the posterior mean. The Bayes error can now be written as

ε(N) =

〈〈〈

1

V

V

∑
i=1

f 2
i

〉

f |x

〉

x

〉

G

. (10)

Note that by shifting the posterior distribution to zero mean, we have eliminated the dependence

on y in the above equation. That this should be so can also be seen from (9) for the posterior

(co-)variance, which only depends on training inputs x but not the corresponding outputs y.

3. The case of mismatch has been considered in Malzahn and Opper (2005) for fixed teacher functions, and for prior

and noise level mismatch in Sollich (2002); Sollich and Williams (2005).
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The averages in Equation (10) are in general difficult to calculate analytically, because the train-

ing input locations x enter in a highly nonlinear matter, see (9); only for very specific situations

can exact results be obtained (Malzahn and Opper, 2005; Rasmussen and Williams, 2005). Approx-

imate learning curve predictions have been derived, for Euclidean input spaces, with some degree

of success (Sollich, 1999a,b; Opper and Vivarelli, 1999; Williams and Vivarelli, 2000; Malzahn and

Opper, 2003; Sollich, 2002; Sollich and Halees, 2002; Sollich and Williams, 2005). We will show

that in the case of GP regression for functions defined on graphs, learning curves can be predicted

exactly in the limit of large random graphs. This prediction is broadly applicable because the degree

distribution that specifies the graph ensemble is essentially arbitrary.

It is instructive to begin our analysis by extending a previous approximation seen in Sollich

(1999a) and Malzahn and Opper (2005) to our discrete graph case. In so doing we will see explicitly

how one may improve this approximation to fully exploit the structure of random graphs, using

belief propagation or equivalently the cavity method (Mézard and Parisi, 2003). We will sketch the

derivation of the existing approximation following the method of Malzahn and Opper (2005); the

result given by Sollich (1999a) is included in this as a somewhat more restricted approximation.

Both the approximate treatment and our cavity method take a statistical mechanics approach, so we

begin by rewriting Equation (10) in terms of a generating or partition function Z

ε(N) =

〈

1

V
∑

i

∫
dfP(f |x) f 2

i

〉

x,G

=− lim
λ→0

2

V

∂

∂λ
〈log(Z)〉x,G , (11)

with

Z =
∫

df exp

(

−1

2
fTC−1f − 1

2σ2

N

∑
µ=1

f 2
xµ
− λ

2
∑

i

f 2
i

)

.

In this representation the inputs x only enter Z through the sum over µ. We introduce γi to count the

number of examples at vertex i so that Z becomes

Z =
∫

df exp

(

−1

2
fTC−1f − 1

2
fTdiag

( γi

σ2
+λ
)

f

)

. (12)

The average in Equation (11) of the logarithm of this partition function can still not be carried out

in closed form. The approximation given by Malzahn and Opper (2005) and our present cavity

approach diverge at this point. Section 3.4 discusses the existing approximation for the learning

curve, applied to the case of regression on a graph. Section 4 then improves on this using the cavity

method to fully exploit the graph structure.

3.4 Kernel Eigenvalue Approximation

The approach of Malzahn and Opper (2005) is to average log(Z) from (12) using the replica trick

(Mézard et al., 1987). One writes 〈logZ〉x = limn→0
1
n

log〈Zn〉x, performing the average 〈Zn〉x
for integer n and assuming that a continuation to n → 0 is possible. The required n-th power of

Equation (12) is given by

〈Zn〉x =
∫ n

∏
a=1

df a

〈

exp

(

−1

2
∑
a

(f a)TC−1f a − 1

2σ2 ∑
i,a

γi( f a
i )

2 − λ

2
∑
i,a

( f a
i )

2

)〉

x

,
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where the replica index a runs from 1 to n. Assuming as before that examples are generated inde-

pendently and uniformly from V , the data set average over x will, for large V , become equivalent

to independent Poisson averages over γi with mean ν = N/V . Explicitly performing these averages

gives

〈Zn〉x =
∫ n

∏
a=1

df a exp

(

−1

2
∑
a

(f a)TC−1f a +ν∑
i

(

e−∑a( f a
i )

2/2σ2 −1
)

− λ

2
∑
i,a

( f a
i )

2

)

. (13)

In order to evaluate (13) one has to find a way to deal with the exponential term in the exponent.

Malzahn and Opper (2005) do this using a variational approximation for the distribution of the f a,

of Gaussian form. Eventually this leads to the following eigenvalue learning curve approximation

(see also Sollich, 1999a):

ε(N) = g

(

N

ε(N)+σ2

)

, g(h) =
V

∑
α=1

(

λ−1
α +h

)−1
. (14)

The eigenvalues λα of the kernel are defined here from the eigenvalue equation4 (1/V )∑ j Ci jφ j =
λφi. The Gaussian variational approach is evidently justified for large σ2, where a Taylor expansion

of the exponential term in (13) can be truncated after the quadratic term. For small noise levels, on

the other hand, the Gaussian variational approach will in general not capture all the details of the

fluctuations in the numbers of examples γi. This issue is expected to be most prominent for values

of ν of order unity, where fluctuations in the number of examples are most relevant because some

vertices will not have seen examples locally or nearby and will have posterior variance close to the

prior variance, whereas those vertices with examples will have small posterior variance, of order σ2.

This effect disappears again for large ν, where the O(
√

ν) fluctuations in the number of examples at

each vertex becomes relatively small. Mathematically this can be seen from the term proportional

to ν in (13), which for large ν ensures that only values of f a
i with exp(−∑a( f a

i )
2/2σ2) close to 1

will contribute. A quadratic approximation is then justified even if σ2 is not large.

Learning curve predictions from Equation (14) using numerically computed eigenvalues for the

globally normalised random walk kernel are shown in Figure 3 as dotted lines for random regular

(left), Erdős-Rényi (centre) and power law generalised random graphs (right). The predictions are

compared to numerically simulated learning curves shown as solid lines, for a range of noise levels.

Consistent with the discussion above, the predictions of the eigenvalue approximation are accurate

where the Gaussian variational approach is justified, that is, for small and large ν. Figure 3 also

shows that the accuracy of the approximation improves as the noise level σ2 becomes larger, again

as expected by the nature of the Gaussian approximation.

3.4.1 LEARNING CURVES FOR LARGE p

Before moving on to the more accurate cavity prediction of the learning curves, we now look at

how the learning curves for GP regression on graphs depend on the kernel lengthscale p/a. We

focus for this discussion on random regular graphs, where the distinction between global and local

normalisation is not important. In Section 2.1, we saw that on a large regular graph the random walk

kernel approaches a non-trivial limiting form for large p, as long as one stays below the threshold

4. Here and below we consider the case of a uniform distribution of inputs across vertices, though the results can be

generalised to the non-uniform case.
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Figure 3: (Left) Learning curves for GP regression with globally normalised kernels with p = 10,

a = 2 on 3-regular random graphs for a range of noise levels σ2. Dotted lines: eigen-

value predictions (see Section 3.4), solid lines: numerically simulated learning curves

for graphs of size V = 500, dashed lines: cavity predictions (see Section 4.1); note these

are mostly visually indistinguishable from the simulation results. (Centre) As (left) for

Erdős-Rényi random graphs with mean degree 3. (Right) As (left) for power law gener-

alised random graphs with exponent 2.5 and cutoff 2.

(7) for p where cycles become important. One might be tempted to conclude from this that also

the learning curves have a limiting form for large p. This is too naive however, as one can see by

considering, for example, the effect of the first example on the Bayes error. If the example is at

vertex i, the posterior variance at vertex j is, from (9), C j j −C2
i j/(Cii +σ2). As the prior variances

C j j are all equal, to unity for our chosen normalisation, this is 1−C2
i j/(1+σ2). The reduction in

the Bayes error is therefore ε(0)−ε(1) = (1/V )∑ j C
2
i j/(1+σ2). As long as cycles are unimportant

this is independent of the location of the example vertex i, and in the notation of Section 2.1 can be

written as

ε(0)− ε(1) =
1

1+σ2

p

∑
l=0

vlC
2
l,p, (15)

where vl is, as before, the number of vertices a distance l away from vertex i, that is, v0 = 1,

vl = d(d − 1)l−1 for l ≥ 1. To evaluate (15) for large p, one cannot directly plug in the limiting

kernel form (5): the ‘shell volume’ vl just balances the l-dependence of the factor (d −1)−l/2 from

Cl,p, so that one gets contributions from all distances l, proportional to l2 for large l. Naively

summing up to l = p would give an initial decrease of the Bayes error growing as p3. This is not

correct; the reason is that while Cl,p approaches the large p-limit (5) for any fixed l, it does so more

and more slowly as l increases. A more detailed analysis, sketched in Appendix A.2, shows that
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for large l and p, Cl,p is proportional to the large p-limit l(d − 1)−l/2 up to a characteristic cutoff

distance l of order p1/2, and decays quickly beyond this. Summing in (15) the contributions of order

l2 up to this distance predicts finally that the initial error decay should scale, non-trivially, as p3/2.

We next show that this large p-scaling with p3/2 is also predicted, for the entire learning curve,

by the eigenvalue approximation (14). As before we consider d-regular random graphs. The re-

quired spectrum of kernel eigenvalues λα becomes identical, for large V , to that on a d-regular tree

(McKay, 1981). Explicitly, if λL
α are the eigenvalues of the normalised graph Laplacian on a tree,

then the kernel eigenvalues are λα = κ−1V−1(1− λL
α/a)p. Here the factor V−1 comes from the

same factor in the kernel eigenvalue definition after (14), and κ is the overall normalisation constant

which enforces ∑α λα =V−1 ∑ j C j j = 1. The spectrum of the tree Laplacian is known (see McKay,

1981; Chung, 1996) and is given by

ρ(λL) =







√

4(d−1)

d2 −(λL−1)2

(2π/d)λL(2−λL)
λ− ≤ λ ≤ λ+,

0 otherwise,

where λ± = 1± 2
d
(d − 1)1/2. (There are also two isolated eigenvalues at 0 and 2, which do not

contribute for large V .)

We can now write down the function g from (14), converting the sum over kernel eigenvalues to

V times an integral over Laplacian eigenvalues for large V . Dropping the L superscript, the result is

g(h) =
∫ λ+

λ−
dλρ(λ)[κ(1−λ/a)−p +hV−1]−1. (16)

The dependence on hV−1 here shows that in the approximate learning curve (14), the Bayes error

will depend only on ν = N/V as might have been expected. The condition for the normalisation

factor κ becomes simply g(0) = 1, or κ−1 =
∫

dλρ(λ)(1−λ/a)p.

So far we have written down how one would evaluate the eigenvalue approximation to the learn-

ing curve on large d-regular random graphs, for arbitrary kernel parameters p and a. Now we want

to consider the large p-limit. We show that there is then a master curve for the Bayes error against

νp3/2. This is entirely consistent with the p3/2 scaling found above for the initial error decay. The

intuition for the large p analysis is that the factor (1−λ/a)p decays quickly as the Laplacian eigen-

value λ increases beyond λ−, so that only values of λ near λ− contribute. One can then approximate

(

1− λ

a

)p

≈
(

1− λ−
a

)p

exp

(

− p(λ−λ−)
a−λ−

)

.

Similarly one can replace ρ(λ) by its leading square root behaviour near λ−,

ρ(λ) = (λ−λ−)
1/2 (d −1)1/4d5/2

π(d −2)2
.

Substituting these approximations into (16) and introducing the rescaled integration variable y =
p(λ−λ−)/(a−λ−) gives

g(h) = rκ−1(1−λ−/a)p

(

a−λ−
p

)3/2

F(hκ−1V−1(1−λ−/a)p),
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Figure 4: (Left) Eigenvalue approximation for learning curves on a random 3-regular graph, using

a random walk kernel with a = 2, σ2 = 0.1 and increasing values of p as shown. Plotting

against νp3/2 shows that for large p these rescaled curves approach the master curve

predicted from (17), though this approach is slower in the tail of the curves. (Right) As

(left), but for numerically simulated learning curves on graphs of size V = 500.

where r = (d − 1)1/4d5/2/(π(d − 2)2) and F(z) =
∫ ∞

0 dyy1/2(exp(y) + z)−1. Since g(0) = 1, the

prefactor must equal 1/F(0) = 2/
√

π. This fixes the normalisation constant κ, and we can simplify

to

g(h) =
F(hV−1c−1)

F(0)
, c = rF(0)

(

a−λ−
p

)3/2

.

The learning curves for large p are then predicted from (14) by solving

ε = F(νc−1/(ε+σ2))/F(0), (17)

and depend clearly only on the combination νc−1. Because c is proportional to p−3/2, this shows

that learning curves for different p should collapse onto a master curve when plotted against νp3/2.

A plot of the scaling of the eigenvalue learning curve approximations onto the master curve

is shown in Figure 4 (left). As can be seen, large values of p are required in order to get a good

collapse in the tail of the learning curve prediction, whereas in the initial part the p3/2 scaling is

accurate already for relatively small p.

Finally, Figure 4 (right) shows that the predicted p3/2-scaling of the learning curves is present

not only within the eigenvalue approximation, but also in the actual learning curves. Figure 4

(right) displays numerically simulated learning curves for p = 5,10,15 and 20, against the rescaled

number of examples νp3/2 as before. Even for these comparatively small values of p one sees that

the rescaled learning curves approach a master curve.
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4. Exact Learning Curves: Cavity Method

So far we have discussed the eigenvalue approximation of GP learning curves, and how it deviates

from numerically exact simulated learning curves. As discussed in Section 3.4, the deficiencies

of the eigenvalue approximation can be traced back to the fact that the fluctuations in the number

of training examples seen at each vertex of the graph cannot be accounted for in detail. If in the

average over data sets these fluctuations could be treated exactly, one would hope to obtain exact,

or at least very accurate, learning curve predictions. In this section we show that this is indeed

possible in the case of a random walk kernel, for both global and local normalisations. We derive our

prediction using belief propagation or, equivalently, the cavity method (Mézard and Parisi, 2003).

The approach relies on the fact that the local structure of the graph on which we are learning is

tree-like. This local tree-like structure always occurs in large random graphs sampled uniformly

from an ensemble specified by an arbitrary but fixed degree distribution, which is the scenario we

consider here. We will see that already for moderate graph sizes of V = 500, our predictions are

nearly indistinguishable from numerical simulations.

In order to apply the cavity method to the problem of predicting learning curves we must first

rewrite the partition function (12) in the form of a graphical model. This means that the function

being integrated over to obtain Z must consist of factors relating only to individual vertices, or to

pairs of neighbouring vertices. The inverse of the covariance matrix in (12) creates factors linking

vertices at arbitrary distances along the graph, and so must be eliminated before the cavity method

can be applied. We begin by assuming a general form for the normalisation of Ĉ that encompasses

both local and global normalisation and set C = K −1/2[(1− a−1)I + a−1D−1/2AD−1/2]pK −1/2

with Ki j = κiδi j. To eliminate interactions across the entire graph we first Fourier transform the prior

term exp(− 1
2
fTC−1f) in (12), introduce Fourier variables h, and then integrate out the remaining

terms with respect to f to give

Z ∝ ∏
i

( γi

σ2
+λ
)−1/2

∫
dhexp

(

−1

2
hTCh− 1

2
hTdiag

(

( γi

σ2
+λ
)−1/2

)

h

)

.

The coupling between different vertices in (4) is now through C so still links vertices up to distance

p. To reduce these remaining interactions to ones among nearest neighbours only, one exploits

the binomial expansion of the random walk kernel given in (3). Defining p additional variables at

each vertex as hq = K 1/2(D−1/2AD−1/2)qK −1/2h, q = 1, . . . , p, and abbreviating cq =
(

p
q

)

(1−
a−1)p−q(a−1)q, the interaction term hTCh turns into a local term ∑

p
q=0 cq(h

0)TK −1hq. (Here we

have, for the sake of uniformity, written h0 instead of h.) Of course the interactions have only

been ‘hidden’ in the hq, but the key point is that the definition of these additional variables can be

enforced recursively, via hq = K 1/2D−1/2AD−1/2K −1/2hq−1. We represent this definition via a

Dirac delta function (for each q = 1, . . . , p) and then Fourier transform the latter, with conjugate

variables ĥq, to get

Z ∝ ∏
i

( γi

σ2
+λ
)−1/2

∫ p

∏
q=0

dhq
p

∏
q=1

dĥq exp

(

− 1

2
(h0)Tdiag

(

( γi

σ2
+λ
)−1
)

h0

− 1

2

p

∑
q=0

cq(h
0)TK −1hq + i

p

∑
q=1

(ĥq)T
(

hq −K 1/2D−1/2AD−1/2K −1/2hq−1
)

)

. (18)
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Because the graph adjacency matrix A now appears at most linearly in the exponent, all interactions

are between nearest neighbours only. We have thus expressed our Z as the partition function of a

(complex-valued) graphical model.

4.1 Global Normalisation

We can now apply belief propagation to the calculation of marginals for the above graphical model.

We focus first on the simpler case of a globally normalised kernel where κi = κ for all i. Rescaling

each h
q
i to d

1/2
i κ1/2h

q
i and ĥ

q
i to d

1/2
i ĥ

q
i /κ1/2 we are left with

Z ∝ ∏
i

( γi

σ2
+λ
)−1/2

∫ p

∏
q=0

dhq
p

∏
q=1

dĥq ∏
i

exp

(

−1

2

p

∑
q=0

cqh0
i h

q
i di −

1

2

(h0
i )

2κdi

γi/σ2 +λ
+ i

p

∑
q=1

diĥ
q
i h

q
i

)

∏
(i, j)

exp

(

−i
p

∑
q=1

(

ĥ
q
i h

q−1
j + ĥ

q
jh

q−1
i

)

)

, (19)

where the interaction terms coming from the adjacency matrix, A, have been written explicitly as a

product over distinct graph edges (i, j).
To see how the Bayes error (10) can be obtained from this partition function, we differentiate

log(Z) with respect to λ as prescribed by (11) to get

ε(ν) = lim
λ→0

1

V
∑

i

1

γi/σ2 +λ

(

1− diκ〈(h0
i )

2〉
γi/σ2 +λ

)

. (20)

In order to calculate the Bayes error we therefore require specifically the marginal distributions of

h0
i . These can be calculated using the cavity method: for a large random graph with arbitrary fixed

degree sequence the graph is locally tree-like, so that if vertex i were eliminated the corresponding

subgraphs (locally trees) rooted at the neighbours j ∈ N (i) of i would become approximately in-

dependent. The resulting cavity marginals created by removing i, which we denote P
(i)
j (h j, ĥ j|x),

can then be calculated iteratively within these subgraphs using the update equations

P
(i)
j (h j, ĥ j|x) ∝ exp

(

−1

2

p

∑
q=0

cqd jh
0
jh

q
j −

1

2

d jκ(h
0
j)

2

γ j/σ2 +λ
+ i

p

∑
q=1

d jĥ
q
jh

q
j

)

∫
∏

k∈N ( j)\i

dhkdĥk exp

(

−i
p

∑
q=1

(ĥ
q
jh

q−1
k + ĥ

q

kh
q−1
j )

)

P
( j)
k (hk, ĥk|x). (21)

where h j = (h0
j , . . . ,h

p
j )

T and ĥ j = (ĥ1
j , . . . , ĥ

p
j )

T. In terms of the sum-product formulation of belief

propagation, the cavity marginal on the left is the message that vertex j sends to the factor in Z for

edge (i, j) (Bishop, 2007).

One sees that the cavity update Equations (21) are solved self-consistently by complex-valued

Gaussian distributions with mean zero and covariance matrices V
(i)
j . This Gaussian character of

the solution was of course to be expected because in (19) we have a Gaussian graphical model.

By performing the Gaussian integrals in the cavity update equations explicitly, one finds for the

corresponding updates of the covariance matrices the rather simple form

V
(i)
j = (O j − ∑

k∈N ( j)\i

XV
( j)

k X)−1, (22)
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where we have defined the (2p+1)× (2p+1) matrices

O j = d j



























c0+
κ

γ j/σ2+λ
c1

2
. . .

cp

2
0 . . . 0

c1

2
−i

...
. . .

cp

2
−i

0 −i
...

. . . 0p,p

0 −i



























, X =

























i

0p+1,p+1
. . .

i

0 . . . 0

i 0
. . .

... 0p,p

i 0

























. (23)

At first glance (22) becomes singular for γ j = 0; however this is easily avoided. We introduce

O j −∑d−1
k=1 XV

( j)
k X = M j + [d jκ/(γ j/σ2 + λ)]e0e

T
0 with eT

0 = (1,0, . . . ,0) so that M j contains

all the non-singular terms. We may then apply the Woodbury identity (Hager, 1989) to write the

matrix inverse in a form where the λ → 0 limit can be taken without difficulties:

(

O j −
d−1

∑
k=1

XV
( j)

k X

)−1

=M−1
j −

M−1
j e0e

T
0 M

−1
j

(γ j/σ2 +λ)/(d jκ)+eT
0 M

−1
j e0

.

In our derivation so far we have assumed a fixed graph, we therefore need to translate these

equations to the setting we ultimately want to study, that is, an ensemble of large random graphs.

This ensemble is characterised by the distribution p(d) of the degrees di, so that every graph that has

the desired degree distribution is assigned equal probability. Instead of individual cavity covariance

matrices V
(i)
j , one must then consider their probability distribution W (V ) across all edges of the

graph. Picking at random an edge (i, j) of a graph, the probability that vertex j will have degree

d j is then p(d j)d j/d̄, because such a vertex has d j ‘chances’ of being picked. (The normalisation

factor is the average degree d̄ = ∑i p(di)di.) Using again the locally treelike structure, the incoming

(to vertex j) cavity covariances V
( j)

k will be independent and identically distributed samples from

W (V ). Thus a fixed point of the cavity update equations corresponds to a fixed point of an update

equation for W (V ):

W (V ) = ∑
d

p(d)d

d̄

〈∫ d−1

∏
k=1

dVk W (Vk) δ



V −
(

O−
d−1

∑
k=1

XVkX

)−1




〉

γ

. (24)

Since the vertex label is now arbitrary, we have omitted the index j. The average in (24) is over the

distribution of the number of examples γ ≡ γ j at vertex j. As before we assume for simplicity that

examples are drawn with uniform input probability across all vertices, so that the distribution of γ is

simply γ ∼ Poisson(ν) in the limit of large N and V at fixed ν = N/V .

In general Equation (24)—which can also be formally derived using the replica approach (see

Urry and Sollich, 2012)—cannot be solved analytically, but we can tackle it numerically using

population dynamics (Mézard and Parisi, 2001). This is an iterative technique where one creates a

population of covariance matrices and for each iteration updates a random element of the population

according to the delta function in (24). The update is calculated by sampling from the degree

distribution p(d) of local degrees, the Poisson distribution of the local number of examples ν and
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from the distribution W (Vk) of ‘incoming’ covariance matrices, the latter being approximated by

uniform sampling from the current population.

Once we have W (V ), the Bayes error can be found from the graph ensemble version of Equa-

tion (11). This is obtained by inserting the explicit expression for 〈(h0
i )

2〉 in terms of the cavity

marginals of the neighbouring vertices, and replacing the average over vertices with an average over

degrees d:

ε(ν) = lim
λ→0

∑
d

p(d)

〈

1

γ/σ2 +λ

(

1− dκ

γ/σ2 +λ

∫ d

∏
k=1

dVk W (Vk) (O−
d

∑
k=1

XVkX)−1
00

)〉

γ

. (25)

The number of examples at the vertex γ is once more to be averaged over γ ∼ Poisson(ν). The

subscript ‘00’ indicates the top left element of the matrix, which determines the variance of h0.

To be able to use Equation (25), we again need to rewrite it into a form that remains ex-

plicitly non-singular when γ = 0 and λ → 0. We separate the γ-dependence of the matrix in-

verse again and write, in slightly modified notation as appropriate for the graph ensemble case,

O−∑d
k=1XVkX =Md +[dκ/(γ/σ2 +λ)]e0e

T
0 , where eT

0 = (1,0, . . . ,0). The 00 element of the

matrix inverse appearing above can then be expressed using the Woodbury formula (Hager, 1989)

as

eT
0

(

O−
d

∑
k=1

XVkX

)−1

e0 = eT
0M

−1
d e0 −

eT
0M

−1
d e0e

T
0 M

−1
d e0

(γ/σ2 +λ)/(dκ)+eT
0 M

−1
d e0

.

The λ → 0 limit can now be taken, with the result

ε(ν) =

〈

∑
d

p(d)
∫ d

∏
k=1

dVk W (Vk)
1

γ/σ2 +dκ(M−1
d )00

〉

γ

. (26)

This has a simple interpretation: the cavity marginals of the neighbours provide an effective Gaus-

sian prior for each vertex, whose inverse variance is dκ(M−1)00.

The self-consistency Equation (24) for W (V ) and the expression (26) for the resulting Bayes

error allow us to predict learning curves as a function of the number of examples per vertex, ν, for

arbitrary degree distributions p(d) of our random graph ensemble. For large graphs the predictions

should become exact. It is worth stressing that such exact learning curve predictions have previously

only been available in very specific, noise-free, GP regression scenarios, while our result for GP

regression on graphs is applicable to a broad range of random graph ensembles, with arbitrary noise

levels and kernel parameters.

We note briefly that for graphs with isolated vertices (d = 0), one has to be slightly careful:

already in the definition of the covariance function (2) one should replace D → D+ δI to avoid

division by zero, taking δ → 0 at the end. For d = 0 one then finds in the expression (26) that

(M−1)00 = 1/(c0δ), where c0 is defined before (18). As a consequence, κ(δ + d)(M−1)00 =
κδ(M−1)00 = κ/c0. This is to be expected since isolated vertices each have a separate Gaussian

prior with variance c0/κ.

Equations (24) and (26) still require the normalisation constant, κ. The simplest way to calculate

this is to run the population dynamics once for κ = 1 and ν = 0, that is, an unnormalised kernel and

no training data. The result for ε then just gives the average (over vertices) prior variance. With

κ set to this value, one can then run the population dynamics for any ν to obtain the Bayes error

prediction for GP regression with a globally normalised kernel.
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Comparisons between the cavity prediction for the learning curves, numerically exact simu-

lated learning curves and the results of the eigenvalue approximation are shown in Figure 3 (left,

centre and right), for regular, Erdős-Rényi and generalised random graphs with power law degree

distributions respectively. As can be seen the cavity predictions greatly outperform the eigenvalue

approximation and are accurate along the whole length of the curve. This confirms our expecta-

tion that the cavity approach will become exact on large graphs, although it is remarkable that the

agreement is quantitatively so good already for graphs with only five hundred vertices.

4.2 Predicting Prior Variances

As a by-product of the cavity analysis for globally normalised kernels we note that in the cavity form

of the Bayes error in Equation (26), the fraction (γ/σ2 + dκ(M−1
d )00)

−1 is the local Bayes error,

that is, the local posterior variance. By keeping track of individual samples for this quantity from

the population dynamics approach, we can thus predict the distribution of local posterior variances.

If we set ν = 0, then this becomes the distribution of prior variances. The cavity approach therefore

gives us, without additional effort, a prediction for this distribution.

We can now go back to Section 3.2 and compare the cavity predictions to numerically simulated

distributions of prior variances. The cavity predictions for these distributions are shown by the black

lines in Figure 2. The cavity approach provides, in particular, detailed information about the tail of

the distributions as shown in the insets. There is good agreement between the predictions and the

numerical simulations, both regarding the general shape of the variance distributions and the fine

structure with a number of non-trivial peaks and troughs. The residual small shifts between the

predictions and the numerical results for a single instance of a large graph are most likely due to

finite size effects: in a finite graph, the assumption of a tree-like local structure is not exact because

there can be rare short cycles; also, the long cycles that the cavity method ignores because their

length diverges logarithmically with V will have an effect when V is finite.

4.3 Local Normalisation

We now extend the cavity analysis for the learning curves to the case of locally normalised random

walk kernels, which, as argued above, provide more plausible probabilistic models. In this case the

diagonal entries of the normalisation matrix K are defined as

κi =
∫

df f 2
i P(f),

where P(f) is the GP prior with the unnormalised kernel Ĉ. This makes clear why the locally

normalised kernel case is more challenging technically: we cannot calculate the normalisation con-

stants once and for all for a given random graph ensemble and set of kernel parameters p and a as

we did for κ in the globally normalised scenario. Instead we have to account for the dependence of

the κi on the specific graph instance.

On a single graph instance, this stumbling block can be overcome as follows. One iterates the

cavity updates (22) for the unnormalised kernel and without the training data (i.e., setting κ = 1 and

γi = 0). The local Bayes error at vertex i, given by the i-th term in the sum from (20), then gives us

κi. Because γi = 0, one has to use the Woodbury trick to get well-behaved expressions in the limit

where the auxiliary parameter λ → 0, as explained after (25).
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Once the κi have been determined in this way, one can use them for predicting the Bayes error

for the scenario we really want to study, that is, using a locally normalised kernel and incorporating

the training data. The relevant partition function is the analogue of (18) for local normalisation.

Dropping the prefactors, the resulting Z can be written as

Z ∝

∫ p

∏
q=0

dhq
p

∏
q=1

dĥq ∏
i

exp

(

−1

2

p

∑
q=0

cqdih
0
i h

q
i −

1

2

diκi(h
0
i )

2

γi/σ2 +λ
+ i

p

∑
q=1

diĥ
q
i h

q
i

)

∏
(i, j)

exp

(

−i
p

∑
q=1

(ĥ
q
i h

q−1
j + ĥ

q
jh

q−1
i )

)

,

where we have rescaled h
q
i to d

1/2
i κ

1/2
i h

q
i and ĥ

q
i to d

1/2
i κ

−1/2
i ĥ

q
i . Given that the κi have already been

determined, this is a graphical model for which marginals can be calculated by iterating to a fixed

point the equations for the cavity marginals:

P
(i)
loc, j(h j, ĥ j|x) ∝ exp

(

−1

2

p

∑
q=0

cqd jh
0
jh

q
j −

1

2

d jκ j(h
0
j)

2

γ j/σ2 +λ
+ i

p

∑
q=1

d jĥ
q
jh

q
j

)

∫
∏

k∈N ( j)\i

dhkdĥk exp

(

−i
p

∑
q=1

(ĥ
q
jh

q−1
k + ĥ

q

kh
q−1
j )

)

P
( j)
loc,k(hk, ĥk|x). (27)

As in Section 4.1 these update equations are solved by cavity marginals of complex Gaussian form,

and so we can simplify them to updates for the covariance matrices:

V
(i)

loc, j =

(

Oloc, j − ∑
k∈N ( j)\i

XV
( j)

k,locX

)−1

. (28)

Here X is defined as in Equation (23) and Oloc, j is the obvious analogue of O j also defined in

Equation (23); specifically, κ is replaced by κ j. Once the update equations have converged, one can

calculate the Bayes error from a similarly adapted version of (20).

The above procedure for a single fixed graph now has to be extended to the case of an ensemble

of large random graphs characterised by some degree distribution p(d). The outcome of the first

round of cavity updates, for the unnormalised kernel without training data, is then represented by a

distribution of cavity covariances V , while the second one gives a distribution of cavity covariances

Vloc for the locally normalised kernel, with training data included. Importantly, these message

distributions are coupled to each other via the graph structure, so we need to look at the joint

distribution W (Vloc,V ).

Detailed analysis using the replica method (Urry and Sollich, 2012) shows that the correct fixed

point equation updates the V -messages as in the globally normalised case with γ= 0. The second set

of local covariances, Vloc, are then updated according to (28), with a normaliser calculated using the

marginals from the d−1 V -covariances and an additional ‘counterflow’ covariance generated from

W (V ) =
∫

dVlocW (Vloc,V ), subject to the constraint that the local marginals of the neighbours are

consistent. We find in practice that the consistency constraint can be dropped and the fixed point
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equation for the distribution of the two sets of messages can be approximated by

W (Vloc,V ) =

〈

∑
d

p(d)d

d̄

∫ d−1

∏
k=1

dVkdVloc,kdVd

d−1

∏
k=1

W (Vloc,k,Vk)W (Vd)

δ



Vloc −
(

Oloc, j −
d−1

∑
k=1

XV
( j)

k,locX

)−1


δ



V −
(

O−
d−1

∑
k=1

XVkX

)−1




〉

γ

. (29)

One sees that if one marginalises over Vloc, then one obtains exactly the same condition on W (V )
as before in the globally normalised kernel case (but with κ = 1 and ν = 0), see (24). This reflects

the fact that the cavity updates for the first set of messages on a single graph do not rely on any

information about the second set. The first delta function in (29) corresponds to the fixed point

condition for this second set of cavity updates. This condition depends, via the value of the local κ,

on the V -cavity covariances:

κ =
1

d(M−1
d )00

. (30)

It may seem unusual that d copies of V enter here; Vd represents the cavity covariance from the

first set that is received from the vertex to which the new message Vloc is being sent. While this

counterflow appears to run against the basic construction of the cavity or belief propagation method,

it makes sense here because the first set of cavity messages (or equivalently the distribution W (V ))
reaches a fixed point that is independent of the second set, so the counterflow of information is only

apparent. The reason why knowledge about Vd is needed in the update is that κ is the variance of a

full marginal rather than a cavity marginal.

Similarly to the case of global normalisation, (29) can be solved by looking for a fixed point of

W (Vloc,V ) using population dynamics. Updates are made by first updating V using Equation (21)

and then updating Vloc using (27) with κ ≡ κi replaced by (30).

Once a fixed point has been calculated for the covariance distribution we apply the Woodbury

formula to (20) in a similar manner to Section 4.1 to give the prediction for the learning curve for

GP regression with a locally normalised kernel. The result for the Bayes error becomes

ε =

〈

∑
d

p(d)
∫ d

∏
k=1

dVloc,kdVk

d

∏
k=1

W (Vloc,k,Vk)
1

γ/σ2 +(M−1
d,loc)00/(M

−1
d )00

〉

γ

.

Learning curve predictions for GPs with locally normalised kernels as they result from the cavity

approach described above are shown in Figure 5. The figure shows numerically simulated learning

curves and the cavity prediction, both for Erdős-Rényi random graphs (left) and power law gener-

alised random graphs (centre) of size V = 500. As for the globally normalised case one sees that the

cavity predictions are quantitatively very accurate even with the simplified update Equation (29).

They capture all aspects of learning curve both qualitatively and quantitatively, including, for exam-

ple, the shoulder in the curves from disconnected single vertices, a feature discussed in more detail

below.

The fact that the cavity predictions of the learning curve for a locally normalised kernel are

indistinguishable from the numerically simulated learning curves in Figure 5 leads us to believe that

the simplification made by dropping the consistency requirement in (29) is in fact exact. This is

further substantiated by looking not just at the average of the posterior variance over vertices, which
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Figure 5: (Left) Learning curves for GP regression with locally normalised kernels with p = 10,

a = 2 on Erdős-Rényi random graphs with mean degree 3, for a range of noise levels σ2.

Solid lines: numerically simulated learning curves for graphs of size V = 500, dashed

lines: cavity predictions (see Section 4.1); note these are mostly visually indistinguishable

from the simulation results. (Left inset) Dotted lines show single vertex contributions

to the learning curve (solid line). (Centre) As (left) for power law generalised random

graphs with exponent 2.5 and cut off 2. (Right top) Comparison between learning curves

for locally (dashed line) and globally (solid line) normalised kernels for Erdős-Rényi

random graphs. (Right bottom) As (right top) for power law random graphs.

is the Bayes error, but its distribution across vertices. As shown in Figure 6, the cavity predictions

for this distribution are in very good agreement with the results of numerical simulations. This holds

not only for the two values of ν shown, but along the entire learning curve.

5. A Qualitative Comparison of Learning with Locally and Globally Normalised

Kernels

The cavity approach we have developed gives very accurate predictions for learning curves for GP

regression on graphs using random walk kernels. This is true for both global and local normalisa-

tions of the kernel. We argued in Section 3.2 that the local normalisation is much more plausible as

a probabilistic model, because it avoids variability in the local prior variances that is non-trivially

related to the local graph structure and so difficult to justify from prior knowledge. We now compare

what the qualitative effects of the two different normalisations are on GP learning.

It is not a simple matter to say which kernel is ‘better’, the locally or globally normalised one.

Since we have dealt with the matched case, where for each kernel the target functions are sampled

from a GP prior with that kernel as covariance function, it would not make sense to say the better

kernel is the one that gives the lower Bayes error for given number of examples, as the Bayes error
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Figure 6: (Left) Grey: histogram of posterior variances at ν = 1.172 for the locally normalised ran-

dom walk kernel with a = 2, p = 10, averaged over ten samples each of teacher functions,

data and Erdős-Rényi graphs with mean degree λ = 3 and V = 1000 vertices. Black:

cavity prediction for this distribution in the large graph limit. (Right) As (left) but for

ν = 6.210.

reflects both the complexity of the target function and the success in learning it. A more definite

answer could be obtained only empirically, by running GP regression with local and global kernel

normalisation on the same data sets and comparing the prediction errors and also the marginal data

likelihood. The same approach could also be tried with synthetic data sets generated from GP

priors that are mismatched to both priors we have considered, defined by the globally and locally

normalised kernel, though justifying what is a reasonable choice for the prior of the target function

would not be easy.

While a detailed study along the lines above is outside the scope of this paper, we can neverthe-

less at least qualitatively study the effect of the kernel normalisation, to understand to what extent

the corresponding priors define significantly different probabilistic models. Figure 5 (right top and

bottom) overlays the learning curves for global and local kernel normalisations, for an Erdős-Rényi

and a power law generalised random graph respectively. There are qualitative differences in the

shapes of the learning curves, with the ones for the locally normalised kernel exhibiting a shoulder

around ν = 2. This shoulder is due to the proper normalisation of isolated vertices to unit prior vari-

ance; by contrast, as shown earlier in Figure 2 (left), global normalisation gives too small a prior

variance to such vertices. The inset in Figure 5 (left) shows the expected learning curve contribu-

tions from all locally normalised isolated vertices (single vertex subgraphs) as dotted lines. After the

GP learns the rest of the graph to a sufficient accuracy, the single vertex error dominates the learning

curve until these vertices have typically seen at least one example. Once this point has been passed,

the dominant error comes once more from the giant connected component of the graph, and the GP
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learns in a similar manner to the globally normalised case. A similar effect, although not plotted, is

seen for the generalised random graph case.

We can extend the scope of this qualitative comparison by examining how a student GP with a

kernel with one normalisation performs when learning from a teacher with a kernel with the other

normalisation. This is a case of model mismatch; our theory so far does not extend to this scenario,

but we can obtain learning curves by numerical simulation. Figure 7 (left) shows the case of GP

students with a globally normalised kernel learning from a teacher with a locally normalised kernel

on an Erdős-Rényi graph. The learning curves for the mismatched scenario are very different from

those for the matched case (Figures 3 and 5), showing an increase in error as ν approaches unity.

The resulting maximum in the learning curve again emphasises that the two choices of normalisation

produce distinctly different probabilistic models. Similar behaviour can be observed for the case of

power law generalised random graphs, shown in Figure 7 (right) and for the case of GP students

with a locally normalised kernel learning from a teacher with a globally normalised kernel, shown

in Figure 8. In all cases close inspection (see Appendix B) shows that the error maximum is caused

by ‘dangling edges’ of the graph, that is, chains of vertices (with degree two) extending away from

the giant graph component and terminating in a vertex of degree one.

As a final qualitative comparison between globally and locally normalised kernels, Figure 9

shows the variance of local posterior variances. This measures how much the local Bayes error

typically varies from vertex-to-vertex, as a function of the data set size. Plausibly one would expect

that this error variance is low initially when prediction on all vertices is equally uncertain. For large

data sets the same should be true because errors on all vertices are then low. In an intermediate

regime the error variance should become larger because examples will have been received on or

near some vertices but not others. As Figure 9 shows, for kernels with local normalisation we find

exactly this scenario, both for Erdős-Rényi and power law random graphs. The error variance is low

for small ν = N/V , increasing to a peak at ν ≈ 0.2 and finally decreasing again.

These results can now be contrasted with those for globally normalised kernels, also displayed

in Figure 9. Here the error variance is largest at ν = 0 and decays from there. This means that the

initial variance in the local prior variances is so large that any effects from the uneven distribution of

example locations in any given data set remain sub-dominant throughout. We regard this as another

indication of the probabilistically implausible character of the large spread of prior variances caused

by global normalisation.

6. Conclusions and Further Work

In this paper we studied random walk kernels and their application to GP regression. We began, in

Section 2, by studying the random walk kernel, with a focus on applying this to d-regular trees and

graphs. We showed that the kernel exhibits a rather subtle approach to the fully correlated limit;

this limit is reached only beyond a graph-size dependent threshold for the kernel range p/a, where

cycles become important. If p/a is large but below this threshold, the kernel reaches a non-trivial

limiting shape.

In Section 3 we moved on to the application of random walk kernels to GP regression. We

showed, in Section 3.2, that the more typical approach to normalisation, that is, scaling the kernel

globally to a desired average prior variance, results in a large spread of local prior variances that is

related in a complicated manner to the graph structure; this is undesirable in a prior. We suggested
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Figure 7: (Left) Numerically simulated learning curves for a GP with a globally normalised kernel

with p = 10 and a = 2, on Erdős-Rényi random graphs with mean degree 3 for a range of

noise levels. The teacher GP has a locally normalised kernel with the same parameters.

(Right) As (left) but for power law generalised random graphs with exponent 2.5 and

cutoff 2.

as a simple remedy to perform local normalisation, where the raw kernel is normalised by its local

prior variance so that the prior variance becomes the same at every vertex.

In order to get a deeper understanding of the performance of GPs with random walk kernels

we then studied the learning curves, that is, the mean Bayes error as a function of the number of

examples. We began in section 3.4 by applying a previous approximation due to Sollich (1999a)

and Malzahn and Opper (2005) to the case of discrete inputs that are vertices on a graph. We

demonstrated numerically that this approximation is accurate only for small and large number of

training examples per vertex, ν = N/V , while it fails in the crossover between these two regimes.

The outline derivation of this approximation suggested how one might improve it: one has to exploit

fully the structure of random graphs, using the cavity method, thus avoiding approximating the

average over data sets. In Section 4 we implemented this programme, beginning in Section 4.1 with

the case of global normalisation. We showed that by Fourier transforming the prior and introducing

2p additional variables at each vertex one can rewrite the partition function in terms of a complex-

valued Gaussian graphical model, where the marginals that are required to calculate the Bayes

error can be found using the cavity method, or equivalently belief propagation. In Section 4.3

we tackled the more difficult scenario of a locally normalised kernel. This required two sets of

cavity equations. The first serves to calculate the local normalisation factors. The second one then

combines these with the information about the data set to find the local marginal distributions. One

might be tempted to consider applying our methods to a lattice so that one could make an estimate

of the learning curves for the continuous limit, that is, regression with a squared exponential kernel
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Figure 8: (Left) Numerically simulated learning curves for a GP with a locally normalised kernel

with p = 10 and a = 2, on Erdős-Rényi random graphs with mean degree 3 for a range of

noise levels. The teacher GP has a globally normalised kernel with the same parameters.

(Right) As (left) but for power law generalised random graphs with exponent 2.5 and

cutoff 2.
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Figure 9: (Left) Error variance for GP regression with locally (stars) and globally (circles) nor-

malised kernels against ν, on Erdős-Rényi random graphs, and for matched learning with

p = 10, a = 2, σ2 = 0.1. (Right) As (left) but for power law generalised random graphs

with exponent 2.5 and cutoff 2.
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for inputs in R
2 or similar. Sadly, however, since the cavity method requires graphs to be treelike

this is not possible.

Finally in Section 5 we qualitatively compared GPs with kernels that are normalised globally

and locally. We showed that learning curves are indeed qualitatively different. In particular, local

normalisation leads to a shoulder in the learning curves owing to the correct normalisation of the

single vertex disconnected graph components. We also considered numerically calculated mismatch

curves. The mismatch caused a maximum to appear in the learning curves, as a result of the large

differences in the teacher and student priors. Lastly we looked at the variance among the local Bayes

errors, for GPs with both globally and locally normalised kernels. Plausibly, locally normalised

kernels lead to this error variance being maximal for intermediate data set sizes. This reflects the

variation in number of examples seen at or near individual vertices. For globally normalised kernels,

the error variance inherited from the spread of local prior variances is always dominant, obscuring

any signatures from the changing ‘coverage’ of the graph by examples.

In further work we intend to extend the cavity approximation of the learning curves to the case

of mismatch, where teacher and student have different kernel hyperparameters. It would also be

interesting to apply the cavity method to the learning curves of GPs with random walk kernels

on more general random graphs, like those considered in Rogers et al. (2010) and Kühn and van

Mourik (2011). This would enable us to consider graphs exhibiting some community structure.

Looking further ahead, preliminary work has shown that it should be possible to extend the cavity

learning curve approximation to the problem of graph mismatch, where the student has incomplete

information about the graph structure of the teacher.

Appendix A. Random Walk Kernel on d-Regular Trees

We detail here how to derive the limiting kernel from (5) in Section 2.1 and how to calculate the

scaling of the learning curve stated in Section 3.4.1.

A.1 Large-p Limit from Heat Kernel Results

In Chung and Yau (1999) the authors considered heat kernels on graphs. The heat kernel for a graph

with normalised Laplacian L (see Section 2 in the main text) is given by

H = exp(−tL) , t > 0,

This is exactly the diffusion kernel given in (1) with t = 1
2
σ2. Chung and Yau (1999) gave results

for heat kernels on d-regular trees. Their method involves treating the tree as a covering of a path,

which is closely related to the mapping onto a one-dimensional lattice discussed in Section 2.1. The

eigenvectors and eigenvalues of L are then found within this mapping. If we call the unnormalised

form of the random walk kernels we considered in the main text again Ĉ =
(

I−a−1L
)p

, then

we can directly use the results of Chung and Yau (1999), simply by modifying the function that is

applied to each eigenvalue λ of L from exp(−tλ) to (1−λ/a)p. This gives, for the unnormalised
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random walk kernel element between two vertices on the tree at distance l,

Ĉ0,p =
2(d −1)d

π

∫ π

0
dx

[1− (1−2cos(x)
√

d −1/d)/a]p sin2(x)

d2 −4(d −1)cos2(x)
,

Ĉl≥1,p =
2

π(d −1)l/2−1

∫ π

0
dx [1− (1−2cos(x)

√
d −1/d)/a]p

× sin(x)[(d−1)sin((l +1)x)− sin((l −1)x)]

d2 −4(d −1)cos2(x)
.

(31)

In the limit p → ∞, the factor in square brackets in both expressions means that only values of x

up to O(p−1/2) contribute significantly to the integral. One can then expand sin(x) ≈ x linearly

everywhere, and similarly use cos(x) ≈ 1. Calculating Ĉl,p in this way for p → ∞ gives the result

(5) for Cl,p = Ĉl,p/Ĉ0,p.

A.2 Scaling Form for Large p

In Section 3.4.1 we derived the learning curve decay due to the first example, given in (15). As

explained there, to understand how this behaves for large p one needs to know how Cl,p approaches

its limiting form (5). In the outline derivation in the previous subsection we saw that in order to

obtain this limiting form one expands not just sin(x), but also sin((l−1)x) and sin((l+1)x) linearly

because x = O(p−1/2) is small. For the two sine factors this will break down once l p−1/2 is of order

one, that is, for large enough l. This suggests looking at Cl,p as function of l′ = l p−1/2. To focus

on the relevant part of the integral one can similarly transform the integration variable to x′ = xp1/2.

For p → ∞ at constant l′, the integral for Ĉl,p in (31) then becomes proportional to

(d −1)−l/2

∫ ∞

0
dx′ e−x′2

√
d−1/(da)x′(d −2)sin(l′x′).

Integration by parts now gives Cl,p ∝ Ĉl,p ∝ (d−1)−l/2l′ exp(− (l′)2d

2
√

d−1
). Comparing with the large-l

limit of (5), Cl,p ∝ (d − 1)−l/2l′, shows that the effect of finite p is contained in the exponential

(Gaussian) cutoff factor which becomes significant for l′ of order unity, that is, l = O(p1/2), as

stated in the main text.

Visually, the cutoff effects for large l and p can be seen more clearly by plotting not Cl,p directly

but rather R̂l,p, the unormalised version of Rl,p as defined in Section 3.4.1. As vl = d(d − 1)l−1

for l ≥ 1, the additional
√

vl factor just removes the decay with (d − 1)−l/2 from Cl,p. From the

above discussion, we then expect to find for large l that R̂l,p ∝ l′ exp(− (l′)2d

2
√

d−1
). A plot of numerical

results for a suitably normalised version of R̂l,p (see below), plotted against l p−1/2 for increasing p,

is shown in Figure 10. There is a clear trend towards the predicted asymptotic behaviour for large p

(dashed line).

It may be somewhat surprising that the cutoff lengthscale that appears in the analysis above is

l = O(p1/2), which for large p is much smaller than the typical kernel range p/a. To understand this

intuitively, one can go back to (6) for Rl,p and use that this is essentially unnormalised diffusion.

Taking R̂l,p as the unnormalised version of Rl,p again and letting ρl,p = R̂l,pγ−p with γ = (1 −
1/a)+2

√
d −1/(ad) to re-establish normalisation, one finds that ρl,p evolves almost according to a

diffusion process in ‘time’ p, except that probability conservation is broken at l = 0 and l = 1. In the

(leaky) diffusion process ρl,p the typical lengthscale l should then scale with time as p1/2, exactly

1829



URRY AND SOLLICH

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

l/p1/2

p
ρ

l,
p

´́

´

´

´

´
´ ´ ´ ´

´
´

´

´

´

´

´

´

´

´
´

´
´

´
´

´ ´ ´ ´ ´

´

´

´

´

´

´
´

´
´ ´ ´ ´ ´ ´

´
´

´
´

´
´

´
´

´
´

´
´

´
´

´
´

´
´

´
´ ´ ´ ´ ´ ´ ´ ´

´

´

´

´

´

´

´
´

´
´

´ ´ ´ ´ ´ ´ ´ ´
´

´
´

´
´

´
´

´
´

´
´

´
´

´
´

´
´

´
´

´
´

´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

´

´

´

´

´

´

´
´

´
´

´
´

´ ´ ´ ´ ´ ´ ´ ´ ´ ´
´

´
´

´
´

´
´

´
´

´
´

´
´

´
´

´
´

´
´

´
´

´
´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

´

´

´

´

´

´

´
´

´
´

´
´

´
´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

´
´

´
´

´
´

´
´

´
´

´
´

´
´

´
´

´
´

´
´

´
´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

´

´

´

´

´

´
´

´
´

´
´

´
´

´
´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

´
´

´
´

´
´

´
´

´
´

´
´

´
´

´
´

´
´

´
´

´
´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

´

´

´

´

´
´

´
´

´
´

´
´

´
´

´
´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

´
´

´
´

´
´

´
´

´
´

´
´

´
´

´
´

´
´

´
´

´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

´

´

´
´

´
´

´
´

´
´

´
´

´
´

´
´

´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´
´

´
´

´
´

´
´

´
´

´
´

´
´

´
´

´
´

´
´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

´
´

´
´

´
´

´
´

´
´

´
´

´
´

´
´

´
´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

´
´

´
´

´
´

´
´

´
´

´
´

´
´

´
´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

Figure 10: Plot demonstrating the p → ∞ scaling from of pρl,p, the normalised version of R̂l,p.

Dashed line shows the analytically found functional from of the scaling.

as we found above. This diffusion interpretation can also be used to reproduce the quantitative

scaling form, by adapting the methods of Monthus and Texier (1996) where the authors study a

one dimensional walk with a reflective boundary to compute the large-p scaling. The normalised

version of R̂l,p shown in Figure 10 is in fact pρl,p.

Appendix B. Analysis of the Mismatch Learning Curves

In this appendix we suggest a way of understanding the mismatch maximum seen in the learning

curves plotted in Figure 7 (left) and (right) and Figure 8 (left) and (right). We begin by considering

the mean of the GP posterior, that is, the prediction function. If we arrange the predictive means at

each vertex into a vector f̄ , then from (8) this can be written as

f̄ =KVK
−1y,

where (KV ) jν =C j,xν for ν = 1, . . . ,N and j = 1, . . . ,V and Kµν =Cxµ,xν +σ2δµ,ν for µ,ν = 1, . . . ,N.

(Recall that xµ is the location of the µ-th training input, which on a graph is just a label in the range

{1, . . . ,V}.) We can rewrite this in the form f̄ =Mz where

M =KVK
−1/2,

z =K−1/2y.

One sees that M represents teacher-independent aspects of f̄ . The vector of ‘pseudo-training out-

puts’ z has been defined so that in the matched case, it obeys 〈zzT〉= I . We think of z as pseudo-

training outputs because if its components zµ are sampled as independent and identically distributed

unit variance Gaussian random variables, then f̄ =Mz will have the correct distribution of mean

prediction vectors. The columns m1, . . . ,mN of M =
(

m1 · · · mN

)

represent the ‘effective

1830



GAUSSIAN PROCESSES ON RANDOM GRAPHS

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

0 50 100 150 200
example

z
z

T

b

b

b

b

b

b

b

b

b

b

b
b

b
b
b

b

b

bb bb

b

b

b

b

b

b

b

b

b
b

b

b

b

b
b

b

b

b

b

b

b

b

bb
bb b

b

b

b

b

b

b
b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

bb

b
b

b
b

b

b

b
b

b

b

b

b b

b

b
b

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b
b

b

b

b

b

b b
b

b

b

b

b
b

b

b

b

b

b

b

b

b b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

bb

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b b

b
b

b

b

b

b

b

b

bb
b b

b

b

b

b

b

b
bb

b

b

b

b

b

b
b

b

b

b

b

b

b

b
b

b

b

b b
b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b b

b

bb

b

b
b

b

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

Figure 11: (Left) Black lines show diagonal elements of zzT for a typical draw from the Erdős-

Rényi random graph ensemble with average degree 3 in a matched scenario with 250

vertices, p = 10, a = 2 and σ2 = 0.0001. Red lines show zzT for the case where student

is globally normalised and the teacher is locally normalised. (Right) A plot of the ‘pre-

diction vector’ for the largest spike in zzT (indicated by a green circle in the left hand

plot) under mismatch.

prediction vectors’ conjugate to the zµ. In the matched case each f̄ 2
i will then be, on average, a sum

of squares of the corresponding entries in the effective prediction vectors.

For the case of mismatch, for example, because student and teacher use differently normalised

kernels, the only change is in the statistics of z. Their covariance matrix 〈zzT〉 will no longer simply

be the identity matrix, and so act as a re-weighting of the prediction vectors. To understand our

numerical simulations, we considered a value of ν around the maximum in the mismatched learning

curve, listed the largest (diagonal) entries of zzT and plotted their corresponding prediction vectors.

These prediction vectors were generally localised around dangling ends of the graph, substantiating

our claim in the main text that it is from these graph regions that the major contribution to the

learning curve maximum arises. Typical plots of zzT and the prediction vector corresponding to the

largest spike in zzT for an instance of an Erdős-Rényi graph with 250 vertices are shown in Figures

11 and 12 for both a locally normalised teacher and globally normalised student and a globally

normalised teacher and locally normalised student respectively. Both these plots clearly show the

largest spike corresponding to a prediction vector localised on a dangling edge in the graph. Similar

plots of the other large spikes give prediction vectors localised on other dangling edges.
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Figure 12: Analogue of Figure 11 for a locally normalised student and globally normalised teacher

References

S. Amari, N. Fujita, and S. Shinomoto. Four types of learning curves. Neural Comput., 4(4):

605–618, 1992.

C. Bishop. Pattern Recognition And Machine Learning. Springer, New York, NY, USA., 2nd

edition, 2007.

T. Britton, M. Deijfen, and A. Martin-Loeff. Generating simple random graphs with prescribed

degree distribution. J. Stat. Phys., 124(6):1377–1397, 2006.

F. K. Chung. Spectral Graph Theory, volume 92 of Regional Conference Series In Mathematics.

American Mathematical Society, Dec 1996.

F. K. Chung and S. T. Yau. Coverings, heat kernels and spanning trees. Electronic Journal Of

Combinatorics, 6:R12, 1999.

N. Cristianini and J. Shawe-Taylor. An Introduction To Support Vector Machines And Other Kernel-

Based Learning Methods. Cambridge University Press, 2000.
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M. Mézard and G. Parisi. The Bethe lattice spin glass revisited. Eur. Phys. J. B, 20(2):217–233,

2001.
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