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Abstract

Penalized regression models are popularly used in high-dimensional data analysis to conduct vari-

able selection and model fitting simultaneously. Whereas success has been widely reported in litera-

ture, their performances largely depend on the tuning parameters that balance the trade-off between

model fitting and model sparsity. Existing tuning criteria mainly follow the route of minimizing

the estimated prediction error or maximizing the posterior model probability, such as cross vali-

dation, AIC and BIC. This article introduces a general tuning parameter selection criterion based

on variable selection stability. The key idea is to select the tuning parameters so that the resultant

penalized regression model is stable in variable selection. The asymptotic selection consistency

is established for both fixed and diverging dimensions. Its effectiveness is also demonstrated in a

variety of simulated examples as well as an application to the prostate cancer data.
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1. Introduction

The rapid advance of technology has led to an increasing demand for modern statistical techniques

to analyze data with complex structure such as the high-dimensional data. In high-dimensional

data analysis, it is generally believed that only a small number of variables are truly informative

while others are redundant. An underfitted model excludes truly informative variables and may

lead to severe estimation bias in model fitting, whereas an overfitted model includes the redundant

uninformative variables, increases the estimation variance and hinders the model interpretation.

Therefore, identifying the truly informative variables is regarded as the primary goal of the high-

dimensional data analysis as well as its many real applications such as health studies (Fan and Li,

2006).
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Among other variable selection methods, penalized regression models have been popularly used,

which penalize the model fitting with various regularization terms to encourage model sparsity, such

as the lasso regression (Tibshirani, 1996), the smoothly clipped absolute deviation (SCAD, Fan and

Li, 2001), the adaptive lasso (Zou, 2006), and the truncated l1-norm regression (Shen et al., 2012).

In the penalized regression models, tuning parameters are often employed to balance the trade-off

between model fitting and model sparsity, which largely affects the numerical performance and the

asymptotic behavior of the penalized regression models. For example, Zhao and Yu (2006) showed

that, under the irrepresentable condition, the lasso regression is selection consistent when the tuning

parameter converges to 0 at a rate slower than O(n−1/2). Analogous results on the choice of tuning

parameters have also been established for the SCAD, the adaptive lasso, and the truncated l1-norm

regression. Therefore, it is of crucial importance to select the appropriate tuning parameters so that

the performance of the penalized regression models can be optimized.

In literature, many classical selection criteria have been applied to the penalized regression

models, including cross validation (Stone, 1974), generalized cross validation (Craven and Wahba,

1979), Mallows’ Cp (Mallows, 1973), AIC (Akaike, 1974) and BIC (Schwarz, 1978). Under certain

regularity conditions, Wang et al. (2007) and Wang et al. (2009) established the selection consis-

tency of BIC for the SCAD, and Zhang et al. (2010) showed the selection consistency of generalized

information criterion (GIC) for the SCAD. Most of these criteria follow the route of minimizing the

estimated prediction error or maximizing the posterior model probability. To the best of our knowl-

edge, few criteria has been developed directly focusing on the selection of the informative variables.

This article proposes a tuning parameter selection criterion based on variable selection stability.

The key idea is that if multiple samples are available from the same distribution, a good variable

selection method should yield similar sets of informative variables that do not vary much from one

sample to another. The similarity between two informative variable sets is measured by Cohen’s

kappa coefficient (Cohen, 1960), which adjusts the actual variable selection agreement relative to

the possible agreement by chance. Similar stability measures have been studied in the context

of cluster analysis (Ben-Hur et al., 2002; Wang, 2010) and variable selection (Meinshausen and

Bühlmann, 2010). Whereas the stability selection method (Meinshausen and Bühlmann, 2010) also

follows the idea of variable selection stability, it mainly focuses on selecting the informative vari-

ables as opposed to selecting the tuning parameters for any given variable selection methods. The

effectiveness of the proposed selection criterion is demonstrated in a variety of simulated examples

and a real application. More importantly, its asymptotic selection consistency is established, show-

ing that the variable selection method with the selected tuning parameter would recover the truly

informative variable set with probability tending to one.

The rest of the article is organized as follows. Section 2 briefly reviews the penalized regression

models. Section 3 presents the idea of variable selection stability as well as the proposed kappa

selection criterion. Section 4 establishes the asymptotic selection consistency of the kappa selection

criterion. Simulation studies are given in Section 5, followed by a real application in Section 6. A

brief discussion is provided in Section 7, and the Appendix is devoted to the technical proofs.
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2. Penalized Least Squares Regression

Given that (x1,y1), . . . ,(xn,yn) are independent and identically distributed from some unknown joint

distribution, we consider the linear regression model

y = Xβ+ ε =
p

∑
j=1

β jx( j)+ ε,

where β = (β1, · · · ,βp)
T , y = (y1, · · · ,yn)

T , X = (x1, · · · ,xn)
T = (x(1), · · · ,x(p)) with xi =

(xi1, · · · ,xip)
T or x( j) = (x1 j, · · · ,xn j)

T , and ε|X ∼ N(0,σ2In). When p is large, it is also assumed

that only a small number of β j’s are nonzero, corresponding to the truly informative variables. In

addition, both y and x( j)’s are centered, so the intercept can be omitted in the regression model.

The general framework of the penalized regression models can be formulated as

argmin
β

1

n
‖y−Xβ‖2 +

p

∑
j=1

pλ(|β j|), (1)

where ‖ · ‖ is the Euclidean norm, and pλ(|β j|) is a regularization term encouraging sparsity in β.

Widely used regularization terms include the lasso penalty pλ(θ)= λθ (Tibshirani, 1996), the SCAD

penalty with p′λ(θ) = λ(I(θ ≤ λ)+ (γλ−θ)+
(γ−1)λ I(θ > λ)) (Fan and Li, 2001), the adaptive lasso penalty

pλ(θ) = λ jθ = λθ/|β̂ j| (Zou, 2006) with β̂ j being some initial estimate of β j, and the truncated

l1-norm penalty pλ(θ) = λmin(1,θ) (Shen et al., 2012).

With appropriately chosen λn, all the aforementioned regularization terms have been shown to

be selection consistent. Here a penalty term is said to be selection consistent if the probability that

the fitted regression model includes only the truly informative variables is tending to one, and λ

is replaced by λn to emphasize its dependence on n in quantifying the asymptotic behaviors. In

particular, Zhao and Yu (2006) showed that the lasso regression is selection consistent under the

irrepresentable condition when
√

nλn → ∞ and λn → 0; Fan and Li (2001) showed that the SCAD

is selection consistent when
√

nλn → ∞ and λn → 0; Zou (2006) showed that the adaptive lasso is

selection consistent when nλn → ∞ and
√

nλn → 0; and Shen et al. (2012) showed that the truncated

l1-norm penalty is also selection consistent when λn satisfies a relatively more complex constraint.

Although the asymptotic order of λn is known to assure the selection consistency of the penal-

ized regression models, it remains unclear how to appropriately select λn in finite sample so that the

resultant model in (1) with the selected λn can achieve superior numerical performance and attain

asymptotic selection consistency. Therefore, it is in demand to devise a tuning parameter selection

criterion that can be employed by the penalized regression models so that their variable selection

performance can be optimized.

3. Tuning via Variable Selection Stability

This section introduces the proposed tuning parameter selection criterion based on the concept of

variable selection stability. The key idea is that if we repeatedly draw samples from the population

and apply the candidate variable selection methods, a desirable method should produce the infor-

mative variable set that does not vary much from one sample to another. Clearly, variable selection

stability is assumption free and can be used to tune any penalized regression model.
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3.1 Variable Selection Stability

For simplicity, we denote the training sample as zn. A base variable selection method Ψ(zn;λ) with

a given training sample zn and a tuning parameter λ yields a set of selected informative variables

A ⊂ {1, · · · , p}, called the active set. When Ψ is applied to various training samples, different active

sets can be produced. Supposed that two active sets A1 and A2 are produced, the agreement between

A1 and A2 can be measured by Cohen’s kappa coefficient (Cohen, 1960),

κ(A1,A2) =
Pr(a)−Pr(e)

1−Pr(e)
. (2)

Here the relative observed agreement between A1 and A2 is Pr(a)= (n11+n22)/p, and the hypothet-

ical probability of chance agreement Pr(e) = (n11+n12)(n11+n21)/p2+(n12+n22)(n21+n22)/p2,

with n11 = |A1 ∩A2|, n12 = |A1 ∩A
c
2 |, n21 = |Ac

1 ∩A2|, n22 = |Ac
1 ∩A

c
2 |, and | · | being the set cardi-

nality. Note that −1 ≤ κ(A1,A2)≤ 1, where κ(A1,A2) = 1 when A1 and A2 are in complete agree-

ment with n12 = n21 = 0, and κ(A1,A2) = −1 when A1 and A2 are in complete disagreement with

n11 = n22 = 0 and n12 = n21 = p/2. For degenerate cases with A1 =A2 = /0 or A1 =A2 = {1, . . . , p},

we set κ( /0, /0) = κ({1, . . . , p},{1, . . . , p}) = −1 under the assumption that the true model is sparse

and containing at least one informative variable. As a consequence, the kappa coefficient in (2) is

not suitable for evaluating the null model with no informative variable and the complete model with

all variables. Based on (2), the variable selection stability is defined as follows.

Definition 1 The variable selection stability of Ψ(·;λ) is defined as

s(Ψ,λ,n) = E
(

κ(Ψ(Zn
1 ;λ),Ψ(Zn

2 ;λ))
)
,

where the expectation is taken with respect to Zn
1 and Zn

2 , two independent and identically training

samples of size n, and Ψ(Zn
1 ;λ) and Ψ(Zn

2 ;λ) are two active sets obtained by applying Ψ(·;λ) to Zn
1

and Zn
2 , respectively.

By definition, −1 ≤ s(Ψ,λ,n) ≤ 1, and large value of s(Ψ,λ,n) indicates a stable variable se-

lection method Ψ(·;λ). Note that the definition of s(Ψ,λ,n) relies on the unknown population

distribution, therefore it needs to be estimated based on the only available training sample in prac-

tice.

3.2 Kappa Selection Criterion

This section proposes an estimation scheme of the variable selection stability based on cross val-

idation, and develops a kappa selection criterion to tune the penalized regression models by max-

imizing the estimated variable selection stability. Specifically, the training sample zn is randomly

partitioned into two subsets zm
1 and zm

2 with m = ⌊n/2⌋ for simplicity. The base variable selection

method Ψ(·;λ) is applied to two subsets separately, and then two active sets Â1λ and Â2λ are ob-

tained, and s(Ψ,λ,m) is estimated as κ(Â1λ, Â2λ). Furthermore, in order to reduce the estimation

variability due to the splitting randomness, multiple data splitting can be conducted and the aver-

age estimated variable selection stability over all splittings is computed. The selected λ is then the

one obtaining upper αn quartile of the average estimated variable selection stability. The proposed

kappa selection criterion is present as follows.

3422



CONSISTENT SELECTION OF TUNING PARAMETERS VIA VARIABLE SELECTION STABILITY

Algorithm 1 (kappa selection criterion) :

Step 1. Randomly partition (x1, · · · ,xn)
T into two subsets z∗b

1 = (x∗b
1 , · · · ,x∗b

m )T and z∗b
2 =

(x∗b
m+1, · · · ,x∗b

2m)
T .

Step 2. Obtain Â
∗b
1λ and Â

∗b
2λ from Ψ(z∗b

1 ,λ) and Ψ(z∗b
2 ,λ) respectively, and estimate the variable

selection stability of Ψ(·;λ) in the b-th splitting by

ŝ∗b(Ψ,λ,m) = κ(Â∗b
1λ , Â

∗b
2λ).

Step 3. Repeat Steps 1-2 for B times. The average estimated variable selection stability of

Ψ(·;λ) is then

ŝ(Ψ,λ,m) = B−1
B

∑
b=1

ŝ∗b(Ψ,λ,m).

Step 4. Compute ŝ(Ψ,λ,m) for a sequence of λ’s, and select

λ̂ = min
{

λ :
ŝ(Ψ,λ,m)

maxλ′ ŝ(Ψ,λ′,m)
≥ 1−αn

}
.

Note that the treatment in Step 4 is necessary since some informative variables may have rela-

tively weak effect compared with others. A large value of λ may produce an active set that consis-

tently overlooks the weakly informative variables, which leads to an underfitted model with large

variable selection stability. To assure the asymptotic selection consistency, the thresholding value

αn in Step 4 needs to be small and converges to 0 as n grows. Setting αn = 0.1 in the numerical

experiments yields satisfactory performance based on our limited experience. Furthermore, the sen-

sitivity study in Section 5.1 suggests that αn has very little effect on the selection performance when

it varies in a certain range. In Steps 1-3, the estimation scheme based on cross-validation can be

replaced by other data re-sampling strategies such as bootstrap or random weighting, which do not

reduce the sample size in estimating Â
∗b
1λ and Â

∗b
2λ , but the independence between Â

∗b
1λ and Â

∗b
2λ will

no longer hold.

The proposed kappa selection criterion shares the similar idea of variable selection stability with

the stability selection method (Meinshausen and Bühlmann, 2010), but they differ in a number of

ways. First, the stability selection method is a competitive variable selection method, which com-

bines the randomized lasso regression and the bootstrap, and achieves superior variable selection

performance. However, the kappa selection criterion can be regarded as a model selection criterion

that is designed to select appropriate tuning parameters for any variable selection method. Second,

despite of its robustness, the stability selection method still requires a number of tuning parameters.

The authors proposed to select the tuning parameters via controlling the expected number of falsely

selected variables. However, this criterion is less applicable in practice since the expected number

of falsely selected variables can only be upper bounded by an expression involving various unknown

quantities. On the contrary, the kappa selection criterion can be directly applied to select the tuning

parameters for the stability selection method.

4. Asymptotic Selection Consistency

This section presents the asymptotic selection consistency of the proposed kappa selection criterion.

Without loss of generality, we assume that only the first p0 variables with 0< p0 < p are informative,

and denote the truly informative variable set as AT = {1, · · · , p0} and the uninformative variable set
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as A
c
T = {p0 +1, · · · , p}. Furthermore, we denote rn ≺ sn if rn converges to 0 at a faster rate than sn,

rn ∼ sn if rn converges to 0 at the same rate as sn, and rn � sn if rn converges to 0 at a rate not slower

than sn.

4.1 Consistency with Fixed p

To establish the asymptotic selection consistency with fixed p, the following technical assumptions

are made.

Assumption 1: There exist positive rn and sn such that the base variable selection method is

selection consistent if rn ≺ λn ≺ sn. Let λ∗
n be such a tuning parameter with rn ≺ λ∗

n ≺ sn, then

P(Âλ∗
n
= AT ) ≥ 1− εn for some εn → 0. In addition, for any positive constant λ0, there exists

positive c0(λ0) such that, when n is sufficiently large,

P
( ⋂

λ0rn≤λn≤λ∗
n

{Âλn
= AT}

)
≥ 1− c0(λ0), (3)

where c0(λ0) converges to 0 as λ0 → ∞.

Assumption 1 specifies an asymptotic working interval for λn within which the base variable

selection method is selection consistent. Here the consistent rate εn is defined for λ∗
n only, and needs

not hold uniformly over all λn with rn ≺ λn ≺ sn. Furthermore, (3) establishes an uniform lower

bound for the probability of selecting the true model when λn is within the interval (λ0rn,λ
∗
n).

Assumption 2: Given rn in Assumption 1, for any positive constant λ0, there exist ζn, c1(λ0) and

c2(λ0) such that, when n is sufficiently large,

min
j∈AT

P
( ⋂

r−1
n λn≤λ0

{ j ∈ Âλn
}
)
≥ 1−ζn, (4)

min
j∈A

c
T

P
( ⋂

r−1
n λn≤λ0

{ j ∈ Âλn
}
)
≥ c1(λ0), (5)

max
j∈A

c
T

P
( ⋂

r−1
n λn≥λ0

{ j /∈ Âλn
}
)
≥ c2(λ0), (6)

where ζn → 0 as n → ∞, c1(λ0) and c2(λ0) are positive and only depend on λ0, and c1(λ0)→ 1 as

λ0 → 0.

Assumption 2 implies that if λn converges to 0 faster than rn, the base variable selection method

will select all the variables asymptotically, and when λn converges to 0 at the same rate of rn, the base

variable selection method will select any noise variable with an asymptotically positive probability.

The inequalities (4)-(6) also establish uniform lower bounds for various probabilities of selecting

informative variables or noise variables.

Assumptions 1 and 2 are mild in that they are satisfied by many popular variable selection

methods. For instance, Lemma 2 in the online supplementary material shows that Assumptions

1 and 2 are satisfied by the lasso regression, the adaptive lasso, and the SCAD. The assumptions

can also be verified for other methods such as the elastic-net (Zou and Hastie, 2005), the adaptive

elastic net (Zou and Zhang, 2009), the group lasso (Yuan and Lin, 2006), and the adaptive group

lasso (Wang and Leng, 2008).

Given that the base variable selection method is selection consistent with appropriately selected

λn’s, Theorem 1 shows that the proposed kappa selection criterion is able to identify such λn’s.
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Theorem 1 Under Assumptions 1 and 2, any variable selection method in (1) with λ̂n selected as

in Algorithm 1 with αn ≻ εn is selection consistent. That is,

lim
n→∞

lim
B→∞

P(Âλ̂n
= AT ) = 1.

Theorem 1 claims the asymptotic selection consistency of the proposed kappa selection criterion

when p is fixed. That is, with probability tending to one, the selected active set by the resultant

variable selection method with tuning parameter λ̂n contains only the truly informative variables.

As long as αn converges to 0 not too fast, the kappa selection criterion is guaranteed to be consistent.

Therefore, the value of αn is expected to have little effect on the performance of the kappa selection

criterion, which agrees with the sensitivity study in Section 5.1.

4.2 Consistency with Diverging pn

In high-dimensional data analysis, it is of interest to study the asymptotic behavior of the proposed

kappa selection criterion with diverging pn, where size of truly informative set p0n may also diverge

with n. To accommodate the diverging pn scenario, the technical assumptions are modified as

follows.

Assumption 1a: There exist positive rn and sn such that the base variable selection method is

selection consistent if rn ≺ λn ≺ sn. Let λ∗
n be such a tuning parameter with rn ≺ λ∗

n ≺ sn, then

P(Âλ∗
n
= AT ) ≥ 1− εn for some εn → 0. In addition, for any positive constant λ0, there exists

positive c0n(λ0) such that, when n is sufficiently large,

P
( ⋂

λ0rn≤λn≤λ∗
n

{Âλn
= AT}

)
≥ 1− c0n(λ0), (7)

where limλ0→∞ limn→∞ c0n(λ0)→ 0.

Assumption 2a: Given rn in Assumption 1a, for any positive constant λ0, there exist ζn, c1n(λ0)
and c2n(λ0) such that, when n is sufficiently large,

min
j∈AT

P
( ⋂

r−1
n λn≤λ0

{ j ∈ Âλn
}
)
≥ 1−ζn, (8)

min
j∈A

c
T

P
( ⋂

r−1
n λn≤λ0

{ j ∈ Âλn
}
)
≥ c1n(λ0), (9)

max
j∈A

c
T

P
( ⋂

r−1
n λn≥λ0

{ j /∈ Âλn
}
)
≥ c2n(λ0), (10)

where ζn satisfies pnζn → 0 as n → ∞, c1n(λ0) and c2n(λ0) are positive and may depend on n and

λ0, and limλ0→0 limn→∞ c1n(λ0) = 1.

Theorem 2 Under Assumptions 1a and 2a, any variable selection method in (1) with λ̂n selected

as in Algorithm 1 with min(pn(1− c̃1n), p−1
n c1nc2n) ≻ αn ≻ εn is selection consistent, where c̃1n =

supλ0
c1n(λ0), c1n = infλ0

c1n(λ0), and c2n = infλ0
c2n(λ0).

Theorem 2 shows the asymptotic selection consistency of the proposed kappa selection criterion

with satisfied αn for diverging pn, where the diverging speed of pn is bounded as in Theorem 2 and
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depends on the base variable selection method. Lemma 3 in the online supplementary material

shows that (7)-(10) in Assumptions 1a and 2a are satisfied by the lasso regression. However, it is

generally difficult to verify Assumptions 1a and 2a for other popular variable selection algorithms

(Fan and Peng, 2004; Huang and Xie, 2007; Huang et al., 2008), as the convergence rates in both

assumptions are not explicitly specified.

5. Simulations

This section examines the effectiveness of the proposed kappa selection criterion in simulated ex-

amples. Its performance is compared against a number of popular competitors, including Mallows’

Cp (Cp), BIC, 10-fold cross validation (CV), and generalized cross validation (GCV). Their formu-

lations are given as follows,

Cp(λ) =
SSEλ

σ̂2
− n + 2d̂ f , (11)

BIC(λ) = log
(SSEλ

n

)
+

log(n)d̂ f

n
,

CV (λ) =
10

∑
s=1

∑
(yk,xk)∈T−s

(
yk −xT

k β̂(s)(λ)
)2

, (12)

GCV (λ) =
SSEλ

n(1− d̂ f/n)2
,

where SSEλ = ‖y−Xβ̂(λ)‖2, d̂ f is estimated as the number of nonzero variables in β̂(λ) (Zou et

al., 2007), and σ̂2 in (11) is estimated based on the saturated model. In (12), T s and T−s are the

training and validation sets in CV, and β̂(s)(λ) is the estimated β using the training set T s and tuning

parameter λ. The optimal λ̂ is then selected as the one that minimizes the corresponding Cp(λ),
BIC(λ), CV (λ), or GCV (λ), respectively.

To assess the performance of each selection criterion, we report the percentage of selecting the

true model over all replicates, as well as the number of correctly selected zeros and incorrectly

selected zeros in β̂(λ̂). The final estimator β̂(λ̂) is obtained by refitting the standard least squares

regression based only on the selected informative variables. We then compare the prediction perfor-

mance through the relative prediction error RPE = E(xT β̂(λ̂)−xT β)2/σ2 (Zou, 2006).

5.1 Scenario I: Fixed p

The simulated data sets (xi,yi)
n
i=1 are generated from the model

y = xT β+σε =
8

∑
j=1

x( j)β j +σε,

where β = (3,1.5,0,0,2,0,0,0)T , σ = 1, x( j) and ε are generated from standard normal distribution,

and the correlation between x(i) and x( j) is set as 0.5|i− j|. This example has been commonly used in

literature, including Tibshirani (1996), Fan and Li (2001), and Wang et al. (2007).

For comparison, we set n = 40, 60 or 80 and implement the lasso regression, the adaptive lasso

and the SCAD as the base variable selection methods. The lasso regression and the adaptive lasso
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are implemented by package ‘lars’ (Efron et al., 2004) and the SCAD is implemented by package

‘ncvreg’ (Breheny and Huang, 2011) in R. The tuning parameter λ’s are selected via each selection

criterion, optimized through a grid search over 100 points {10−2+4l/99; l = 0, . . . ,99}. The number

of splittings B for the kappa selection criterion is 20. Each simulation is replicated 100 times, and

the percentages of selecting the true active set, the average numbers of correctly selected zeros (C)

and incorrectly selected zeros (I), and the relative prediction errors (RPE) are summarized in Tables

1-2 and Figure 1.

n Penalty Ks Cp BIC CV GCV

Lasso 0.63 0.16 0.26 0.09 0.16

40 Ada lasso 0.98 0.53 0.72 0.63 0.52

SCAD 0.98 0.55 0.78 0.76 0.52

Lasso 0.81 0.16 0.32 0.14 0.17

60 Ada lasso 0.99 0.52 0.84 0.65 0.52

SCAD 1 0.58 0.86 0.76 0.56

Lasso 0.89 0.16 0.38 0.08 0.16

80 Ada lasso 0.99 0.56 0.86 0.77 0.56

SCAD 0.99 0.62 0.89 0.75 0.61

Table 1: The percentages of selecting the true active set for various selection criteria in simulations

of Section 5.1. Here ‘Ks’, ‘Cp’, ‘BIC’, ‘CV’ and ‘GCV’ represent the kappa selection

criterion, Mallows’ Cp, BIC, CV and GCV, respectively.

Ks Ks Cp Cp BIC BIC CV CV GCV GCV

n Penalty C I C I C I C I C I

Lasso 4.58 0.01 3.26 0 3.60 0 2.66 0 3.25 0

40 Ada lasso 4.98 0 4.16 0 4.54 0 4.25 0 4.15 0

SCAD 4.99 0.01 4.11 0 4.59 0 4.39 0 4.06 0

Lasso 4.80 0 3.12 0 3.91 0 2.85 0 3.13 0

60 Ada lasso 4.99 0 4.17 0 4.80 0 4.35 0 4.17 0

SCAD 5 0 4.15 0 4.79 0 4.37 0 4.12 0

Lasso 4.88 0 3.01 0 4.02 0 2.66 0 3 0

80 Ada lasso 4.99 0 4.19 0 4.80 0 4.49 0 4.19 0

SCAD 4.99 0 4.23 0 4.83 0 4.45 0 4.22 0

Table 2: The average numbers of correctly selected zeros (C) and incorrectly selected zeros (I) for

various selection criteria in simulations of Section 5.1. Here ‘Ks’, ‘Cp’, ‘BIC’, ‘CV’ and

‘GCV’ represent the kappa selection criterion, Mallows’ Cp, BIC, CV and GCV, respec-

tively.

Evidently, the proposed kappa selection criterion delivers superior performance against its com-

petitors in terms of both variable selection accuracy and relative prediction error. As shown in Table

1, the kappa selection criterion has the largest probability of choosing the true active set and consis-

tently outperforms other selection criteria, especially when the lasso regression is used as the base

variable selection method. As the sample size n increases, the percentage of selecting the true active

set is also improving, which supports the selection consistency in Section 4.
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Table 2 shows that the kappa selection criterion yields the largest number of correctly selected

zeros in all scenarios, and it yields almost perfect performance for the adaptive lasso and the SCAD.

In addition, all selection criteria barely select any incorrect zeros, whereas the kappa selection cri-

terion is relatively more aggressive in that it has small chance to shrink some informative variables

to zeros when sample size is small. All other criteria tend to be conservative and include some

uninformative variables, so the numbers of correctly selected zeros are significantly less than 5.

Besides the superior variable selection performance, the kappa selection criterion also delivers

accurate prediction performance and yields small relative prediction error as displayed in Figure

1. Note that other criteria, especially Cp and GCV, produce large relative prediction errors, which

could be due to their conservative selection of the informative variables.
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Figure 1: Relative prediction errors (RPE) for various selection criteria in simulations of Section

5.1. Here ‘K’, ‘Cp’, ‘B’, ‘C’ and ‘G’ represent the kappa selection criterion, Mallows’

Cp, BIC, CV and GCV, respectively.

To illustrate the effectiveness of the kappa selection criterion, we randomly select one repli-

cation with n = 40 and display the estimated variable selection stability as well as the results of

detection and sparsity for various λ’s for the lasso regression. The detection is defined as the per-
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Figure 2: The detection and sparsity of the lasso regression with the kappa selection criterion are

shown on the top and the sensitivity of α to the relative prediction error is shown on the

bottom. The optimal log(λ) selected by the kappa selection criterion is denoted as the

filled triangle in the detection and sparsity plots.

centage of selecting the truly informative variables, and the sparsity is defined as the percentage of

excluding the truly uninformative variables. Figure 2 illustrates the clear relationship between the

variable selection stability and the values of detection and sparsity. More importantly, the selection

performance of the kappa selection criterion is very stable against αn when it is small. Specifically,

we apply the kappa selection criterion on the lasso regression for αn = { l
100

; l = 0, . . . ,30} and

compute the corresponding average RPE over 100 replications. As shown in the last panel of Figure

2, the average RPE’s are almost the same for αn ∈ (0,0.13), which agrees with the theoretical result

in Section 4.

5.2 Scenario II: Diverging pn

To investigate the effects of the noise level and the dimensionality, we compare all the selection

criteria in the diverging pn scenario with a similar simulation model as in Scenario I, except that

β = (5,4,3,2,1,0, · · · ,0)T , pn = [
√

n], and σ = 1 or 6. More specifically, 8 cases are examined:
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n = 100, pn = 10; n = 200, pn = 14; n = 400, pn = 20; and n = 800, pn = 28, with σ = 1 or

6 respectively. Note that when σ = 6, the truly informative variables are much more difficult to

detect due to the increased noise level. The percentages of selecting the true active set, the average

numbers of correctly selected zeros (C) and incorrectly selected zeros (I), and the relative prediction

errors (RPE) are summarized in Tables 3-4 and Figures 3-4.

n pn Penalty Ks Cp BIC CV GCV

σ = 1

Lasso 0.98 0.17 0.43 0.10 0.17

100 10 Ada lasso 0.99 0.48 0.86 0.74 0.47

SCAD 0.97 0.47 0.92 0.82 0.47

Lasso 1 0.11 0.49 0.07 0.11

200 14 Ada lasso 1 0.38 0.90 0.66 0.38

SCAD 1 0.46 0.93 0.73 0.47

Lasso 1 0.09 0.53 0.04 0.09

400 20 Ada lasso 1 0.34 0.93 0.73 0.33

SCAD 1 0.43 0.98 0.75 0.43

Lasso 1 0.11 0.51 0.04 0.11

800 28 Ada lasso 1 0.30 0.96 0.74 0.29

SCAD 1 0.46 0.99 0.71 0.46

σ = 6

Lasso 0.35 0.14 0.31 0.11 0.15

100 10 Ada lasso 0.21 0.15 0.18 0.11 0.15

SCAD 0.17 0.07 0.12 0.12 0.07

Lasso 0.52 0.10 0.39 0.08 0.09

200 14 Ada lasso 0.40 0.18 0.30 0.16 0.18

SCAD 0.24 0.09 0.15 0.13 0.09

Lasso 0.77 0.10 0.47 0.04 0.10

400 20 Ada lasso 0.53 0.22 0.57 0.24 0.19

SCAD 0.40 0.13 0.30 0.13 0.13

Lasso 0.82 0.07 0.51 0.04 0.06

800 28 Ada lasso 0.68 0.20 0.66 0.37 0.20

SCAD 0.46 0.21 0.39 0.17 0.21

Table 3: The percentages of selecting the true active set for various selection criteria in simulations

of Section 5.2. Here ‘Ks’, ‘Cp’, ‘BIC’, ‘CV’ and ‘GCV’ represent the kappa selection

criterion, Mallows’ Cp, BIC, CV and GCV, respectively.

In the low noise case with σ = 1, the proposed kappa selection criterion outperforms other

competitors in both variable selection and prediction performance. As illustrated in Tables 3-4, the

kappa selection criterion delivers the largest percentage of selecting the true active set among all the

selection criteria, and achieves perfect variable selection performance for all the variable selection

methods when n ≥ 200. Furthermore, as shown in Figure 3, the kappa selection criterion yields the

smallest relative prediction error across all cases.

As the noise level increases to σ = 6, the kappa selection criterion still delivers the largest

percentage of selecting the true active set among all scenarios except for the adaptive lasso with

n = 400, where the percentage is slightly smaller than that of BIC. As shown in Table 4, the kappa
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Ks Ks Cp Cp BIC BIC CV CV GCV GCV

n pn Penalty C I C I C I C I C I

σ = 1

Lasso 5 0.02 3.25 0 4.20 0 2.95 0 3.25 0

100 10 Ada lasso 5 0.01 4.23 0 4.84 0 4.48 0 4.21 0

SCAD 5 0.03 4.12 0 4.91 0 4.67 0 4.15 0

Lasso 9 0 6.18 0 8.26 0 5.62 0 6.18 0

200 14 Ada lasso 9 0 7.50 0 8.87 0 8.24 0 7.50 0

SCAD 9 0 7.43 0 8.91 0 8.26 0 7.47 0

Lasso 15 0 11.29 0 14.23 0 10.56 0 11.29 0

400 20 Ada lasso 15 0 12.93 0 14.92 0 14.28 0 12.91 0

SCAD 15 0 12.67 0 14.98 0 14.21 0 12.64 0

Lasso 23 0 18.49 0 22.27 0 18.20 0 18.63 0

800 28 Ada lasso 23 0 20.31 0 22.94 0 22.07 0 20.23 0

SCAD 23 0 20.21 0 22.99 0 21.95 0 20.21 0

σ = 6

Lasso 4.76 0.57 3.27 0.24 4.31 0.35 3.09 0.20 3.28 0.24

100 10 Ada lasso 4.57 0.77 3.81 0.54 4.62 0.85 3.31 0.49 3.84 0.54

SCAD 4.88 1.22 3.63 0.56 4.37 0.94 3.52 0.58 3.65 0.56

Lasso 8.93 0.43 6.20 0.08 8.32 0.21 5.79 0.07 6.22 0.08

200 14 Ada lasso 8.72 0.55 7.28 0.32 8.69 0.56 7.34 0.37 7.26 0.32

SCAD 9 0.95 7.07 0.37 8.37 0.63 7.25 0.44 7.07 0.37

Lasso 14.98 0.21 11.46 0.03 14.21 0.07 10.60 0.03 11.45 0.03

400 20 Ada lasso 14.88 0.40 12.24 0.09 14.80 0.30 12.93 0.15 12.16 0.09

SCAD 15 0.67 11.97 0.13 14.65 0.51 12.66 0.23 11.88 0.12

Lasso 22.99 0.17 18.65 0.01 22.27 0.01 18.14 0.01 18.68 0.01

800 28 Ada lasso 22.96 0.29 19.84 0.02 22.71 0.16 21.19 0.04 19.71 0.02

SCAD 23 0.55 19.55 0.04 22.73 0.37 20.42 0.11 19.47 0.04

Table 4: The average numbers of correctly selected zeros (C) and incorrectly selected zeros (I) for

various selection criteria in simulations of Section 5.2. Here ‘Ks’, ‘Cp’, ‘BIC’, ‘CV’ and

‘GCV’ represent the kappa selection criterion, Mallows’ Cp, BIC, CV and GCV, respec-

tively.

selection criterion yields the largest number of correctly selection zeros. However, it has relatively

higher chance of shrinking the fifth informative variable to zero, while the chance is diminishing as

n increases. This phenomenon is also present for BIC. Considering the smaller relative prediction

errors achieved by the kappa selection criterion and BIC, these two criteria tend to produce sparser

models with satisfactory prediction performance. In practice, if false negatives are of concern, one

can increase the thresholding value αn in the kappa selection criterion, to allow higher tolerance

of instability and hence decrease the chance of claiming false negatives. In addition, as shown

in Figure 4, the kappa selection criterion yields the smallest relative prediction error for the lasso

regression and the adaptive lasso among all scenarios, whereas the advantage is considerably less

significant for the SCAD. This is somewhat expected as the SCAD is sensitive to the noise level

(Zou, 2006), which may lead to inaccurate estimation of the variable selection stability.
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Figure 3: Relative prediction errors (RPE) for various selection criteria in Scenario 2 with σ = 1.

Here ‘K’, ‘Cp’, ‘B’, ‘C’ and ‘G’ represent the kappa selection criterion, Mallows’ Cp,

BIC, CV and GCV, respectively.

6. Real Application

In this section, we apply the kappa selection criterion to the prostate cancer data (Stamey et al.,

1989), which were used to study the relationship between the level of log(prostate specific antigen)

(l psa) and a number of clinical measures. The data set consisted of 97 patients who had received

a radical prostatectomy, and eight clinical measures were log(cancer volume) (lcavol), log(prostate

weight) (lweight), age, log(benign prostaic hyperplasia amount) (lbph), seminal vesicle invasion

(svi), log(capsular penetration) (lcp), Gleason score (gleason) and percentage Gleason scores 4 or

5 (pgg45).

The data set is randomly split into two halves: a training set with 67 patients and a test set

with 30 patients. Similarly as in the simulated examples, the tuning parameter λ’s are selected

through a grid search over 100 grid points {10−2+4l/99; l = 0, . . . ,99} on the training set. Since it

is unknown whether the clinical measures are truly informative or not, the performance of all the

selection criteria are compared by computing their corresponding prediction errors on the test set in

Table 5.

As shown in Table 5, the proposed kappa selection criterion yields the sparsest model and

achieves the smallest prediction error for the lasso regression and the SCAD, while the predic-
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Figure 4: Relative prediction errors (RPE) for various selection criteria in Scenario 2 with σ = 6.

Here ‘K’, ‘Cp’, ‘B’, ‘C’ and ‘G’ represent the kappa selection criterion, Mallows’ Cp,

BIC, CV and GCV, respectively.

Penalty Ks Cp BIC CV GCV

Active Lasso 1,2,4,5 1,2,3,4,5,6,7,8 1,2,4,5 1,2,3,4,5,7,8 1,2,3,4,5,6,7,8

Set Ada lasso 1,2,5 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5,6,7,8 1,2,3,4,5

SCAD 1,2,4,5 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5,6,7,8 1,2,3,4,5

Lasso 0.734 0.797 0.734 0.807 0.797

PE Ada lasso 0.806 0.825 0.825 0.797 0.825

SCAD 0.734 0.825 0.825 0.797 0.825

Table 5: The selected active sets and the prediction errors (PE) for various selection criteria in the

prostate cancer example. Here ‘Ks’, ‘Cp’, ‘BIC’, ‘CV’ and ‘GCV’ represent the kappa

selection criterion, Mallows’ Cp, BIC, CV and GCV, respectively.

tion error for the adaptive lasso is comparable to the minima. Specifically, the lasso regression and

the SCAD with the kappa selection criterion include lcavol, lweight, lbph and svi as the informa-

tive variables, and the adaptive lasso with the kappa selection criterion selects only lcavol, lweight
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and svi as the informative variables. As opposed to the sparse regression models produced by other

selection criteria, the variable age is excluded by the kappa selection criterion for all base variable

selection methods, which agrees with the findings in Zou and Hastie (2005).

7. Discussion

This article proposes a tuning parameter selection criterion based on the concept of variable selec-

tion stability. Its key idea is to select the tuning parameter so that the resultant variable selection

method is stable in selecting the informative variables. The proposed criterion delivers superior

numerical performance in a variety of experiments. Its asymptotic selection consistency is also es-

tablished for both fixed and diverging dimensions. Furthermore, it is worth pointing out that the

idea of stability is general and can be naturally extended to a broader framework of model selection,

such as the penalized nonparametric regression (Xue et al., 2010) and the penalized clustering (Sun

et al., 2012).

8. Supplementary Material

Lemmas 2 and 3 and their proofs are provided as online supplementary material for this article.
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Appendix A.

The lemma stated below shows that if a variable selection method is selection consistent and εn ≺αn,

then its variable selection stability converges to 1 in probability.

Lemma 3 Let λ∗
n be as defined in Assumption 1. For any αn,

P
(

ŝ(Ψ,λ∗
n,m)≥ 1−αn

)
≥ 1−2εn/αn.

Proof of Lemma 3: We denote Â
∗b
1λ∗

n
and Â

∗b
2λ∗

n
as the corresponding active sets obtained from two

sub-samples at the b-th random splitting. Then the estimated variable selection stability based on

the b-th splitting can be bounded as

P
(

ŝ∗b(Ψ,λ∗
n,m) = 1

)
= P

(
Â

∗b
1λ∗

n
= Â

∗b
2λ∗

n

)
≥ P

(
Â

∗b
1λ∗

n
= AT

)2

≥ (1− εn)
2 ≥ 1−2εn.

By the fact that 0 ≤ ŝ∗b(Ψ,λ∗
n,n)≤ 1, we have

E
(

ŝ(Ψ,λ∗
n,m)

)
= E

(
B−1

B

∑
b=1

ŝ∗b(Ψ,λ∗
n,m)

)
≥ 1−2εn,
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and 0 ≤ ŝ(Ψ,λ∗
n,n)≤ 1. Finally, Markov inequality yields that

P
(

1− ŝ(Ψ,λ∗
n,m)≥ αn

)
≤

E
(

1− ŝ(Ψ,λ∗
n,m)

)

αn

≤ 2εn

αn

,

which implies the desired result immediately. �

Proof of Theorem 1: We first show that for any ε > 0,

lim
n→∞

P
(

λ̂n > λ∗
n or r−1

n λ̂n ≤ 1/ε
)
= 0.

Denote Ω1 = {λn : λn > λ∗
n}, Ω2 = {λn : r−1

n λn ≤ τ} and Ω3 = {λn : τ ≤ r−1
n λn ≤ 1/ε}, where

τ < 1/ε, c1(τ)≥ 1−1/p. It then suffices to show that for any ε > 0,

P
(

λ̂n ∈ Ω1 ∪Ω2 ∪Ω3

)
→ 0.

First, the definition of λ̂n and Lemma 1 imply that

P(λ̂n ≤ λ∗
n)≥ P

( ŝ(Ψ,λ∗
n,m)

maxλ ŝ(Ψ,λ,m)
≥ 1−αn

)
≥ P

(
ŝ(Ψ,λ∗

n,m)≥ 1−αn

)
≥ 1− 2εn

αn

.

This, together with εn ≺ αn, yields that

P
(

λ̂n ∈ Ω1

)
= P(λ̂n > λ∗

n)≤
2εn

αn

→ 0.

Next, the definition of λ̂n implies that

ŝ(Ψ, λ̂n,m)≥ (1−αn)max
λ

ŝ(Ψ,λ,m)≥ (1−αn)ŝ(Ψ,λ∗
n,m).

This, together with Lemma 1, leads to

P
(

ŝ(Ψ, λ̂n,m)≥ 1−2αn

)
≥ P

(
ŝ(Ψ, λ̂n,m)≥ (1−αn)

2
)

≥ P
(

ŝ(Ψ,λ∗
n,m)≥ 1−αn

)
≥ 1− 2εn

αn

,

and hence when εn ≺ αn,

P
(

ŝ(Ψ, λ̂n,m)≥ 1−2αn

)
→ 1.

Therefore, to show P(λ̂n ∈ Ω2)→ 0, it suffices to show

P
(

sup
λn∈Ω2

ŝ(Ψ,λn,m)< 1−2αn

)
→ 1. (13)

But Assumption 2 implies that for any j ∈ A
c
T and j1 ∈ AT , we have

P
(

j ∈
⋂

λn∈Ω2

Âλn

)
≥ c1(τ)≥ 1− 1

p
and P

(
j1 ∈

⋂

λn∈Ω2

Âλn

)
≥ 1−ζn.
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It implies that

lim
n→∞

P
(
{1, . . . , p} ∈

⋂

λn∈Ω2

Âλn

)

≥ lim
n→∞

1− ∑
j∈A

c
T

P
(

j /∈
⋂

λn∈Ω2

Âλn

)
− ∑

j1∈AT

P
(

j1 /∈
⋂

λn∈Ω2

Âλn

)

≥ lim
n→∞

1− p− p0

p
− p0ζn =

p0

p
> 0.

Since {1, . . . , p} ∈⋂
λn∈Ω2

Â
∗b
λn

implies supλn∈Ω2
ŝ∗b(Ψ,λn,m) =−1, then

lim
n→∞

E
(

sup
λn∈Ω2

ŝ∗b(Ψ,λn,m)
)
≤ 1− lim

n→∞
P
(

sup
λn∈Ω2

ŝ∗b(Ψ,λn,m) =−1
)
≤ 1− p0

p
.

In addition, the strong law of large number for U-statistics (Hoeffding, 1961) implies that

B−1
B

∑
b=1

sup
λn∈Ω2

ŝ∗b(Ψ,λn,m)
a.s.−→ E

(
sup

λn∈Ω2

ŝ∗b(Ψ,λn,m)
)

as B → ∞.

Note that supλn∈Ω2
ŝ(Ψ,λn,m) ≤ B−1 ∑B

b=1 supλn∈Ω2
ŝ∗b(Ψ,λn,m), it then follows immediately that

P(supλn∈Ω2
ŝ(Ψ,λn,m)≤ 1− p0

p
)→ 1 and hence P(supλn∈Ω2

ŝ(Ψ,λn,m)< 1−2αn)→ 1. Therefore

P(λ̂n ∈ Ω2)→ 0.

Finally, to show P(λ̂n ∈ Ω3)→ 0, it also suffices to show

P
(

sup
λn∈Ω3

ŝ(Ψ,λn,m)< 1−2αn

)
→ 1. (14)

Assumption 2 implies that for any j ∈ A
c
T and some j1 ∈ A

c
T , when n is sufficiently large,

P(∩λn∈Ω3
{ j ∈ Âλn

})≥ c1(1/ε)> 0 and P(∩λn∈Ω3
{ j1 /∈ Âλn

})≥ c2(τ)> 0.

Therefore, it follows from the independence between two sub-samples that

P
( ⋂

λn∈Ω3

{Â
∗b
1λn

6= Â
∗b
2λn

}
)

≥ P
( ⋂

λn∈Ω3

⋃

j∈A
c
T

{ j /∈ Â
∗b
1λn

, j ∈ Â
∗b
2λn

}
)

≥ P
( ⋂

λn∈Ω3

{ j1 /∈ Â
∗b
1λn

, j1 ∈ Â
∗b
2λn

}
)

= P
( ⋂

λn∈Ω3

{ j1 /∈ Â
∗b
1λn

}
)

P
( ⋂

λn∈Ω3

{ j1 ∈ Â
∗b
2λn

}
)
,

≥ c1(1/ε)c2(τ).

Since the event
⋂

λn∈Ω3
{Â

∗b
1λn

6= Â
∗b
2λn

} implies that supλn∈Ω3
ŝ∗b(Ψ,λn,m) ≤ c3 with c3 =

maxA1 6=A2
κ(A1,A2)≤ p−1

p
where A1,A2 ⊂ {1, · · · , p}, we have, for sufficiently large n,

P
(

sup
λn∈Ω3

ŝ∗b(Ψ,λn,m)≤ c3

)
≥ c1(1/ε)c2(τ).
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Therefore, for sufficiently large n and any b > 0,

E
(

sup
λn∈Ω3

ŝ∗b(Ψ,λn,m)
)
≤ 1− c1(1/ε)c2(τ)(1− c3).

Again, by the strong law of large number for U-statistics (Hoeffding, 1961) and the fact that

supλn∈Ω3
ŝ(Ψ,λn,m)≤ B−1 ∑B

b=1 supλn∈Ω3
ŝ∗b(Ψ,λn,m), we have

P
(

sup
λn∈Ω3

ŝ(Ψ,λn,m)≤ 1− c1(1/ε)c2(τ)(1− c3)
)
→ 1.

For any ε, c1(1/ε)c2(τ)(1− c3) is strictly positive and αn → 0, we have

P
(

sup
λn∈Ω3

ŝ(Ψ,λn,m)< 1−2αn

)
≥ P

(
sup

λn∈Ω3

ŝ(Ψ,λn,m)≤ 1− c1(1/ε)c2(τ)(1− c3)
)
→ 1,

and hence (14) is verified and P
(

λ̂n ∈ Ω3

)
→ 0.

Combining the above results, we have for any ε > 0,

lim
n→∞

lim
B→∞

P
(

rn/ε ≤ λ̂n ≤ λ∗
n

)
= 1. (15)

Furthermore, since for any ε > 0,

P(Âλ̂n
= AT ) ≥ P

(
Âλ̂n

= AT , rn/ε ≤ λ̂n ≤ λ∗
n

)

≥ P
( ⋂

rn/ε≤λn≤λ∗
n

{Âλn
= AT}

)
+P

(
rn/ε ≤ λ̂n ≤ λ∗

n

)
−1.

Therefore, the desired selection consistency directly follows from (15) and Assumption 1 by letting

ε → 0. �

Proof of Theorem 2: We prove Theorem 2 by similar approach as in the proof of Theorem 1. For

any ε > 0, we denote Ω1 = {λn : λn > λ∗
n}, Ω2 = {λn : r−1

n λn ≤ τ} and Ω3 = {λn : τ ≤ r−1
n λn ≤ 1/ε},

where τ is selected so that τ < 1/ε and pn(1 − c1n(τ)) ≻ αn. Then we just need to show that

P(λ̂n ∈ Ω1 ∪Ω2 ∪Ω3)→ 0. The probability P(λ̂n ∈ Ω1)→ 0 for any ε > 0 can be proved similarly

as in Theorem 1.

In addition, Lemma 1 implies that P(ŝ(Ψ,λ∗
n,m) ≥ 1−αn) ≥ 1−2εn/αn, and the definition of

λ̂n leads to P(ŝ(Ψ, λ̂n,m)≥ (1−αn)(1−αn))≥ 1−2εn/αn, and hence

P
(

ŝ(Ψ, λ̂n,m)≥ 1−2αn

)
≥ P

(
ŝ(Ψ, λ̂n,m)≥ (1−αn)(1−αn)

)
≥ 1− 2εn

αn

→ 1.

To show P(λ̂n ∈ Ω2)→ 0, it suffices to show P(supλn∈Ω2
ŝ(Ψ,λn,m)< 1−2αn)→ 1, which can be

verified by slightly modifying the proof of (13). Assumption 2a implies that for any j ∈ A
c
T and

j1 ∈ AT , we have

P
(

j ∈
⋂

λn∈Ω2

Âλn

)
≥ c1n(τ) and P

(
j1 ∈

⋂

λn∈Ω2

Âλn

)
≥ 1−ζn.

3437



SUN, WANG AND FANG

As shown in Theorem 1, it implies that

P
(
{1, . . . , p} ∈

⋂

λn∈Ω2

Âλn

)
≥ 1− (pn − p0n)(1− c1n(τ))− p0nζn,

and hence E(supλn∈Ω2
ŝ∗b(Ψ,λn,m)) ≤ 1− (pn − p0n)(1− c1n(τ))− p0nζn. By the strong law of

large number for U-statistics,

P
(

sup
λn∈Ω2

ŝ(Ψ,λn,m)≤ 1− (pn − p0n)(1− c1n(τ))− p0nζn

)
→ 1.

Therefore, P(supλn∈Ω2
ŝ(Ψ,λn,m)< 1−2αn)→ 1 provided that pn(1−c1n(τ))≻ αn and pnζn → 0.

To show P(λ̂n ∈ Ω3)→ 0, it suffices to show

P
(

sup
λn∈Ω3

ŝ(Ψ,λn,m)< 1−2αn

)
→ 1. (16)

Here (16) follows by modifying the proof of (14). According to c4 ≤ (pn −1)/pn, we have

E
(

sup
λn∈Ω3

ŝ∗b(Ψ,λn,m)
)
≤ 1− p−1

n c1n(1/ε)c2n(τ).

Therefore, following the same derivation as in Theorem 1, we have

P
(

sup
λn∈Ω3

ŝ(Ψ,λn,m)≤ 1− p−1
n c1n(1/ε)c2n(τ)

)
→ 1.

This, together with the assumptions that αn ≺ p−1
n c1n(1/ε)c2n(τ) for any ε and τ, leads to the con-

vergence in (16), which completes the proof of Theorem 2. �
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