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Abstract

We describe an inference task in which a set of timestamped event observations must be clus-

tered into an unknown number of temporal sequences with independent and varying rates of ob-

servations. Various existing approaches to multi-object tracking assume a fixed number of sources

and/or a fixed observation rate; we develop an approach to inferring structure in timestamped data

produced by a mixture of an unknown and varying number of similar Markov renewal processes,

plus independent clutter noise. The inference simultaneously distinguishes signal from noise as

well as clustering signal observations into separate source streams. We illustrate the technique via

synthetic experiments as well as an experiment to track a mixture of singing birds. Source code is

available.
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1. Introduction

Various approaches exist for the task of inferring the temporal evolution of multiple sources based

on joint observations (Mahler, 2007; Van Gael et al., 2009). They are generally based on a model in

which sources are continuously observable, in the sense that they are expected to emit/return obser-

vations at every time step (though there may be missed detections). Yet there are various types of

source for which observations are inherently intermittent, and for which this intermittence exhibits

temporal structure that can be characterised as a point process. Examples include sound event se-

quences such as bird calls or footsteps (Wang and Brown, 2006), internet access logs (Arlitt and

Williamson, 1997), pulsars in astronomy (Keane et al., 2010) and neural firing patterns (Bobrowski

et al., 2009). Intermittent observations are also often output from sparse representation techniques,

which transform signals into a representation with activations distributed sparsely in time and state

(Plumbley et al., 2010).

In this paper we describe a generic problem setting that may be applied to such data, along with

an approach to estimation. We are given a set of timestamped data, and we assume each datum

is produced by one of a set of similar but independent signal processes, or by a “clutter” noise

process, with known parameters. We do not know the true partitioning of the data into sequences

each generated by a single process, and wish to infer this. We do not know how many processes

are active, and we do not assume that each process produces the same number of observations, or

observations at the same time points.
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This specific type of clustering problem has applications in various domains. For example, when

sparse representation techniques are used for source separation in time series, they often yield a set

of atomic activations which must be clustered according to their underlying source, and preferably

to discard any spurious noise activations (Plumbley et al., 2010). Temporal dependence information

may help to achieve this (cf. Mysore et al. 2010). Timestamped data such as internet access logs

often contain no explicit user association, yet it may be desirable to group such data by user for for

further analysis (Arlitt and Williamson, 1997). In computational audio scene analysis, it is often the

case that sound sources emit sound only intermittently during their presence in the scene, yet it is

desirable to track their temporal evolution.

1.1 Related Work

To our knowledge, this particular problem setting has not been directly addressed in the literature.

Temporal data is most commonly treated using a model of sources which update continuously, or

synchronously at an underlying temporal sampling rate. Pertinent formulations for our purposes

include the infinite factorial hidden Markov model (infinite FHMM) of Van Gael et al. (2009), or

the probability hypothesis density filter (PHD filter) (Mahler, 2007), both of which infer an un-

known number of independent Markov sources. FHMMs assume that the underlying sources are

not intermittent during their lifetime, and also that they persist throughout the whole observation pe-

riod. Pragmatically, intermittent emissions may be handled by incorporating silence states, though

to implement arbitrary-duration silence states may require additional workarounds such as multi-

ple parallel/sequential silences. The PHD filter allows for stochastic missed detections but not for

structured intermittency.

Among techniques which do not assume a synchronous update, graph clustering approaches

such as normalised cuts have similarities to our approach (Shi and Malik, 2000). In particular,

Lagrange et al. (2008) apply normalized cuts in order to cluster temporally-ordered data. How-

ever, the normalised cuts method is applied to undirected graphs, and Lagrange et al. (2008) use

perceptually-motivated similarity criteria rather than directed Markov dependencies as considered

herein. Further, the normalized cuts method does not include a representation of clutter noise, and

so Lagrange et al. (2008) perform signal/noise cluster selection as a separate postprocessing step.

In the present work we include an explicit noise model.

In automatic speech recognition, segmental models or fragment-decoding models are inferred

using a combinatorial graph search through temporal observations (Glass, 2003; Barker et al., 2005),

and thus have resonances with the method we will develop here. However they address only a

single-source problem. (Barker et al. 2005 considers multi-talker background noise but only one

foreground source.)

Our problem setting also exhibits similarities with that of structure discovery in Bayesian net-

works (Koivisto and Sood, 2004). However, in that context the dependency structure is inferred

from correlations present in multiple observations from each vertex in the structure. In the present

case we have only one observation per vertex, plus the partial ordering implied by temporality.

In the following we develop a model in which an unknown number of point-process sources

are assumed to be active as well as Poisson clutter, and describe how to perform a maximum like-

lihood inference which clusters the signal into individual identified tracks plus clutter noise. We

then demonstrate the performance of the approach in synthetic experiments, and in an experiment

analysing birdsong audio.
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2. Preliminaries

Throughout we will consider sets of observations in the form {(X ,T )} where X is state and T is

time. A Markov renewal process (MRP) generates a sequence of such observations having the

Markov property:

P(τn+1 ≤ t,Xn+1 = j | (X1,T1), . . . ,(Xn = i,Tn))

= P(τn+1 ≤ t,Xn+1 = j | Xn = i) ∀n ≥ 1, t ≥ 0, i, j ∈ S

where τn+1 is the time difference Tn+1 − Tn. Note that τ is not explicitly given in observations

{(X ,T )}, but can be inferred if we know that a particular pair of observations are adjacent members

within a sequence.

We will have cause to represent our data as a network flow problem (Bang-Jensen and Gutin,

2007, Chapter 3). A network is a graph supplemented such that each arc Ai j has a lower capacity li j

and upper capacity ui j, and a cost ai j. A flow is a function x : A → R0 that associates a value with

each arc in the network. We will be concerned with integer flows x : A → Z0. A flow is feasible if

li j ≤ xi j ≤ ui j for all Ai j in the graph, and for all vertices (except for any source/sink vertices) the

sum of the inward flow is equal to the sum of the outward flow. For any flow we can calculate a

total cost as the sum of ai jxi j over all Ai j. We define the value of a feasible flow to be the sum of xi j

over all arcs leading from source vertices.

The standard terminology of flow networks associates capacities, flows and costs with arcs but

not vertices. However, in the following we will have cause to associate such attributes with vertices

as well as with arcs. This can be implemented transparently by the standard technique of vertex

expansion, in which each vertex is replaced by an in-vertex and an out-vertex, plus a single arc

between them which bears the associated attributes (Bang-Jensen and Gutin, 2007, Section 3.2.4).

3. Mixtures of Markov Renewal Processes with Clutter Noise

For the present task, we consider MRPs which are time-limited: each process comes into being

at a particular point in time (governed by an independent Poisson process with intensity λb(X)),
and after each observation it may “die” with an independent death probability pd(X). Otherwise

it transitions to a new random state-and-time according to the transition distribution fx(X ,τ). The

overall system to be considered is not one but a set of such time-limited MRPs, plus a separate

Poisson process that generates clutter noise with intensity λc(X). The MRPs are independent but

share common parameters. We will refer to the overall system (including the noise process) as a

multiple Markov renewal process system or MMRP, in order to clarify when we are referring to the

whole system or to a single MRP.

We receive a set of N observations in the form {(X ,T )} and we assume that they were generated

by an MMRP for which the process parameters are known, but the number K of MRPs is unknown as

well as the allocation of each observation to its generating process. We assume that each observation

is generated either by one MRP or by the noise process. Given these observations as well as model

parameters fx(X ,τ), λb, pd , λc, there are many ways to cluster the observations into K ∈ [0,N] non-

overlapping subsets to represent the assertion that each cluster represents all the emissions from a

single MRP, with H of the observations not included in any cluster and considered to be noise. The
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overall likelihood under a chosen clustering is given by

likelihood =
K

∏
k=1

pMRP(k)
H

∏
η=1

p′NOISE(η)

where pMRP(k) represents the likelihood of the observation subsequence in cluster k being generated

by a single MRP, and p′NOISE(η) represents the likelihood of a single observation datum under the

noise model. (A set of clusters is arbitrarily indexed by k ∈ [1,K].)

In order to find the maximum likelihood solution, we may equivalently divide the likelihood

expression through by a constant factor, to give an alternative expression to be maximised. We

divide by the likelihood that all data were generated by the noise process, to give the likelihood

ratio:

L =
K

∏
k=1

pMRP(k)

pNOISE(k)
(1)

where for notational simplicity we use pNOISE(k) as the joint likelihood of all observations contained

within cluster k under the noise model. This likelihood ratio L will shortly be seen to be a convenient

expression to optimise—in particular because the likelihoods for the H data points labelled as noise

do not need to be considered in (1) since their likelihood ratios are 1 (they have the same likelihood

in the numerator and denominator).

The component likelihood ratio for a single cluster k is given by

pMRP(k)

pNOISE(k)
=

pb(Xk,1) · pd(Xk,n) ·∏
nk

i=2 fXk,i−1
(Xk,i,Tk,i −Tk,i−1)

∏
nk

i=1 pc(Xk,i)

where (Xk,i,Tk,i) refers to the ith observation assigned to cluster k, this cluster having nk observations

indexed in ascending time order. The term pb(·) refers to the likelihood associated with a single

observation under the Poisson process parametrised by λb, and similarly for pc(·) for the clutter

process parametrised by λc.

The overall likelihood ratio L tells us the relative likelihood that the observation set was gener-

ated by the selected clustering of signals and noise, as opposed to the possibility that all observations

were generated by clutter noise. Our goal is to find the clustering that yields the highest likelihood

ratio, and therefore the set of MRP track identities that is most likely to originate from signal rather

than noise.

3.1 Network Flow Representation

For any observation set of non-trivial size, there is a combinatorial explosion of possible clusterings

available and enumerating them all is intractable. In this subsection we propose to transform the

problem into an equivalent problem of network flow, which can be addressed using graph theoretic

techniques.

To maximise the likelihood ratio, we can equivalently minimise its negative logarithm, which

we will consider as a “cost” for any particular solution. We define additive component costs for
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Figure 1: Simple illustration of a path within a network that might correspond to a single MRP

sequence. Time increases along the horizontal axis. The bold arrows indicate a path from

the first to the third datum (the second datum being left out of the corresponding cluster).

The thin arrows indicate an alternative possible path.

birth, death, transition and clutter respectively as:

ab(X) =− log pb(X) , (2)

ad(X) =− log pd(X) , (3)

at(X ,X ′,τ) =− log fX(X
′,τ) , (4)

ac(X) = log pc(X) , (5)

which leads to the following expression for the overall cost under a particular cluster assignment:

− log(L) =
K

∑
k=1

(

ab(Xk,1)+ad(Xk,n)

+
nk

∑
i=2

at(Xik,i−1,Xk,i,Tk,i −Tk,i−1)

+
nk

∑
i=1

ac(Xk,i)

)

. (6)

The Markov structure of transitions, as well as this representation as additive costs, permit a

natural representation as a problem defined on a directed graph. If we construct a directed graph

with observations as vertices and possible transitions as arcs, then every possible path in the graph

(from any vertex to any other reachable vertex) corresponds to one potential MRP cluster (Figure

1). A set of K paths corresponds to a set of K MRP clusters. To reflect the assumption that each

observation is generated by no more than one MRP, we require that a vertex can be a member of

no more than one path in such a set. Vertices not included in any of the paths correspond to noise

observations.

Given our restriction that a vertex can be included in no more than one path, the problem of

finding a mutually compatible set of MRP clusterings is equivalent to solving a particular kind of

network flow problem (Bang-Jensen and Gutin, 2007, Chapter 3). In our case, the concept of a

flow will be used to pick out a set of arcs in the graph corresponding to a possible clustering, by
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Figure 2: Constructing the weighted flow network for a set of three observations.
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Figure 3: The network of Figure 2, with a single-path flow indicated (s-2-3-t).

associating each arc with a value 1 or 0 indicating whether the arc is included in the clustering.

Therefore, in addition to the requirement that the flow is integer-valued, all arcs will be defined to

have unit capacity: li j = 0,ui j = 1 for all Ai j. To reflect our assumption that each observation can

be included in only one cluster, we will also specify unit capacities for all vertices.

It remains to specify how we can associate the costs (2)–(5) with the network such that we can

solve for the minimum-cost solution to (6). Transition costs will be associated with arcs, and clutter

costs with vertices, but in order to include birth and death costs we must modify the network by

adding a single “source” vertex with an outward arc to all other vertices, and a single “sink” vertex

with an inward arc from all other vertices, and by requiring that no other vertices act as sources

or sinks (i.e., in a feasible flow, their inward and outward flows must balance). We then associate

birth costs with arcs from the source and death costs with arcs to the sink. This means that all

feasible flows in our network will be composed of paths which consist of one single birth cost, plus

a sequence of clutter and transition costs, and a single death cost. The source and sink have infinite

capacity, allowing for solutions with unbounded K.

Putting these considerations together, constructing the directed graph proceeds as follows:

• A unit-capacity vertex Vi is created corresponding to each observation (Xi,Ti). The clutter

noise cost ac(Xi) is associated with this vertex.

• A unit-capacity arc Ai j is created corresponding to each possible transition between two ob-

servations such that Ti < Tj. The transition cost at(Xi,X j,Tj −Ti) is associated with this arc.
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• A “source” vertex s is added, with one arc Asi leading from s to each of the observation

vertices. The birth cost ab(Xi) is associated with each arc Asi.

• A “sink” vertex t is added, with one arc Ait leading from each of the observation vertices to t.

The death cost ad(Xi) is associated with each arc Ait .

The temporal ordering of observations means that the graph will contain no cycles.

An illustration of the network constructed for a set of three observations is given in Figure 2.

It is clear that any path from the source s to a sink t (we call this an (s, t)-path) visits a sequence

of vertices representing a temporal sequence of observations. In the case given in Figure 2, seven

different (s, t)-paths are possible, and various combinations of these can form a feasible flow. For

example the flow along the single path s-2-3-t highlighted in Figure 3 represents the possibility that

the observations X2 and X3 were generated by a single MRP while X1 is clutter: the costs associated

with flow along that path (the path flow) are related to the birth of 2, the transition from 2 to 3, and

the death of 3, plus the clutter noise costs. The cost associated with any single-path flow corresponds

to one of the K top-level summands in Equation (6). Since in our case each (s,t)-path carries one

unit of flow, the value of each feasible flow is the number of paths it contains, and corresponds to

the number of MRP processes inferred in the data. The total cost of each feasible flow is the sum of

the path costs contained, and corresponds to the sum calculated in Equation (6).

3.2 Inference

The minimum cost flow in a network constructed according to our scheme corresponds to the clus-

tering with maximum likelihood ratio. So to perform inference we can use existing algorithms that

solve minimum-cost flow problems. The value of the minimum-cost flow, which gives the number

of MRP sources inferred, may be any integer between 0 and N.

Full inference: We use the Edmonds-Karp algorithm (Bang-Jensen and Gutin, 2007, Chapter

3), which iteratively searches for single paths in a residual network representation and does not get

trapped in local optima. The Edmonds-Karp algorithm is often used to find maximum-value flow

but can be used to optimise cost in our case of binary capacities.

The asymptotic time complexity of the Edmonds-Karp search relates to the number of vertices

and arcs as O(|V ||A|2). The number of vertices is closely related to the number of observations

N; since we generate an arc for every possible transition between a pair of observations, |A| may

be on the order of N2 in the worst case. Hence we add a constraint in constructing the arcs which

is reasonable in many applications: we assert that transitions have an upper limit in the size of

the time step, and so we do not create arcs for time separations above some threshold τmax. The

cardinality |A| is then on the order of NB where B is the maximum number of observations within a

time window of size τmax (and often B << N).

Greedy inference: If faster search is required at the cost of optimality, greedy search strategies

are available. One such strategy is to repeatedly apply a minimum-cost path algorithm to the net-

work, at each iteration taking the resulting path as an identified cluster and removing its vertices

from the network before the next iteration. Since the graph is acyclic, finding a minimum-cost path

can be performed very efficiently with order O(|A|+ |V |) at each iteration (Bang-Jensen and Gutin,

2007, Section 2.3.2); however there is no guarantee of optimality since the overall minimum-cost

flow is not guaranteed to be composed of path flows of lowest individual cost. In our experiments

2219



STOWELL AND PLUMBLEY

we will compare this greedy search empirically against the optimal search (using the same τmax

threshold for both).

In the present work we primarily consider offline (batch) inference. However, online inference

is possible within the same framework, in which new observations are received incrementally by

updating the graph as observations arrive. The Edmonds-Karp search cannot be used on such a

dynamic network, except by re-starting the search from scratch upon update. Alternative strategies

such as those based on cycle-cancelling can be used to provide an updateable inference (Bang-

Jensen and Gutin, 2007, Section 3.10.1). The speed of cycle-cancelling relative to Edmonds-Karp

may depend on the nature of the data; we implemented both and found the cycle-cancelling rela-

tively slow.

Thus far we have considered inference using a single set of MMRP model parameters, en-

coded as the costs in (6). It may be of value to evaluate the same data under different MMRP

models, in situations where multiple types of MRP process (having different parameters) may be

active. Multiple parametrisations cannot be represented together in a single flow network since

they would assign conflicting costs to arcs. To accommodate incompatible costs is equivalent to

the “multi-commodity” extension of the minimum-cost flow problem, which is NP-complete (Even

et al., 1975). However, if the clutter noise model is held constant between two different MMRP in-

ferences, then the two likelihood ratios calculated by (1) can be divided through to give a likelihood

ratio between the two. This allows us to choose between possible MMRP models although not to

combine them in a single clustering.

To summarise the MMRP inference described in this section: given a set of observations plus

MRP process parameters and noise process parameters, one first represents the data as a flow net-

work, with added source and sink nodes, and with costs representing component likelihoods (Sec-

tion 3.1). One then applies a minimum-cost flow algorithm to the network, such as Edmonds-Karp

(which we use for “full inference”) or a suboptimal greedy search. Each (s, t)-path in the resulting

minimum-cost flow represents a single cluster (a single MRP sequence) in the maximum-likelihood

result, while the nodes which receive no flow represent data to be labelled as noise.

4. Experiments

We have described a multiple Markov renewal process (MMRP) inference technique which takes an

MRP model, an iid clutter noise model and a set of timestamped data points, and finds a maximum-

likelihood partition of the data into zero or more MRP sequences plus clutter noise. In the following,

we will first illustrate its properties with a synthetic experiment designed to explore robustness

(Section 4.2). We then apply MMRP inference in two experiments based on applications to audio

tracking tasks: a synthetic experiment based on a well-known test of auditory “streaming” (Section

4.3), and an experiment to track multiple singing birds in an audio mixture (Section 4.4). However,

we must first consider how to evaluate algorithm outputs.

4.1 Evaluation Measures

To judge the empirical performance of our inference procedure, we must determine whether it can

correctly separate signal from noise, and whether it can correctly separate each individual MRP

sequence into its own stream. MMRP inference can be considered as a clustering task and could be

evaluated accordingly. However, the noise cluster is qualitatively different from the MRP clusters,
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and the transitions within MRP sequences are the latent features of primary interest, so we will

focus our evaluation measures on signal/noise separation and transitions.

In the following our statistics will be based on the standard F-measure (Witten and Frank, 2005,

Chapter 5), which summarises precision and recall as follows:

F = 2 ·
precision · recall

precision+ recall

=
2t+

(2t++ f−+ f+)
(7)

where t+ is the number of true positive detections, f+ the number of false positive detections (noise

data labelled as signal), and f− the number of false negative detections (signal data labelled as

noise).

However, the task for which our MMRP inference is designed is not an ordinary classification

task: the signal/noise label for each ground-truth datum can be treated as a class label to be inferred,

but the individual signal streams to be recovered do not have labels. To quantify performance we use

the F-measure in two ways. The first (which we denote FSN) evaluates the signal/noise classification

performance without considering the clustering. The second (which we denote Fsigtrans) evaluates

the performance at recovering the pairwise transitions that are found in the ground-truth signals, that

is, the arcs in the true dependency graph underlying the data. In order to make the two measures

relatively independent, we measure Fsigtrans only on event pairs that have been correctly classified as

signal, since otherwise false-positive noise events could have a strong influence on both (see Figure

4). Thus, in the following we use FSN to measure signal/noise separation and Fsigtrans to determine

whether inference is correctly recovering separate streams.

4.2 Synthetic Experiment I: MMRP Generated Data

We designed a synthetic experiment to generate data under the MMRP model described in previous

sections, with user-specified parameters including birth intensity, death probability, and clutter noise

intensity. The test was conducted with state X defined on a discrete alphabet and continuous time

T , and the transition network among states and times was algorithmically generated as follows:

for each state, a random subset of possible next states was selected, with the number of out-arcs

dependent on the user-specified sparsity of the transition model. The weights of the out-arcs were

sampled as a multinomial distribution (sampled from a symmetric Dirichlet distribution with α= 1).

Each out-arc was also associated with a density on the size of the time gap to the next event, taking

a log-normal distribution with a mean randomly sampled from a log-normal parent distribution.

To create an observation set, a set of birth events and clutter events were sampled independently

from their Poisson distributions, and then each birth event was used as the starting point to sample

a single {(X ,T )} sequence using the death probability and the transition network. The intensities

for the birth process and the noise process were uniform across the alphabet of states, and so in

the following we parametrise them by their intensity along the time axis only. Similarly, in the

present experiment we held death probability as uniform across state. Observation sets and noise

events were sampled within a time window of fixed duration. We used a signal-to-noise ratio (SNR)

parameter to control the intensity of noise observations (λc) in relation to that of signal observations:

λc =
λb

pd

·SNR.
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Figure 4: Illustration of errors reflected in Fsigtrans. The upper diagram shows a hypothetical ground-

truth transition through a sequence of five observations (circles) accompanied by clutter

noise (crosses). The lower diagram shows what would happen if inference missed one

of those observations out of the chain, resulting in one false-positive (dashed arrow) for

a transition that does not exist in the ground-truth. If the “skipped” observation is la-

belled as noise then the two false-negative arcs (dotted arrows) would not be considered

in Fsigtrans (its omission would already be represented in the FSN statistic): considering

the false-positive and the two true-positives and applying (7), the Fsigtrans value then is
2
3
. If the “skipped” observation is labelled as signal then the false-negative arcs are also

considered and Fsigtrans is 2
5
.

The factor of pd appears as well as the birth intensity (λb) because the SNR relates to the count

of all signal observations (not just births), and for a fixed death probability we have a geometric

distribution over the number of detections per birth with expected value 1/pd .

To evaluate performance of our inference applied to such data, we repeatedly generated obser-

vation sets as described, and ran both the greedy and full inference algorithms on the data. Unless

otherwise stated, for all synthesis runs we used the following parameters: alphabet size 10, SNR

0 dB, birth intensity 0.2 per second, death probability 0.1, observation duration 40 seconds. (We

also ran tests with alphabet size 100, obtaining very similar results, and so we have not included

those.) In each case a transition network was generated with a sparsity of 50%, and the parent

distribution for the transition time densities was a log-normal centred on 1 second with a standard

deviation of 1; distributions for each transition arc were log-normal with mean sampled from that

parent distribution and a standard deviation of 0.1.

The chosen setting for death probability implies an expected chain length of 10 emissions for a

single MRP source. Together with the the birth intensity and SNR this implies that a typical gener-

ated observation set would consist of 160 observations, half being signal and half noise. Empirically,

each of our observation sets had a mean polyphony (the number of simultaneously active sources)

varying from around 0.1 to 4.5, with substantial variation in the polyphony during the course of

each (generally 0–10).
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Figure 5: Performance of the full and greedy inference algorithms with varying SNR. Plots show

the F-measure for signal/noise separation (FSN, upper left) and signal transitions (Fsigtrans,

upper right), as well as the measured runtime (lower). Means and confidence intervals

are shown, taken over 20 independent runs. States are defined on an alphabet of size 10,

and transition sparsity set at 10% or 50% (alternating runs). In this plot, we also compare

birth intensities (λb) of 0.1 and 0.2.

Results were evaluated using the FSN and Fsigtrans measures described in Section 4.1. For our

first test, the algorithms were supplied with the true model parameters pb, fX , pd , pc to calculate

(6). Figure 5 shows how performance varies with SNR. In this synthetic experiment, the separation

of signal and noise (measured by FSN) is strong at high SNRs and falls off a little as the SNR

approaches zero. With very adverse SNR (-12 dB) performance drops off noticeably. This is the

case for both the full and greedy algorithms. The Fsigtrans measure shows a milder decline with

SNR, but also notable differences between the full and greedy inference, with a consistent benefit

in accurate recovery of transitions if the full inference is used. We also show the measured runtime

in Figure 5: the increased accuracy of full inference in recovering signal transitions comes at a cost

of increased runtime, especially under adverse SNRs (because of the larger number of noise events

generated).

In order to study the sensitivity of inference to misspecified or unknown parameters, we also

ran the same test but with systematically misspecified parameters for inference. This is important

not only because we seek a robust algorithm, but also because parameters such as the birth density

and death probability together imply approximate expectations about the level of polyphony in the

signal. Since one advantage of our approach is that it infers an arbitrary number of signal sequences
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in the data, we are interested to determine whether the correctness of these parameters is crucial for

successful inference.

Results are shown in Figure 6. We see that both algorithms (greedy and full) are robust to

poor estimation of the birth density, death probability and SNR. The advantage of full over greedy

inference is maintained at around five percentage points in Fsigtrans through most of these varied

conditions.

We also tested misspecification of transition probabilities. In order to create a controllable

amount of misspecification we implemented a stochastic degradation of the transition density infor-

mation: given a degradation parameter d ∈ [0,1], for every state in the transition table with probabil-

ity d we resampled the set of out-arc weights; and then for each out-arc separately, with probability

d we resampled the mean of its log-normal density over time. This gave a stochastic corruption of

the transition probability which could range from moderate to very strong. Results (Figure 6) show

that misspecification of the transition probabilities exhibits a strong effect compared against the

other variations: the algorithms are relatively robust up to around 10% degradation, but Fsigtrans in

particular falls dramatically when the transition probabilities become badly corrupted. This reflects

the fact that the transition probabilities encode the key structural distinction between signal and

noise, and the key information that one could use to disambiguate two co-occurring signal streams.

We also investigated how inference may degrade when conditions fail to match some of the

assumptions of the model: in many applications there may be missed detections, or noise may

not be truly independent but exhibit correlations with the signal. Figure 7 shows the performance

of inference as these issues are progressively introduced into the data. Missed detections were

simulated by omitting observations at random; noise correlations were simulated by selecting a

controllable fraction of the noise observations, and modifying those noise observations to have the

same state and very similar time position as a randomly-selected signal datum. The algorithms

appear moderately robust to such problems: FSN progressively deteriorates as the proportion of

issues increases, but Fsigtrans exhibits notable strong declines down toward chance performance with

strong degradation. However, the algorithms (both greedy and full) are robust to moderate violations

of the assumptions.

However, we also noticed that correlated noise led to a significant increase in algorithm run-

time. This is plotted in Figure 8, showing that correlated noise beyond 25% can lead to run-times

which are orders of magnitude longer, even though the data under consideration has the same num-

ber of observations and the same ratio of signal and noise observations. This occurs in the full

algorithm, and also in the greedy algorithm though with less severity. We propose that the reason

for this is that when the flow network includes many search paths which are extremely similar—

for example differing only in the choice of a particular signal datum or a competing noise datum,

both at the same location and thus with the same likelihood—then this can create a combinato-

rial explosion of paths that must be explicitly searched. Standard network search algorithms use

branch-and-bound-type optimisation to avoid explicit recursion into many of the candidate paths

(Papadimitriou and Steiglitz, 2000). This optimisation ignores search paths which have no possi-

bility of improving on a locally cached result, and so speeds up search while still finding the global

optimum. The effect of this optimisation is weakened when many paths have very similar costs, and

search time increases in practice even though the formal size of the problem is no different.

To summarise the observations made in this experiment, we find that MMRP inference is gen-

erally quite robust to variations in conditions and model parameters. The greedy algorithm achieves

performance close to that of the full algorithm in most cases, although the full algorithm consistently
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Figure 6: Sensitivity of inference to misspecified parameters. Plots are as in Figure 5 but showing

how performance varies with mismatch between the true and specified parameters for the

birth density, death probability, SNR, and transition density. SNR is fixed at 12 dB for all

plots, except in the SNR plot for which we average over runs with true SNR ∈ 0,6,12 dB

to confirm that SNR sensitivity does not vary strongly with SNR.
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Figure 7: Sensitivity of inference to missed data and correlated noise. Plots are as in Figure 6 but

showing how performance varies when some detections are missed, and when noise is

not independent but correlated with signal.
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Figure 8: Algorithm run-time for the correlated-noise test of Figure 7.

achieves stronger Fsigtrans in all but some strongly adverse conditions. This shows empirically that

the greedy algorithm has a tendency to find local optima, and the results suggest these local optima

reflect not so much issues in signal/noise discrimination but “crossed wires” in MRP sequences.

The most critical parameter for successful MMRP inference appears to be the transition probability

structure rather than assumptions about birth/death probabilities, which accords with our intuition

that the Markov structure of the sequences is the source of the discriminative power. As well as the
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Figure 9: Examples of sequences generated by strict locked ABABAB repetition (top), and by sim-

ilar generators but with time offsets affected by process noise reflecting either coherent

(ABABAB, middle) or segregated (A A A and B B B, bottom) dependency structure.

transition structure, another important consideration is signal/noise correlation, which in the present

experiment can lead to impaired Fsigtrans results as well as notably increased computation time.

4.3 Synthetic Experiment II: Auditory Streaming

To illustrate the relevance of our algorithm to the multi-source tracking required in tasks such as ma-

chine listening (or computational auditory scene analysis), we next consider a synthetic experiment

inspired by the classic “audio streaming” experiments used to explore human auditory grouping of

sound sequences (Winkler et al., 2012). In this context the MRP model might be taken to represent

not necessarily a model of how event sequences were generated, but a compact model of expecta-

tions about event sequences that can be used for computational tasks such as auditory streaming.

A strictly alternating sequence of the form ABABAB. . . , where A and B are different tones

(Figure 9, top row), can be interpreted either as a single alternating sequence (the “coherent” in-

terpretation) or as a simultaneous but out-of-phase pair of constant sequences (the “segregated”

interpretation). Various factors can lead an observer to prefer one interpretation or the other; here

we focus on the case where drift in the timing of the events makes one or the other model more

likely (Cusack and Roberts, 2000, Experiment 2). If the sequences drift such that the phase of the

As and Bs remain in constant relationship (Figure 9, second row), this is consistent with a “coher-

ent” alternating generator, though may by chance be generated by a “segregated” pair of generators.

If the sequences drift such that the phase relationship is not maintained (third row), then this is in-

consistent with the “coherent” model but consistent with the “segregated” model. We can generate

data with these properties and observe how the MMRP inference behaves under the assumptions of

each model.

For our synthetic experiment we defined two separate MRP transition models (one “coherent”

and one “segregated”) to emit values in a one-dimensional state space X ∈ R. Each model was
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Figure 10: MRP transition probability densities for the two synthetic models: coherent (left) and

segregated (right). The coherent model uses two Gaussians centred on 0.25 sec and ±5

in state, while the segregated model uses one Gaussian centred on 0.5 sec and 0 in state.

For each Gaussian, the standard deviation is 0.1 in state and 0.2 in log-time-delta.

specified by a Gaussian mixture probability distribution defined on state-delta and log-time-delta:

P(τn+1 ≤ t,Xn+1 = j | Xn = i) = f (Xn+1 −Xn, logτn+1) .

Figure 10 illustrates the transition models. Time differences here are modelled as log-Gaussian to

reflect a simple yet perceptually plausible model for lower-bounded time intervals. The variance

of the Gaussian components leads to process noise, and the two models tend to output different

sequences in general. We also define a “locked” model for generation only, which generates a strict

ABABAB sequence with no process noise. Its emissions could in principle be explained by either

of the two other models.

These models served two roles in our experiment, to synthesise data and to analyse it. For

synthesis, we generated four simultaneous sequences each with a random offset in state space, and

we also added iid Poisson clutter noise in the same region of state space, whose intensity is held

constant within each run to create a given SNR. In the case of the segregated model, each generator

was a pair of such models, independent except for the initial phase and offset, generating As and

Bs as was done in Figure 10. In this experiment we did not use probabilistic births or deaths

during synthesis, instead generating a fixed polyphony lasting the whole of the excerpt. For MMRP

inference we used fixed parameters derived from the SNR value and an arbitrary death probability

of 0.033. The following relationships show how to derive the birth and clutter likelihood parameters

from the SNR value expressed as a ratio:

pb =
SNR · pd

1+SNR
, (8)

pc =
1

1+SNR
.

The factor of pd enters into the calculation of pb for the reasons described in Section 4.2.

The first column of Figure 11 shows the results of generating data under the locked, coherent

and segregated models, with two generated sequences present in each case. The second column

2228



SEGREGATING EVENT STREAMS

Figure 11: Results of generating observations under the locked, coherent or segregated model (in

each row), and then analysing them using the coherent model or the segregated model

(final two columns). Note that we have selected an example with clear pitch separa-

tion between streams, for visual clarity: in general, and in our tests with four streams,

sequences often overlap in pitch and are not so obviously separable.

shows the sequences with added clutter noise at an SNR of -12 dB. The final two columns show the

maximum-likelihood signal sequences inferred under the coherent and the segregated model. The

MMRP inference typically extracts clear traces corresponding to the ground-truth signals, even in

strongly adverse SNR. It is visually evident in the first column that the generated sequences in the

middle row have some drift in their rate, but stay in order, while the As and Bs in the bottom row

drift relative to each other and do not maintain order. This leads to unlikely emission sequences as

judged by the coherent model, and so the coherent model finds the maximum-likelihood solution

to be that with no sequences (the blank plot in the figure). Inference using the segregated model

extracts traces in all three cases, since the phase-locked drift of the coherent model is not unlikely

under the segregated model.

To evaluate MMRP inference in this case, we ran this process multiple times, varying the SNR

level and whether the true SNR was known to the algorithm. When not known, the SNR estimate

was arbitrarily held fixed at 0 dB. For each setting we conducted 20 runs and recorded the FSN and

Fsigtrans statistics. Figure 12 illustrates the results, showing broad consistency with the previous ex-

periment. Recovery performance is very strong in all but the most adverse conditions, in most cases
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Figure 12: F-measure for signal/noise separation (FSN) and transitions (Fsigtrans). The ground truth

in each case is a combination of four ABABAB streams, generated via the coherent

or segregated cases (20 runs of each type). Means and standard errors are shown; the

vertical axis is reverse-log-scaled so that the results very near 1.0 can be distinguished.

being well above 0.95. For these particular scenarios, signal/noise discrimination is impaired under

the strongest condition tested (SNR -24 dB), but under other conditions the recovery is good, and

Fsigtrans remains strong in all runs. As in the previous experiment, full inference shows a consistent

advantage over the greedy inference, though this tails off at -24 dB SNR. In this test, knowledge of

the true SNR gives a further boost in the performance of MMRP inference.

4.4 Birdsong Audio Experiment

Many natural sound sources produce signals with structured patterns of emissions and silence, for

example birdsong or footsteps. As in the previous experiment inspired by auditory streaming, if

we model these natural sound sources with an MRP then our inference procedure should be able

to separate multiple simultaneous “streams” of emissions. In the following experiment we studied

the ability of our inference to perform this separation in data derived from audio signals containing

multiple instances of a species of bird common in many European countries, the Common Chif-

fchaff (Salomon and Hemim, 1992). Chiffchaff song consists of sequences of typical length 8–20

“syllables”. Each syllable is a pitched note consisting of a downward chirp to a briefly-held tone in

the region of 5–8 kHz. Syllables are separated by around 0.2–0.3 seconds. The exact note sequence

has not to our knowledge been studied in detail; it appears to exhibit only short-range dependency,

and is thus amenable to analysis under Markovian assumptions.

4.4.1 DATA PREPARATION

To aid reproducibility, we used recordings from the Xeno Canto database of publicly-available bird

recordings.1 We located 25 recordings of song of the Chiffchaff (species Phylloscopus collybita)

recorded in Europe (excluding any recordings marked as having “deviant” song or uncertain species

identity; also excluding calls which are different from song in sound and function). The recordings

used are listed in Table 1. We converted the recordings to 44.1 kHz mono wave files, high-pass

filtered them at 2 kHz, and normalised the amplitude of each file. File durations varied from 8.5

1. Available at http://www.xeno-canto.org/europe.
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ID Country

XC103404 pl

XC25760 dn

XC26762 se

XC28027 de

XC29706 se

XC31881 nl

XC32011 nl

XC32094 no

XC35097 es

XC35974 cz

XC36603 cz

XC36902 nl

XC46524 nl

ID Country

XC48263 no

XC48383 de

XC54052 it

XC55168 fr

XC56298 de

XC56410 ru

XC57168 fr

XC65140 es

XC77394 dk

XC77442 se

XC97737 uk

XC99469 pl

Table 1: Chiffchaff audio samples used in our data set, giving the Xeno Canto ID

and the country code. Each recording can be accessed via a URL such

as http://www.xeno-canto.org/XC103404, and the data set is also archived at

http://archive.org/details/chiffchaff25.

seconds to many minutes, so to create a set of independent audio samples which could be mixed

together to create mixtures with overlapping bouts of song, audio files were each trimmed automat-

ically to their highest-amplitude 8.5-second segment. Source code for these preprocessing steps are

published along with the full code.2

Each audio file was analysed separately to create training data; during testing, audio files were

digitally mixed in groups of one to five files.

In order to convert an audio file into a sequence of events amenable to MMRP inference, we

used spectro-temporal cross-correlation to detect individual syllables of song, as used by Osiejuk

(2000). We designed a spectrotemporal template using a Gaussian mixture (GM) to represent the

main characteristics of a single Chiffchaff syllable, a downward chirp to a briefly-held note (Figure

13). The GM was modelled on a Chiffchaff recording from Xeno Canto which was not included

in our main data set (ID number XC48101). Then to analyse an audio file we converted the file

into a spectrogram representation (512 samples per frame, 50% overlap between frames, Hann win-

dow), and converted the GM to a sampled grid template with the same time-frequency granularity

as the spectrogram, before sliding the grid template along the time axis and along the frequency

axis (between 3–8 kHz), evaluating the correlation between the template and spectrogram at each

location. Correlation values were treated as detections if they were local peaks with value greater

than a threshold correlation of 0.8.

Such cross-correlation detection applied to an audio file produces a set of observations, each

having a time and frequency offset and a correlation strength (Figure 14). It typically contains

one detection for every Chiffchaff syllable, with occasional doubled detections and spurious noise

detections. When applied to mixtures of audio, this produces data appropriate for MMRP inference.

2. Available at https://code.soundsoftware.ac.uk/projects/markovrenewal.
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Figure 13: Template used for spectro-temporal cross-correlation detection. The downward and hor-

izontal bars have equal total weight; the latter appears darker because shorter. The tem-

plate is a manually-constructed Gaussian mixture model having 40 components. It is

then used for signal pre-processing both during training and testing.
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Figure 14: Example of cross-correlation detection: excerpt of spectrogram shown (top), and the

corresponding detections (bottom). In the lower image, bold lines represent detections

treated as “signal” in the filtering used for training, while the fainter lines represent

detections used to train the noise model.

Note that the noise detections often have relatively strong signal correlations, as seen in Figure 14.

From our first experiment (Section 4.2) we expect this to have an effect primarily on runtime, though

it may also be an issue for performance. We will consider this in light of the results.

In order to derive a Gaussian mixture model (GMM) transition probability model from mono-

phonic Chiffchaff training data, for each audio file in a training set we filtered the observations

automatically to keep only the single strongest detection within any 0.2 second window. This time
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limit corresponds to the lower limit on the rate of song syllables; such filtering is only appropriate

for monophonic training sequences and was not applied to the audio mixtures used for testing. The

filtered sequences were then used to train a 10-component GMM with full covariance, defined on

the vector space having the following four dimensions:

• log(frequency) of syllable one

• log(frequency) of syllable two

• log(magnitude ratio between syllables)

• log(time separation between syllables)

This GMM then served as the transition probability distribution to be used in inference. We also

trained a separate GMM to create a noise model, taking the set of observations that had been dis-

carded in the above filtering step and training a 10-component GMM with full covariance to fit an

iid distribution to the one-dimensional log(frequency) data for the noise observations.

4.4.2 INFERENCE FROM AUDIO MIXTURES

In order to test whether the MMRP approach could recover syllable sequences from audio mixtures,

we performed an experiment using five-fold cross-validation. For each fold we used 20 audio files

for training, and then with the remaining five audio files we created audio mixtures of up to five

signals, testing recovery in each case. For each mixture file, we applied spectro-temporal cross-

correlation as described above, then performed both full and greedy inference using the empirically-

derived signal and noise GMMs to provide densities/intensities for transition and clutter. We used

fixed probabilities for pd , inferred from the empirical average sequence length in the training data,

and pb, inferred using (8) with a default SNR estimate of 0 dB.

To provide a low-complexity baseline showing the recovery quality using only the marginal

properties of the signal and noise, we also created a simple baseline system which treated both

signal and noise as iid one-dimensional log(frequency) data, using maximum likelihood to label

each observation as either signal or noise. The baseline system then clustered together observations

that were identified as signal and were separated by less than 0.7 seconds (a duration chosen to

reflect the 0.2–0.3 sec gap sizes in Chiffchaff song, with tolerance for occasional missed detections).

We tested each of these approaches using mixtures of one, two, three, four or five of the test

recordings. As in the previous experiment, we measured the FSN statistic to evaluate signal/noise

separation, and the Fsigtrans statistic to evaluate the performance at recovering separate sequences.

Results are shown in Figure 15. Broad outcomes are similar to those of the previous experi-

ments. Signal/noise discrimination is very similar between full and greedy inference, and remains

steady as the polyphony increases. Again, though, the full inference shows a general advantage

over greedy inference in the correct recovery of transitions. This pattern is consistent across all

the polyphony levels tested, except the case of just one bird, in which there is no occasion for the

greedy method to make mistakes by crossing one bird’s track with another, so it achieves the same

performance as full inference.

We also note that all the MMRP inference runs exhibit a significant and very strong improvement

over the baseline, both for FSN and Fsigtrans. This shows that the transition information learnt from

the training data is indeed pertinent in this application example.
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Figure 15: The FSN and Fsigtrans evaluation measures for the Chiffchaff audio analyses. Means and

standard errors are shown taken over the five folds of the cross-validation.

However, in this experiment the levels of FSN obtained are much lower than in the purely syn-

thetic experiments. A likely reason for this is the front-end we use to detect events in audio: the

simple cross-correlation technique may extract slightly different events when applied to a mixture

as opposed to the monophonic recordings. Another potential issue is whether the fitted GMMs gen-

eralise well from training to test data. In order to explore these factors we ran the same test with full

inference, but with some variation on the front-end analysis:

Ideal recovery: To simulate ideal-case recovery, instead of using the audio mixture we simply

pooled the signal and noise observations that had been derived from the test set’s individual

mono analysis, then performed MMRP inference as in the audio recovery case.

Ideal recovery, synthetic noise: To simulate ideal recovery but with more adverse noise condi-

tions, we proceeded as in the ideal case, but also added extra clutter noise at 0 dB. To do this,

we created a copy of every observation in the test set, but assigned it an independent random

time position, thus creating noise with the same frequency distribution as the true signal but

uncorrelated in time.
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Figure 16: As Figure 15, with ideal-recovery results superimposed.

Ideal recovery, tested on training set: To measure an “upper limit” on performance and probe the

generalisation capability of the algorithm, we proceeded as in the ideal case, but used GMMs

trained on the actual test files to be analysed rather than on the separate training data.

Results, superimposed with the results from the standard detection approach, are shown in Fig-

ure 16. Very strong performance is achieved in the noiseless “ideal recovery” cases, achieving re-

sults similar to those in the synthetic experiments. The small size of the difference between training

on the test data and on the training data (in particular for FSN) indicates that the algorithm can gen-

eralise across the data used in our experiment. However, the Fsigtrans measure shows a notable boost

when trained on test data, which may reflect some degree of heterogeneity in transition distributions

in the recordings. Resolving the similarity of sequences in birds across different geographical loca-

tions is of interest to bioacoustics researchers (see, e.g., Mahler and Gil 2009), but at present there

are not the large annotated databases that would facilitate such analyses of similarity for a single

species.

When synthetic noise is added to the ideal-recovery case, performance is reduced considerably.

The FSN measure approaches that of the more realistic case, while Fsigtrans is even more strongly

impaired. This indicates that the detection front-end in the more realistic case is indeed a bottleneck
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for performance, but its impact on Fsigtrans is not as severe as on FSN. Note that our synthetic

noise is temporally decorrelated from the signal, whereas the noise present in recovery from audio

mixtures shows quite strong correlations (Figure 14). Our results indicate that in this experiment

the noise correlation is not a major impediment to recovery from audio, since the uncorrelated noise

induces consistently worse performance in Fsigtrans, and a similar level of performance in FSN at high

polyphony.

Taken together, these results show that the practical task of retrieving detections from audio

mixtures has a significant effect on algorithm performance, but that MMRP inference still performs

strongly in simultaneously inferring signal/noise discrimination and clustering signals into tracks.

We are exploring more sophisticated bird syllable detection to improve on these results (Stowell

et al., 2013). As in the synthetic experiments, in the present experiment the full MMRP inference

shows a consistent Fsigtrans benefit over the greedy inference, although this must be balanced against

the additional runtime cost.

5. Conclusions

In this paper we have investigated the problem of segregating timestamped data originating in mul-

tiple point processes plus clutter noise. We developed an approach to inferring structure in data

produced by a mixture of an unknown number of similar Markov renewal processes (MRPs) plus

independent clutter noise. The inference simultaneously distinguishes signal from noise as well as

clustering signal observations into separate source streams, by solving a network flow problem iso-

morphic to the MMRP mixture problem. Our method is general and has very few free parameters.

In experiments we have shown that inference can perform very well even under high noise

conditions (as far as −12 dB SNR, depending on application). The full optimal MMRP inference

incurs a higher complexity than a greedy approach, but generally achieves a more accurate recovery

of the event-to-event transitions present in the data. In a synthetic experiment, we explored the

robustness of inference, and found that good performance is possible despite misspecification of

parameters such as the birth density and noise level. Inaccurate specification of the MRP transition

probability structure can impair performance, as can correlated noise, though inference is still robust

to mild corruptions of these types. Correlated noise can also incur high run-times because of its

effect on the graph search.

To illustrate applications of the technique, we then conducted two experiments related to audio

recognition tasks. In an experiment based on the “auditory streaming” paradigm, we showed that

MMRP inference can recover polyphonic event streams from noisy observations, applying different

MRP generative models to implement different expectations about the streams to be recovered. Then

in an experiment on birdsong audio data we showed strong performance, albeit with a dependence

on the quality of the underlying representation to recover events from audio data.

The inference in the present work is limited to models without hidden state and with only single-

order Markov dependencies. These limitations arise from the combinatorial ambiguity in MMRP

mixtures (unlike ordinary Markov models) over which is the immediate predecessor for each obser-

vation. Future work will aim to find techniques to broaden the class of models that can be treated in

this way.

Reproducible research: Python source code for our implementation and our experiments is

freely available online.2
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