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Abstract

Any learner with the ability to predict the future of a structured time-varying signal must maintain a

memory of the recent past. If the signal has a characteristic timescale relevant to future prediction,

the memory can be a simple shift register—a moving window extending into the past, requiring

storage resources that linearly grows with the timescale to be represented. However, an indepen-

dent general purpose learner cannot a priori know the characteristic prediction-relevant timescale

of the signal. Moreover, many naturally occurring signals show scale-free long range correlations

implying that the natural prediction-relevant timescale is essentially unbounded. Hence the learner

should maintain information from the longest possible timescale allowed by resource availabil-

ity. Here we construct a fuzzy memory system that optimally sacrifices the temporal accuracy of

information in a scale-free fashion in order to represent prediction-relevant information from expo-

nentially long timescales. Using several illustrative examples, we demonstrate the advantage of the

fuzzy memory system over a shift register in time series forecasting of natural signals. When the

available storage resources are limited, we suggest that a general purpose learner would be better

off committing to such a fuzzy memory system.

Keywords: temporal information compression, forecasting long range correlated time series

1. Introduction

Natural learners face a severe computational problem in attempting to predict the future of time

varying signals. Rather than being presented with a large training set of examples, they must com-

pute on-line using a continuously evolving representation of the recent past. A basic question arises

here—how much of the recent past is required to generate future predictions? Maintaining past

information in memory comes with a metabolic cost; we would expect a strong evolutionary pres-

sure to minimize the resources required. A shift register can accurately represent information from

the recent past up to a chosen timescale, while consuming resources that grow linearly with that

timescale. However, the prediction-relevant timescale of the signal is generally unknown prior

to learning. Moreover there are many examples of naturally occurring signals with scale-free long

range correlations (Voss and Clarke, 1975; Mandelbrot, 1982; Field, 1987; Torralba and Oliva, 2003;

Linkenkaer-Hansen et al., 2001; Baillie, 1996; Gilden, 2001; Van Orden et al., 2003; Wagenmakers

et al., 2004), commonly known as 1/ f signals, making the natural prediction-relevant timescale

essentially unbounded. Our focus is on the following question: If an independent general purpose

learner is to forecast long range correlated natural signals, what is the optimal way to represent the

past information in memory with limited resources?
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We argue that the solution is to construct a memory that reflects the natural scale-free temporal

structure associated with the uncertainties of the world. For example, the timing of an event that

happened 100 seconds ago does not have to be represented as accurately in memory as the timing of

an event that happened 10 seconds ago. Sacrificing the temporal accuracy of information in memory

leads to tremendous resource conservation, yielding the capacity to represent information from ex-

ponentially long timescales with linearly growing resources. Moreover, by sacrificing the temporal

accuracy of information in a scale-free fashion, the learner can gather the relevant statistics from

the signal in a way that is optimal if the signal contains scale-free fluctuations. To mechanistically

construct such a memory system, it is imperative to keep in mind that the information represented

in memory should self sufficiently evolve in real time without relying on any information other than

the instantaneous input and what is already represented in memory; reliance on any external in-

formation would require additional storage resources. In this paper we describe a Fuzzy (meaning

temporally inaccurate) memory system that (i) represents information from very long timescales

under limited resources, (ii) optimally sacrifices temporal accuracy while maximally preserving the

prediction-relevant information from the past, and (iii) evolves self sufficiently in real time.1

The layout of the paper is as follows. In Section 2, based on some general properties of long

range correlated signals, we derive the criterion for optimally sacrificing the temporal accuracy so

that the prediction relevant information from exponentially long time scales is maximally preserved

in the memory with finite resources. However, it is non-trivial to construct such a memory in a

self sufficient way. In Section 3, we describe a strategy to construct a self sufficient scale-free

representation of the recent past. This strategy is based on a neuro-cognitive model of internal

time, TILT (Shankar and Howard, 2012), and is mathematically equivalent to encoding the Laplace

transform of the past and approximating its inverse to reconstruct a fuzzy representation of the

past. With an optimal choice of a set of memory nodes, this representation naturally leads to a

self-sufficient fuzzy memory system. In Section 4, we illustrate the utility of the fuzzy memory

with some simple time series forecasting examples. We show that the fuzzy memory enhances the

ability to predict the future in comparison to a shift register with equal number of nodes. Optimal

representation of the recent past in memory does not by itself guarantee the ability to successfully

predict the future, for it is crucial to learn the prediction-relevant statistics underlying the signal with

an efficient learning algorithm. The choice of the learning algorithm is however largely modular to

the choice of the memory system. Here we entirely sidestep the problem of learning, and only

focus on the memory. As a place holder for a learning algorithm, we use linear regression in the

demonstrations of time series forecasting.

2. Optimal Accuracy-Capacity Tradeoff

Suppose a learner needs to learn to predict a real valued time series with long range correlations. Let

V = {vn : n ∈ (1,2,3...∞)} represent all past values of the time series relative to the present moment

at n = 0. Let V be a stationary series with zero mean and finite variance. Ignoring any higher order

correlations, let the two point correlation be
〈

vnvm

〉

≃ 1/|n−m|α. When α ≤ 1, the series will be

long range correlated (Beran, 1994). The goal of the learner is to successfully predict the current

value vo at n = 0. Figure 1 shows a sample time series leading up to the present moment. The y-axis

corresponds to the present moment and to its right lies the unknown future values of the time series.

The x-axis labeled as shift register denotes a memory buffer wherein each vn is accurately stored in

1. Fuzzy temporal memory is not related to fuzzy logic.
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Figure 1: A sample time series V with power-law two-point correlation is plotted w.r.t. time(n) with the

current time step taken to be n = 0. The figure contrasts the way in which the information is

represented in a shift register and the fuzzy buffer. Each node of the fuzzy buffer linearly combines

information from a bin containing multiple shift register nodes. The dashed curve shows the

predictive information content from each time step that is relevant for predicting the future value

of the time series.

a unique node. As we step forward in time, the information stored in each node will be transferred

to its left-neighbor and the current value vo will enter the first node. The shift register can thus self

sufficiently evolve in real time. The longest time scale that can be represented with the shift register

is linearly related to the number of nodes.

Given a limited number of memory nodes, what is the optimal way to represent V in the memory

so that the information relevant to prediction of vo is maximally preserved? We will show that this

is achieved in the fuzzy buffer shown in Figure 1. Each node of the fuzzy buffer holds the average

of vns over a bin. For the fuzzy buffer, the widths of the bins increase linearly with the center of

the bin; the bins are chosen to tile the past time line. Clearly, the accuracy of representing V is

sacrificed in the process of compressing the information in an entire bin into a real number, but

note that we attain the capacity to represent information from exponentially long timescales. With

some analysis, we will show that sacrificing the accuracy with bin widths chosen in this way leads

to maximal preservation of prediction-relevant information.

It is clear that the fuzzy buffer shown in Figure 1 cannot evolve self sufficiently in real time;

information lost during compression of a bin at any moment is required at the next moment to

recompute the bin average. At each moment we would explicitly require all the vns to correctly

update the values in the fuzzy buffer. Even though such a fuzzy buffer is not self sufficient, we

shall analyze it to derive the optimal binning strategy that maximally preserves prediction-relevant

information from the past . The reader who is willing to take the optimality of linearly-increasing

bin widths on faith can skip ahead to Section 3 where we construct a self-sufficient memory system

with that property.
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2.1 Deriving the Optimal Binning Strategy

To quantify the prediction relevant information contained in V , let us first review some general

properties of the long range correlated series. Since our aim here is only to represent V in memory

and not to actually understand the generating mechanism underlying V , it is sufficient to consider

V as being generated by a generic statistical algorithm, the ARFIMA model (Granger and Joyeux,

1980; Hosking, 1981; Wagenmakers et al., 2004). The basic idea behind the ARFIMA algorithm

is that white noise at each time step can be fractionally integrated to generate a time series with

long range correlations.2 Hence the time series can be viewed as being generated by an infinite

auto-regressive generating function. In other words, vo can be generated from the past series V and

an instantaneous Gaussian white noise input ηo.

vo = ηo +
∞

∑
n=1

a(n)vn. (1)

The ARFIMA algorithm specifies the coefficients a(n) in terms of the exponent α in the two point

correlation function.

a(n) =
(−1)n+1Γ(d +1)

Γ(n+1)Γ(d −n+1)
, (2)

where d is the fractional integration power given by d = (1−α)/2. The time series is stationary

and long range correlated with finite variance only when d ∈ (0,1/2) or α ∈ (0,1) (Granger and

Joyeux, 1980; Hosking, 1981). The asymptotic behavior of a(n) for large n can be obtained by

applying Euler’s reflection formula and Stirling’s formula to approximate the Gamma functions in

Equation 2. It turns out that when either d is small or n is large,

a(n)≃
[

Γ(d +1)sin(πd)

π

]

n−(1+d). (3)

For the sake of analytic tractability, the following analysis will focus only on small values of d.

From Equation 1, note that a(n) is a measure of the relevance of vn in predicting vo, which we shall

call the P I C -Predictive Information Content of vn. Taylor expansion of Equation 3 shows that each

a(n) is linear in d up to the leading order. Hence in small d limit, any vn is a stochastic term ηn plus

a history dependent term of order O(d). Restricting to linear order in d, the total P I C of vn and vm

is simply the sum of their individual P I C s, namely a(n)+a(m). Thus in the small d limit, P I C is

a simple measure of predictive information that is also an extensive quantity.

When the entire V is accurately represented in an infinite shift register, the total P I C contained

in the shift register is the sum of all a(n). This is clearly the maximum attainable value of P I C in

any memory buffer, and it turns out to be 1.

P I C max =
∞

∑
n=1

a(n) = 1.

In a shift register with Nmax nodes, the total P I C is

P I C
SR
tot =

Nmax

∑
n=1

a(n) = 1−
∞

∑
Nmax

a(n) ≃ 1− sin(πd)Γ(d +1)

πd
N−d

max,

d → 0−−→ d lnNmax. (4)

2. The most general model ARFIMA(p,d,q) can generate time series with both long and short range structures. Here we

choose p = q = 0 to ignore the short range structures.
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For any fixed Nmax, when d is sufficiently small P I C
SR
tot will be very small. For example, when

Nmax = 100 and d = 0.1, P I C
SR
tot ≃ 0.4. For smaller values of d, observed in many natural signals,

P I C
SR
tot would be even lower. When d = 0.01, for Nmax as large as 10000, the P I C

SR
tot is only 0.08.

A large portion of the predictive information lies in long timescales. So the shift register is ill-suited

to represent information from a long range correlated series.

The P I C tot for a memory buffer can be increased if each of its nodes stored a linear combination

of many vns rather than a single vn as in the shift register. This can be substantiated through informa-

tion theoretic considerations formulated by the Information Bottleneck (I B) method (Tishby et al.,

1999). A multi-dimensional Gaussian variable can be systematically compressed to lower dimen-

sions by linear transformations while maximizing the relevant information content (Chechik et al.,

2005). Although V is a unidimensional time series in our consideration, at any moment the entire

V can be considered as an infinite dimensional Gaussian variable since only its two point correla-

tions are irreducible. Hence it heuristically follows from I B that linearly combining the various

vns into a given number of combinations and representing each of them in separate memory nodes

should maximize the P I C tot. By examining Equation 1, it is immediately obvious that if we knew

the values of a(n), the entire V could be linearly compressed into a single real number ∑a(n)vn

conveying all of the prediction relevant information. However, such a single-node memory buffer

is not self sufficient: at each moment we explicitly need the entire V to update the value in that

node. As an unbiased choice that does not require a priori knowledge of the statistics of the time

series, we simply consider uniform averaging over a bin. Uniform averaging over a bin discards

separate information about the time of the values contributing to the bin. Given this consideration,

how should we space the bins to maximize the P I C tot?

Consider a bin ranging between n and n+∆n. We shall examine the effect of averaging all

the vms within this bin and representing it in a single memory node. If all the vms in the bin are

individually represented, then the P I C of the bin is ∑m a(m). Compressing all the vms into their

average would however lead to an error in prediction of vo; from Equation 1 this error is directly

related to the extent to which the a(m)s within the bin are different from each other. Hence there

should be a reduction in the P I C of the bin. Given the monotonic functional form of a(n), the

maximum reduction can only be ∑m |a(m)−a(n)|. The net P I C of the memory node representing

the bin average is then

P I C =
n+∆n

∑
m=n

a(m) −
n+∆n

∑
m=n

|a(n)−a(m)|,

≃ na(n)

d

[

2−2

(

1+
∆n

n

)−d

− d ∆n

n

]

.

The series summation in the above equation is performed by approximating it as an integral in the

large n limit. The bin size that maximizes the P I C can be computed by setting the derivative of

P I C w.r.t. ∆n equal to zero. The optimal bin size and the corresponding P I C turns out to be

∆opt
n =

[

21/(1+d)−1
]

n, P I C
opt ≃ na(n)

d

[

2+d − (1+d)21/(1+d)
]

. (5)

When the total number of nodes Nmax is finite, and we want to represent information from

the longest possible timescale, the straightforward choice is to pick successive bins such that they

completely tile up the past time line as schematically shown by fuzzy buffer in Figure 1. If we label
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the nodes of the fuzzy buffer by N, ranging from 1 to Nmax, and denote the starting point of each bin

by nN , then

nN+1 = (1+ c)nN =⇒ nN = n1(1+ c)(N−1), (6)

where 1+ c = 21/(1+d). Note that the fuzzy buffer can represent information from timescales of the

order nNmax
, which is exponentially large compared to the timescales represented by a shift register

with Nmax nodes. The total P I C of the fuzzy buffer, P I C
FB
tot , can now be calculated by summing

over the P I C s of each of the bins. Focusing on small values of d so that a(n) has the power law

form for all n, applying Equations 3 and 5 yields

P I C
FB
tot ≃

Nmax

∑
N=1

sin(πd)Γ(d +1)

πd

[

2+d − (1+d)21/(1+d)
]

n−d
N .

Taking n1 = 1 and nN given by Equation 6,

P I C
FB
tot ≃ sin(πd)Γ(d +1)

πd

[

2+d − (1+d)21/(1+d)
]

[

1− (1+ c)−d Nmax

1− (1+ c)−d

]

,

d → 0−−→ [ln4−1]d Nmax. (7)

Comparing Equations 4 and 7, note that when d is small, the P I C
FB
tot of the fuzzy buffer grows

linearly with Nmax while the P I C
SR
tot of the shift register grows logarithmically with Nmax. For

example, with Nmax = 100 and d = 0.01, the P I C
FB
tot of the fuzzy buffer is 0.28, while the P I C

SR
tot

of the shift register is only 0.045. Hence when Nmax is relatively small, the fuzzy buffer represents

a lot more predictive information than a shift register.

The above description of the fuzzy buffer corresponds to the ideal case wherein the neighboring

bins do not overlap and uniform averaging is performed within each bin. Its critical property of

linearly increasing bin sizes ensures that the temporal accuracy of information is sacrificed optimally

and in a scale-free fashion. However, this ideal fuzzy buffer cannot self sufficiently evolve in real

time because at every moment all vns are explicitly needed for its construction. In the next section,

we present a self sufficient memory system that possesses the critical property of the ideal fuzzy

buffer, but differs from it by having overlapping bins and non-uniform weighted averaging within

the bins. To the extent the self sufficient fuzzy memory system resembles the ideal fuzzy buffer,

we can expect it to be useful in representing long range correlated signals in a resource-limited

environment.

3. Constructing Self Sufficient Fuzzy Memory

In this section, we first describe a mathematical basis for representing the recent past in a scale-free

fashion based on a neuro-cognitive model of internal time, TILT (Shankar and Howard, 2012). We

then describe several critical considerations necessary to implement this representation of recent

past into a discrete set of memory nodes. Like the ideal fuzzy buffer described in the Section 2, this

memory representation will sacrifice temporal accuracy to represent prediction-relevant information

over exponential time scales. But unlike the ideal fuzzy buffer, the resulting memory representation

will be self sufficient, without requiring additional resources to construct the representation.

Let f(τ) be a real valued function presented over real time τ. Our aim now is to construct

a memory that represents the past values of f(τ) as activity distributed over a set of nodes with
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Figure 2: The scale-free fuzzy representation - Each node in the t column is a leaky integrator with

a specific decay constant s that is driven by the functional value f at each moment. The

activity of the t column is transcribed at each moment by the operator L-1
k to represent the

past functional values in a scale-free fuzzy fashion in the T column.

accuracy that falls off in a scale-free fashion. This is achieved using two columns of nodes t and T

as shown in Figure 2. The T column estimates f(τ) up to the present moment, while the t column

is an intermediate step used to construct T. The nodes in the t column are leaky integrators with

decay constants denoted by s. Each leaky integrator independently gets activated by the value of f

at any instant and gradually decays according to

d t(τ,s)

dτ
=−st(τ,s)+ f(τ). (8)

At every instant, the information in the t column is transcribed into the T column through a

linear operator L-1
k .

T(τ,
∗
τ) =

(−1)k

k!
sk+1t(k)(τ,s) : where s =−k/

∗
τ. (9)

T ≡ L-1
k

[

t
]

.

Here k is a positive integer and t(k)(τ,s) is the k-th derivative of t(τ,s) with respect to s. The nodes

of the T column are labeled by the parameter
∗
τ and are in one to one correspondence with the nodes

of the t column labeled by s. The correspondence between s and
∗
τ is given by s = −k/

∗
τ. We refer

to
∗
τ as internal time; at any moment τ, a

∗
τ node estimates the value of f at a time τ+

∗
τ in the past.

The range of values of s and
∗
τ can be made as large as needed at the cost of resources, but for

mathematical idealization we let them have an infinite range.

The mathematical inspiration of this approach comes from the fact that t(τ,s) encodes the

Laplace transform of the entire history of the function f up to time τ, and the operator L-1
k ap-

proximately inverts the Laplace transform (Post, 1930). As k → ∞, T(τ,
∗
τ) becomes a faithful
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past time

internal time

Figure 3: Taking the present moment to be τ = 0, a sample f(τ) is plotted in the top, and the mo-

mentary activity distributed across the T column nodes is plotted in the bottom.

reconstruction of the history of f from −∞ to τ, that is T(τ,
∗
τ)≃ f(τ+

∗
τ) for all values of

∗
τ from 0 to

−∞. When k is finite T(τ,
∗
τ) is an inaccurate reconstruction of the history of f. For example, taking

the current moment to be τ = 0, Figure 3 illustrates an f that is briefly non-zero around τ =−7 and

τ = −23. The reconstructed history of f in the T column shows two peaks approximately around
∗
τ = −7 and

∗
τ = −23 . The value of f at any particular moment in the past is thus smeared over

a range of
∗
τ values, and this range of smearing increases as we go deeper into the past. Thus, the

more distant past is reconstructed with a lesser temporal accuracy.

Furthermore, it turns out that the smear is precisely scale invariant. To illustrate this, consider

f(τ) to be a Dirac delta function at a moment τo in the past, f(τ) = δ(τ− τo), and let the present

moment be τ = 0. Applying Equations 8 and 9, we obtain

T(0,
∗
τ) =

1

|τo|
kk+1

k!

(

τo

∗
τ

)k+1

e−k(τo/
∗
τ). (10)

In the above equation both τo and
∗
τ are negative. T(0,

∗
τ) is the fuzzy reconstruction of the delta

function input. T(0,
∗
τ) is a smooth peaked function whose height is proportional to 1/|τo|, width

is proportional to |τo|, and the area is equal to 1. Its dependence on the ratio (τo/
∗
τ) ensures scale

invariance—for any τo we can linearly scale the
∗
τ values to hold the shape of the function fixed. In

this sense, T represents the history of f with a scale invariant smear. To quantify how much smear

is introduced, we can estimate the width of the peak as the standard deviation σ of T(0,
∗
τ) from the
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above equation, which for k > 2 turns out to be

σ[T(0,
∗
τ)] =

|τo|√
k−2

[

k

k−1

]

. (11)

Note that k is the only free parameter that affects the smear; k indexes the smear in the representa-

tion. The larger the k the smaller the smear. In the limit k → ∞, the smear vanishes and the delta

function input propagates into the T column exactly as delta function without spreading, as if T

were a shift register.

Though we took f to be a simple delta function input to illustrate the scale invariance of the T

representation, we can easily evaluate the T representation of an arbitrary f from Equations 8 and 9.

T(0,
∗
τ) =

∫ 0

−∞

[

1

|∗τ|
kk+1

k!

(

τ′
∗
τ

)k

e−k(τ′/
∗
τ)

]

f(τ′)dτ′. (12)

The f values from a range of past times are linearly combined and represented in each
∗
τ node.

The term in the square brackets in the above equation is the weighting function of the linear com-

bination. Note that it is not a constant function over a circumscribed past time bin, rather it is a

smooth function peaked at τ′ =
∗
τ, with a spread proportional to |∗τ|. Except for the fact that this

weighting function is not uniform, the activity of a
∗
τ node has the desired property mimicking a bin

of the ideal fuzzy buffer described in Section 2.

3.1 Self Sufficient Discretized Implementation

Although it appears from Equation 12 that the T representation requires explicit information about

the f values over the past time, recall that it can be constructed from instantaneous t representation.

Since Equation 8 is a local differential equation, the activity of each t node will independently

evolve in real time, depending only on the present value of the node and the input available at that

moment. Hence any discrete set of t nodes also evolves self sufficiently in real time. To the extent

the activity in a discrete set of T nodes can be constructed from a discrete set of t nodes, this memory

system as a whole can self sufficiently evolve in real time. Since the activity of each
∗
τ node in the T

column is constructed independently of the activity of other
∗
τ nodes, we can choose any discrete set

of
∗
τ values to form our memory system. In accordance with our analysis of the ideal fuzzy buffer in

Section 2, we shall pick the following nodes.

∗
τmin ,

∗
τmin(1+ c) ,

∗
τmin(1+ c)2 , . . .

∗
τmin(1+ c)(Nmax−1) =

∗
τmax. (13)

Together, these nodes form the fuzzy memory representation with Nmax nodes. The spacing in

Equation 13 will yield several important properties.

Unlike the ideal fuzzy buffer described in Section 2, it is not possible to associate a circum-

scribed bin for a node because the weighting function (see Equation 12) does not have compact

support. Since the weighting function associated with neighboring nodes overlap with each other, it

is convenient to view the bins associated with neighboring nodes as partially overlapping. The over-

lap between neighboring bins implies that some information is redundantly represented in multiple

nodes. We shall show in the forthcoming subsections that by appropriately tuning the parameters k

and c, this information redundancy can be minimized and equally spread in a scale-free fashion.
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3.1.1 DISCRETIZED DERIVATIVE

Although any set of
∗
τ nodes could be picked to form the memory buffer, their activity is ultimately

constructed from the nodes in the t column whose s values are given by the one to one correspon-

dence s =−k/
∗
τ. Since the L-1

k operator has to take the k-th derivative along the s axis, L-1
k depends

on the way the s-axis is discretized.

For any discrete set of s values, we can define a linear operator that implements a discretized

derivative. For notational convenience, let us denote the activity at any moment t(τ,s) as simply

t(s). Since t is a column vector with the rows labeled by s, we can construct a derivative matrix [D]
such that

t(1) = [D]t =⇒ t(k) = [D]kt.

The individual elements in the square matrix [D] depends on the set of s values. To compute these el-

ements, consider any three successive nodes with s values s−1,so,s1. The discretized first derivative

of t at so is given by

t(1)(so) =
t(s1)− t(so)

s1 − so

[

so − s−1

s1 − s−1

]

+
t(so)− t(s−1)

so − s−1

[

s1 − so

s1 − s−1

]

.

The row in [D] corresponding to so will have non-zero entries only in the columns corresponding

to s−1, so and s1. These three entries can be read out as coefficients of t(s−1), t(so) and t(s1)
respectively in the r.h.s of the above equation. Thus the entire matrix [D] can be constructed from

any chosen set of s values. By taking the k-th power of [D], the L-1
k operator can be straightforwardly

constructed and the activity of the chosen set of
∗
τ nodes can be calculated at each moment.3 This

memory system can thus self sufficiently evolve in real time.

When the spacing between the nodes (controlled by the parameter c) is small, the discretized

k-th derivative will be accurate. Under uniform discretization of the s axis, it can be shown that the

relative error in computation of the k-th derivative due to discretization is of the order O(kδ2
s/24),

where δs is the distance between neighboring s values (see appendix B of Shankar and Howard,

2012). Based on the s values corresponding to Equation 13, it turns out that the relative error in

the construction of the activity of a
∗
τ node is O(k3c2/96

∗
τ

2

). For large
∗
τ the error is quite small

but for small
∗
τ the error can be significant. To curtail the discretization error, we need to hold

∗
τmin

sufficiently far from zero. The error can also be controlled by choosing small c for large k and

vice versa. If for practical purposes we require a very small
∗
τmin, then ad hoc strategies can be

adopted to control the error at low
∗
τ nodes. For example, by relaxing the requirement of one to one

correspondence between the t and T nodes, we can choose a separate set of closely spaced s values

to exclusively compute the activity of each of the small
∗
τ nodes.

Finally, it has to be noted that the discretization error induced in this process should not be con-

sidered as an error in the conventional sense of numerical solutions to differential equations. While

numerically evolving differential equations with time-varying boundary conditions, the discretiza-

tion error in the derivatives will propagate leading to large errors as we move farther away from the

boundary at late times. But in the situation at hand, since the activity of each
∗
τ node is computed

independently of others, the discretization error does not propagate. Moreover, it should be noted

3. Note that we need k extra nodes in the top and bottom of the t column in addition to those that come from one to one

correspondence with the chosen
∗
τ values.
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that the effect of discretization can be better viewed as coarse-graining the k-th derivative rather than

as inducing an error in computing the k-th derivative. The fact that each
∗
τ node ultimately holds a

scale-free coarse-grained value of the input function (see Equation 12), suggests that we wouldn’t

need the exact k-th derivative to construct its activity. To the extent the discretization is scale-free

as in Equation 13, the T representation constructed from the coarse-grained k-th derivative will

represent some scale free coarse grained value of the input; however the weighting function would

not exactly match that in Equation 12. In other words, even if the discretized implementation does

not accurately match the continuum limit, it still accurately satisfies the basic properties we require

from a fuzzy memory system.

3.1.2 SIGNAL-TO-NOISE RATIO WITH OPTIMALLY-SPACED NODES

The linearity of Equations 8 and 9 implies that any noise in the input function f(τ) will exactly be

represented in T without any amplification. However when there is random uncorrelated noise in

the t nodes, the discretized L-1
k operator can amplify that noise, more so if c is very small. It turns

out that choice of nodes according to Equation 13 results in a constant signal-to-noise ratio across

time scales.

If uncorrelated noise with standard deviation η is added to the activation of each of the t nodes,

then the L-1
k operator combines the noise from 2k neighboring nodes leading to a noisy T represen-

tation. If the spacing between the nodes neighboring a s node is δs, then the standard deviation of

the noise generated by the L-1
k operator is approximately η

√
2ksk+1/δk

sk!. To view this noise in an

appropriate context, we can compare it to the magnitude of the representation of a delta function

signal at a past time τo =−k/s (see Equation 10). The magnitude of the T representation for a delta

function signal is approximately kke−ks/k!. The signal to noise ratio (SNR) for a delta function

signal is then

SNR = η−1

(

k[δs/s]√
2e

)k

. (14)

If the spacing between neighboring nodes changes such that [δs/s] remains a constant for all s, then

the signal to noise ratio will remain constant over all timescales. This would however require that

the nodes are picked according to Equation 13, making SNR = η−1(kc/
√

2e)k. Any other set of

nodes would make the signal to noise ratio zero either at large or small timescales.

This calculation however does not represent the most realistic situation. Because the t nodes are

leaky integrators (Equation 8), the white noise present across time will accumulate and hence nodes

with long time constants should have a higher value of η. In fact, the standard deviation of white

noise in the t nodes should go down with s according to η ∝ 1/
√

s. From Equation 14, we can then

conclude that the SNR of large
∗
τ nodes should drop down to zero as 1/

√

|∗τ|. However, because

each
∗
τ node represents a weighted temporal average of the past signal, it is not appropriate to use an

isolated delta function signal to estimate the signal to noise ratio. It is more appropriate to compare

temporally averaged noise to a temporally spread signal. We consider two such signals. (i) Suppose

f(τ) itself is a temporally uncorrelated white noise like signal. The standard deviation in the activity

of a
∗
τ node in response to this signal is proportional to 1/

√

|∗τ| (see Equation 16 in the appendix).

The SNR for this temporally-extended signal is a constant over all
∗
τ nodes. (ii) Consider a purely

positive signal where f(τ) is a sequence of delta function spikes generated by a Poisson process.
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The total expected number of spikes that would be generated in the timescale of integration of a
∗
τ

node is simply

√

|∗τ|. Consequently, the expectation value of the activity of a
∗
τ node in response to

this signal would be

√

|∗τ| multiplied by the magnitude of representation of a single delta function.

The SNR for this signal is again a constant over all
∗
τ nodes. So, we conclude that for any realistic

stationary signal spread out in time, the SNR will be a constant over all timescales as long as the

nodes are chosen according to Equation 13.

3.2 Information Redundancy

The fact that a delta function input in f is smeared over many
∗
τ nodes implies that there is a re-

dundancy in information representation in the T column. In a truly scale-free memory buffer, the

redundancy in information representation should be equally spread over all time scales represented

in the buffer. The information redundancy can be quantified in terms of the mutual information

shared between neighboring nodes in the buffer. In the appendix, it is shown that in the presence of

scale free input signals, the mutual information shared by any two neighboring buffer nodes can be

a constant only if the
∗
τ nodes are distributed according to Equation 13. Consequently information

redundancy is uniformly spread only when the
∗
τ nodes are given by Equation 13.

The uniform spread of information redundancy can be intuitively understood by analyzing how

a delta function input spreads through the buffer nodes as time progresses. Figure 4 shows the

activity of the buffer nodes at three points in time following the input. In Figure 4a where the
∗
τ values of the buffer nodes are chosen to be equidistant, the activity is smeared over more and

more number of nodes as time progresses. This implies that the information redundancy is large

in the nodes representing long timescales. In Figure 4b where the
∗
τ values of the buffer nodes

are chosen according to Equation 13, the activity pattern does not smear, instead the activity as a

whole gets translated with an overall reduction in size. The translational invariance of the activity

pattern as it passes through the buffer nodes explains why the information redundancy between any

two neighboring nodes is a constant. The translational invariance of the activity pattern can be

analytically established as follows.

Consider two different values of τo in Equation 10, say τ1 and τ2. Let the corresponding T

activities be T1(0,
∗
τ) and T2(0,

∗
τ) respectively. If the

∗
τ value of the N-th node in the buffer is

given by
∗
τN , then the pattern of activity across the nodes is translationally invariant if and only if

T1(0,
∗
τN) ∝ T2(0,

∗
τN+m) for some constant integer m. For this to hold true, we need the quantity

T1(0,
∗
τN)

T2(0,
∗
τN+m)

=

(

τ1

τ2

)k
[ ∗

τN+m

∗
τN

]k+1

e
k

[

τ1∗
τN

− τ2∗
τN+m

]

to be independent of N. This is possible only when the quantity inside the power law form and

the exponential form are separately independent of N. The power law form can be independent of

N only if
∗
τN ∝ (1+ c)N , which implies the buffer nodes have

∗
τ values given by Equation 13. The

exponential form is generally dependent on N except when its argument is zero, which happens

whenever (1+c)m = τ2/τ1 for some integer m. For any given τ1, there are infinitely many τ2 values

for which the condition holds. Moreover when c is small, the condition will approximately hold for
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a b

Figure 4: Activity of the fuzzy memory nodes in response to a delta function input at three dif-

ferent times with (a) uniformly spaced nodes and (b) nodes chosen in accordance with

Equation 13.

any τ2. Hence, the translational invariance of the activity pattern holds only when the
∗
τ values of

the buffer nodes conform to Equation 13.

3.3 Balancing Information Redundancy and Information Loss

We have seen that the choice of
∗
τ nodes in accordance with Equation 13 ensures that the information

redundancy is equally distributed over the buffer nodes. However, equal distribution of information

redundancy is not sufficient; we would also like to minimize information redundancy. It turns out

that we cannot arbitrarily reduce the information redundancy without creating information loss. The

parameters k and c have to be tuned in order to balance information redundancy and information

loss. If k is too small for a given c, then many nodes in the buffer will respond to input from any

given moment in the past, resulting in information redundancy. On the other hand, if k is too large

for a given c, the information from many moments in the past will be left unrepresented in any of

the buffer nodes, resulting in information loss. So we need to match c with k to simultaneously

minimize both information redundancy and information loss.

This can be achieved if the information from any given moment in the past is not distributed

over more than two neighboring buffer nodes. To formalize this, consider a delta function input at

a time τo in the past and let the current moment be τ = 0. Let us look at the activity induced by this

input (Equation 10) in four successive buffer nodes, N − 1, N and N + 1 and N + 2. The
∗
τ values

of these nodes are given by Equation 13, for instance
∗
τN =

∗
τmin(1+c)N−1 and

∗
τN+1 =

∗
τmin(1+c)N .

From Equation 10, it can be seen that the N-th node attains its maximum activity when τo =
∗
τN

and the (N + 1)-th node attains its maximum activity when τo =
∗
τN+1, and for all the intervening

times of τo between
∗
τN and

∗
τN+1, the information about the delta function input will be spread over

both N-th and the (N + 1)-th nodes. To minimize the information redundancy, we simply require

that when τo is in between
∗
τN and

∗
τN+1, all the nodes other than the N-th and the (N +1)-th nodes

should have almost zero activity.
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Figure 5: a. The activity of four successive fuzzy memory nodes N − 1, N, N + 1, and N + 2 in

response to a delta function input at a past moment τo that falls right in between the

timescales of the N-th and the (N + 1)-th nodes. The nodes are chosen according to the

distribution given by Equation 13 with c = 1. b. The sum of activity of the N-th and

(N+1)-th nodes in response to a delta function input at various times τo ranging between

the timescales of N-th and (N +1)-th nodes. For each k, the activities are normalized to

have values in the range of 0 to 1.

Figure 5a plots the activity of the four successive nodes with c = 1, when τo is exactly in the

middle of
∗
τN and

∗
τN+1. For each value of k, the activity is normalized so that it lies between 0 and 1.

The four vertical lines represent the 4 nodes and the dots represent the activity of the corresponding

nodes. Note that for k = 2 the activity of all 4 nodes is substantially different from zero, implying a

significant information redundancy. At the other extreme, k = 100, the activity of all the nodes are

almost zero, implying that the information about the delta function input at time τo = (
∗
τN +

∗
τN+1)/2

has been lost. To minimize both the information loss and the information redundancy, the value of

k should be neither too large nor too small. Note that for k = 12, the activities of the (N −1)-th and

the (N +2)-th nodes are almost zero, but activities of the N-th and (N +1)-th nodes are non-zero.

For any given c, a rough estimate of the appropriate k can be obtained by matching the difference

in the
∗
τ values of the neighboring nodes to the smear σ from Equation 11.

σ =
|∗τN+1|√

k−2

[

k

k−1

]

≃ |∗τN+1 −
∗
τN | ⇒ k

(k−1)
√

k−2
≃ c

1+ c
. (15)

This condition implies that a large value of k will be required when c is small and a small value of

k will be required when c is large. In particular, Equation 15 suggests that k ≃ 8 when c = 1, which

will be the parameters we pick for the demonstrations in Section 4.

To further illustrate the information loss at high values of k, Figure 5b shows the sum of activity

of the N-th and the (N + 1)-th nodes for all values of τo between
∗
τN and

∗
τN+1. For each k, the

activities are normalized so that the N-th node attains 1 when τo =
∗
τN . Focusing on the case of

k = 100 in Figure 5b, there is a range of τo values for which the total activity of the two nodes

is very close to zero. The input is represented by the N-th node when τo is close to
∗
τN , and is

represented by the (N + 1)-th node when τo is close to
∗
τN+1, but at intermediate values of τo the

input is not represented by any node. One way to avoid such information loss is to require that the
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total activity of the two nodes not have a local minimum—in other words the minimum should be

at the boundary, at τo =
∗
τN+1. This is apparent in Figure 5b for k =4, 8 and 12. For c = 1, it turns

out that there exists a local minimum in the summed activity of the two nodes only for values of

k greater than 12. For any given c, the appropriate value of k that simultaneously minimizes the

information redundancy and information loss is the maximum value of k for which a plot similar to

Figure 5b will not have a local minimum.

In summary, the fuzzy memory system is the set of T column nodes with
∗
τ values given by

Equation 13, with the value of k appropriately matched with c to minimize information redundancy

and information loss.

4. Time Series Forecasting

We compare the performance of the self-sufficient fuzzy memory to a shift register in time series

forecasting with a few simple illustrations. Our goal here is to illustrate the differences between a

simple shift register and the self-sufficient fuzzy memory. Because our interest is in representation

of the time series and not in the sophistication of the learning algorithm, we use simple linear

regression algorithm to learn and forecast these time series.

We consider three time series with different properties. The first was generated by fractionally

integrating white noise (Wagenmakers et al., 2004) in a manner similar to that described in Section 2.

The second and third time series were obtained from the online library at http://datamarket.com. The

second time series is the mean annual temperature of the Earth from the year 1781 to 1988. The

third time series is the monthly average number of sunspots from the year 1749 to 1983 measured

from Zurich, Switzerland. These three time series are plotted in the top row of Figure 6. The

corresponding two point correlation function of each series is plotted in the middle row of Fig-

ure 6. Examination of the two point correlation functions reveal differences between the series.

The fractionally-integrated noise series shows long-range correlations falling off like a power law.

The temperature series shows correlations near zero (but modestly positive) over short ranges and

weak negative correlation over longer times. The sunspots data has both strong positive short-range

autocorrelation and a longer range negative correlation, balanced by a periodicity of 130 months

corresponding to the 11 year solar cycle.

4.1 Learning and Forecasting Methodology

Let Nmax denote the total number of nodes in the memory representation and let N be an index

corresponding to each node ranging from 1 to Nmax. We shall denote the value contained in the

nodes at any time step i by Bi[N]. The time series was sequentially fed into both the shift register

and the self-sufficient fuzzy memory and the representations were evolved appropriately at each

time step. The values in the shift register nodes were shifted downstream at each time step as

discussed Section 2. At any instant the shift register held information from exactly Nmax time steps

in the past. The values in the self-sufficient fuzzy memory were evolved as described in Section 3,

with
∗
τ values taken to be 1, 2, 4, 8, 16, 32,...2(Nmax−1), conforming to Equation 13 with

∗
τmin = 1,

c = 1 and k = 8.

At each time step i, the value from each of the nodes Bi[N] was recorded along with the value

of the time series at that time step, denoted by Vi. We used a simple linear regression algorithm to

extract the intercept I and the regression coefficients RN so that the predicted value of the time series
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Figure 6: (a) Simulated time series with long range correlations based on ARFIMA model with

d = 0.4, and white noise of standard deviation 0.01. (b) Average annual temperature of

the Earth from the year 1781 to 1988. (c) Monthly average number of sunspots from the

year 1749 to 1983. (d,e,f) Two point correlations of the series in a, b and c. (h,i,j) Error

in forecasting the series a, b and c using either the fuzzy memory or the the shift register.
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at each time step Pi and the squared error in prediction Ei are

Pi = I +
Nmax

∑
N=1

RNBi[N], Ei = [Pi −Vi]
2.

The regression coefficients were extracted by minimizing the total squared error E = ∑i Ei. For this

purpose, we used a standard procedure lm() in the open source software R.

The accuracy of forecast is inversely related to the total squared error E. To get an absolute

measure of accuracy we have to factor out the intrinsic variability of the time series. In the bottom

row of Figure 6, we plot the mean of the squared error divided by the intrinsic variance in the time

series Var[Vi]. This quantity would range from 0 to 1; the closer it is to zero, the more accurate the

prediction.

4.1.1 LONG RANGE CORRELATED SERIES

The long range correlated series (Figure 6a) is by definition constructed to yield a two point corre-

lation that decays as a power law. This is evident from its two point correlation in Figure 6d that is

decaying, but always positive. Since the value of the series at any time step is highly correlated with

its value at the previous time step, we can expect to generate a reasonable forecast using a single

node that holds the value from the previous time step. This can be seen from Figure 6h, where the

error in forecast is only 0.46 with a single node. Adding more nodes reduces the error for both

the shift register and the self-sufficient fuzzy memory. But for a given number of nodes, the fuzzy

memory always has a lower error than the shift register. This can be seen from Figure 6h where the

curve corresponding to the fuzzy memory falls below that of the shift register.

Since this series is generated by fractionally integrating white noise, the mean squared error

cannot in principle be lower than the variance of the white noise used for construction. That is,

there is a lower bound for the error that can be achieved in Figure 6h. The dotted line in Figure 6h

indicates this bound. Note that the fuzzy memory approaches this bound with a smaller number of

nodes than the shift register.

4.1.2 TEMPERATURE SERIES

The temperature series (Figure 6b) is much more noisy than the long range correlated series, and

seems structureless. This can be seen from the small values of its two point correlations in Figure 6e.

This is also reflected in the fact that with a small number of nodes, the error is very high. Hence it

can be concluded that no reliable short range correlation exist in this series. That is, knowing the

average temperature during a given year does not help much in predicting the average temperature

of the subsequent year. However, there seems to be a weak negative correlation at longer scales

that could be exploited in forecasting. Note from Figure 6i that with additional nodes the fuzzy

memory performs better at forecasting and has a lower error in forecasting than a shift register. This

is because the fuzzy memory can represent much longer timescales than the shift register of equal

size, and thereby exploit the long range correlations that exist.

4.1.3 SUNSPOTS SERIES

The sunspot series (Figure 6c) is less noisy than the other two series considered, and it has an

oscillatory structure of about 130 month periodicity. It has high short range correlations, and hence
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Figure 7: Forecasting the distant future. The sunspots time series of length 2820 is extrapolated for

500 time steps in the future using (a) shift register with 8 nodes, and (b) fuzzy memory

with 8 nodes. The solid tick mark on the x-axis at 2820 corresponds to the point where

the original series ends and the predicted future series begins.

even a single node that holds the value from the previous time step is sufficient to forecast with an

error of 0.15, as seen in Figure 6j. As before, with more nodes, the fuzzy memory consistently has

a lower error in forecasting than the shift register with equal number of nodes. Note that when the

number of nodes is increased from 4 to 8, the shift register does not improve in accuracy while the

fuzzy memory continues to improve in accuracy.

With a single node, both fuzzy memory and shift register essentially just store the information

from the previous time step. Because most of the variance in the series can be captured by the

information in the first node, the difference between the fuzzy memory and the shift register with

additional nodes is not numerically overwhelming when viewed in Figure 6j. However, there is

a qualitative difference in the properties of the signal extracted by the two memory systems. In

order to successfully learn the 130 month periodicity, the information about high positive short

range correlations is not sufficient, it is essential to also learn the information about the negative

correlations at longer time scales. From Figure 6f, note that the negative correlations exist at a

timescale of 50 to 100 months. Hence in order to learn this information, these timescales have to be

represented. A shift register with 8 nodes cannot represent these timescales but the fuzzy memory

with 8 nodes can.

To illustrate that it is possible to learn the periodicity using the fuzzy memory, we forecast the

distant future values of the series. In Figure 7, we extend the sunspots series by predicting it for

a future of 500 months. The regression coefficients RN and the intercept I are extracted from the

original series of length 2820. For the next 500 time steps, the predictions Pi are treated as actual

values Vi, and the memory representations are evolved. Figure 7a shows the series generated using

shift register with 8 nodes. The solid tick mark on the x-axis at 2820 represents the point at which
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Figure 8: a. Testing error in forecasting. The regression coefficients were extracted from the first

half of the sunspot series and testing was performed on the second half of the series. b.

Forecasting error of the fuzzy memory, shift register and subsampled shift register with a

node spacing of 5 and 10.

the original series ends and the predicted future series begins. Note that the series forecasted by the

shift register immediately settles on the mean value without oscillation. This is because the time

scale at which the oscillations are manifest is not represented by the shift register with 8 nodes.

Figure 7b shows the series generated by the fuzzy memory with 8 nodes. Note that the series

predicted by the fuzzy memory continues in an oscillating fashion with decreasing amplitude for

several cycles eventually settling at the mean value. This is possible because the fuzzy memory

represents the signal at a sufficiently long time scale to capture the negative correlations in the

two-point correlation function.

Of course, a shift register with many more nodes can capture the long-range correlations and

predict the periodic oscillations in the signal. However the number of nodes necessary to describe

the oscillatory nature of the signal needs to be of the order of the periodicity of the oscillation, about

130 in this case. This would lead to overfitting the data. At least in the case of the simple linear

regression algorithm, the number of regression coefficients to be extracted from the data increases

with the number of nodes, and extracting a large number of regression coefficients from a finite data

set will unquestionably lead to overfitting the data. Hence it would be ideal to use the least number

of nodes required to span the relevant time scale.

In order to ensure that the extracted regression coefficients has not overfitted the data, we split

the sunspots time series into two halves. We extracted the regression coefficients by using only

the first half for training and used the second half for testing the predictions generated by those

coefficients. Figure 8a plots this testing error, and should be compared to the training error plotted

in Figure 6j. Other than the noticeable fact that the testing error is slightly higher than the training

error, the shape of the two plots are very similar for both fuzzy memory and the shift register.

If our goal was to only capture the oscillatory structure of the sunspot series within a small

number of regression coefficients, then we could subsample from a lengthy shift register so that
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information from both positive and negative correlations can be obtained. Although the subsampled

shift register contains relatively few nodes, it cannot self sufficiently evolve in real time; we would

need the resources associated with the complete shift register in order to evolve the memory at each

moment. By subsampling 8 equidistantly spaced nodes of the shift register 1,11,21,31,...81, and

extracting the corresponding regression coefficients, it is possible to extend the series to have an

oscillatory structure analogous to Figure 7b. However it turns out that the forecasting error for the

subsampled shift register is significantly higher than the forecasting error from the fuzzy memory.

Figure 8b shows the forecasting error for subsampled shift register with equidistant node spacing

of 5 and 10. Even though the subsampled shift register with a node spacing of 10 extends over

a similar temporal range as the fuzzy memory, and captures the oscillatory structure in the data,

the fuzzy memory outperforms it with a lower error. The advantage of the fuzzy memory over the

subsampled shift register comes from the property of averaging over many previous values at long

time scales rather than picking a single noisy value and using that for prediction. This property

helps to suppress unreliable fluctuations that could lead to overfitting the data.

5. Discussion

The fuzzy memory holds more predictively relevant information than a shift register with the same

number of nodes for long-range correlated signals, and hence performs better in time series fore-

casting such signals. However, learning the relevant statistics from a lengthy time series is not the

same as learning from very few learning trials. To learn from very few learning trials, a learner must

necessarily make some generalizations based on some built-in assumptions about the environment.

Since the fuzzy memory discards information about the precise time of a stimulus presentation, the

temporal inaccuracy in memory can help the learner make such a generalization. Suppose it is use-

ful for a learner to learn the temporal relationship between two events, say A and B. Let the statistics

of the world be such that B consistently follows A after a delay period, which on each learning trial

is chosen from an unknown distribution. After many learning trials, a learner relying on a shift

register memory would be able to sample the entire distribution of delays and learn it precisely. But

real world learners may have to learn much faster. Because the fuzzy memory system represents the

past information in a smeared fashion, a single training sample from the distribution will naturally

let the learner make a scale-free temporal generalization about the distribution of delays between

A and B. The temporal profile of this generalization will not in general match the true distribution

that could be learned after many learning trials, however the fact that it is available after a single

learning trial provides a tremendous advantage for natural learners.

It then seems natural to wonder if human and animal memory resembles the fuzzy memory

system. After all, animals have evolved in the natural world where predicting the imminent future is

crucial for survival. Numerous behavioral findings on animals and humans are consistent with them

having a memory system with scale-free representation of past events (Balsam and Gallistel, 2009;

Gallistel and Gibbon, 2000). In human memory studies, the forgetting curve is usually observed to

follow a scale invariant power law function (Donkin and Nosofsky, 2012). When humans are asked

to reproduce or discriminate time intervals, they exhibit a characteristic scale-invariance in the errors

they produce (Rakitin et al., 1998; Wearden and Lejeune, 2008). This is not just a characteristic

feature in humans, but in a wide variety of animals like rats, rabbits and pigeons (Roberts, 1981;

Smith, 1968). These findings across behavioral tasks and species suggest that a scale-free memory

is an adaptive response to a world with structure at many temporal scales.
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5.1 Neural Networks with Temporal Memory

Let us now consider the fuzzy memory system in the context of neural networks with temporal

memory. It has been realized that neural networks with generic recurrent connectivity can have

sufficiently rich dynamics to hold temporal memory of the past. Analogous to how the ripple pat-

terns on a liquid surface contains information about the past perturbations, the instantaneous state

of the recurrent network holds the memory of the past which can be simply extracted by training

a linear readout layer. Such networks can be implemented either with analog neurons-echo state

networks (Jaeger, 2001), or with spiking neurons-liquid state machines (Maass et al., 2002). They

are known to be non-chaotic and dynamically stable as long as their spectral radius or the largest

eigenvalue of the connectivity matrix has a magnitude less than one. Abstractly, such networks with

fixed recurrent connectivity can be viewed as a reservoir of nodes and can be efficiently used for

computational tasks involving time varying inputs, including time series prediction (Wyffels and

Schrauwen, 2010).

The timescale of these reservoirs can be tuned up by introducing leaky integrator neurons in

them (Jaeger et al., 2007). However, a reservoir with finite nodes cannot have memory from infinite

past. In fact the criterion for dynamical stability of the reservoir is equivalent to requiring a fading

memory (Jaeger, 2002). If we define a memory function of the reservoir to be the precision with

which inputs from each past moment can be reconstructed, it turns out that the net memory, or

the area under the memory function over all past times, is bounded by the number of nodes in the

reservoir Nmax. The exact shape of the memory function will however depend on the connectivity

within reservoir. For a simple shift register connectivity, the memory function is a step function

which is 1 up to Nmax time steps in the past and zero beyond Nmax. But for a generic random

connectivity the memory function decays smoothly, sometimes exponentially and sometimes as a

power law depending on the spectral radius (Ganguli et al., 2008). For linear recurrent networks,

it turns out that the memory function is analytically tractable at least in some special cases (White

et al., 2004; Hermans and Schrauwen, 2010), while the presence of any nonlinearity seems to reduce

the net memory (Ganguli et al., 2008). By increasing the number of nodes in the reservoir, the net

memory can be increased. But unless the network is well tailored, as in orthogonal networks (White

et al., 2004) or a divergent feed-forward networks (Ganguli et al., 2008), the net memory grows

very slowly and sub-linearly with the number of nodes. Moreover, analysis of trajectories in the

state-space of a randomly connected network suggests that the net memory will be very low when

the connectivity is dense (Wallace et al., 2013).

The self-sufficient fuzzy memory can be viewed as a special case of a linear reservoir with a

specific, tailored connectivity. The t nodes effectively have a diagonal connectivity matrix making

them leaky integrators, and the L-1
k is the linear readout weights that approximately extracts the past

inputs. For a white noise input signal, the memory function decays as a power law with exponent

-1, and the net memory grows linearly with the number of nodes. However, as described above, the

accuracy of reconstruction of the past is not the relevant quantity of interest here, it is the predictive

information from the past that is of interest. Scale-free fluctuations in natural world imply that it

isn’t necessary to be accurate; in fact sacrificing accuracy in a scale-free fashion lets us represent

predictive information from exponentially long timescales.
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5.2 Unaddressed Issues

Two basic issues essential to real-world machine learning applications have been ignored in this

work for the sake of theoretical simplicity. First is that we have simply focused on a scalar time

varying signal, while any serious learning problem would involve multidimensional signals. When

unlimited storage resources are available, each dimension can be separately represented in a lengthy

shift register. To conserve storage resources associated with the time dimension, we could replace

the shift register with the self-sufficient fuzzy memory. This work however does not address the

issue of conserving storage resources by compressing the intrinsic dimensionality of the signal. In

general, most of the information relevant for future prediction is encoded in few combinations of

the various dimensions of the signal, called features. Techniques based on information bottleneck

method (Creutzig and Sprekeler, 2008; Creutzig et al., 2009) and slow feature analysis (Wiskott

and Sejnowski, 2002) can efficiently extract these features. The strategy of representing the time

series in a scale invariantly fuzzy fashion could be seen as complementary to these techniques.

For instance, slow feature analysis (Wiskott and Sejnowski, 2002) imposes the slowness principle

where low-dimensional features that change most slowly are of interest. If the components of a time

varying high dimensional signal is represented in a temporally fuzzy fashion rather than in a shift

register, then we could potentially extract the slowly varying parts in an online fashion by examining

differences in the activities of the largest two
∗
τ nodes.

The second issue is that we have ignored the learning and prediction mechanisms while simply

focusing on the memory representation. For simplicity we used the linear regression predictor in

Section 4. Any serious application should involve the ability to learn nonlinearities. Support vector

machines (SVM) adopt an elegant strategy of using nonlinear kernel functions to map the input data

to a high dimensional space where linear methods can be used (Vapnik, 1998; Müller et al., 1997).

The standard method for training SVMs on time series prediction requires feeding in the data from a

sliding time window, in other words providing shift registers as input. It has recently been suggested

that rather than using standard SVM kernels on sliding time window, if we used recurrent kernel

functions corresponding to infinite recurrent networks, performance can be improved on certain

tasks (Hermans and Schrauwen, 2012). This suggests that the gradually fading temporal memory of

the recurrent kernel functions is more effective than the step-function memory of shift register used

in standard SVMs for time series prediction. Training SVMs with standard kernel functions along

with fuzzy memory inputs rather than shift register inputs is an alternative strategy for approaching

problems involving signals with long range temporal correlations. Moreover, since t nodes contain

all the temporal information needed to construct the fuzzy memory, directly training the SVMs with

inputs from t nodes could also be very fruitful.

Finally, it should be noted that if our aim is to build an autonomous agent we need both learning

and prediction to happen in an online fashion. Many widely-used machine learning algorithms like

SVM (Vapnik, 1998) and deep learning networks (Hinton et al., 2006), rely on batch processing

which requires the availability of the entire data set prior to learning. Autonomous agents with

limited memory resources cannot adopt such learning strategies. The learning mechanism cannot

rely on information other than what is instantaneously available in the memory. An online learning

algorithm tailored to act on the fuzzy memory representation could potentially be very useful for

autonomous agents with finite memory resources.
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6. Conclusion

Signals with long-range temporal correlations are found throughout the natural world. Such signals

present a distinct challenge to machine learners that rely on a shift-register representation of the time

series. Here we have described a method for constructing a self-sufficient scale-free representation

of temporal history. The nodes are chosen in a way that minimizes information redundancy and in-

formation loss while equally distributing them over all time scales. Although the temporal accuracy

of the signal is sacrificed, predictively relevant information from exponentially long timescales is

available in the fuzzy memory system when compared to a shift register with the same number of

nodes. This could be an extremely useful way to represent time series with long-range correlations

for use in machine learning applications.
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Appendix A. Information Redundancy Across Nodes

The information redundancy in the memory representation can be quantified by deriving expressions

for mutual information shared between neighboring nodes. When the input signal is uncorrelated or

has scale-free long range correlations, it will be shown that the information redundancy is equally

spread over all nodes only when the
∗
τ values of the nodes are given by Equation 13.

Taking f(τ) to be a stochastic signal and the current moment to be τ = 0, the activity of a
∗
τ node

in the T column is (see Equation 12)

T(0,
∗
τ) =

kk+1

k!

∫ 0

−∞

1

|∗τ|

(

τ′
∗
τ

)k

e
−k

(

τ′
∗
τ

)

f(τ′)dτ′.

The expectation value of this node can be calculated by simply averaging over f(τ′) inside the

integral, which should be a constant if it is generated by a stationary process. By defining z = τ′/
∗
τ,

we find that the expectation of T is proportional to the expectation of f.

〈

T(0,
∗
τ)
〉

=
〈

f
〉kk+1

k!

∫ ∞

0
zke−kzdz.

To understand the information redundancy in terms of correlations among the nodes, we calculate

the correlations among the T nodes when f(τ) is either a white noise or a long-range correlated

signal.
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A.1 White Noise Input

Let f(τ) to be white noise, that is
〈

f
〉

= 0 and
〈

f(τ)f(τ′)
〉

∼ δ(τ− τ′). The variance in the activity

of each
∗
τ node is then given by

〈

T2(0,
∗
τ)
〉

=

(

kk+1

k!

)2 ∫ 0

−∞

∫ 0

−∞

1

|∗τ|2

(

τ
∗
τ

)k

e
−k

(

τ
∗
τ

)

(

τ′
∗
τ

)k

e
−k

(

τ′
∗
τ

)

〈

f(τ)f(τ′)
〉

dτdτ′,

=
1

|∗τ|

(

kk+1

k!

)2 ∫ ∞

0
z2ke−2kz dz. (16)

As expected, the variance of a large |∗τ| node is small because the activity in this node is constructed

by integrating the input function over a large timescale. This induces an artificial temporal correla-

tion in that node’s activity which does not exist in the input function. To see this more clearly, we

calculate the correlation across time in the activity of one node, at time τ and τ′. With the definition

δ = |τ− τ′|/|∗τ|, it turns out that

〈

T(τ,
∗
τ) T(τ′,

∗
τ)
〉

= |∗τ|−1

(

kk+1

k!

)2

e−kδ
k

∑
r=0

δk−r k!

r!(k− r)!

∫ ∞

0
zk+re−2kz dz. (17)

Note that this correlation is nonzero for any δ > 0, and it decays exponentially for large δ. Hence

even a temporally uncorrelated white noise input leads to short range temporal correlations in a
∗
τ

node. It is important to emphasize here that such temporal correlations will not be introduced in

a shift register. This is because, in a shift register the functional value of f at each moment is just

passed on to the downstream nodes without being integrated, and the temporal autocorrelation in

the activity of any node will simply reflect the temporal correlation in the input function.

Let us now consider the instantaneous correlation in the activity of two different nodes. At any

instant, the activity of two different nodes in a shift register will be uncorrelated in response to a

white noise input. The different nodes in a shift register carry completely different information,

making their mutual information zero. But in the T column, since the information is smeared across

different
∗
τ nodes, the mutual information shared by different nodes is non-zero. The instantaneous

correlation between two different nodes
∗
τ1 and

∗
τ2 can be calculated to be

〈

T(0,
∗
τ1) T(0,

∗
τ2)

〉

= |∗τ2|−1

(

kk+1

k!

)2 ∫ ∞

0
z2k(

∗
τ1/

∗
τ2)

ke−kz(1+
∗
τ1/

∗
τ2) dz,

∝
(
∗
τ1

∗
τ2)

k

(|∗τ1|+ |∗τ2|)2k+1
.

The instantaneous correlation in the activity of the two nodes
∗
τ1 and

∗
τ2 is a measure of the mutual

information represented by them. Factoring out the individual variances of the two nodes, we have

the following measure for the mutual information.

I (
∗
τ1,

∗
τ2) =

〈

T(0,
∗
τ1) T(0,

∗
τ2)

〉

√

〈

T2(0,
∗
τ1)

〉〈

T2(0,
∗
τ2)

〉

∝





√

∗
τ1/

∗
τ2

(1+
∗
τ1/

∗
τ2)





2k+1

.
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This quantity is high when
∗
τ1/

∗
τ2 is close to 1. That is, the mutual information shared between

neighboring nodes will be high when their
∗
τ values are very close.

The fact that the mutual information shared by neighboring nodes is non-vanishing implies that

there is redundancy in the representation of the information. If we require the information redun-

dancy to be equally distributed over all the nodes, then we need the mutual information between any

two neighboring nodes to be a constant. If
∗
τ1 and

∗
τ2 are any two neighboring nodes, then in order

for I (
∗
τ1,

∗
τ2) to be a constant,

∗
τ1/

∗
τ2 should be a constant. This can happen only if the

∗
τ values of the

nodes are arranged in the form given by Equation 13.

A.2 Long Range Correlated Input

Now consider f(τ) such that
〈

f(τ)f(τ′)
〉

∼ 1/|τ− τ′|α for large values of |τ− τ′|. Reworking the

calculations analogous to those leading to Equation 17, we find that the temporal correlation is

〈

T(τ,
∗
τ) T(τ′,

∗
τ)
〉

=
|∗τ|−α

2.4k

(

kk+1

k!

)2 k

∑
r=0

Cr

∫ ∞

−∞

|v|k−r

|v+δ|α e−k|v| dv.

Here δ = |τ− τ′|/|∗τ| and Cr =
k!k+r)!
r!(k−r)!

2k−r

(k)k+r+1 . The exact value of Cr is unimportant and we only

need to note that it is a positive number.

For α > 1, the above integral diverges at v = −δ, however we are only interested in the case

α < 1. When δ is very large, the entire contribution to the integral comes from the region |v| ≪ δ

and the denominator of the integrand can be approximated as δα. In effect,

〈

T(τ,
∗
τ) T(τ′,

∗
τ)
〉

∼ |∗τ|−αδ−α = |τ− τ′|−α

for large |τ− τ′|. The temporal autocorrelation of the activity of any node should exactly reflect the

temporal correlations in the input when |τ− τ′| is much larger than the time scale of integration of

that node (
∗
τ). As a point of comparison, it is useful to note that any node in a shift register will also

exactly reflect the correlations in the input.

Now consider the instantaneous correlations across different nodes. The instantaneous correla-

tion between two nodes
∗
τ1 and

∗
τ2 turns out to be

〈

T(0,
∗
τ1) T(0,

∗
τ2)

〉

= |∗τ2|−α

(

kk+1

k!

)2 k

∑
r=0

Xr

βk−r(1+βr−α+1)

(1+β)2k−r+1
. (18)

Here β = |∗τ1|/|
∗
τ2| and each Xr is a positive coefficient. By always choosing |∗τ2| ≥ |∗τ1|, we note two

limiting cases of interest, β ≪ 1 and β ≃ 1. When β ≪ 1, the r = k term in the summation of the

above equation yields the leading term, and the correlation is simply proportional to |∗τ2|−α, which

is approximately equal to |∗τ2 −
∗
τ1|−α. In this limit where |∗τ2| ≫ |∗τ1|, the correlation between the

two nodes behaves like the correlation between two shift register nodes. When β ≃ 1, note from

Equation 18 that the correlation will still be proportional to |∗τ2|−α. Now if
∗
τ1 and

∗
τ2 are neighboring

nodes with close enough values, we can evaluate the mutual information between them to be

I (
∗
τ1,

∗
τ2) =

〈

T(0,
∗
τ1) T(0,

∗
τ2)

〉

√

〈

T2(0,
∗
τ1)

〉〈

T2(0,
∗
τ2)

〉

∝ |∗τ2/
∗
τ1|−α/2.
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Reiterating our requirement from before that the mutual information shared by neighboring

nodes at all scales should be the same, we are once again led to choose
∗
τ2/

∗
τ1 to be a constant which

is possible only when the
∗
τ values of the nodes are given by Equation 13.
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