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Abstract

We obtain a tight distribution-specific characterization of the sample complexity of large-margin

classification with L2 regularization: We introduce the margin-adapted dimension, which is a sim-

ple function of the second order statistics of the data distribution, and show distribution-specific

upper and lower bounds on the sample complexity, both governed by the margin-adapted dimen-

sion of the data distribution. The upper bounds are universal, and the lower bounds hold for the rich

family of sub-Gaussian distributions with independent features. We conclude that this new quantity

tightly characterizes the true sample complexity of large-margin classification. To prove the lower

bound, we develop several new tools of independent interest. These include new connections be-

tween shattering and hardness of learning, new properties of shattering with linear classifiers, and a

new lower bound on the smallest eigenvalue of a random Gram matrix generated by sub-Gaussian

variables. Our results can be used to quantitatively compare large margin learning to other learning

rules, and to improve the effectiveness of methods that use sample complexity bounds, such as

active learning.
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1. Introduction

In this paper we pursue a tight characterization of the sample complexity of learning a classifier,

under a particular data distribution, and using a particular learning rule.

Most learning theory work focuses on providing sample-complexity upper bounds which hold

for a large class of distributions. For instance, standard distribution-free VC-dimension analysis

shows that if one uses the Empirical Risk Minimization (ERM) learning rule, then the sample com-

plexity of learning a classifier from a hypothesis class with VC-dimension d is at most O
(

d
ε2

)
, where

ε is the maximal excess classification error (Vapnik and Chervonenkis, 1971; Anthony and Bartlett,

1999). Such upper bounds can be useful for understanding the positive aspects of a learning rule.
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However, it is difficult to understand the deficiencies of a learning rule, or to compare between

different rules, based on upper bounds alone. This is because it is possible, and is often the case,

that the actual number of samples required to get a low error, for a given data distribution using a

given learning rule, is much lower than the sample-complexity upper bound. As a simple example,

suppose that the support of a given distribution is restricted to a subset of the domain. If the VC-

dimension of the hypothesis class, when restricted to this subset, is smaller than d, then learning

with respect to this distribution will require less examples than the upper bound predicts.

Of course, some sample complexity upper bounds are known to be tight or to have an almost-

matching lower bound. For instance, the VC-dimension upper bound is tight (Vapnik and Chervo-

nenkis, 1974). This means that there exists some data distribution in the class covered by the upper

bound, for which this bound cannot be improved. Such a tightness result shows that there cannot be

a better upper bound that holds for this entire class of distributions. But it does not imply that the

upper bound characterizes the true sample complexity for every specific distribution in the class.

The goal of this paper is to identify a simple quantity, which is a function of the distribution,

that does precisely characterize the sample complexity of learning this distribution under a specific

learning rule. We focus on the important hypothesis class of linear classifiers, and on the popular

rule of margin-error-minimization (MEM). Under this learning rule, a learner must always select a

linear classifier that minimizes the margin-error on the input sample.

The VC-dimension of the class of homogeneous linear classifiers in R
d is d (Dudley, 1978).

This implies a sample complexity upper bound of O
(

d
ε2

)
using any MEM algorithm, where ε is

the excess error relative to the optimal margin error.1 We also have that the sample complexity of

any MEM algorithm is at most O
(

B2

γ2ε2

)
, where B2 is the average squared norm of the data and γ

is the size of the margin (Bartlett and Mendelson, 2002). Both of these upper bounds are tight.

For instance, there exists a distribution with an average squared norm of B2 that requires as many

as C · B2

γ2ε2 examples to learn, for some universal constant C (see, e.g., Anthony and Bartlett, 1999).

However, the VC-dimension upper bound indicates, for instance, that if a distribution induces a large

average norm but is supported by a low-dimensional sub-space, then the true number of examples

required to reach a low error is much smaller. Thus, neither of these upper bounds fully describes

the sample complexity of MEM for a specific distribution.

We obtain a tight distribution-specific characterization of the sample complexity of large-margin

learning for a rich class of distributions. We present a new quantity, termed the margin-adapted

dimension, and use it to provide a tighter distribution-dependent upper bound, and a matching

distribution-dependent lower bound for MEM. The upper bound is universal, and the lower bound

holds for a rich class of distributions with independent features.

The margin-adapted dimension refines both the dimension and the average norm of the data

distribution, and can be easily calculated from the covariance matrix and the mean of the distribu-

tion. We denote this quantity, for a margin of γ, by kγ. Our sample-complexity upper bound shows

that Õ(
kγ

ε2 ) examples suffice in order to learn any distribution with a margin-adapted dimension of

kγ using a MEM algorithm with margin γ. We further show that for every distribution in a rich

family of ‘light tailed’ distributions—specifically, product distributions of sub-Gaussian random

variables—the number of samples required for learning by minimizing the margin error is at least

Ω(kγ).

1. This upper bound can be derived analogously to the result for ERM algorithms with ε being the excess classification

error. It can also be concluded from our analysis in Theorem 11 below.
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Denote by m(ε,γ,D) the number of examples required to achieve an excess error of no more than

ε relative to the best possible γ-margin error for a specific distribution D, using a MEM algorithm.

Our main result shows the following matching distribution-specific upper and lower bounds on the

sample complexity of MEM:

Ω(kγ(D))≤ m(ε,γ,D)≤ Õ

(
kγ(D)

ε2

)
. (1)

Our tight characterization, and in particular the distribution-specific lower bound on the sample

complexity that we establish, can be used to compare large-margin (L2 regularized) learning to other

learning rules. We provide two such examples: we use our lower bound to rigorously establish a

sample complexity gap between L1 and L2 regularization previously studied in Ng (2004), and to

show a large gap between discriminative and generative learning on a Gaussian-mixture distribution.

The tight bounds can also be used for active learning algorithms in which sample-complexity bounds

are used to decide on the next label to query.

In this paper we focus only on large margin classification. But in order to obtain the distribution-

specific lower bound, we develop new tools that we believe can be useful for obtaining lower bounds

also for other learning rules. We provide several new results which we use to derive our main results.

These include:

• Linking the fat-shattering of a sample with non-negligible probability to a difficulty of learn-

ing using MEM.

• Showing that for a convex hypothesis class, fat-shattering is equivalent to shattering with

exact margins.

• Linking the fat-shattering of a set of vectors with the eigenvalues of the Gram matrix of the

vectors.

• Providing a new lower bound for the smallest eigenvalue of a random Gram matrix gener-

ated by sub-Gaussian variables. This bound extends previous results in analysis of random

matrices.

1.1 Paper Structure

We discuss related work on sample-complexity upper bounds in Section 2. We present the prob-

lem setting and notation in Section 3, and provide some necessary preliminaries in Section 4. We

then introduce the margin-adapted dimension in Section 5. The sample-complexity upper bound is

proved in Section 6. We prove the lower bound in Section 7. In Section 8 we show that any non-

trivial sample-complexity lower bound for more general distributions must employ properties other

than the covariance matrix of the distribution. We summarize and discuss implication in Section 9.

Proofs omitted from the text are provided in Appendix A

2. Related Work

As mentioned above, most work on “sample complexity lower bounds” is directed at proving that

under some set of assumptions, there exists a data distribution for which one needs at least a certain

number of examples to learn with required error and confidence (for instance Antos and Lugosi,
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1998; Ehrenfeucht et al., 1988; Gentile and Helmbold, 1998). This type of a lower bound does

not, however, indicate much on the sample complexity of other distributions under the same set of

assumptions.

For distribution-specific lower bounds, the classical analysis of Vapnik (1995, Theorem 16.6)

provides not only sufficient but also necessary conditions for the learnability of a hypothesis class

with respect to a specific distribution. The essential condition is that the metric entropy of the

hypothesis class with respect to the distribution be sub-linear in the limit of an infinite sample size.

In some sense, this criterion can be seen as providing a “lower bound” on learnability for a specific

distribution. However, we are interested in finite-sample convergence rates, and would like those

to depend on simple properties of the distribution. The asymptotic arguments involved in Vapnik’s

general learnability claim do not lend themselves easily to such analysis.

Benedek and Itai (1991) show that if the distribution is known to the learner, a specific hypoth-

esis class is learnable if and only if there is a finite ε-cover of this hypothesis class with respect to

the distribution. Ben-David et al. (2008) consider a similar setting, and prove sample complexity

lower bounds for learning with any data distribution, for some binary hypothesis classes on the real

line. Vayatis and Azencott (1999) provide distribution-specific sample complexity upper bounds for

hypothesis classes with a limited VC-dimension, as a function of how balanced the hypotheses are

with respect to the considered distributions. These bounds are not tight for all distributions, thus

they also do not fully characterize the distribution-specific sample complexity.

As can be seen in Equation (1), we do not tightly characterize the dependence of the sample

complexity on the desired error (as done, for example, in Steinwart and Scovel, 2007), thus our

bounds are not tight for asymptotically small error levels. Our results are most significant if the

desired error level is a constant well below chance but bounded away from zero. This is in contrast

to classical statistical asymptotics that are also typically tight, but are valid only for very small ε.

As was recently shown by Liang and Srebro (2010), the sample complexity for very small ε (in the

classical statistical asymptotic regime) depends on quantities that can be very different from those

that control the sample complexity for moderate error rates, which are more relevant for machine

learning.

3. Problem Setting and Definitions

Consider a domain X , and let D be a distribution over X ×{±1}. We denote by DX the marginal

distribution of D on X . The misclassification error of a classifier h : X → R on a distribution D is

ℓ0(h,D), P(X ,Y )∼D[Y ·h(X)≤ 0].

The margin error of a classifier w with respect to a margin γ > 0 on D is

ℓγ(h,D), P(X ,Y )∼D[Y ·h(X)≤ γ].

For a given hypothesis class H ⊆ {±1}X , the best achievable margin error on D is

ℓ∗γ(H ,D), inf
h∈H

ℓγ(h,D).

We usually write simply ℓ∗γ(D) since H is clear from context.
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A labeled sample is a (multi-)set S = {(xi,yi)}m
i=1 ⊆ X ×{±1}. Given S, we denote the set

of its examples without their labels by SX , {x1, . . . ,xm}. We use S also to refer to the uniform

distribution over the elements in S. Thus the misclassification error of h : X →{±1} on S is

ℓ(h,S),
1

m
|{i | yi ·h(xi)≤ 0}|,

and the γ-margin error on S is

ℓγ(h,S),
1

m
|{i | yi ·h(xi)≤ γ}|.

A learning algorithm is a function A : ∪∞
m=1(X ×{±1})m → R

X , that receives a training set as

input, and returns a function for classifying objects in X into real values. The high-probability loss

of an algorithm A with respect to samples of size m, a distribution D and a confidence parameter

δ ∈ (0,1) is

ℓ(A ,D,m,δ) = inf{ε ≥ 0 | PS∼Dm [ℓ(A(S),D)≥ ε]≤ δ}.
In this work we investigate the sample complexity of learning using margin-error minimization

(MEM). The relevant class of algorithms is defined as follows.

Definition 1 An margin-error minimization (MEM) algorithm A maps a margin parameter γ > 0

to a learning algorithm Aγ, such that

∀S ⊆ X ×{±1}, Aγ(S) ∈ argmin
h∈H

ℓγ(h,S).

The distribution-specific sample complexity for MEM algorithms is the sample size required to

guarantee low excess error for the given distribution. Formally, we have the following definition.

Definition 2 (Distribution-specific sample complexity) Fix a hypothesis class H ⊆ {±1}X . For

γ > 0, ε,δ ∈ [0,1], and a distribution D, the distribution-specific sample complexity, denoted by

m(ε,γ,D,δ), is the minimal sample size such that for any MEM algorithm A , and for any m ≥
m(ε,γ,D,δ),

ℓ0(Aγ,D,m,δ)− ℓ∗γ(D)≤ ε.

Note that we require that all possible MEM algorithms do well on the given distribution. This is

because we are interested in the MEM strategy in general, and thus we study the guarantees that

can be provided regardless of any specific MEM implementation. We sometimes omit δ and write

simply m(ε,γ,D), to indicate that δ is assumed to be some fixed small constant.

In this work we focus on linear classifiers. For simplicity of notation, we assume a Euclidean

space R
d for some integer d, although the results can be easily extended to any separable Hilbert

space. For a real vector x, ‖x‖ stands for the Euclidean norm. For a real matrix X, ‖X‖ stands for

the Euclidean operator norm.

Denote the unit ball in R
d by B

d
1 , {w ∈ R

d | ‖w‖ ≤ 1}. We consider the hypothesis class of

homogeneous linear separators, W = {x 7→ 〈x,w〉 | w ∈ B
d
1}. We often slightly abuse notation by

using w to denote the mapping x 7→ 〈x,w〉.
We often represent sets of vectors in R

d using matrices. We say that X ∈ R
m×d is the matrix of

a set {x1, . . . ,xm} ⊆ R
d if the rows in the matrix are exactly the vectors in the set. For uniqueness,

one may assume that the rows of X are sorted according to an arbitrary fixed full order on vectors in
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R
d . For a PSD matrix X denote the largest eigenvalue of X by λmax(X) and the smallest eigenvalue

by λmin(X).

We use the O-notation as follows: O( f (z)) stands for C1+C2 f (z) for some constants C1,C2 ≥ 0.

Ω( f (z)) stands for C2 f (z)−C1 for some constants C1,C2 ≥ 0. Õ( f (z)) stands for f (z)p(ln(z))+C

for some polynomial p(·) and some constant C > 0.

4. Preliminaries

As mentioned above, for the hypothesis class of linear classifiers W , one can derive a sample-

complexity upper bound of the form O(B2/γ2ε2), where B2 = EX∼D[‖X‖2] and ε is the excess error

relative to the γ-margin loss. This can be achieved as follows (Bartlett and Mendelson, 2002). Let

Z be some domain. The empirical Rademacher complexity of a class of functions F ⊆ R
Z with

respect to a set S = {zi}i∈[m] ⊆ Z is

R (F ,S) =
1

m
Eσ[| sup

f∈F
∑

i∈[m]

σi f (zi)|],

where σ=(σ1, . . . ,σm) are m independent uniform {±1}-valued variables. The average Rademacher

complexity of F with respect to a distribution D over Z and a sample size m is

Rm(F ,D) = ES∼Dm [R (F ,S)].

Assume a hypothesis class H ⊆ R
X and a loss function ℓ : {±1}×R → R. For a hypothesis

h ∈ H , we introduce the function hℓ : X ×{±1} → R, defined by hℓ(x,y) = ℓ(y,h(x)). We further

define the function class Hℓ = {hℓ | h ∈ H } ⊆ R
X×{±1}.

Assume that the range of Hℓ is in [0,1]. For any δ∈ (0,1), with probability of 1−δ over the draw

of samples S ⊆ X ×{±1} of size m according to D, every h ∈ H satisfies (Bartlett and Mendelson,

2002)

ℓ(h,D)≤ ℓ(h,S)+2Rm(Hℓ,D)+

√
8ln(2/δ)

m
. (2)

To get the desired upper bound for linear classifiers we use the ramp loss, which is defined as

follows. For a number r, denote JrK , min(max(r,0),1). The γ-ramp-loss of a labeled example

(x,y) ∈ R
d ×{±1} with respect to a linear classifier w ∈ B

d
1 is rampγ(w,x,y) = J1− y〈w,x〉/γK. Let

rampγ(w,D) = E(X ,Y )∼D[rampγ(w,X ,Y )], and denote the class of ramp-loss functions by

RAMPγ = {(x,y) 7→ rampγ(w,x,y) | w ∈ B
d
1}.

The ramp-loss is upper-bounded by the margin loss and lower-bounded by the misclassification

error. Therefore, the following result can be shown.

Proposition 3 For any MEM algorithm A , we have

ℓ0(Aγ,D,m,δ)≤ ℓ∗γ(H ,D)+2Rm(RAMPγ,D)+

√
14ln(2/δ)

m
. (3)

2124



DISTRIBUTION-DEPENDENT SAMPLE COMPLEXITY OF LARGE MARGIN LEARNING

We give the proof in Appendix A.1 for completeness. Since the γ-ramp loss is 1/γ Lipschitz, it

follows from Bartlett and Mendelson (2002) that

Rm(RAMPγ,D)≤
√

B2

γ2m
.

Combining this with Proposition 3 we can conclude a sample complexity upper bound of O(B2/γ2ε2).
In addition to the Rademacher complexity, we will also use the classic notions of fat-shattering

(Kearns and Schapire, 1994) and pseudo-shattering (Pollard, 1984), defined as follows.

Definition 4 Let F be a set of functions f : X → R, and let γ > 0. The set {x1, . . . ,xm} ⊆ X
is γ-shattered by F with the witness r ∈ R

m if for all y ∈ {±1}m there is an f ∈ F such that

∀i ∈ [m], y[i]( f (xi)− r[i])≥ γ.

The γ-shattering dimension of a hypothesis class is the size of the largest set that is γ-shattered by

this class. We say that a set is γ-shattered at the origin if it is γ-shattered with the zero vector as a

witness.

Definition 5 Let F be a set of functions f : X → R, and let γ > 0. The set {x1, . . . ,xm} ⊆ X is

pseudo-shattered by F with the witness r ∈ R
m if for all y ∈ {±1}m there is an f ∈ F such that

∀i ∈ [m], y[i]( f (xi)− r[i])> 0.

The pseudo-dimension of a hypothesis class is the size of the largest set that is pseudo-shattered by

this class.

5. The Margin-Adapted Dimension

When considering learning of linear classifiers using MEM, the dimension-based upper bound and

the norm-based upper bound are both tight in the worst-case sense, that is, they are the best bounds

that rely only on the dimensionality or only on the norm respectively. Nonetheless, neither is tight in

a distribution-specific sense: If the average norm is unbounded while the dimension is small, then

there can be an arbitrarily large gap between the true distribution-dependent sample complexity

and the bound that depends on the average norm. If the converse holds, that is, the dimension is

arbitrarily large while the average-norm is bounded, then the dimensionality bound is loose.

Seeking a tight distribution-specific analysis, one simple approach to tighten these bounds is to

consider their minimum, which is proportional to min(d,B2/γ2). Trivially, this is an upper bound

on the sample complexity as well. However, this simple combination is also not tight: Consider a

distribution in which there are a few directions with very high variance, but the combined variance

in all other directions is small (see Figure 1). We will show that in such situations the sample com-

plexity is characterized not by the minimum of dimension and norm, but by the sum of the number

of high-variance dimensions and the average squared norm in the other directions. This behavior is

captured by the margin-adapted dimension which we presently define, using the following auxiliary

definition.

Definition 6 Let b > 0 and let k be a positive integer. A distribution DX over Rd is (b,k)-limited if

there exists a sub-space V ⊆ R
d of dimension d − k such that EX∼DX

[‖OV ·X‖2] ≤ b, where OV is

an orthogonal projection onto V .
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Definition 7 (margin-adapted dimension) The margin-adapted dimension of a distribution DX ,

denoted by kγ(DX), is the minimum k such that the distribution is (γ2k,k)-limited.

We sometimes drop the argument of kγ when it is clear from context. It is easy to see that for

any distribution DX over Rd , kγ(DX)≤ min(d,E[‖X‖2]/γ2). Moreover, kγ can be much smaller than

this minimum. For example, consider a random vector X ∈ R
1001 with mean zero and statistically

independent coordinates, such that the variance of the first coordinate is 1000, and the variance in

each remaining coordinate is 0.001. We have k1 = 1 but d = E[‖X‖2] = 1001.

kγ(DX) can be calculated from the uncentered covariance matrix EX∼DX
[XXT ] as follows: Let

λ1 ≥ λ2 ≥ ·· ·λd ≥ 0 be the eigenvalues of this matrix. Then

kγ = min{k |
d

∑
i=k+1

λi ≤ γ2k}. (4)

A quantity similar to this definition of kγ was studied previously in Bousquet (2002). The eigenval-

ues of the empirical covariance matrix were used to provide sample complexity bounds, for instance

in Schölkopf et al. (1999). However, kγ generates a different type of bound, since it is defined based

on the eigenvalues of the distribution and not of the sample. We will see that for small finite samples,

the latter can be quite different from the former.

Finally, note that while we define the margin-adapted dimension for a finite-dimensional space

for ease of notation, the same definition carries over to an infinite-dimensional Hilbert space. More-

over, kγ can be finite even if some of the eigenvalues λi are infinite, implying a distribution with

unbounded covariance.

6. A Distribution-Dependent Upper Bound

In this section we prove an upper bound on the sample complexity of learning with MEM, using

the margin-adapted dimension. We do this by providing a tighter upper bound for the Rademacher

complexity of RAMPγ. We bound Rm(RAMPγ,D) for any (B2,k)-limited distribution DX , using L2

covering numbers, defined as follows.

Let (X ,‖ · ‖◦) be a normed space. An η-covering of a set F ⊆ X with respect to the norm

‖ · ‖◦ is a set C ⊆ X such that for any f ∈ F there exists a g ∈ C such that ‖ f − g‖◦ ≤ η. The

covering-number for given η> 0, F and ◦ is the size of the smallest such η-covering, and is denoted

by N (η,F ,◦). Let S = {x1, . . . ,xm} ⊆ R
d . For a function f : Rd → R, the L2(S) norm of f is

‖ f‖L2(S) =
√

EX∼S[ f (X)2]. Thus, we consider covering-numbers of the form N (η,RAMPγ,L2(S)).

Figure 1: Illustrating covariance matrix ellipsoids. left: norm bound is tight; middle: dimension

bound is tight; right: neither bound is tight.
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The empirical Rademacher complexity of a function class can be bounded by the L2 covering

numbers of the same function class as follows (Mendelson, 2002, Lemma 3.7): Let εi = 2−i. Then

√
mR (RAMPγ,S)≤C ∑

i∈[N]

εi−1

√
lnN (εi,RAMPγ,L2(S))+2εN

√
m. (5)

To bound the covering number of RAMPγ, we will restate the functions in RAMPγ as sums of

two functions, each selected from a function class with bounded complexity. The first function

class will be bounded because of the norm bound on the subspace V used in Definition 6, and

the second function class will have a bounded pseudo-dimension. However, the second function

class will depend on the choice of the first function in the sum. Therefore, we require the following

lemma, which provides an upper bound on such sums of functions. We use the notion of a Hausdorff

distance between two sets G1,G2 ⊆ X , defined as ∆H(G1,G2) = supg1∈G1
infg2∈G2

‖g1 −g2‖◦.

Lemma 8 Let (X ,‖ ·‖◦) be a normed space. Let F ⊆ X be a set, and let G : X → 2X be a mapping

from objects in X to sets of objects in X . Assume that G is c-Lipschitz with respect to the Hausdorff

distance on sets, that is assume that

∀ f1, f2 ∈ X ,∆H(G( f1),G( f2))≤ c‖ f1 − f2‖◦.

Let FG = { f +g | f ∈ F ,g ∈ G( f )}. Then

N (η,FG ,◦)≤ N (η/(2+ c),F ,◦) · sup
f∈F

N (η/(2+ c),G( f ),◦).

Proof For any set A ⊆ X , denote by CA a minimal η-covering for A with respect to ‖ · ‖◦, so

that |CA| = N (η,A,◦). Let f + g ∈ FG such that f ∈ F ,g ∈ G( f ). There is a f̂ ∈ CF such that

‖ f − f̂‖◦ ≤ η. In addition, by the Lipschitz assumption there is a g̃ ∈ G( f̂ ) such that ‖g− g̃‖◦ ≤
c‖ f − f̂‖◦ ≤ cη. Lastly, there is a ĝ ∈ CG( f̂ ) such that ‖g̃− ĝ‖◦ ≤ η. Therefore

‖ f +g− ( f̂ + ĝ)‖◦ ≤ ‖ f − f̂‖◦+‖g− g̃‖◦+‖g̃− ĝ‖◦ ≤ (2+ c)η.

Thus the set { f +g | f ∈ CF ,g ∈ CG( f )} is a (2+ c)η cover of FG . The size of this cover is at most

|CF | · sup f∈F |CG( f )| ≤ N (η,F ,◦) · sup f∈F N (η,G( f ),◦).

The following lemma provides us with a useful class of mappings which are 1-Lipschitz with

respect to the Hausdorff distance, as required in Lemma 8. The proof is provided in Appendix A.2.

Lemma 9 Let f : X → R be a function and let Z ⊆ R
X be a function class over some domain X .

Let G : RX → 2R
X

be the mapping defined by

G( f ), {x 7→ J f (x)+ z(x)K− f (x) | z ∈ Z}. (6)

Then G is 1-Lipschitz with respect to the Hausdorff distance.

The function class induced by the mapping above preserves the pseudo-dimension of the original

function class, as the following lemma shows. The proof is provided in Appendix A.3.
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Lemma 10 Let f : X → R be a function and let Z ⊆ R
X be a function class over some domain

X . Let G( f ) be defined as in Equation (6). Then the pseudo-dimension of G( f ) is at most the

pseudo-dimension of Z.

Equipped with these lemmas, we can now provide the new bound on the Rademacher com-

plexity of RAMPγ in the following theorem. The subsequent corollary states the resulting sample-

complexity upper bound for MEM, which depends on kγ.

Theorem 11 Let D be a distribution over Rd ×{±1}, and assume DX is (B2,k)-limited. Then

R (RAMPγ,D)≤
√

O(k+B2/γ2) ln(m)

m
.

Proof In this proof all absolute constants are assumed to be positive and are denoted by C or Ci for

some integer i. Their values may change from line to line or even within the same line.

Consider the distribution D̃ which results from drawing (X ,Y ) ∼ D and emitting (Y ·X ,1). It

too is (B2,k)-limited, and R (RAMPγ,D) = R (RAMPγ, D̃). Therefore, we assume without loss of

generality that for all (X ,Y ) drawn from D, Y = 1. Accordingly, we henceforth omit the y argument

from rampγ(w,x,y) and write simply rampγ(w,x), rampγ(w,x,1).
Following Definition 6, Let OV be an orthogonal projection onto a sub-space V of dimension

d − k such that EX∼DX
[‖OV ·X‖2] ≤ B2. Let V̄ be the complementary sub-space to V . For a set

S = {x1, . . . ,xm} ⊆ R
d , denote B(S) =

√
1
m ∑i∈[m] ‖OV ·X‖2.

We would like to use Equation (5) to bound the Rademacher complexity of RAMPγ. Therefore,

we will bound N (η,RAMPγ,L2(S)) for η > 0. Note that

rampγ(w,x) = J1−〈w,x〉/γK = 1− J〈w,x〉/γK.

Shifting by a constant and negating do not change the covering number of a function class. There-

fore, N (η,RAMPγ,L2(S)) is equal to the covering number of {x 7→ J〈w,x〉/γK | w ∈ B
d
1}. Moreover,

let

RAMP
′
γ = {x 7→ J〈wa +wb,x〉/γK | wa ∈ B

d
1 ∩V, wb ∈ V̄}.

Then {x 7→ J〈w,x〉/γK | w ∈B
d
1} ⊆ RAMP

′
γ, thus it suffices to bound N (η,RAMP

′
γ,L2(S)). To do that,

we show that RAMP
′
γ satisfies the assumptions of Lemma 8 for the normed space (RR

d

,‖ · ‖L2(S)).
Define

F = {x 7→ 〈wa,x〉/γ | wa ∈ B
d
1 ∩V}.

Let G : RR
d → 2R

R
d

be the mapping defined by

G( f ), {x 7→ J f (x)+ 〈wb,x〉/γK− f (x) | wb ∈ V̄}.

Clearly, FG = { f + g | f ∈ F ,g ∈ G( f )} = RAMP
′
γ. Furthermore, by Lemma 9, G is 1-Lipschitz

with respect to the Hausdorff distance. Thus, by Lemma 8

N (η,RAMP
′
γ,L2(S))≤ N (η/3,F ,L2(S)) · sup

f∈F
N (η/3,G( f ),L2(S)). (7)

We now proceed to bound the two covering numbers on the right hand side. First, consider

N (η/3,G( f ),L2(S)). By Lemma 10, the pseudo-dimension of G( f ) is the same as the pseudo-

dimension of {x 7→ 〈w,x〉/γ | w ∈ V̄}, which is exactly k, the dimension of V̄ . The L2 covering
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number of G( f ) can be bounded by the pseudo-dimension of G( f ) as follows (see, e.g., Bartlett,

2006, Theorem 3.1):

N (η/3,G( f ),L2(S))≤C1

(
C2

η2

)k

. (8)

Second, consider N (η/3,F ,L2(S)). Sudakov’s minoration theorem (Sudakov 1971, and see also

Ledoux and Talagrand, 1991, Theorem 3.18) states that for any η > 0

lnN (η,F ,L2(S))≤
C

mη2
E

2
s [sup

f∈F
∑

i∈[m]

si f (xi)],

where s = (s1, . . . ,sm) are independent standard normal variables. The right-hand side can be

bounded as follows:

γEs[sup
f∈F

|
m

∑
i=1

si f (xi)|] = Es[ sup
w∈Bd

1∩V

|〈w,
m

∑
i=1

sixi〉|]

≤ Es[‖
m

∑
i=1

siOV xi‖]≤
√
Es[‖

m

∑
i=1

siOV xi‖2] =

√
∑

i∈[m]

‖OV xi‖2 =
√

mB(S).

Therefore lnN (η,F ,L2(S))≤C
B2(S)
γ2η2 . Substituting this and Equation (8) for the right-hand side in

Equation (7), and adjusting constants, we get

lnN (η,RAMPγ,L2(S))≤ lnN (η,RAMP
′
γ,L2(S))≤C1(1+ k ln(

C2

η
)+

B2(S)

γ2η2
),

To finalize the proof, we plug this inequality into Equation (5) to get

√
mR (RAMPγ,S)≤C1 ∑

i∈[N]

εi−1

√
1+ k ln(C2/εi)+

B2(S)

γ2ε2
i

+2εN

√
m

≤C1

(

∑
i∈[N]

εi−1

(
1+
√

k ln(C2/εi)+

√
B2(S)

γ2ε2
i

))
+2εN

√
m

=C1

(

∑
i∈[N]

2−i+1 +
√

k ∑
i∈[N]

2−i+1 ln(C2/2−i)+ ∑
i∈[N]

B(S)

γ

)
+2−N+1

√
m

≤C

(
1+

√
k+

B(S) ·N
γ

)
+2−N+1

√
m.

In the last inequality we used the fact that ∑i i2−i+1 ≤ 4. Setting N = ln(2m) we get

R (RAMPγ,S)≤
C√
m

(
1+

√
k+

B(S) ln(2m)

γ

)
.

Taking expectation over both sides, and noting that E[B(S)]≤
√
E[B2(S)]≤ B, we get

R (RAMPγ,S)≤
C√
m
(1+

√
k+

B ln(2m)

γ
)≤

√
O(k+B2 ln2(2m)/γ2)

m
.
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Corollary 12 (Sample complexity upper bound) Let D be a distribution over Rd ×{±1}. Then

m(ε,γ,D)≤ Õ

(
kγ(DX)

ε2

)
.

Proof By Proposition 3, we have

ℓ0(Aγ,D,m,δ)≤ ℓ∗γ(W ,D)+2Rm(RAMPγ,D)+

√
14ln(2/δ)

m
.

By definition of kγ(DX), DX is (γ2kγ,kγ)-limited. Therefore, by Theorem 11,

Rm(RAMPγ,D)≤
√

O(kγ(DX)) ln(m)

m
.

We conclude that

ℓ0(Aγ,D,m,δ)≤ ℓ∗γ(W ,D)+

√
O(kγ(DX) ln(m)+ ln(1/δ))

m
.

Bounding the second right-hand term by ε, we conclude that m(ε,γ,D)≤ Õ(kγ/ε2).

One should note that a similar upper bound can be obtained much more easily under a uniform

upper bound on the eigenvalues of the uncentered covariance matrix.2 However, such an upper

bound would not capture the fact that a finite dimension implies a finite sample complexity, re-

gardless of the size of the covariance. If one wants to estimate the sample complexity, then large

covariance matrix eigenvalues imply that more examples are required to estimate the covariance

matrix from a sample. However, these examples need not be labeled. Moreover, estimating the

covariance matrix is not necessary to achieve the sample complexity, since the upper bound holds

for any margin-error minimization algorithm.

7. A Distribution-Dependent Lower Bound

The new upper bound presented in Corollary 12 can be tighter than both the norm-only and the

dimension-only upper bounds. But does the margin-adapted dimension characterize the true sample

complexity of the distribution, or is it just another upper bound? To answer this question, we first

need tools for deriving sample complexity lower bounds. Section 7.1 relates fat-shattering with a

lower bound on sample complexity. In Section 7.2 we use this result to relate the smallest eigenvalue

of a Gram-matrix to a lower bound on sample complexity. In Section 7.3 the family of sub-Gaussian

product distributions is presented. We prove a sample-complexity lower bound for this family in

Section 7.4.

2. This has been pointed out to us by an anonymous reviewer of this manuscript. An upper bound under sub-Gaussianity

assumptions can be found in Sabato et al. (2010).
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7.1 A Sample Complexity Lower Bound Based on Fat-Shattering

The ability to learn is closely related to the probability of a sample to be shattered, as evident in

Vapnik’s formulations of learnability as a function of the ε-entropy (Vapnik, 1995). It is well known

that the maximal size of a shattered set dictates a sample-complexity upper bound. In the theorem

below, we show that for some hypothesis classes it also implies a lower bound. The theorem states

that if a sample drawn from a data distribution is fat-shattered with a non-negligible probability,

then MEM can fail to learn a good classifier for this distribution.3 This holds not only for linear

classifiers, but more generally for all symmetric hypothesis classes. Given a domain X , we say that

a hypothesis class H ⊆ R
X is symmetric if for all h ∈ H , we have −h ∈ H as well. This clearly

holds for the class of linear classifiers W .

Theorem 13 Let X be some domain, and assume that H ⊆R
X is a symmetric hypothesis class. Let

D be a distribution over X ×{±1}. If the probability of a sample of size m drawn from Dm
X to be

γ-shattered at the origin by W is at least η, then m(ε,γ,D,η/2)≥ ⌊m/2⌋ for all ε < 1/2− ℓ∗γ(D).

Proof Let ε ≤ 1
2
− ℓ∗γ(D). We show a MEM algorithm A such that

ℓ0(Aγ,D,⌊m/2⌋,η/2)≥ 1

2
> ℓ∗γ(D)+ ε,

thus proving the desired lower bound on m(ε,γ,D,η/2).

Assume for simplicity that m is even (otherwise replace m with m − 1). Consider two sets

S, S̃ ⊆ X ×{±1}, each of size m/2, such that SX ∪ S̃X is γ-shattered at the origin by W . Then there

exists a hypothesis h1 ∈ H such that the following holds:

• For all x ∈ SX ∪ S̃X , |h1(x)| ≥ γ.

• For all (x,y) ∈ S, sign(h1(x)) = y.

• For all (x,y) ∈ S̃, sign(h1(x)) =−y.

It follows that ℓγ(h1,S) = 0. In addition, let h2 = −h1. Then ℓγ(h2, S̃) = 0. Moreover, we have

h2 ∈ H due to the symmetry of H . On each point in X , at least one of h1 and h2 predict the

wrong sign. Thus ℓ0(h1,D)+ ℓ0(h2,D) ≥ 1. It follows that for at least one of i ∈ {1,2}, we have

ℓ0(hi,D)≥ 1
2
. Denote the set of hypotheses with a high misclassification error by

H⊗ = {h ∈ H | ℓ0(h,D)≥ 1

2
}.

We have just shown that if SX ∪ S̃X is γ-shattered by W then at least one of the following holds: (1)

h1 ∈ H⊗∩ argminh∈H ℓγ(h,S) or (2) h2 ∈ H⊗∩ argminh∈H ℓγ(h, S̃).

Now, consider a MEM algorithm A such that whenever possible, it returns a hypothesis from

H⊗. Formally, given the input sample S, if H⊗ ∩ argminh∈H ℓγ(h,S) 6= /0, then

3. In contrast, the average Rademacher complexity cannot be used to derive general lower bounds for MEM algorithms,

since it is related to the rate of uniform convergence of the entire hypothesis class, while MEM algorithms choose

low-error hypotheses (see, e.g., Bartlett et al., 2005).
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A(S) ∈ H⊗∩ argminh∈H ℓγ(h,S). It follows that

PS∼Dm/2 [ℓ0(A(S),D)≥ 1
2
]≥ PS∼Dm/2 [H⊗∩ argmin

h∈H

ℓγ(h,S) 6= /0]

=
1

2
(PS∼Dm/2 [H⊗∩ argmin

h∈H

ℓγ(h,S) 6= /0]+PS̃∼Dm/2 [H⊗∩ argmin
h∈H

ℓγ(h, S̃) 6= /0])

≥ 1

2
(PS,S̃∼Dm/2 [H⊗∩ argmin

h∈H

ℓγ(h,S) 6= /0 OR H⊗∩ argmin
h∈H

ℓγ(h, S̃) 6= /0])

≥ 1

2
PS,S̃∼Dm/2 [SX ∪ S̃X is γ-shattered at the origin ].

The last inequality follows from the argument above regarding h1 and h2. The last expression is

simply half the probability that a sample of size m from DX is shattered. By assumption, this

probability is at least η. Thus we conclude that PS∼Dm/2 [ℓ0(A(S),D) ≥ 1
2
] ≥ η/2. It follows that

ℓ0(Aγ,D,m/2,η/2)≥ 1
2
.

As a side note, it is interesting to observe that Theorem 13 does not hold in general for non-

symmetric hypothesis classes. For example, assume that the domain is X = [0,1], and the hypothesis

class is the set of all functions that label a finite number of points in [0,1] by +1 and the rest by −1.

Consider learning using MEM, when the distribution is uniform over [0,1], and all the labels are

−1. For any m > 0 and γ ∈ (0,1), a sample of size m is γ-shattered at the origin with probability 1.

However, any learning algorithm that returns a hypothesis from the hypothesis class will incur zero

error on this distribution. Thus, shattering alone does not suffice to ensure that learning is hard.

7.2 A Sample Complexity Lower Bound with Gram-Matrix Eigenvalues

We now return to the case of homogeneous linear classifiers, and link high-probability fat-shattering

to properties of the distribution. First, we present an equivalent and simpler characterization of fat-

shattering for linear classifiers. We then use it to provide a sufficient condition for the fat-shattering

of a sample, based on the smallest eigenvalue of its Gram matrix.

Theorem 14 Let X∈R
m×d be the matrix of a set of size m in R

d . The set is γ-shattered at the origin

by W if and only if XXT is invertible and for all y ∈ {±1}m, yT (XXT )−1y ≤ γ−2.

To prove Theorem 14 we require two auxiliary lemmas. The first lemma, stated below, shows that

for convex function classes, γ-shattering can be substituted with shattering with exact γ-margins.

Lemma 15 Let F ⊆ R
X be a class of functions, and assume that F is convex, that is

∀ f1, f2 ∈ F ,∀λ ∈ [0,1], λ f1 +(1−λ) f2 ∈ F .

If S = {x1, . . . ,xm} ⊆ X is γ-shattered by F with witness r ∈ R
m, then for every y ∈ {±1}m there is

an f ∈ F such that for all i ∈ [m], y[i]( f (xi)− r[i]) = γ.

The proof of this lemma is provided in Appendix A.4. The second lemma that we use allows

converting the representation of the Gram-matrix to a different feature space, while keeping the

separation properties intact. For a matrix M, denote its pseudo-inverse by M
+.
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Lemma 16 Let X ∈ R
m×d be a matrix such that XXT is invertible, and let Y ∈ R

m×k such that

XX
T =YY

T . Let r ∈R
m be some real vector. If there exists a vector w̃ ∈R

k such that Yw̃ = r, then

there exists a vector w ∈ R
d such that Xw = r and ‖w‖= ‖YT (YT )+w̃‖ ≤ ‖w̃‖.

Proof Denote K = XX
T = YY

T . Let S = Y
T
K

−1
X and let w = S

T w̃. We have Xw = XS
T w̃ =

XX
T
K

−1
Yw̃ = Yw̃ = r. In addition, ‖w‖2 = wT w = w̃T

SS
T w̃. By definition of S,

SS
T = Y

T
K

−1
XX

T
K

−1
Y= Y

T
K

−1
Y= Y

T (YYT )−1
Y= Y

T (YT )+.

Denote O = Y
T (YT )+. O is an orthogonal projection matrix: by the properties of the pseudo-

inverse, O=O
T and O

2 =O. Therefore ‖w‖2 = w̃T
SS

T w̃ = w̃T
Ow̃ = w̃T

OO
T w̃ = ‖Ow̃‖2 ≤ ‖w̃‖2.

Proof [of Theorem 14] We prove the theorem for 1-shattering. The case of γ-shattering follows by

rescaling X appropriately. Let XXT =UΛUT be the SVD of XXT , where U is an orthogonal matrix

and Λ is a diagonal matrix. Let Y = UΛ
1
2 . We have XX

T = YY
T . We show that the specified

conditions are sufficient and necessary for the shattering of the set:

1. Sufficient: If XXT is invertible, then Λ is invertible, thus so is Y. For any y ∈ {±1}m, Let

wy = Y
−1y. Then Ywy = y. By Lemma 16, there exists a separator w such that Xw = y and

‖w‖ ≤ ‖wy‖=
√

yT (YYT )−1y =
√

yT (XXT )−1y ≤ 1.

2. Necessary: If XXT is not invertible then the vectors in S are linearly dependent, thus S cannot

be shattered using linear separators (see, e.g., Vapnik, 1995). The first condition is therefore

necessary. Assume S is 1-shattered at the origin and show that the second condition necessar-

ily holds. By Lemma 15, for all y ∈ {±1}m there exists a wy ∈ B
d
1 such that Xwy = y. Thus

by Lemma 16 there exists a w̃y such that Yw̃y = y and ‖w̃y‖ ≤ ‖wy‖ ≤ 1. XXT is invertible,

thus so is Y. Therefore w̃y = Y
−1y. Thus yT (XXT )−1y = yT (YYT )−1y = ‖w̃y‖ ≤ 1.

We are now ready to provide a sufficient condition for fat-shattering based on the smallest

eigenvalue of the Gram matrix.

Corollary 17 Let X ∈R
m×d be the matrix of a set of size m in R

d . If λmin(XX
T )≥ mγ2 then the set

is γ-shattered at the origin by W .

Proof If λmin(XX
T ) ≥ mγ2 then XX

T is invertible and λmax((XX
T )−1) ≤ (mγ2)−1. For any y ∈

{±1}m we have ‖y‖=√
m and

yT (XXT )−1y ≤ ‖y‖2λmax((XX
T )−1)≤ m(mγ2)−1 = γ−2.

By Theorem 14 the sample is γ-shattered at the origin.

Corollary 17 generalizes the requirement of linear independence for shattering with no margin:

A set of vectors is shattered with no margin if the vectors are linearly independent, that is if λmin > 0.

The corollary shows that for γ-fat-shattering, we can require instead λmin ≥ mγ2. We can now
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conclude that if it is highly probable that the smallest eigenvalue of the sample Gram matrix is

large, then MEM might fail to learn a good classifier for the given distribution. This is formulated

in the following theorem.

Theorem 18 Let D be a distribution over Rd ×{±1}. Let m> 0 and let X be the matrix of a sample

drawn from Dm
X . Let η = P[λmin(XX

T ) ≥ mγ2]. Then for all ε < 1/2− ℓ∗γ(D), m(ε,γ,D,η/2) ≥
⌊m/2⌋.

The proof of the theorem is immediate by combining Theorem 13 and Corollary 17.

Theorem 18 generalizes the case of learning a linear separator without a margin: If a sample of

size m is linearly independent with high probability, then there is no hope of using m/2 points to

predict the label of the other points. The theorem extends this observation to the case of learning

with a margin, by requiring a stronger condition than just linear independence of the points in the

sample.

Recall that our upper-bound on the sample complexity from Section 6 is Õ(kγ). We now define

the family of sub-Gaussian product distributions, and show that for this family, the lower bound that

can be deduced from Theorem 18 is also linear in kγ.

7.3 Sub-Gaussian Distributions

In order to derive a lower bound on distribution-specific sample complexity in terms of the covari-

ance of X ∼DX , we must assume that X is not too heavy-tailed. This is because for any data distribu-

tion there exists another distribution which is almost identical and has the same sample complexity,

but has arbitrarily large covariance values. This can be achieved by mixing the original distribution

with a tiny probability for drawing a vector with a huge norm. We thus restrict the discussion to

multidimensional sub-Gaussian distributions. This ensures light tails of the distribution in all di-

rections, while still allowing a rich family of distributions, as we presently see. Sub-Gaussianity is

defined for scalar random variables as follows (see, e.g., Buldygin and Kozachenko, 1998).

Definition 19 (Sub-Gaussian random variables) A random variable X ∈ R is sub-Gaussian with

moment B, for B ≥ 0, if

∀t ∈ R, E[exp(tX)]≤ exp(t2B2/2).

In this work we further say that X is sub-Gaussian with relative moment ρ > 0 if X is sub-Gaussian

with moment ρ
√

E[X2], that is,

∀t ∈ R, E[exp(tX)]≤ exp(t2ρ2
E[X2]/2).

Note that a sub-Gaussian variable with moment B and relative moment ρ is also sub-Gaussian with

moment B′ and relative moment ρ′ for any B′ ≥ B and ρ′ ≥ ρ.

The family of sub-Gaussian distributions is quite extensive: For instance, it includes any bounded,

Gaussian, or Gaussian-mixture random variable with mean zero. Specifically, if X is a mean-zero

Gaussian random variable, X ∼ N(0,σ2), then X is sub-Gaussian with relative moment 1 and the

inequalities in the definition above hold with equality. As another example, if X is a uniform random

variable over {±b} for some b ≥ 0, then X is sub-Gaussian with relative moment 1, since

E[exp(tX)] =
1

2
(exp(tb)+ exp(−tb))≤ exp(t2b2/2) = exp(t2

E[X2]/2). (9)
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Let B ∈ R
d×d be a symmetric PSD matrix. A random vector X ∈ R

d is a sub-Gaussian random

vector with moment matrix B if for all u ∈ R
d , E[exp(〈u,X〉)] ≤ exp(〈Bu,u〉/2). The following

lemma provides a useful connection between the trace of the sub-Gaussian moment matrix and

the moment-generating function of the squared norm of the random vector. The proof is given in

Appendix A.5.

Lemma 20 Let X ∈ R
d be a sub-Gaussian random vector with moment matrix B. Then for all

t ∈ (0, 1
4λmax(B)

], E[exp(t‖X‖2)]≤ exp(2t · trace(B)).

Our lower bound holds for the family of sub-Gaussian product distributions, defined as follows.

Definition 21 (Sub-Gaussian product distributions) A distribution DX over Rd is a sub-Gaussian

product distribution with moment B and relative moment ρ if there exists some orthonormal basis

a1, . . . ,ad ∈ R
d , such that for X ∼ DX , 〈ai,X〉 are independent sub-Gaussian random variables,

each with moment B and relative moment ρ.

Note that a sub-Gaussian product distribution has mean zero, thus its covariance matrix is equal to its

uncentered covariance matrix. For any fixed ρ ≥ 0, we denote by Dsg
ρ the family of all sub-Gaussian

product distributions with relative moment ρ, in arbitrary dimension. For instance, all multivariate

Gaussian distributions and all uniform distributions on the corners of a centered hyper-rectangle

are in Dsg
1 . All uniform distributions over a full centered hyper-rectangle are in Dsg

3/2
. Note that if

ρ1 ≤ ρ2, Dsg
ρ1
⊆ Dsg

ρ2
.

We will provide a lower bound for all distributions in Dsg
ρ . This lower bound is linear in the

margin-adapted dimension of the distribution, thus it matches the upper bound provided in Corol-

lary 12. The constants in the lower bound depend only on the value of ρ, which we regard as a

constant.

7.4 A Sample-Complexity Lower Bound for Sub-Gaussian Product Distributions

As shown in Section 7.2, to obtain a sample complexity lower bound it suffices to have a lower

bound on the value of the smallest eigenvalue of a random Gram matrix. The distribution of the

smallest eigenvalue of a random Gram matrix has been investigated under various assumptions.

The cleanest results are in the asymptotic case where the sample size and the dimension approach

infinity, the ratio between them approaches a constant, and the coordinates of each example are

identically distributed.

Theorem 22 (Bai and Silverstein 2010, Theorem 5.11) Let {Xi}∞
i=1 be a series of matrices of sizes

mi ×di, whose entries are i.i.d. random variables with mean zero, variance σ2 and finite fourth mo-

ments. If limi→∞
mi

di
= β < 1, then limi→∞ λmin(

1
di
XiX

T
i ) = σ2(1−

√
β)2.

This asymptotic limit can be used to approximate an asymptotic lower bound on m(ε,γ,D), if

DX is a product distribution of i.i.d. random variables with mean zero, variance σ2, and finite fourth

moment. Let X ∈ R
m×d be the matrix of a sample of size m drawn from DX . We can find m = m◦

such that λm◦(XX
T ) ≈ γ2m◦, and use Theorem 18 to conclude that m(ε,γ,D) ≥ m◦/2. If d and m

are large enough, we have by Theorem 22 that for X drawn from Dm
X :

λmin(XX
T )≈ dσ2(1−

√
m/d)2 = σ2(

√
d −

√
m)2.
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Solving the equality σ2(
√

d −√
m◦)2 = m◦γ2 we get m◦ = d/(1+ γ/σ)2. The margin-adapted di-

mension for DX is kγ ≈ d/(1+γ2/σ2), thus 1
2
kγ ≤ m◦ ≤ kγ. In this case, then, the sample complexity

lower bound is indeed the same order as kγ, which controls also the upper bound in Corollary 12.

However, this is an asymptotic analysis, which holds for a highly limited set of distributions. More-

over, since Theorem 22 holds asymptotically for each distribution separately, we cannot use it to

deduce a uniform finite-sample lower bound for families of distributions.

For our analysis we require finite-sample bounds for the smallest eigenvalue of a random Gram-

matrix. Rudelson and Vershynin (2009, 2008) provide such finite-sample lower bounds for distribu-

tions which are products of identically distributed sub-Gaussians. In Theorem 23 below we provide

a new and more general result, which holds for any sub-Gaussian product distribution. The proof

of Theorem 23 is provided in Appendix A.6. Combining Theorem 23 with Theorem 18 above we

prove the lower bound, stated in Theorem 24 below.

Theorem 23 For any ρ > 0 and δ ∈ (0,1) there are β > 0 and C > 0 such that the following holds.

For any DX ∈ Dsg
ρ with covariance matrix Σ ≤ I, and for any m ≤ β · trace(Σ)−C, if X is the m×d

matrix of a sample drawn from Dm
X , then

P[λmin(XX
T )≥ m]≥ δ.

Theorem 24 (Sample complexity lower bound for distributions in Dsg
ρ ) For any ρ > 0 there are

constants β > 0,C ≥ 0 such that for any D with DX ∈ Dsg
ρ , for any γ > 0 and for any ε < 1

2
− ℓ∗γ(D),

m(ε,γ,D,1/4)≥ βkγ(DX)−C.

Proof Assume w.l.o.g. that the orthonormal basis a1, . . . ,ad of independent sub-Gaussian directions

of DX , defined in Definition 21, is the natural basis e1, . . . ,ed . Define λi =EX∼DX
[X [i]2], and assume

w.l.o.g. λ1 ≥ . . . ≥ λd > 0. Let X be the m× d matrix of a sample drawn from Dm
X . Fix δ ∈ (0,1),

and let β and C be the constants for ρ and δ in Theorem 23. Throughout this proof we abbreviate

kγ , kγ(DX). Let m ≤ β(kγ − 1)−C. We would like to use Theorem 23 to bound λmin(XX
T ) with

high probability, so that Theorem 18 can be applied to get the desired lower bound. However,

Theorem 23 holds only if Σ ≤ I. Thus we split to two cases—one in which the dimensionality

controls the lower bound, and one in which the norm controls it. The split is based on the value of

λkγ .

• Case I: Assume λkγ ≥ γ2. Then ∀i ∈ [kγ],λi ≥ γ2. By our assumptions on DX , for all i ∈ [d] the

random variable X [i] is sub-Gaussian with relative moment ρ. Consider the random variables

Z[i] =X [i]/
√

λi for i∈ [kγ]. Z[i] is also sub-Gaussian with relative moment ρ, and E[Z[i]2] = 1.

Consider the product distribution of Z[1], . . . ,Z[kγ], and let Σ′ be its covariance matrix. We

have Σ′ = Ikγ , and trace(Σ′) = kγ. Let Z be the matrix of a sample of size m drawn from this

distribution. By Theorem 23, P[λmin(ZZ
T )≥ m]≥ δ, which is equivalent to

P[λmin(X ·diag(1/λ1, . . . ,1/λkγ ,0, . . . ,0) ·XT )≥ m]≥ δ.

Since ∀i ∈ [kγ],λi ≥ γ2, we have P[λmin(XX
T )≥ mγ2]≥ δ.

• Case II: Assume λkγ < γ2. Then λi < γ2 for all i ∈ {kγ, . . . ,d}. Consider the random variables

Z[i] = X [i]/γ for i ∈ {kγ, . . . ,d}. Z[i] is sub-Gaussian with relative moment ρ and E[Z[i]2]≤ 1.
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Consider the product distribution of Z[kγ], . . . ,Z[d], and let Σ′ be its covariance matrix. We

have Σ′ < Id−kγ+1. By the minimality in Equation (4) we also have trace(Σ′) = 1
γ2 ∑d

i=kγ
λi ≥

kγ − 1. Let Z be the matrix of a sample of size m drawn from this product distribution. By

Theorem 23, P[λmin(ZZ
T )≥ m]≥ δ. Equivalently,

P[λmin(X ·diag(0, . . . ,0,1/γ2, . . . ,1/γ2) ·XT )≥ m]≥ δ,

therefore P[λmin(XX
T )≥ mγ2]≥ δ.

In both cases P[λmin(XX
T ) ≥ mγ2] ≥ δ. This holds for any m ≤ β(kγ − 1)−C, thus by Theo-

rem 18 m(ε,γ,D,δ/2)≥ ⌊(β(kγ −1)−C)/2⌋ for ε < 1/2− ℓ∗γ(D). We finalize the proof by setting

δ = 1
2

and adjusting β and C.

8. On the Limitations of the Covariance Matrix

We have shown matching upper and lower bounds for the sample complexity of learning with MEM,

for any sub-Gaussian product distribution with a bounded relative moment. This shows that the

margin-adapted dimension fully characterizes the sample complexity of learning with MEM for

such distributions. What properties of a distribution play a role in determining the sample complex-

ity for general distributions? In the following theorem we show that these properties must include

more than the covariance matrix of the distribution, even when assuming sub-Gaussian tails and

bounded relative moments.

Theorem 25 For any integer d > 1, there exist two distributions D and P over Rd ×{±1} with iden-

tical covariance matrices, such that for any ε,δ ∈ (0, 1
4
), m(ε,1,P,δ) ≥ Ω(d) while m(ε,1,D,δ) ≤

⌈log2(1/δ)⌉. Both DX and PX are sub-Gaussian random vectors, with a relative moment of
√

2 in

all directions.

Proof Let Da and Db be distributions over R
d such that Da is uniform over {±1}d and Db is

uniform over {±1}×{0}d−1. Let DX be a balanced mixture of Da and Db. Let PX be uniform over

{±1}×{ 1√
2
}d−1. For both D and P, let P[Y = 〈e1,X〉] = 1. The covariance matrix of DX and PX is

diag(1, 1
2
, . . . , 1

2
), thus k1(DX) = k1(PX)≥ Ω(d).

By Equation (9), PX ,Da and Db are all sub-Gaussian product distribution with relative moment

1, thus also with moment
√

2 > 1. The projection of DX along any direction u ∈R
d is sub-Gaussian

with relative moment
√

2 as well, since

EX∼DX
[exp(〈u,X〉)] = 1

2
(EX∼Da [exp(〈u,X〉)]+EX∼Db [exp(〈u,X〉)])

=
1

2
(∏

i∈[d]
(exp(ui)+ exp(−ui))/2+(exp(u1)+ exp(−u1))/2)

≤ 1

2
(∏

i∈[d]
exp(u2

i /2)+ exp(u2
1/2))≤ exp(‖u‖2/2)≤ exp((‖u‖2 +u2

1)/2)

= exp(EX∼DX
[〈u,X〉2]).
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For P we have by Theorem 24 that for any ε ≤ 1
4
, m(ε,1,P, 1

4
) ≥ Ω(k1(PX)) ≥ Ω(d). In contrast,

any MEM algorithm A1 will output the correct separator for D whenever the sample has at least

one point drawn from Db. This is because the separator e1 is the only w ∈ B
d
1 that classifies this

point with zero 1-margin errors. Such a point exists in a sample of size m with probability 1−2−m.

Therefore ℓ0(A1,D,m,1/2m) = 0. It follows that for all ε > 0, m(ε,1,D,δ)≤ ⌈log2(1/δ)⌉.

9. Conclusions

Corollary 12 and Theorem 24 together provide a tight characterization of the sample complexity of

any sub-Gaussian product distribution with a bounded relative moment. Formally, fix ρ > 0. For

any D such that DX ∈ Dsg
ρ , and for any γ > 0 and ε ∈ (0, 1

2
− ℓ∗γ(D))

Ω(kγ(DX))≤ m(ε,γ,D)≤ Õ

(
kγ(DX)

ε2

)
. (10)

The upper bound holds uniformly for all distributions, and the constants in the lower bound depend

only on ρ. This result shows that the true sample complexity of learning each of these distributions

with MEM is characterized by the margin-adapted dimension. An interesting conclusion can be

drawn as to the influence of the conditional distribution of labels DY |X : Since Equation (10) holds

for any DY |X , the effect of the direction of the best separator on the sample complexity is bounded,

even for highly non-spherical distributions.

We note that the upper bound that we have proved involves logarithmic factors which might not

be necessary. There are upper bounds that depend on the margin alone and on the dimension alone

without logarithmic factors. On the other hand, in our bound, which combines the two quantities,

there is a logarithmic dependence which stems from the margin component of the bound. It might

be possible to tighten the bound and remove the logarithmic dependence.

Equation (10) can be used to easily characterize the sample complexity behavior for interesting

distributions, to compare L2 margin minimization to other learning methods, and to improve certain

active learning strategies. We elaborate on each of these applications in the following examples.

Example 1 (Gaps between L1 and L2 regularization in the presence of irrelevant features)

Ng (2004) considers learning a single relevant feature in the presence of many irrelevant features,

and compares using L1 regularization and L2 regularization. When ‖X‖∞ ≤ 1, upper bounds on

learning with L1 regularization guarantee a sample complexity of O(ln(d)) for an L1-based learn-

ing rule (Zhang, 2002). In order to compare this with the sample complexity of L2 regularized

learning and establish a gap, one must use a lower bound on the L2 sample complexity. The argu-

ment provided by Ng actually assumes scale-invariance of the learning rule, and is therefore valid

only for unregularized linear learning. In contrast, using our results we can easily establish a lower

bound of Ω(d) for many specific distributions with a bounded ‖X‖∞ and Y = sign(X [i]) for some

i. For instance, if each coordinate is a bounded independent sub-Gaussian random variable with a

bounded relative moment, we have k1 = ⌈d/2⌉ and Theorem 24 implies a lower bound of Ω(d) on

the L2 sample complexity.

Example 2 (Gaps between generative and discriminative learning for a Gaussian mixture) Let

there be two classes, each drawn from a unit-variance spherical Gaussian in R
d with a large dis-

tance 2v >> 1 between the class means, such that d >> v4. Then PD[X |Y = y] = N (yv · e1, Id),

2138



DISTRIBUTION-DEPENDENT SAMPLE COMPLEXITY OF LARGE MARGIN LEARNING

where e1 is a unit vector in R
d . For any v and d, we have DX ∈ Dsg

1 . For large values of v, we have

extremely low margin error at γ = v/2, and so we can hope to learn the classes by looking for a

large-margin separator. Indeed, we can calculate kγ = ⌈d/(1+ v2

4
)⌉, and conclude that the required

sample complexity is Θ̃(d/v2). Now consider a generative approach: fitting a spherical Gaussian

model for each class. This amounts to estimating each class center as the empirical average of the

points in the class, and classifying based on the nearest estimated class center. It is possible to show

that for any constant ε > 0, and for large enough v and d, O(d/v4) samples are enough in order to

ensure an error of ε. This establishes a rather large gap of Ω(v2) between the sample complexity of

the discriminative approach and that of the generative one.

Example 3 (Active learning) In active learning, there is an abundance of unlabeled examples, but

labels are costly, and the active learning algorithm needs to decide which labels to query based

on the labels seen so far. A popular approach to active learning involves estimating the current

set of possible classifiers using sample complexity upper bounds (see, e.g., Balcan et al., 2009;

Beygelzimer et al., 2010). Without any distribution-specific information, only general distribution-

free upper bounds can be used. However, since there is an abundance of unlabeled examples, the

active learner can use these to estimate tighter distribution-specific upper bounds. In the case of

linear classifiers, the margin-adapted dimension can be calculated from the uncentered covariance

matrix of the distribution, which can be easily estimated from unlabeled data. Thus, our sample

complexity upper bounds can be used to improve the active learner’s label complexity. Moreover,

the lower bound suggests that any further improvement of such active learning strategies would

require more information other than the distribution’s covariance matrix.

To summarize, we have shown that the true sample complexity of large-margin learning of each

of a rich family of distributions is characterized by the margin-adapted dimension. Characterizing

the true sample complexity allows a better comparison between this learning approach and other

algorithms, and has many potential applications. The challenge of characterizing the true sample

complexity extends to any distribution and any learning approach. Theorem 25 shows that other

properties but the covariance matrix must be taken into account for general distributions. We believe

that obtaining answers to these questions is of great importance, both to learning theory and to

learning applications.
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Appendix A. Proofs Omitted from the Text

In this appendix we give detailed proofs which were omitted from the text.
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A.1 Proof of Proposition 3

Proof Let w∗ ∈ argminw∈Bd
1
ℓγ(w,D). By Equation (2), with probability 1−δ/2

rampγ(Aγ(S),D)≤ rampγ(Aγ(S),S)+2Rm(RAMPγ,D)+

√
8ln(2/δ)

m
.

Set h∗ ∈ H such that ℓγ(h
∗,D) = ℓ∗γ(H ,D). We have

rampγ(Aγ(S),S)≤ ℓγ(Aγ(S),S)≤ ℓγ(h
∗,S).

The first inequality follows since the ramp loss is upper bounded by the margin loss. The second

inequality follows since A is a MEM algorithm. Now, by Hoeffding’s inequality, since the range of

rampγ is in [0,1], with probability at least 1−δ/2

ℓγ(h
∗,S)≤ ℓγ(h

∗,D)+

√
ln(2/δ)

2m
.

It follows that with probability 1−δ

rampγ(Aγ(S),D)≤ ℓ∗γ(H ,D)+2Rm(RAMPγ,D)+

√
14ln(2/δ)

m
. (11)

We have ℓ0 ≤ rampγ. Combining this with Equation (11) we conclude Equation (3).

A.2 Proof of Lemma 9

Proof [of Lemma 9] For a function f : X → R and a z ∈ Z, define the function G[ f ,z] by

∀x ∈ X , G[ f ,z](x) = J f (x)+ z(x)K− f (x).

Let f1, f2 ∈ R
X be two functions, and let g1 = G[ f1,z] ∈ G( f1) for some wb ∈ V̄ . Then, since

G[ f2,z] ∈ G( f2), we have

inf
g2∈G( f2)

‖g1 −g2‖L2(S) ≤ ‖G[ f1,z]−G[ f2,z]‖.

Now, for all x ∈ R,

|G[ f1,z](x)−G[ f2,z](x)|= |J f1(x)+ z(x)K− f1(x)− J f2(x)+ z(x)K+ f2(x)|
≤ | f1(x)− f2(x)|.

Thus, for any S ⊆ X ,

‖G[ f1,z]−G[ f2,z]‖2
L2(S)

= EX∼S(G[ f1,z](X)−G[ f2,z](X))2

≤ EX∼S( f1(X)− f2(X))2 = ‖ f1 − f2‖2
L2(S)

.

It follows that infg2∈G( f2) ‖g1 − g2‖L2(S) ≤ ‖ f1 − f2‖L2(S). This holds for any g1 ∈ G( f1), thus

∆H(G( f1),G( f2))≤ ‖ f1 − f2‖L2(S).
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A.3 Proof of Lemma 10

Proof [of Lemma 10] Let k be the pseudo-dimension of G( f ), and let {x1, . . . ,xk} ⊆ X be a set

which is pseudo-shattered by G( f ). We show that the same set is pseudo-shattered by Z as well,

thus proving the lemma. Since G( f ) is pseudo-shattered, there exists a vector r ∈ R
k such that for

all y ∈ {±1}k there exists a gy ∈ G( f ) such that ∀i ∈ [m],sign(gy(xi)− r[i]) = y[i]. Therefore for all

y ∈ {±1}k there exists a zy ∈ Z such that

∀i ∈ [k],sign(J f (xi)+ zy(xi)K− f (xi)− r[i]) = y[i].

By considering the case y[i] = 1, we have

0 < J f (xi)+ zy(xi)K− f (xi)− r[i]≤ 1− f (xi)− r[i].

By considering the case y[i] =−1, we have

0 > J f (xi)+ zy(xi)K− f (xi)− r[i]≥− f (xi)− r[i].

Therefore 0 < f (xi)+ r[i]< 1. Now, let y ∈ {±1}k and consider any i ∈ [k]. If y[i] = 1 then

J f (xi)+ zy(xi)K− f (xi)− r[i]> 0

It follows that

J f (xi)+ zy(xi)K > f (xi)+ r[i]> 0,

thus

f (xi)+ zy(xi)> f (xi)+ r[i].

In other words, sign(zy(xi)− r[i]) = 1 = y[i]. If y[i] =−1 then

J f (xi)+ zy(xi)K− f (xi)− r[i]< 0.

It follows that

J f (xi)+ zy(xi)K < f (xi)+ r[i]< 1,

thus

f (xi)+ zy(xi)< f (xi)+ r[i].

in other words, sign(zy(xi)− r[i]) = −1 = y[i]. We conclude that Z shatters {x1, . . . ,xk} as well,

using the same vector r ∈ R
k. Thus the pseudo-dimension of Z is at least k.

A.4 Proof of Lemma 15

To prove Lemma 15, we first prove the following lemma. Denote by conv(A) the convex hull of a

set A.

Lemma 26 Let γ > 0. For each y ∈ {±1}m, select ry ∈R
m such that for all i ∈ [m], ry[i]y[i]≥ γ. Let

R = {ry ∈ R
m | y ∈ {±1}m}. Then {±γ}m ⊆ conv(R).
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Proof We will prove the claim by induction on the dimension m. For the base case, if m = 1, we

have R = {a,b} ⊆ R where a ≤−γ and b ≥ γ. Clearly, conv(R) = [a,b], and ±γ ∈ [a,b].

For the inductive step, assume the lemma holds for m− 1. For a vector t ∈ R
m, denote by t̄ its

projection (t[1], . . . , t[m − 1]) on R
m−1. Similarly, for a set of vectors S ⊆ R

m, let

S̄ = {s̄ | s ∈ S} ⊆ R
m−1. Define Y+ = {±1}m−1 ×{+1} and Y− = {±1}m−1 ×{−1}. Let R+ =

{ry | y ∈ Y+}, and similarly for R−. Then the induction hypothesis holds for R̄+ and R̄− with di-

mension m− 1. Let z ∈ {±γ}m. We wish to prove z ∈ conv(R). From the induction hypothesis

we have z̄ ∈ conv(R̄+) and z̄ ∈ conv(R̄−). Thus, for all y ∈ {±1} there exist αy,βy ≥ 0 such that

∑y∈Y+ αy = ∑y∈Y− βy = 1, and

z̄ = ∑
y∈Y+

αyr̄y = ∑
y∈Y−

βyr̄y.

Let za = ∑y∈Y+ αyry and zb = ∑y∈Y− βyry We have that ∀y ∈ Y+,ry[m]≥ γ, and ∀y ∈ Y−,ry[m]≤−γ.

Therefore, zb[m] ≤ −γ ≤ z[m] ≤ γ ≤ za[m]. In addition, z̄a = z̄b = z̄. Select λ ∈ [0,1] such that

z[m] = λza[m]+(1−λ)zb[m], then z = λza+(1−λ)zb. Since za,zb ∈ conv(R), we have z ∈ conv(R).

Proof [of Lemma 15] Denote by f (S) the vector ( f (x1), . . . , f (xm)). Recall that r ∈R
m is the witness

for the shattering of S, and let

L = { f (S)− r | f ∈ F } ⊆ R
m.

Since S is shattered, for any y ∈ {±1}m there is an ry ∈ L such that ∀i ∈ [m],ry[i]y[i] ≥ γ. By

Lemma 26, {±γ}m ⊆ conv(L). Since F is convex, L is also convex. Therefore {±γ}m ⊆ L.

A.5 Proof of Lemma 20

Proof [of Lemma 20] It suffices to consider diagonal moment matrices: If B is not diagonal,

let V ∈ R
d×d be an orthogonal matrix such that VBVT is diagonal, and let Y = VX . We have

E[exp(t‖Y‖2)] = E[exp(t‖X‖2)] and trace(VBVT ) = trace(B). In addition, for all u ∈ R
d ,

E[exp(〈u,Y 〉)] = E[exp(〈VT u,X〉)]≤ exp(
1

2
〈BVT u,VT u〉) = exp(

1

2
〈VBVT u,u〉).

Therefore Y is sub-Gaussian with the diagonal moment matrix VBV
T . Thus assume w.l.o.g. that

B= diag(λ1, . . . ,λd) where λ1 ≥ . . .≥ λd ≥ 0.
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We have exp(t‖X‖2)=∏i∈[d] exp(tX [i]2). In addition, for any t > 0 and x∈R, 2
√

Πt ·exp(tx2)=∫ ∞
−∞ exp(sx− s2

4t
)ds. Therefore, for any u ∈ R

d ,

(2
√

Πt)d ·E[exp(t‖X‖2)] = E

[

∏
i∈[d]

∫ ∞

−∞
exp(u[i]X [i]− u[i]2

4t
)du[i]

]

= E

[∫ ∞

−∞
. . .

∫ ∞

−∞
∏
i∈[d]

exp(u[i]X [i]− u[i]2

4t
)du[i]

]

= E

[∫ ∞

−∞
. . .

∫ ∞

−∞
exp(〈u,X〉− ‖u‖2

4t
) ∏

i∈[d]
du[i]

]

=
∫ ∞

−∞
. . .

∫ ∞

−∞
E[exp(〈u,X〉)]exp(−‖u‖2

4t
) ∏

i∈[d]
du[i]

By the sub-Gaussianity of X , the last expression is bounded by

≤
∫ ∞

−∞
. . .

∫ ∞

−∞
exp(

1

2
〈Bu,u〉− ‖u‖2

4t
) ∏

i∈[d]
du[i]

=
∫ ∞

−∞
. . .

∫ ∞

−∞
∏
i∈[d]

exp(
λiu[i]

2

2
− u[i]2

4t
)du[i]

= ∏
i∈[d]

∫ ∞

−∞
exp(u[i]2(

λi

2
− 1

4t
))du[i] = Πd/2

(
∏
i∈[d]

(
1

4t
− λi

2
)
)− 1

2 .

The last equality follows from the fact that for any a > 0,
∫ ∞
−∞ exp(−a · s2)ds =

√
Π/a, and from

the assumption t ≤ 1
4λ1

. We conclude that

E[exp(t‖X‖2)]≤ (∏
i∈[d]

(1−2λit))
− 1

2 ≤ exp(2t ·
d

∑
i=1

λi) = exp(2t · trace(B)),

where the second inequality holds since ∀x ∈ [0,1], (1− x/2)−1 ≤ exp(x).

A.6 Proof of Theorem 23

In the proof of Theorem 23 we use the fact λmin(XX
T ) = inf‖x‖2=1 ‖XT x‖2 and bound the right-hand

side via an ε-net of the unit sphere in R
m, denoted by Sm−1 , {x ∈ R

m | ‖x‖2 = 1}. An ε-net of the

unit sphere is a set C ⊆ Sm−1 such that ∀x ∈ Sm−1,∃x′ ∈ C,‖x− x′‖ ≤ ε. Denote the minimal size

of an ε-net for Sm−1 by Nm(ε), and by Cm(ε) a minimal ε-net of Sm−1, so that Cm(ε) ⊆ Sm−1 and

|Cm(ε)|= Nm(ε). The proof of Theorem 23 requires several lemmas. First we prove a concentration

result for the norm of a matrix defined by sub-Gaussian variables. Then we bound the probability

that the squared norm of a vector is small.

Lemma 27 Let Y be a d × m matrix with m ≤ d, such that Yi j are independent sub-Gaussian

variables with moment B. Let Σ be a diagonal d ×d PSD matrix such that Σ ≤ I. Then for all t ≥ 0
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and ε ∈ (0,1),

P[‖
√

ΣY‖ ≥ t]≤ Nm(ε)exp(
trace(Σ)

2
− t2(1− ε)2

4B2
).

Proof We have ‖
√

ΣY‖ ≤ maxx∈Cm(ε) ‖
√

ΣYx‖/(1− ε), see for instance in Bennett et al. (1975).

Therefore,

P[‖
√

ΣY‖ ≥ t]≤ ∑
x∈Cm(ε)

P[‖
√

ΣYx‖ ≥ (1− ε)t]. (12)

Fix x ∈ Cm(ε). Let V =
√

ΣYx, and assume Σ = diag(λ1, . . . ,λd). For u ∈ R
d ,

E[exp(〈u,V 〉)] = E[exp( ∑
i∈[d]

ui

√
λi ∑

j∈[m]

Yi jx j)] = ∏
j,i

E[exp(ui

√
λiYi jx j)]

≤ ∏
j,i

exp(u2
i λiB

2x2
j/2) = exp(

B2

2
∑

i∈[d]
u2

i λi ∑
j∈[m]

x2
j)

= exp(
B2

2
∑

i∈[d]
u2

i λi) = exp(〈B2Σu,u〉/2).

Thus V is a sub-Gaussian vector with moment matrix B2Σ. Let s = 1/(4B2). Since Σ ≤ I, we have

s ≤ 1/(4B2 maxi∈[d] λi). Therefore, by Lemma 20,

E[exp(s‖V‖2)]≤ exp(2sB2 trace(Σ)).

By Chernoff’s method, P[‖V‖2 ≥ z2]≤ E[exp(s‖V‖2)]/exp(sz2). Thus

P[‖V‖2 ≥ z2]≤ exp(2sB2 trace(Σ)− sz2) = exp(
trace(Σ)

2
− z2

4B2
).

Set z = t(1− ε). Then for all x ∈ Sm−1

P[‖
√

ΣYx‖ ≥ t(1− ε)] = P[‖V‖ ≥ t(1− ε)]≤ exp(
trace(Σ)

2
− t2(1− ε)2

4B2
).

Therefore, by Equation (12),

P[‖
√

ΣY‖ ≥ t]≤ Nm(ε)exp(
trace(Σ)

2
− t2(1− ε)2

4B2
).

Lemma 28 Let Y be a d ×m matrix with m ≤ d, such that Yi j are independent centered random

variables with variance 1 and fourth moments at most B. Let Σ be a diagonal d × d PSD matrix

such that Σ ≤ I. There exist α > 0 and η ∈ (0,1) that depend only on B such that for any x ∈ Sm−1

P[‖
√

ΣYx‖2 ≤ α · (trace(Σ)−1)]≤ ηtrace(Σ).

To prove Lemma 28 we require Lemma 29 (Rudelson and Vershynin, 2008, Lemma 2.2) and

Lemma 30, which extends Lemma 2.6 in the same work.
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Lemma 29 Let T1, . . . ,Tn be independent non-negative random variables. Assume that there are

θ > 0 and µ ∈ (0,1) such that for any i, P[Ti ≤ θ]≤ µ. There are α > 0 and η ∈ (0,1) that depend

only on θ and µ such that

P[
n

∑
i=1

Ti < αn]≤ ηn.

Lemma 30 Let Y be a d ×m matrix with m ≤ d, such that the columns of Y are i.i.d. random

vectors. Assume further that Yi j are centered, and have a variance of 1 and a fourth moment at

most B. Let Σ be a diagonal d ×d PSD matrix. Then for all x ∈ Sm−1,

P[‖
√

ΣYx‖ ≤
√

trace(Σ)/2]≤ 1−1/(196B).

Proof Let x ∈ Sm−1, and Ti = (∑m
j=1Yi jx j)

2. Let λ1, . . . ,λd be the values on the diagonal of Σ, and

let TΣ = ‖
√

ΣYx‖2 = ∑d
i=1 λiTi. First, since E[Yi j] = 0 and E[Yi j] = 1 for all i, j, we have

E[Ti] = ∑
i∈[m]

x2
jE[Y

2
i j] = ‖x‖2 = 1.

Therefore E[TΣ] = trace(Σ). Second, since Yi1, . . . ,Yim are independent and centered, we have

(Ledoux and Talagrand, 1991, Lemma 6.3)

E[T 2
i ] = E[( ∑

j∈[m]

Yi jx j)
4]≤ 16Eσ[( ∑

j∈[m]

σ jYi jx j)
4],

where σ1, . . . ,σm are independent uniform {±1} variables. Now, by Khinchine’s inequality (Nazarov

and Podkorytov, 2000),

Eσ[( ∑
j∈[m]

σ jYi jx j)
4]≤ 3E[( ∑

j∈[m]

Y
2
i jx

2
j)

2] = 3 ∑
j,k∈[m]

x2
jx

2
kE[Y

2
i j]E[Y

2
ik].

Now E[Y2
i j]E[Y

2
ik]≤

√
E[Y4

i j]E[Y
4
ik]≤ B. Thus E[T 2

i ]≤ 48B∑ j,k∈[m] x
2
jx

2
k = 48B‖x‖4 = 48B. Thus,

E[T 2
Σ ] = E[(

d

∑
i=1

λiTi)
2] =

d

∑
i, j=1

λiλ jE[TiTj]

≤
d

∑
i, j=1

λiλ j

√
E[T 2

i ]E[T
2
j ]≤ 48B(

d

∑
i=1

λi)
2 = 48B · trace(Σ)2.

By the Paley-Zigmund inequality (Paley and Zygmund, 1932), for θ ∈ [0,1]

P[TΣ ≥ θE[TΣ]]≥ (1−θ)2E[TΣ]
2

E[T 2
Σ ]

≥ (1−θ)2

48B
.

Therefore, setting θ = 1/2, we get P[TΣ ≤ trace(Σ)/2]≤ 1−1/(196B).

Proof [of Lemma 28] Let λ1, . . . ,λd ∈ [0,1] be the values on the diagonal of Σ. Consider a partition

Z1, . . . ,Zk of [d], and denote L j = ∑i∈Z j
λi. There exists such a partition such that for all j ∈ [k],
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L j ≤ 1, and for all j ∈ [k− 1], L j >
1
2
. Let Σ[ j] be the sub-matrix of Σ that includes the rows and

columns whose indexes are in Z j. Let Y[ j] be the sub-matrix of Y that includes the rows in Z j.

Denote Tj = ‖
√

Σ[ j]Y[ j]x‖2. Then

‖
√

ΣYx‖2 = ∑
j∈[k]

∑
i∈Z j

λi(
m

∑
j=1

Yi jx j)
2 = ∑

j∈[k]
Tj.

We have trace(Σ) = ∑d
i=1 λi ≥ ∑ j∈[k−1] L j ≥ 1

2
(k− 1). In addition, L j ≤ 1 for all j ∈ [k]. Thus

trace(Σ) ≤ k ≤ 2trace(Σ)+ 1. For all j ∈ [k− 1], L j ≥ 1
2
, thus by Lemma 30, P[Tj ≤ 1/4] ≤ 1−

1/(196B). Therefore, by Lemma 29 there are α > 0 and η ∈ (0,1) that depend only on B such that

P[‖
√

ΣYx‖2 < α · (trace(Σ)−1)]≤ P[‖
√

ΣYx‖2 < α(k−1)]

= P[ ∑
j∈[k]

Tj < α(k−1)]≤ P[ ∑
j∈[k−1]

Tj < α(k−1)]≤ ηk−1 ≤ η2trace(Σ).

The lemma follows by substituting η for η2.

Proof [of Theorem 23] We have
√

λmin(XXT ) = inf
x∈Sm−1

‖XT x‖ ≥ min
x∈Cm(ε)

‖XT x‖− ε‖XT‖. (13)

For brevity, denote L = trace(Σ). Assume L ≥ 2. Let m ≤ L ·min(1,(c−Kε)2) where c,K,ε are

constants that will be set later such that c−Kε > 0. By Equation (13)

P[λmin(XX
T )≤ m]≤ P[λmin(XX

T )≤ (c−Kε)2L]

≤ P[ min
x∈Cm(ε)

‖XT x‖− ε‖XT‖ ≤ (c−Kε)
√

L] (14)

≤ P[‖XT‖ ≥ K
√

L]+P[ min
x∈Cm(ε)

‖XT x‖ ≤ c
√

L]. (15)

The last inequality holds since the inequality in line (14) implies at least one of the inequalities in

line (15). We will now upper-bound each of the terms in line (15). We assume w.l.o.g. that Σ is

not singular (since zero rows and columns can be removed from X without changing λmin(XX
T )).

Define Y,
√

Σ−1X
T . Note that Yi j are independent sub-Gaussian variables with (absolute) moment

ρ. To bound the first term in line (15), note that by Lemma 27, for any K > 0,

P[‖XT‖ ≥ K
√

L] = P[‖
√

ΣY‖ ≥ K
√

L]≤ Nm(
1

2
)exp(L(

1

2
− K2

16ρ2
)).

By Rudelson and Vershynin (2009), Proposition 2.1, for all ε ∈ [0,1], Nm(ε) ≤ 2m(1 + 2
ε )

m−1.
Therefore

P[‖XT‖ ≥ K
√

L]≤ 2m5m−1 exp(L(
1

2
− K2

16ρ2
)).

Let K2 = 16ρ2( 3
2
+ ln(5)+ ln(2/δ)). Recall that by assumption m ≤ L, and L ≥ 2. Therefore

P[‖XT‖ ≥ K
√

L]≤ 2m5m−1 exp(−L(1+ ln(5)+ ln(2/δ)))

≤ 2L5L−1 exp(−L(1+ ln(5)+ ln(2/δ))).

2146



DISTRIBUTION-DEPENDENT SAMPLE COMPLEXITY OF LARGE MARGIN LEARNING

Since L ≥ 2, we have 2Lexp(−L)≤ 1. Therefore

P[‖XT‖ ≥ K
√

L]≤ 2Lexp(−L− ln(2/δ))≤ exp(− ln(2/δ)) =
δ

2
. (16)

To bound the second term in line (15), since Yi j are sub-Gaussian with moment ρ, E[Y4
i j]≤ 5ρ4

(Buldygin and Kozachenko, 1998, Lemma 1.4). Thus, by Lemma 28, there are α > 0 and η ∈ (0,1)
that depend only on ρ such that for all x ∈ Sm−1, P[‖

√
ΣYx‖2 ≤ α(L− 1)] ≤ ηL. Set c =

√
α/2.

Since L ≥ 2, we have c
√

L ≤
√

α(L−1). Thus

P[ min
x∈Cm(ε)

‖XT x‖ ≤ c
√

L]≤ ∑
x∈Cm(ε)

P[‖XT x‖ ≤ c
√

L]

≤ ∑
x∈Cm(ε)

P[‖
√

ΣYx‖ ≤
√

α(L−1)]≤ Nm(ε)η
L.

Let ε = c/(2K), so that c−Kε > 0. Let θ = min( 1
2
, ln(1/η)

2ln(1+2/ε)). Set L◦ such that ∀L ≥ L◦,

L ≥ 2ln(2/δ)+2ln(L)
ln(1/η) . For L ≥ L◦ and m ≤ θL ≤ L/2,

Nm(ε)η
L ≤ 2m(1+2/ε)m−1ηL

≤ Lexp(L(θ ln(1+2/ε)− ln(1/η)))

= exp(ln(L)+L(θ ln(1+2/ε)− ln(1/η)/2)−L ln(1/η)/2)

≤ exp(L(θ ln(1+2/ε)− ln(1/η)/2)+ ln(δ/2)) (17)

≤ exp(ln(δ/2)) =
δ

2
. (18)

Line (17) follows from L ≥ L◦, and line (18) follows from θ ln(1+ 2/ε)− ln(1/η)/2 ≤ 0. Set

β = min{(c−Kε)2,1,θ}. Combining Equation (15), Equation (16) and Equation (18) we have that

if L ≥ L̄ , max(L◦,2), then P[λmin(XX
T ) ≤ m] ≤ δ for all m ≤ βL. Specifically, this holds for all

L ≥ 0 and for all m ≤ β(L− L̄). Letting C = βL̄ and substituting δ for 1−δ we get the statement of

the theorem.
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