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Abstract

A metric between time-series distributions is proposed that can be evaluated using binary classi-

fication methods, which were originally developed to work on i.i.d. data. It is shown how this

metric can be used for solving statistical problems that are seemingly unrelated to classification

and concern highly dependent time series. Specifically, the problems of time-series clustering,

homogeneity testing and the three-sample problem are addressed. Universal consistency of the re-

sulting algorithms is proven under most general assumptions. The theoretical results are illustrated

with experiments on synthetic and real-world data.

Keywords: time series, reductions, stationary ergodic, clustering, metrics between probability

distributions

1. Introduction

Binary classification is one of the most well-understood problems of machine learning and statistics:

a wealth of efficient classification algorithms has been developed and applied to a wide range of

applications. Perhaps one of the reasons for this is that binary classification is conceptually one

of the simplest statistical learning problems. It is thus natural to try and use it as a building block

for solving other, more complex, newer or just different problems; in other words, one can try to

obtain efficient algorithms for different learning problems by reducing them to binary classification.

This approach has been applied to many different problems, starting with multi-class classification,

and including regression and ranking (Balcan et al., 2007; Langford et al., 2006), to give just a few

examples. However, all of these problems are formulated in terms of independent and identically

distributed (i.i.d.) samples. This is also the assumption underlying the theoretical analysis of most

of the classification algorithms.

In this work we consider learning problems that concern time-series data for which indepen-

dence assumptions do not hold. The series can exhibit arbitrary long-range dependence, and dif-

ferent time-series samples may be interdependent as well. Moreover, the learning problems that

we consider—the three-sample problem, time-series clustering, and homogeneity testing—at first

glance seem completely unrelated to classification.
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We show how the considered problems can be reduced to binary classification methods, via a

new metric between time-series distributions. The results include asymptotically consistent algo-

rithms, as well as finite-sample analysis. To establish the consistency of the suggested methods, for

clustering and the three-sample problem the only assumption that we make on the data is that the

distributions generating the samples are stationary ergodic; this is one of the weakest assumptions

used in statistics. For homogeneity testing we have to make some mixing assumptions in order

to obtain consistency results (this is indeed unavoidable, as shown by Ryabko, 2010b). Mixing

conditions are also used to obtain finite-sample performance guarantees for the first two problems.

The proposed approach is based on a new distance between time-series distributions (that is,

between probability distributions on the space of infinite sequences), which we call telescope dis-

tance. This distance can be evaluated using binary classification methods, and its finite-sample

estimates are shown to be asymptotically consistent. Three main building blocks are used to con-

struct the telescope distance. The first one is a distance on finite-dimensional marginal distributions.

The distance we use for this is the following well-known metric: dH (P,Q) := suph∈H |EPh−EQh|
where P,Q are distributions and H is a set of functions. This distance can be estimated using binary

classification methods, and thus can be used to reduce various statistical problems to the classifi-

cation problem. This distance was previously applied to such statistical problems as homogeneity

testing and change-point estimation (Kifer et al., 2004). However, these applications so far have

only concerned i.i.d. data, whereas we want to work with highly-dependent time series. Thus, the

second building block are the recent results of Adams and Nobel (2012), that show that empiri-

cal estimates of dH are consistent (under certain conditions on H ) for arbitrary stationary ergodic

distributions. This, however, is not enough: evaluating dH for (stationary ergodic) time-series dis-

tributions means measuring the distance between their finite-dimensional marginals, and not the

distributions themselves. Finally, the third step to construct the distance is what we call telescoping.

It consists in summing the distances for all the (infinitely many) finite-dimensional marginals with

decreasing weights. The resulting distance can “automatically” select the marginal distribution of

the right order: marginals which cannot distinguish between the distributions give distance esti-

mates that converge to zero, while marginals whose orders are too high to have converged have very

small weights. Thus, the estimate is dominated by the marginals which can distinguish between the

time-series distributions, or converges to zero if the distributions are the same. It is worth noting

that a similar telescoping trick is used in different problems, most notably, in sequence prediction

(Solomonoff, 1978; B. Ryabko, 1988; Ryabko, 2011); it is also used in the distributional distance

(Gray, 1988), see Section 8 below.

We show that the resulting distance (telescope distance) indeed can be consistently estimated

based on sampling, for arbitrary stationary ergodic distributions. Further, we show how this fact can

be used to construct consistent algorithms for the considered problems on time series. Thus we can

harness binary classification methods to solve statistical learning problems concerning time series.

A remarkable feature of the resulting methods is that the performance guarantees obtained do not

depend on the approximation error of the binary classification methods used, they only depend on

their estimation error.

Moreover, we analyse some other distances between time-series distributions, the possibility of

their use for solving the statistical problems considered, and the relation of these distances to the

telescope distance introduced in this work.

To illustrate the theoretical results in an experimental setting, we chose the problem of time-

series clustering, since it is a difficult unsupervised problem which seems most different from the
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problem of binary classification. Experiments on both synthetic and real-world data are provided.

The real-world setting concerns brain-computer interface (BCI) data, which is a notoriously chal-

lenging application, and on which the presented algorithm demonstrates competitive performance.

A related approach to address the problems considered here, as well as some related problems

about stationary ergodic time series, is based on (consistent) empirical estimates of the distributional

distance, see Ryabko and Ryabko (2010), Ryabko (2010a), Khaleghi et al. (2012), as well as Gray

(1988) about the distributional distance. The empirical distance is based on counting frequencies of

bins of decreasing sizes and “telescoping.” This distance is described in some detail in Section 8

below, where we compare it to the telescope distance. Another related approach to time-series

analysis involves a different reduction, namely, that to data compression (B. Ryabko, 2009).

1.1 Organisation

Section 2 is preliminary. In Section 3 we introduce and discuss the telescope distance. Section 4

explains how this distance can be calculated using binary classification methods. Sections 5 and 6

are devoted to the three-sample problem and clustering, respectively. In Section 7, under some

mixing conditions, we address the problems of homogeneity testing, clustering with unknown k, and

finite-sample performance guarantees. In Section 8 we take a look at other distances between time-

series distributions and their relations to the telescope distance. Section 9 presents experimental

evaluation.

2. Notation and Definitions

Let (X ,F1) be a measurable space (the domain), and denote (X k,Fk) and (X N,F ) the product

probability space over X k and the induced probability space over the one-way infinite sequences

taking values in X . Time-series (or process) distributions are probability measures on the space

(XN,F ). We use the abbreviation X1..k for X1, . . . ,Xk. A set H of functions is called separable

if there is a countable set H ′ of functions such that any function in H is a pointwise limit of a

sequence of elements of H ′.
A distribution ρ is called stationary if ρ(X1..k ∈ A) = ρ(Xn+1..n+k ∈ A) for all A ∈ Fk, k,n ∈ N.

A stationary distribution is called (stationary) ergodic if

lim
n→∞

1

n
∑

i=1..n−k+1

IXi..i+k∈A = ρ(A) ρ− a.s.

for every A ∈ Fk, k ∈ N. (This definition, which is more suited for the purposes of this work, is

equivalent to the usual one expressed in terms of invariant sets, see, e.g., Gray, 1988.)

3. A Distance between Time-Series Distributions

We start with a distance between distributions on X , and then we extend it to distributions on X N.

For two probability distributions P and Q on (X ,F1) and a set H of measurable functions on X , one

can define the distance

dH (P,Q) := sup
h∈H

|EPh−EQh|. (1)

This metric in its general form has been studied at least since the 80’s (Zolotarev, 1983); its special

cases include Kolmogorov-Smirnov (Kolmogorov, 1933), Kantorovich-Rubinstein (Kantorovich
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and Rubinstein, 1957) and Fortet-Mourier (Fortet and Mourier, 1953) metrics. Note that the dis-

tance function so defined may not be measurable; however, it is measurable under mild conditions

which we assume whenever necessary. In particular, separability of H is a sufficient condition

(separability is required in most of the results below).

We are interested in the cases where dH (P,Q) = 0 implies P = Q. Note that in this case dH is a

metric (the rest of the properties are easy to see). For reasons that will become apparent shortly (see

Remark below), we are mainly interested in the sets H that consist of indicator functions. In this

case we can identify each f ∈ H with the indicator set {x : f (x) = 1} ⊂ X and (by a slight abuse of

notation) write dH (P,Q) := suph∈H |P(h)−Q(h)|. In this case it is easy to check that the following

statement holds true.

Lemma 1 dH is a metric on the space of probability distributions over X if and only if H gener-

ates F1.

The property that H generates F1 is often easy to verify directly. First of all, it trivially holds for

the case where H is the set of halfspaces in a Euclidean X . It is also easy to check that it holds if

H is the set of halfspaces in the feature space of most commonly used kernels (provided the feature

space is of the same or higher dimension than the input space), such as polynomial and Gaussian

kernels.

Based on dH we can construct a distance between time-series probability distributions. For two

time-series distributions ρ1,ρ2 we take the dH between k-dimensional marginal distributions of ρ1

and ρ2 for each k ∈ N, and sum them all up with decreasing weights.

Definition 2 (telescope distance DH) For two time series distributions ρ1 and ρ2 on the space

(X N,F ) and a sequence of sets of functions H = (H1,H2, . . .) define the telescope distance

DH(ρ1,ρ2) :=
∞

∑
k=1

wk sup
h∈Hk

|Eρ1
h(X1, . . . ,Xk)−Eρ2

h(Y1, . . . ,Yk)|, (2)

where wk, k ∈ N is a sequence of positive summable real weights (e.g., wk = 1/k2 or wk = 2−k).

Lemma 3 DH is a metric if and only if dHk
is a metric for every k ∈ N.

Proof The statement follows from the fact that two process distributions are the same if and only if

all their finite-dimensional marginals coincide.

Definition 4 (empirical telescope distance D̂) For a pair of samples X1..n and Y1..m define the em-

pirical telescope distance as

D̂H(X1..n,Y1..m) :=

min{m,n}

∑
k=1

wk sup
h∈Hk

∣

∣

∣

∣

∣

1

n− k+1

n−k+1

∑
i=1

h(Xi..i+k−1)−
1

m− k+1

m−k+1

∑
i=1

h(Yi..i+k−1)

∣

∣

∣

∣

∣

. (3)

All the methods presented in this work are based on the empirical telescope distance. The key

fact is that it is an asymptotically consistent estimate of the telescope distance, that is, the latter can

be consistently estimated based on sampling.
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Theorem 5 Let H = (Hk)k∈N be a sequence of separable sets Hk of indicator functions (over X k)

of finite VC dimension such that Hk generates Fk. Then for every stationary ergodic time series

distributions ρX and ρY generating samples X1..n and Y1..m we have

lim
n,m→∞

D̂H(X1..n,Y1..m) = DH(ρX ,ρY )a.s.

Note that D̂H is a biased estimate of DH, and, unlike in the i.i.d. case, the bias may depend on the

distributions; however, the bias is o(n).

Remark. The condition that the sets Hk are sets of indicator function of finite VC dimension comes

from the results of Adams and Nobel (2012), who show that for any stationary ergodic distribution

ρ, under these conditions, suph∈Hk

1
n−k+1 ∑

n−k+1
i=1 h(Xi..i+k−1) is an asymptotically consistent estimate

of suph∈Hk
Eρh(X1, . . . ,Xk). This fact implies that dHk

can be consistently estimated, from which the

theorem is derived.

Proof [of Theorem 5] As established by Adams and Nobel (2012), under the conditions of the

theorem we have

lim
n→∞

sup
h∈Hk

1

n− k+1

n−k+1

∑
i=1

h(Xi..i+k−1) = sup
h∈Hk

EρX
h(X1, . . . ,Xk) ρX -a.s. (4)

for all k ∈ N, and likewise for ρY . Fix an ε > 0. We can find a T ∈ N such that

∑
k>T

wk ≤ ε. (5)

Note that T depends only on ε. Moreover, as follows from (4), for each k = 1..T we can find an Nk

such that
∣

∣

∣
sup
h∈Hk

1

n− k+1

n−k+1

∑
i=1

h(Xi..i+k−1)− sup
h∈Hk

EρX
h(X1..k)

∣

∣

∣
≤ ε/T. (6)

Let Nk := maxi=1..T Ni and define analogously M for ρY . Thus, for n ≥ N, m ≥ M we have

D̂H(X1..n,Y1..m)

≤
T

∑
k=1

wk sup
h∈Hk

∣

∣

∣

∣

∣

1

n− k+1

n−k+1

∑
i=1

h(Xi..i+k−1)−
1

m− k+1

m−k+1

∑
i=1

h(Yi..i+k−1)

∣

∣

∣

∣

∣

+ ε

≤
T

∑
k=1

wk sup
h∈Hk

{∣

∣

∣

∣

∣

1

n− k+1

n−k+1

∑
i=1

h(Xi..i+k−1)−Eρ1
h(X1..k)

∣

∣

∣

∣

∣

+ |Eρ1
h(X1..k)−Eρ2

h(Y1..k)|

+

∣

∣

∣

∣

∣

Eρ2
h(Y1..k)−

1

m− k+1

m−k+1

∑
i=1

h(Yi..i+k−1)

∣

∣

∣

∣

∣

}

+ ε

≤ 3ε+DH(ρX ,ρY ),

where the first inequality follows from the definition (3) of D̂H and from (5), and the last inequality

follows from (6). Since ε was chosen arbitrary the statement follows.
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4. Calculating D̂H Using Binary-Classification Methods

The methods for solving various statistical problems that we suggest are all based on D̂H. The main

appeal of this approach is that D̂H can be calculated using binary classification methods. Here we

explain how to do it.

The definition (3) of DH involves calculating l summands (where l := min{n,m}), that is

sup
h∈Hk

∣

∣

∣

∣

∣

1

n− k+1

n−k+1

∑
i=1

h(Xi..i+k−1)−
1

m− k+1

m−k+1

∑
i=1

h(Yi..i+k−1)

∣

∣

∣

∣

∣

(7)

for each k = 1..l. Assuming that h ∈ Hk are indicator functions, calculating each of the summands

amounts to solving the following k-dimensional binary classification problem. Consider Xi..i+k−1,

i = 1..n− k+1 as class-1 examples and Yi..i+k−1, i = 1..m− k+1 as class-0 examples. The supre-

mum (7) is attained on h ∈ Hk that minimizes the empirical risk, with examples weighted with

respect to the sample size. Indeed, we can define the weighted empirical risk of any h ∈ Hk as

1

n− k+1

n−k+1

∑
i=1

(1−h(Xi..i+k−1))+
1

m− k+1

m−k+1

∑
i=1

h(Yi..i+k−1), (8)

minimising which can be easily seen to be equivalent to (7).

Thus, as long as we have a way to find h ∈ Hk that minimizes empirical risk, we have a con-

sistent estimate of DH (ρX ,ρY ), under the mild conditions on H required by Theorem 5. Since

the dimension of the resulting classification problems grows with the length of the sequences, one

should prefer methods that work in high dimensions, such as soft-margin SVMs (Cortes and Vapnik,

1995).

A particularly remarkable feature is that the choice of Hk is much easier for the problems that we

consider than in the binary classification problem. Specifically, if (for some fixed k) the classifier

that achieves the minimal (Bayes) error for the classification problem is not in Hk, then obviously

the error of an empirical risk minimizer will not tend to zero, no matter how much data we have. In

contrast, all we need to achieve asymptotically 0 error in estimating D̂ (and therefore, in the learning

problems considered below) is that the sets Hk generate Fk and have a finite VC dimension (for each

k). This is the case already for the set of half-spaces in Rk. In other words, the approximation error

of the binary classification method (the classification error of the best f in Hk) is not important.

What is important is the estimation error; for asymptotic consistency results it has to go to 0 (hence

the requirement on the VC dimension); for non-asymptotic results, it will appear in the error bounds,

see Section 7. Thus, we have the following statement.

Claim 1 The error |DH(ρX ,ρY )− D̂H(X ,Y )|, and thus the error of the algorithms below, can be

much smaller than the error of classification algorithms used to calculate DH(X ,Y ).

We can conclude that, beyond the requirement that Hk generate Fk for each k ∈ N, the choice

of Hk (or, say, of the kernel to use in SVM) is entirely up to the needs and constraints of specific

applications.

Remark (number of summands in D̂H) Finally, we note that while in the definition of the empir-

ical distributional distance (3) the number of summands is l (the length of the shorter of the two
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samples), it can be replaced with any γl such that γl → ∞, without affecting any asymptotic consis-

tency results. In other words, Theorem 5, as well as all the consistency statements below, holds true

for l replaced with any non-decreasing function γl that tends to infinity with l. A practically viable

choice is γl = log l; in fact, there is no reason to choose faster growing γn since the estimates for

higher-order summands will not have enough data to converge. This is also the value we use in the

experiments.

Remark (relation to total variation) An illustrative example1 of the choice of the sets Hk is the

set of indicators of all measurable subsets of X k. In this case each summand in (2) is the total vari-

ation distance between the k-dimensional marginal distributions of ρ1 and ρ2. Take, for simplicity,

k = 1; denoting P and Q the corresponding single-dimensional marginals, the distance becomes

supA |P(A)−Q(A)| (cf. (1)). This supremum is reached on the set A∗ := {x ∈ X : f (x) ≥ g(x)},

where f and g are densities of P and Q with respect to some arbitrary measure that dominates both

P and Q (e.g., 1/2(P+Q)). A binary classifier corresponding to a set A declares P if x ∈ A and Q

otherwise. The optimal classification error is infA(1−P(A)+Q(A)) = 1− supA(P(A)+Q(A)) =
1−P(A∗)+Q(A∗) (cf. (8)). In general, estimating the total variation distance (and finding the best

classifier) is not possible, so using smaller sets Hk can be viewed as a regularization of this problem.

5. The Three-Sample Problem

We start with a conceptually simple problem known in statistics as the three-sample problem (some-

times also called time-series classification). We are given three samples X = (X1, . . . ,Xn), Y =
(Y1, . . . ,Ym) and Z = (Z1, . . . ,Zl). It is known that X and Y were generated by different time-series

distributions, whereas Z was generated by the same distribution as either X or Y . It is required

to find out which one is the case. Both distributions are assumed to be stationary ergodic, but no

further assumptions are made about them (no independence, mixing or memory assumptions). The

three sample-problem for dependent time series has been addressed by Gutman (1989) for Markov

processes and by Ryabko and Ryabko (2010) for stationary ergodic time series. The latter work

uses an approach based on the distributional distance.

Indeed, to solve this problem it suffices to have consistent estimates of some distance between

time series distributions. Thus, we can use the telescope distance. The following statement is a

simple corollary of Theorem 5.

Theorem 6 Let the samples X = (X1, . . . ,Xn), Y = (Y1, . . . ,Ym) and Z = (Z1, . . . ,Zl) be generated

by stationary ergodic distributions ρX ,ρY and ρZ , with ρX 6= ρY and either (i) ρZ = ρX or (ii)

ρZ = ρY . Let the sets Hk, k ∈ N be separable sets of indicator functions over X k. Assume that

each set Hk, k ∈ N has a finite VC dimension and generates Fk. A test that declares that (i) is

true if D̂H(Z,X) ≤ D̂H(Z,Y ) and that (ii) is true otherwise, makes only finitely many errors with

probability 1 as n,m, l → ∞.

It is straightforward to extend this theorem to more than two classes; in other words, instead of X

and Y one can have an arbitrary number of samples from different stationary ergodic distributions.

A further generalization of this problem is the problem of time-series clustering, considered in the

next section.

1. This example was suggested by an anonymous reviewer.
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6. Clustering Time Series

We are given N time-series samples X1 = (X1
1 , . . . ,X

1
n1
), . . . ,XN = (XN

1 , . . . ,XN
nN
), and it is required to

cluster them into K groups, where, in different settings, K may be either known or unknown. While

there may be many different approaches to define what should be considered a good clustering,

and, thus, what it means to have a consistent clustering algorithm, for the problem of clustering

time-series samples there is a natural choice, proposed by Ryabko (2010a): Assume that each of

the time-series samples X1 = (X1
1 , . . . ,X

1
n1
), . . . ,XN = (XN

1 , . . . ,XN
nN
) was generated by one out of K

different time-series distributions ρ1, . . . ,ρK . These distributions are unknown. The target clustering

is defined according to whether the samples were generated by the same or different distributions:

the samples belong to the same cluster if and only if they were generated by the same distribution.

A clustering algorithm is called asymptotically consistent if with probability 1 from some n on it

outputs the target clustering, where n is the length of the shortest sample n := mini=1..N ni ≥ n′.
Again, to solve this problem it is enough to have a metric between time-series distributions that

can be consistently estimated. Our approach here is based on the telescope distance, and thus we

use D̂.

The clustering problem is relatively simple if the target clustering has what is called the strict

separation property (Balcan et al., 2008): every two points in the same target cluster are closer

to each other than to any point from a different target cluster. The following statement is an easy

corollary of Theorem 5.

Theorem 7 Let the sets Hk, k ∈ N be separable sets of indicator functions over X k. Assume that

each set Hk, k ∈ N has a finite VC dimension and generates Fk. If the distributions ρ1, . . . ,ρK

generating the samples X1 = (X1
1 , . . . ,X

1
n1
), . . . ,XN = (XN

1 , . . . ,XN
nN
) are stationary ergodic, then with

probability 1 from some n := mini=1..N ni on the target clustering has the strict separation property

with respect to D̂H.

With the strict separation property at hand, if the number of clusters K is known, it is easy to

find asymptotically consistent algorithms. Here we give some simple examples, but the theorem

below can be extended to many other distance-based clustering algorithms.

The average linkage algorithm works as follows. The distance between clusters is defined as

the average distance between points in these clusters. First, put each point into a separate cluster.

Then, merge the two closest clusters; repeat the last step until the total number of clusters is K.

The farthest point clustering works as follows. Assign c1 := X1 to the first cluster. For i = 2..K,

find the point X j, j ∈ {1..N} that maximizes the distance mint=1..i D̂H(X
j,ct) (to the points already

assigned to clusters) and assign ci := X j to the cluster i. Then assign each of the remaining points

to the nearest cluster. The following statement is a corollary of Theorem 7.

Theorem 8 Under the conditions of Theorem 7, average linkage and farthest point clusterings are

asymptotically consistent, provided the correct number of clusters K is given to the algorithm.

Note that we do not require the samples to be independent; the joint distributions of the samples may

be completely arbitrary, as long as the marginal distribution of each sample is stationary ergodic.

These results can be extended to the online setting in the spirit of Khaleghi et al. (2012).

For the case of unknown number of clusters, the situation is different: one has to make stronger

assumptions on the distributions generating the samples, since there is no algorithm that is consistent

for all stationary ergodic distributions (Ryabko, 2010b); such stronger assumptions are considered

in the next section.
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7. Speed of Convergence

The results established so far are asymptotic out of necessity: they are established under the as-

sumption that the distributions involved are stationary ergodic, which is too general to allow for any

meaningful finite-time performance guarantees. While it is interesting to be able to establish consis-

tency results under such general assumptions, it is also interesting to see what results can be obtained

under stronger assumptions. Moreover, since it is usually not known in advance whether the data

at hand satisfies given assumptions or not, it appears important to have methods that have both

asymptotic consistency in the general setting and finite-time performance guarantees under stronger

assumptions. It turns out that this is possible: for the methods based on D̂ one can establish both the

asymptotic performance guarantees for all stationary ergodic distributions and finite-sample perfor-

mance guarantees under stronger assumptions, namely the uniform mixing conditions introduced

below.

Another reason to consider stronger assumptions on the distributions generating the data is that

some statistical problems, such as homogeneity testing or clustering when the number of clusters is

unknown, are provably impossible to solve under the only assumption of stationary ergodic distri-

butions, as shown by Ryabko (2010b).

Thus, in this section we analyse the speed of convergence of D̂ under certain mixing conditions,

and use it to construct solutions for the problems of homogeneity and clustering with an unknown

number of clusters, as well as to establish finite-time performance guarantees for the methods pre-

sented in the previous sections.

A stationary distribution on the space of one-way infinite sequences (X N,F ) can be uniquely

extended to a stationary distribution on the space of two-way infinite sequences (X Z,FZ) of the

form . . . ,X−1,X0,X1, . . . .

Definition 9 (β-mixing coefficients) For a process distribution ρ define the mixing coefficients

β(ρ,k) := sup
A∈σ(X−∞..0),
B∈σ(Xk..∞)

|ρ(A∩B)−ρ(A)ρ(B)|

where σ(..) denotes the sigma-algebra of the random variables in brackets.

When β(ρ,k)→ 0 the process ρ is called uniformly β-mixing (with coefficients β(ρ,k)); this con-

dition is much stronger than ergodicity, but is much weaker than the i.i.d. assumption. For more

information on mixing see, for example, Bosq (1996).

7.1 Speed of Convergence of D̂

Assume that a sample X1..n is generated by a distribution ρ that is uniformly β-mixing with coeffi-

cients β(ρ,k). Assume further that Hk is a set of indicator functions with a finite VC dimension dk,

for each k ∈ N.

Since in this section we are after finite-time bounds, we fix a concrete choice of the weights wk

in the definition of D̂ (Definition 2),

wk := 2−k. (9)
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The general tool that we use to obtain performance guarantees in this section is the following

bound that can be obtained from the results of Karandikar and Vidyasagar (2002).

qn(ρ,Hk,ε) := ρ

(

sup
h∈Hk

∣

∣

∣

∣

∣

1

n− k+1

n−k+1

∑
i=1

h(Xi..i+k−1)−Eρh(X1..k)

∣

∣

∣

∣

∣

> ε

)

≤ nβ(ρ, tn − k)+8tdk+1
n e−lnε2/8, (10)

where tn are any integers in 1..n and ln = n/tn. The parameters tn should be set according to the

values of β in order to optimize the bound.

One can use similar bounds for classes of finite Pollard dimension (Pollard, 1984) or more

general bounds expressed in terms of covering numbers, such as those given by Karandikar and

Vidyasagar (2002). Here we consider classes of finite VC dimension only for the ease of the expo-

sition and for the sake of continuity with the previous section (where it was necessary).

Furthermore, for the rest of this section we assume geometric β-mixing distributions, that is,

β(ρ, t)≤ γt for some γ < 1. Letting ln = tn =
√

n the bound (10) becomes

qn(ρ,Hk,ε)≤ nγ
√

n−k +8n(dk+1)/2e−
√

nε2/8. (11)

Lemma 10 Let two samples X1..n and Y1..m be generated by stationary distributions ρX and ρY

whose β-mixing coefficients satisfy β(ρ., t) ≤ γt for some γ < 1. Let Hk, k ∈ N be some sets of

indicator functions on X k whose VC dimension dk is finite and non-decreasing with k. Then

P(|D̂H(X1..n,Y1..m)−DH(ρX ,ρY )|> ε)≤ 2∆(ε/4,n′) (12)

where n′ := min{n,m}, the probability is with respect to ρX ×ρY and

∆(ε,n) :=− logε(nγ
√

n+log(ε)+8n(d− logε+1)/2e−
√

nε2/8). (13)

Proof From (9) we have ∑∞
k=− logε/2 wk < ε/2. Using this and the definitions 2 and 4 of DH and D̂H

we obtain

P(|D̂H(X1..n1
,Y1..n2

)−DH(ρX ,ρY )|> ε)≤
− log(ε/2)

∑
k=1

(qn(ρX ,Hk,ε/4)+qn(ρY ,Hk,ε/4)),

which, together with (11), implies the statement.

7.2 Homogeneity Testing

Given two samples X1..n and Y1..m generated by distributions ρX and ρY respectively, the problem

of homogeneity testing (or the two-sample problem) consists in deciding whether ρX = ρY . A test

is called (asymptotically) consistent if its probability of error goes to zero as n′ := min{m,n} goes

to infinity. As mentioned above, in general, for stationary ergodic time series distributions there

is no asymptotically consistent test for homogeneity (Ryabko, 2010b) (even for binary-valued time

series); thus, stronger assumptions are in order.

Homogeneity testing is one of the classical problems of mathematical statistics, and one of the

most studied ones. Vast literature exits on homogeneity testing for i.i.d. data, and for dependent
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processes as well. We do not attempt to survey this literature here. Our contribution to this line of

research is to show that this problem can be reduced (via the telescope distance) to binary classifi-

cation, in the case of strongly dependent processes satisfying some mixing conditions.

It is easy to see that under the mixing conditions of Lemma 10 a consistent test for homogeneity

exists, and finite-sample performance guarantees can be obtained. It is enough to find a sequence

εn → 0 such that ∆(εn,n)→ 0 (see (13)). Then the test can be constructed as follows: say that the

two sequences X1..n and Y1..m were generated by the same distribution if D̂H(X1..n,Y1..m)< εmin{n,m};

otherwise say that they were generated by different distributions.

Theorem 11 Under the conditions of Lemma 10 the probability of Type I error (the distributions are

the same but the test says they are different) of the described test is upper-bounded by 2∆(ε/4,n′).
The probability of Type II error (the distributions are different but the test says they are the same) is

upper-bounded by 2∆((δ− ε)/4,n′) where δ := DH(ρX ,ρY ).

Proof The statement is an immediate consequence of Lemma 10. Indeed, for the Type I error,

the two sequences are generated by the same distribution, so the probability of error of the test is

given by (12) with DH(ρX ,ρY ) = 0. The probability of Type II error is given by P(DH(ρX ,ρY )−
D̂H(X1..n1

,Y1..n2
)> δ− ε), which is upper-bounded by 2∆((δ− ε))/4,n′) as follows from (12).

The optimal choice of εn may depend on the speed at which dk (the VC dimension of Hk)

increases; however, for most natural cases (recall that Hk are also parameters of the algorithm) this

growth is polynomial, so the main term to control is e−
√

nε2/8.

For example, if Hk is the set of halfspaces in X k = Rk then dk = k + 1 and one can choose

εn := n−1/8. The resulting probability of Type I error decreases as exp(−n1/4).

7.3 Clustering with a Known or Unknown Number of Clusters

If the distributions generating the samples satisfy certain mixing conditions, then we can augment

Theorems 7 and 8 with finite-sample performance guarantees.

Theorem 12 Let the distributions ρ1, . . . ,ρk generating the samples X1 = (X1
1 , . . . ,X

1
n1
), . . . , XN =

(XN
1 , . . . ,XN

nN
) satisfy the conditions of Lemma 10. Let n := mini=1..N ni and δ :=

mini, j=1..N,i6= j DH(ρi,ρ j). Then with probability at least 1−N(N − 1)∆(δ/12,n′) the target clus-

tering of the samples has the strict separation property. In this case single linkage and farthest

point algorithms output the target clustering.

Proof Note that a sufficient condition for the strict separation property to hold is that for every pair

i, j of samples generated by the same distribution we have D̂H(X
i,X j)≤ δ/3, and for every pair i, j

of samples generated by different distributions we have D̂H(X
i,X j)≥ 2δ/3. Using Lemma 10, the

probability of such an even (for each pair) is upper-bounded by 2∆(δ/12,n′), which, multiplied by

the total number N(N −1)/2 of pairs gives the statement. The second statement is obvious.

As with homogeneity testing, while in the general case of stationary ergodic distributions it is

impossible to have a consistent clustering algorithm when the number of clusters k is unknown,

the situation changes if the distributions satisfy certain mixing conditions. In this case a consistent

clustering algorithm can be obtained as follows. Assign to the same cluster all samples that are at
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most εn-far from each other, where the threshold εn is selected the same way as for homogeneity

testing: εn → 0 and ∆(εn,n)→ 0. The optimal choice of this parameter depends on the choice of Hk

through the speed of growth of the VC dimension dk of these sets.

Theorem 13 Given N samples generated by k different stationary distributions ρi, i = 1..k (un-

known k) all satisfying the conditions of Lemma 10, the probability of error (misclustering at least

one sample) of the described algorithm is upper-bounded by

N(N −1)max{∆(ε/4,n′),∆((δ− ε)/4,n′)}

where δ := mini, j=1..k,i6= j DH(ρi,ρ j) and n = mini=1..N ni, with ni, i = 1..N being lengths of the

samples.

Proof The statement follows from Theorem 11.

8. Other Metrics for Time-Series Distributions

The previous sections introduce a new metric on the space of time-series distributions, and use

its empirical estimates to solve several learning problems. In this section we attempt to put the

telescope distance into a more general context, and take a broader look at metrics between time-

series distributions.

Introduce the notation µk for the k-dimensional marginal distribution of a time-series distribu-

tion µ.

8.1 sum Distances

Observe that the telescope distance DH has the form

D(µ,ν) = ∑
k∈N

wkdk(µk,νk), (14)

where wk are summable positive real weights.

It is easy to see that distances of this form can be consistently estimated, as long as dk can be

consistently estimated for each k ∈ N; this is formalized in the following statement.

Proposition 14 (estimating sum-based distances) Let C be a set of distributions over X N. Let

dk,k ∈N be a series of distances on the spaces of distributions over X k, such that dk(µk,νk)≤ a ∈R
for all µ,ν ∈ C and such that there exists a series d̂k(X1..n,Y1..n),k ∈N of their consistent estimates:

for each µ,ν ∈ C we have limn→∞ d̂k(X1..n,Y1..n) = dk(µk,νk) a.s., whenever µ,ν ∈ C are chosen to

generate the sequences. Then the distance D given by (14) can be consistently estimated using the

estimate ∑k∈N wkd̂k(X1..n,Y1..n).

Proof The proof is an easy generalization of the proof of Theorem 5, with the condition on d̂k used

instead of (4).

Clearly, DH is an example of a distance in the form (14), and it satisfies the conditions of the

proposition with C being the set of all stationary ergodic processes.
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Another example of a distance in the form (14) is given by the so-called distributional distance

(Gray, 1988; Shields, 1996), whose definition is given below. Empirical estimates of this distance

are asymptotically consistent for stationary ergodic time series, and thus can be used (Ryabko and

Ryabko, 2010; Ryabko, 2010a; Khaleghi et al., 2012; Khaleghi and Ryabko, 2012; Ryabko, 2012)

to solve various statistical problems, including those considered above.

To define the distributional distance, let, for each k, l ∈ N, the set Bk,l be some partition of

the set X k, such that the set Bk = ∪l∈NBk,l generates Fk. Let also B = ∪∞
k=1Bk. Note that the set

{B×X N : B ∈ Bk,l,k, l ∈ N} generates F .

Definition 15 (distributional distance) The distributional distance is defined for a pair of pro-

cesses ρ1,ρ2 as follows

Ddd(ρ1,ρ2) :=
∞

∑
m,l=1

wmwl ∑
B∈Bm,l

|ρ1(B)−ρ2(B)|, (15)

where wk,k ∈ N is a summable sequence of positive real weights (e.g., w j = 2− j).

Remark. A more general definition, which is not specific to time-series distributions, is to take any

sequence B j ∈ F1, j ∈N of events that generate the sigma-algebra F of a probability space (X ,F ),
and then define

D′
dd(ρ1,ρ2) :=

∞

∑
j=1

w j|ρ1(B j)−ρ2(B j)|; (16)

see Gray (1988) for a general treatment. The latter definition is sometimes more convenient for

theoretical analysis (Ryabko, 2012), while the distance (15), which makes explicit the marginal

distributions on X m, m ∈ N and the level l of discretisation Bm,l of each set X m, is more suited

for time-series, and, specifically, for implementing algorithms, see Ryabko and Ryabko (2010),

Khaleghi et al. (2012) and Khaleghi and Ryabko (2012).

In general, it is perhaps impossible to tell which distance, specifically, DH or Ddd , should be

preferred for which problem. Conceptually, one of the advantages of the telescope distance DH is

that one can use different sets H—the choice that makes it adaptable to applications. Another is that

one can reuse readily available classification methods for calculating its empirical estimates. One

formal way to compare different metrics is to compare the resulting topologies. This is done in the

end of this section.

8.2 sup Distances

A different way to construct a distance between time-series distributions based on their finite-

dimensional marginals is to use the supremum instead of summation in (14):

d(µ,ν) = sup
k∈N

dk(µk,νk). (17)

Some commonly used metrics are defined in the form (17) or have natural interpretations in this

form, as the following two examples show.

Definition 16 (total variation) For time-series distributions ν,µ the total variation distance be-

tween them is defined as Dtv(µ,ν) := supA∈F |µ(A)−ν(A)|.
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It is easy to see that Dtv(µ,ν) = supk∈N supA∈Fk
|µ(A)−ν(A)|, so that the total variation distance has

the form (17).

However, the total variation distance is not very useful for time-series distributions for the fol-

lowing two reasons. First of all, for stationary ergodic distributions it is degenerate: Dtv(µ,ν) = 1 if

and only if µ 6= ν. This follows from the fact that any two different stationary ergodic distributions

are singular. Such a distance could still be useful as a formalization of the problem of homogeneity

testing. However, the problem of homogeneity testing is impossible to solve based on sampling for

stationary ergodic distributions (and even for a smaller family of B processes, see below) (Ryabko,

2010b), so the use of this distance remains limited to more restrictive classes of distributions.

This hints at an intrinsic problem with distances defined in the form (17). The problem is in the

difficulties to estimate such metrics based on sampling. At each time step t we observe only a sample

of finite length, say nt , and based on this we want to estimate a quantity that involves k-dimensional

marginals for all k, including those with k > nt . Considering a growing (with t) number of marginals

for the estimate may be a route to take, but this turns out to be difficult to analyse, especially if no

rates of convergence can be established for the set of time-series distributions at hand. This problem

is highlighted by the example of the so-called d̄ distance, whose definition follows.

Definition 17 (d̄ distance) Assume some distance δ over X is given. For two time-series distribu-

tions µ and ν define

d̄(µ,ν) := sup
k∈N

1

k
inf
p∈P

k

∑
i=1

Epδ(xi,yi),

where P is the set of all distributions over X k ×X k generating a pair of sequences x1..k,y1..k whose

marginal distributions are µk and νk correspondingly.

A process is called a B-process (or a Bernoulli process) if it is in the d̄-closure of the set of all

aperiodic stationary ergodic k-step Markov processes, where k ∈ N. For more information on d̄-

distance and B-processes see Gray (1988) and Shields (1996). The set of B-processes is a strict

subset of the set of all stationary ergodic time-series distributions. It turns out that d̄ distance is

impossible to estimate for the latter, while it can be estimated for the former (Ornstein and Weiss,

1990).

Theorem 18 (Ornstein and Weiss, 1990) There exists an estimator d̂(X1..n,Y1..n) such that, if

X1..n,Y1..n are generated by B-processes µ and ν then d̂(X1..n,Y1..n)→ d̄(µ,ν) a.s. However, for any

estimator d̂(X1..n,Y1..n) there is a pair of stationary ergodic processes µ and ν such that

limsupn→∞ |d̂(X1..n,Y1..n)− d̄(µ,ν)|> 1/2.

8.3 Comparison with the Distributional Distance

In this section we show that the telescope distance is stronger than the distributional distance in

the topological sense. Since in fact both the telescope distance and the distributional distance are

families of distances (the telescope distance depends on the sequence H), we will fix a simple natural

choice of each of these metrics. In general, different choices of parameters produce topologically

non-equivalent metrics; it is easy to check that the analysis in this section extends to many other

natural choices.
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Thus, for the purpose of this section, let us fix X = R and let H0
k be the set of halfspaces in X k.

Denote H0 := (H 0
k : k ∈N). Clearly, these Hk satisfy all the conditions of the theorems of Sections 5

and 6.

For the distributional distance (Definition 15), set Bk,l to be the partition of the set X k into k-

dimensional cubes with volume hk
l = (1/l)k. Denote D0

dd the distributional distance Ddd with this

set of parameters.

Definition 19 A metric d1 is said to be stronger than a metric d2 if any sequence that converges in

d1 also converges in d2. If, in addition, d2 is not stronger than d1, then d1 is called strictly stronger.

Note that for the distributional distance, if we use the same sets Bk to generate the sigma algebras

X k then the distance defined by (15) is stronger than the distance defined by (16).

Theorem 20 DH0 is strictly stronger than D0
dd .

Proof Fix any ε > 0 and find a T ∈ N such that ∑m,l>T wmwl < ε. Let ρi, i ∈ N be a sequence of

process measures that converges in DH0 . Let Ak be the set of all complements to X k of cubes with

sides of length s, for all s ∈N. Note that any cube B in Bk, as well as any set A in Ak, can be obtained

by intersecting 2k halfspaces. Therefore, we have

sup
B∈Bk∪Ak

|ρi(B)−ρ j(B)| ≤ 2kdHk
(ρi,ρ j)≤ 2kw−1

k DH0(ρi,ρ j), (18)

where the second inequality follows from the definition of DH0 . Observe that for each i ∈N one can

find a set Ai ∈ Ak such that ρi(Ai)< ε/2. From this, (18) and the fact that the sequence ρi converges

in DH0 , we conclude that there is a set A ∈ Ak such that

ρi(A)< ε

for all i ≥ jk. For all k, l ∈ N one can find Mk,l ∈ N such that the complement of A (which is a cube

in X k) is contained in the union of Mk,l cubes from Bk,l . Let M := maxk,l≤T Mk,l and J := maxi≤T ji.

Using (18) and the definition of the partitions Bk,l we can derive

∑
B∈Bk,l ,B*Ak

|ρi(B)−ρ j(B)| ≤ 2MTw−1
T DH0(ρi,ρ j)

for any i, j ≥ J and all k, l ≤ T . Increasing J if necessary to have 2MTw−1
T DH0(ρi,ρ j) < ε for all

i, j ≥ J, we obtain

D0
dd(ρi,ρ j)≤

T

∑
m,l=1

wmwl ∑
B∈Bm,l ,B*Am

|ρi(B)−ρ j(B)|+2ε ≤ 3ε

for all i, j > J, which means that the sequence ρi, i ∈N converges in D0
dd . Thus, DH0 is stronger than

D0
dd .

It remains to show that D0
dd is not stronger than DH0 . To see this, consider the following se-

quence of subsets of X = R. f is the dot {0}, and fk is the interval [0,1/k], for each k ∈ N. Define

the distributions ν j for j ∈ N as uniform on f j, and let ν be concentrated on f ; since we need time-

series distributions, extend this i.i.d. for all n ∈ N. It is easy to check that limi∈N D0
dd(νi,ν0) = 0

while DH0(νi,ν0) = 1 for all i > 0.
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Figure 1: Error of two-class clustering using TSSVM; 10 time series in each target cluster, averaged

over 20 runs.

9. Experimental Evaluation

For experimental evaluation we chose the problem of time-series clustering. The average-linkage

clustering is used, with the telescope distance between samples calculated using an SVM, as de-

scribed in Section 4. In all experiments, SVM is used with radial basis kernel, with default parame-

ters of libsvm (Chang and Lin, 2011). The parameters wk in the definition of the telescope distance

(Definition 2) are set to wk := k−2.

9.1 Synthetic Data

For the artificial setting we chose highly-dependent time-series distributions which have the same

single-dimensional marginals and which cannot be well approximated by finite- or countable-state

models. Variants of this family of distributions are standard examples in ergodic theory and dy-

namical systems (see, for example, Billingsley, 1965; Gray, 1988; Shields, 1996). The distributions

ρ(α), α ∈ (0,1), are constructed as follows. Select r0 ∈ [0,1] uniformly at random; then, for each

i = 1..n obtain ri by shifting ri−1 by α to the right, and removing the integer part. The time series

(X1,X2, . . .) is then obtained from ri by drawing a point from a distribution law N1 if ri < 0.5 and

from N2 otherwise. N1 is a 3-dimensional Gaussian with mean of 0 and covariance matrix Id×1/4.

N2 is the same but with mean 1. If α is irrational2 then the distribution ρ(α) is stationary ergodic,

but does not belong to any simpler natural distribution family; in particular, it is not a B-processes

(Shields, 1996). The single-dimensional marginal is the same for all values of α. The latter two

properties make all parametric and most non-parametric methods inapplicable to this problem.

In our experiments, we use two process distributions ρ(αi), i ∈ {1,2}, with α1 = 0.31..., α2 =
0.35...,. The dependence of error rate on the length of time series is shown on Figure 1. One

clustering experiment on sequences of length 1000 takes about 5 min. on a standard laptop.

9.2 Real Data

To demonstrate the applicability of the proposed methods to realistic scenarios, we chose the brain-

computer interface data from BCI competition III (Millán, 2004). The data set consists of (pre-

processed) BCI recordings of mental imagery: a person is thinking about one of three subjects

2. In the experiments we used a longdouble with a long mantissa
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s1 s2 s3

TSSVM 84% 81% 61%

DTW 46% 41% 36%

KCpA 79% 74% 61%

SVM 76% 69% 60%

Table 1: Clustering accuracy in the BCI data set. 3 subjects (columns), 4 methods (rows). Our

method is TSSVM.

(left foot, right foot, a random letter). Originally, each time series consisted of several consecutive

sequences of different classes, and the problem was supervised: three time series for training and

one for testing. We split each of the original time series into classes, and then used our clustering

algorithm in a completely unsupervised setting. The original problem is 96-dimensional, but we

used only the first 3 dimensions (using all 96 gives worse performance). The typical sequence

length is 300. The performance is reported in Table 1, labelled TSSVM. All the computation for this

experiment takes approximately 6 minutes on a standard laptop.

The following methods were used for comparison. First, we used dynamic time wrapping

(DTW) (Sakoe and Chiba, 1978) which is a popular base-line approach for time-series clustering.

The other two methods in Table 1 are from the paper of Harchaoui et al. (2008). The comparison is

not fully relevant, since the results of Harchaoui et al. (2008) are for different settings; the method

KCpA was used in change-point estimation method (a different but also unsupervised setting), and

SVM was used in a supervised setting. The latter is of particular interest since the classification

method we used in the telescope distance is also SVM, but our setting is unsupervised (cluster-

ing). On this data set the telescope distance demonstrates better performance than the comparison

methods, which indicates that it can be useful in real-world scenarios.

10. Outlook

We have proposed a binary-classifier-based metric and shown how it can be used to solve several

problems concerning highly dependent time series. The consistency results obtained concern the

use of the empirical risk minimizer as a binary classifier. For applications this suggests using clas-

sifiers that approximate empirical risk minimizers over target sets of (indicator) functions. It is easy

to extend the definition of the metric so that any classifier can be used, including such classifiers

as nearest-neighbours rules. However, in order to extend the obtained results to such classifiers,

one would need to establish the consistency of the empirical estimates of the resulting metric be-

tween time-series distributions, which means extending the results concerning the corresponding

classifiers from the i.i.d. samples to stationary ergodic time series. Note that, while consistency of

the empirical estimates of the time-series metric used is sufficient for the analysis of the learning

problems considered in this work, it is not sufficient for some other learning problems concerning

dependent time series that rely on a metric between time-series distributions. For example, some

change-point problems for stationary ergodic time series can be solved using the distributional dis-

tance (Ryabko and Ryabko, 2010; Khaleghi and Ryabko, 2012, 2013). It remains to see whether the

same results can be obtained with the telescope distance and its generalizations.
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