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Abstract

Markov jump processes (or continuous-time Markov chaimg)aasimple and important class of
continuous-time dynamical systems. In this paper, we &attk¢ problem of simulating from the
posterior distribution over paths in these models, givertigdeand noisy observations. Our ap-
proach is an auxiliary variable Gibbs sampler, and is basgti®idea ofluniformization This sets
up a Markov chain over paths by alternately sampling a fireteo$ virtual jump times given the
current path, and then sampling a new path given the set aheand virtual jump times. The
first step involves simulating a piecewise-constant inhgemeous Poisson process, while for the
second, we use a standard hidden Markov model forward fiidvackward sampling algorithm.
Our method is exact and does not involve approximationgilike-discretization. We demonstrate
how our sampler extends naturally to MJP-based models ligwekdl/-modulated Poisson processes
and continuous-time Bayesian networks, and show signifa@mputational benefits over state-of-
the-art MCMC samplers for these models.

Keywords: Markov jump process, MCMC, Gibbs sampler, uniformizatittarkov-modulated
Poisson process, continuous-time Bayesian network

1. Introduction

The Markov jump process (MJP) extends the discrete-time Markov chaontinaous time, and
forms a simple and popular class of continuous-time dynamical systems. &siBaymodelling
applications, the MJP is widely used as a prior distribution over the pieceweisgant evolution of
the state of a system. The Markov property of the MJP makes it both a realisliel foo various
physical and chemical systems, as well as a convenient approximatimefercomplex phenomena
in biology, finance, queueing systems etc. In chemistry and biology, stichanetic models
use the state of an MJP to represent the sizes of various interagiingede.g., Gillespie, 1977;
Golightly and Wilkinson, 2011). In queueing applications, the state may septehe number of
pending jobs in a queue (Breuer, 2003; Tijms, 1986), with the arrivéib@ocessing of jobs treated
as memoryless events. MJPs find wide application in genetics, for examp\&]Rutrajectory is
sometimes used to represent a segmentation of a strand of genetic mattettinkEnepresents
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position along the strand, with particular motifs occurring with different ratedifferent regions
(Fearnhead and Sherlock, 2006). MJPs are also widely used in éinforeexample, Elliott and
Osakwe (2006) use an MJP to model switches in the parameters that ¢fosrelynamics of stock
prices (the latter being modelled with &\y process).

In the Bayesian setting, the challenge is to characterize the posterior distrilmwver MJP
trajectories given noisy observations; this typically cannot be perforamedytically. Various
sampling-based (Fearnhead and Sherlock, 2006; Boys et al., 206&yEet al., 2008; Fan and
Shelton, 2008; Hobolth and Stone, 2009) and deterministic (Nodelman e0@g, 2005; Opper
and Sanguinetti, 2007; Cohn et al., 2010) approximations have beeosgm the literature, but
come with problems: they are often generic methods that do not exploit tletuserwf the MJP,
and when they do, involve expensive computations like matrix exponentiatiatrjx diagonal-
ization or root-finding, or are biased, involving some form of time-discrétimeor independence
assumptions. Moreover, these methods do not extend easily to more conaplilkalieood func-
tions which require specialized algorithms (for instance, the contributiorafrfhead and Sherlock
(2006) is to develop an exact sampler for Markov-modulated Poissaegses (MMPPSs), where
an MJP modulates the rate of a Poisson process).

In this work, an extension of Rao and Teh (2011a), we describe d Markov chain Monte
Carlo (MCMC) sampling algorithm for MJPs that avoids the need for theresipe computations
described previously, and does not involve any form of approximatien pur MCMC sampler
converges to the true posterior). Importantly, our sampler is easily adapteplicated exten-
sions of MJPs such as MMPPs and continuous-time Bayesian networBN& TNodelman et al.,
2002), and is significantly more efficient than the specialized samplertogedefor these models.
Like many existing methods, our sampler introduces auxiliary variables wimghity the structure
of the MJP, using an idea calleshiformization Importantly, unlike some existing methods which
produceindependenposterior samples of these auxiliary variables, our method samplescthrese
ditionedon the current sample trajectory. While the former approach depend® abservation
process, and can be hard for complicated likelihood functions, ountsés a simple distribution
over the auxiliary variables that is independent of the observationso$ervations are accounted
for during a straightforward discrete-time forward-filtering backwsadipling step to resample a
new trajectory. The overall structure of our algorithm is that of an auyiliariable Gibbs sampler,
alternately resampling the auxiliary variables given the MJP trajectory, alafectory given the
auxiliary variables.

In Section 2 we briefly review Markov jump processes. In Section 3 wedotre the idea of
uniformization and describe our MCMC sampler for the simple case of a teécbserved MJIP.
In Section 4, we apply our sampler to the Markov-modulated Poisson groebge in Section 5,
we describe continuous-time Bayesian networks, and extend our algddttivat setting. In both
sections, we report experiments comparing our algorithm to state-ofttisawapling algorithms
developed for these models. We end with a discussion in Section 6.

2. Markov Jump Processes (M JPs)

A Markov jump procesgS(t), t € R, ) is a stochastic process with right-continuous, piecewise-
constant paths (see for example Cinlar, 1975). The paths themseleestaks in some countable
space(S, %), whereX is the discreter-algebra. As in typical applications, we assufmes finite

(says ={1,2,...N}). We also assume the process is homogeneous, implying (together with the
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S(f) = (80, S, T) (1}0, V, W)
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Figure 1: (left) An MJP patltisy, S T), (right) a uniformized representati¢w, V,W).

Markov property) that for all timest’ € R, and states, s € S,
p(S(t'+t) =s/S(t') =5, (S(u),u<t’)) = [Rsg

for some stochastic matri that depends only on The family of transition matriced, t > 0) is
defined by a matriA € RN*N called therate matrixor generatorof the MJPA is the time-derivative
of B att = 0, with

R = exp(At), (1)
P(St' +dt) =s/S(t') =9) = Agct  (fors#¢9),

where Equation (1) is the matrix exponential. The off-diagonal elements at nonnegative,
and represent the rates of transiting from one state to another. Its digganes areAs = Ass=
—Ys2sPss for eachs, so that its columns sum to 0, withAs = |Ag| characterizing the total rate of
leaving states.

Consider a time interval’ = [tstart, tend|, With the Borelo-algebra>;. Let g be a density with
respect to the counting measuyreon (S, Z); this defines the initial distribution over statedsaf.
Then an MJP is described by the following generative process oves patihis interval, commonly
calledGillespie’s algorithm(Gillespie, 1977):

Algorithm 1 Gillespie’s algorithm to sample an MJP path on the intejtégkt, tend|

I nput: The rate matridXA and the initial distribution over stateg.
Output:  An MJP trajectonyS(t) = (0, S T).

1: Assign the MJP a stat® ~ 1. Setty = tsiarr andi = 0.

2: loop

3: Draw z ~ exp(|As ).

4 If ti +z > tengthenreturn (sp,...,S,t1,. .., 1) andstop.

5 Increment and lettj =tj_1+z

6: The MJP jumps to a new state= sat timet;, forans# 5_1,
7 with probability proportional tdAss ;.

8: end loop
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If all event rates are finite, an MJP trajectory will almost surely have orflpige number of
jumps. Let there be jumps, and let these occur at the ordered tirttes - - ,ty). DefineT =
(t1,---,tn), and letS= (s1,--- ,S1) be the corresponding sequence of states, whereS(t;). The
triplet (sp, S, T) completely characterizes the MJP trajectory ovefFigure 1 (left)).

From Gillespie’s algorithm, we see that sampling an MJP trajectory involvesgséglly sam-
pling n+ 1 waiting times from exponential densities with oneMfrates, andch new states from
one ofN discrete distributions, each depending on the previous stateiti haiting time equals
(ti —ti_1) and is drawn from an exponential with ra#g,_, |, while the probability théth state equals
s is Ass_,/|As_,|- The last waiting time can take any value greater thaft,. Thus, under an
MJP, a random elemeliy, S, T) has density

L _ A _ B
P(s0,ST) =TH(%) (H'ASl‘e Ay (& t'1)|A?|> . 1A (tena—tn)

-1
-1

n tend
= Tlo(So) (_rlA331> e><p<—/t \AS(t)’dt> : (2)

To be precise, we must state the base measure with respect to which thg deage is defined.
The reader might wish to skip these details (and for more details, we reconibadeyland Vere-
Jones, 2008). Lefy be Lebesgue measure @h Recalling that the state space of the MJP is
S, we can view(S T) as a sequence of elements in the product spdce S x 7. LetZ,, and
Har = Ks X U be the corresponding produstalgebra and product measure. Defiié' as then-
fold product space with the usual prodaetlgebras]  and product measuyg,,. Now let M~ =
U o M' be a union space, elements of which represent finite length pure-jumplpzhmsZUM

be the corresponding unios-algebra, where each measurable Bet Zj{ can be expressed as
B=U{ZB' with B' =BNM' € 3 . Assign this space the measutg defined as:

1,(B) = _iuiM(B‘»

Then, any elemer(tsy, S T) € § x M"Y sampled from Gillespie’s algorithm has density wyid.x
W, given by Equation (2).

3. MCMC Inference via Uniformization

In this paper, we are concerned with the problem of sampling MJP pathdlménterval? =
[tstart, tend] @iven noisy observations of the state of the MJP. In the simplest case, seevelthe
process at the boundaritg,; andteng. More generally, we are given the initial distribution over
statesrp as well as a set dD noisy observationX = {Xg,...Xg} at timesT® = {t?,...,t3} with
likelihoods p(X|S(t?)), and we wish to sample from the posterjaiso, S, T|X). Here we have
implicitly assumed that the observation timE%are fixed. Sometimes the observation times them-
selves can depend on the state of the MJP, resulting effectivadgritinuous-timenbservations.
This is the case for the Markov-modulated Poisson process and CTBNge Avill show later, our
method handles these cases quite naturally as well.

1. DefineM© as a point satisfying!© x ¢ = M x MO = A (Daley and Vere-Jones, 2008).
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A simple approach to inference is to discretize time and work with the resultimgdpgation.
The time-discretized MJP corresponds to the familiar discrete-time Markon,@rad its Markov
structure can be exploited to construct dynamic programming algorithms likerard-filtering
backward-sampling (FFBS) algorithm (Rvirth-Schnatter, 1994; Carter and Kohn, 1996; see also
Appendix A) to sample posterior trajectories efficiently. However, time-diszation introduces
a bias into our inferences, as the system can change state only at aefixd@dimes, and as the
maximum number of state changes is limited to a finite number. To control this biasieeals to
discretize time at a fine granularity, resulting in long Markov chains, andreipe computations.

Recently, there has been growing interest in construetkagtMCMC samplers for MJPs with-
out any approximations such as time-discretization. We review these in S8cione class of
methods exploits the fact an MJP can be exactly represented by a ditheretistarkov chain on
arandomtime-discretization. Unlike discretization on a regular grid, a random gricbeaquite
coarse without introducing any bias. Given this discretization, we cathesEFBS algorithm to
perform efficient sampling. However, we do not observe the randsoratization, and thus also
need to sample this from its posterior distribution. This posterior now depamdse likelihood
process, and a number of algorithms attempt to solve this problem for spalesgrvation pro-
cesses. Our approach is to resample the discretization conditioned orstib $sajectory. As we
will see this isindependentf the likelihood process, resulting in a simple, flexible and efficient
MCMC sampler.

3.1 Uniformization

We first introduce the idea aihiformization(Jensen, 1953; Cinlar, 1975; Hobolth and Stone, 2009),
which forms the basis of our sampling algorithm. For an MJP with rate-mAtrichoose some

Q > max|Ag|. LetW = (wy,..., W) be an ordered set of times on the interjtgh, tend drawn
from a homogeneous Poisson process with intesity/ constitutes a random discretization of the
time-intervaltstart, tend -

Next, lettingl be the identity matrix, observe thBt= (I -+ éA) is a stochastic matrix (it has
nonnegative elements, and its columns sum to one). Run a discrete-timev\agio with initial
distributionT and transition matriB on the times iW; this is a Markov chaisubordinatedo the
Poisson proced&/. The Markov chain will assign a set of staies,V); Vo at the initial timets;at,
andV = (v,...,Vy|) atthe discretization time&/ (so thafV | = |W|). In particular\g is drawn from
T, wWhile v; is drawn from the probability vector given by the ith column ofB. Just ags, S T)
characterizes an MJP patlvp,V,W) also characterizes a sample path of some piecewise-constant,
right-continuous stochastic process[tfut, tend. Observe that the matr& allows self-transitions,
so that unlikeS, V can jump from a state back to the same state. We treat thesewsd jumps,
and regardvp,V,W) as a redundant representation of a pure-jump process that always jarap
new state (see Figure 1 (right)). The virtual jumps provide a mechanismirnothle setW, thereby
rejecting some of its events. This corrects for the fact that since the Roiss&f) dominates the
leaving rates of all states of the MR, will on average contain more events than there are jumps in
the MJP path. As the paramet@rincreases, the number of eventd¥hincreases; at the same time
the diagonal entries d start to dominate, so that the number of self-transitions (thinned events)
also increases. The next proposition shows that these two effectyyeo@opensate each other, so
that the process characterized(wy,V,W) is precisely the desired MJP.
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Proposition 1 (Jensen, 1953) For an® > max|As|, (S, S T) and (v,V,W) define the same
Markov jump procesS(t).

Proof We follow Hobolth and Stone (2009). From Equation (1), the marginal digtab of the
MJP at timet is given by

T; = exp(At)TH
= exp(Q(B— 1)) To
= exp(—Qt) exp(QtB)

- 3 ((ewe-an A5 @) ).

The first term in the summation is the probability that a @tBoisson produceasevents in an
interval of lengtht, that is, thatW| = n. The second term gives the marginal distribution over states
for a discrete-time Markov chain aftersteps, given that the initial state is drawn fram and
subsequent states are assigned according to a transition Ba®xmming oven, we obtain the
marginal distribution over states at timeSince the transition kernels induced by the uniformiza-
tion procedure agree with those of the Markov jump process(faxpfor all t, and since the two
processes also share the same initial distribution of stagesll finite dimensional distributions
agree. Following Kolmogorov’s extension theorem (Kallenberg, 208} define versions of the
same stochastic process.

[ |

A more direct but cumbersome approach is note thal/,W) is also an element of the space
S x M". We can then write down its densipfvo, V,W) w.r.t. s x i, and show that marginalizing
out the number and locations of self-transitions recovers Equation (BjleVWe do not do this,
we will derive the densityp(vp,V,W) for later use. As in Section 2, lef” and S“ denote the
measure spaces consisting of finite sequences of times and states vebpeutd letp; and ¢
be the corresponding base measures. The Poisson reali¥étisrdetermined by waiting times
sampled from a rat@ exponential distribution, so that following Equation (@),has density w.r.t.

M5 given by
p(W) = Q‘W|e*Q(tend*tstart). (3)

Similarly, from the construction of the Markov chain, it follows that the staségasnent(vo,V)
has probability density w.r.fis x L given by

V| A\ EIUD A A
VW) = 142w Divia .
VW) -t [ (1+5) (%42)

|
Since under uniformizatiofV | = |W|, it follows that
\ W
HE (V) iz (W) = W (@) < Wy (aw)

= (ur < ps)V(d(V, W)
= Ha (d(V,W)). (4)
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Thus, from Equations (3) and (4o, V,W) has density w.r.{ug x u;{{ given by

VI Ly
p(VO,V,W) _ efﬂ(tendftstan)n-o(vo) rl(Q +AVi)l(Vi:Vi—1) (AViVi_l)l(V|7éV|—l) ) (5)

=
3.2 TheMCMC Algorithm

We adapt the uniformization scheme described above to construct anwaligable Gibbs sam-
pler. Recall that the only difference betwen, S T) and(vo,V,W) is the presence of an auxiliary
set of virtual jumps in the latter. Call the virtual jump timdsg; associated with); is a sequence
of statesUs. Uy is uniquely determined bysy,S T) andU+ (see Figure 1(right)), and we say
this configuration ixompatible LetU = (Us,U), and observe that for compatible valuedJgf,
(50,S,T,U) and(vo,V,W) represent the same pointgnx M".

t t t

Figure 2: Uniformization-based Gibbs sampler: starting with an MJP traje@tdgt), resample the
thinned events (middle) and then resample the trajectory given all Poissots€right).
Discard the thinned events and repeat.

Given an MJP trajectorysy, S, T) (Figure 2 (left)), we proceed by first sampling the set of
virtual jumpsU+ given (s, S, T), as a result recovering the uniformized characterizatsp/, W)
(Figure 2 (middle)). This corresponds to a random discretizatidgf, tend at timesw. We now
discard the state sequenéeand perform a simple HMM forward-filtering backward-sampling step
to resample a new state sequeNceFinally, dropping the virtual jumps ifsy,V,W) gives a new
MJIP path(so,é,'f'). Figure 2 describes an iteration of the MCMC algorithm.

The next proposition shows that conditioned (@g S T), the virtual jump timesJ; are dis-
tributed as amnhomogeneouBoisson process with intensig(t) = Q + Agy) (we remind the reader
that A has a negative diagonal, so thR{t) < Q). This intensity is piecewise-constant, taking the
valuer; = Q+ Ag on the intervalti,ti;1) (with to = tstart @andtn11 = tend), SO it is easy to samplés
and thugJ.

Proposition 2 For anyQ > maxs (|As|), both(sp, S T,U) and(vp,V,W) have the same density w.r.t.
Mg X p;{/[. In other words, the Markov jump proce&®, S, T) along with virtual jumps U drawn
from the inhomogeneous Poisson process as above is equivalent to teé\itneing drawn from
a Poisson process with rat@, followed by the state6/,V) being drawn from the subordinated
Markov chain.

Proof Letn=|T| be the number of jumps in the current MJP trajectory. Défihpas the number

of auxiliary times in intervalti,ti+1). Then,|Uz| = S 4|Ui|. If Uz is sampled from a piecewise-
constant inhomogeneous Poisson process, its density is the produeteirisities of a sequence of
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homogeneous Poisson processes, and from Equation (3) is

n tend
P(Urlso,ST) = (_[L<Q+As>'“i) exp(— / <Q+As(t>>dt> (6)

tstart

w.r.t. 7. Having realized the timed, the associated statels are determined too (elements of
Us in the interval(ti_1,t) equals_1). ThusU = (Us,Us) given(s, S T) has the same density as
Equation (6), but now w.r.pU , and now restricted to elements®f- whereU is compatible with
(S T,Us). Multiplying Equations (2) and (6), we see tha$, S, T,U) has density

=}

(&) ST U) —e Q(tena— tstart)-n-o( ) (Q +A Ui rlASS

W.LL Ws X W x W . However, by definition,

L (d(ST)) x o (AU) = W (d(S T)) x pir (dU)
=y Pl T,0))
— W (d(ST,U)).

Comparing with Equation (5), and noting thiati| is the number of self-transitions in interval
(ti—1,t), we see both are equal whenel®y is compatible with(sp,S T,Us). The probability
density at any incompatible settingdf is zero, giving us the desired result. [ |

We can now incorporate the likelihoods coming from the observationBirstly, note that by
assumptionX depends only on the MJP trajectdss, S T) and not on the auxiliary jumps. Thus,
the conditional distribution ol given (s, S T, X) is still the inhomogeneous Poisson process
given above. LeKy, v ,,) represent the observations in the intefval wi 1) (takingwy| 1 = tend)-
Throughout this interval, the MJP is in stategiving a likelihood term:

Li(Vi) = P(Xiwi w 1) [S(t) = Vi for t € [wi, wit1)). @)

For the case of noisy observations of the MJP state at a discrete set offfintas simplifies to
Li(vi) = ﬂ P(Xeo|S(t]) = vi).
jrfewi,wir1)

Conditioned on the timé#/, (so,V) is a Markov chain with initial distributiomy, transition ma-
trix B and likelihoods given by Equation (7). We can efficiently resanigle/) using the standard
forward filtering-backward sampling (FFBS) algorithm. We provide a deton of this algorithm
in Appendix A. This cost of such a resampling ste®igN?|V|), quadratic in the number of states
and linear in the length of the chain. Further, any structur (@.g., sparsity) is inherited By and
can be exploited easily. Lé&,V) be the new state sequence. TH&nV, W) will correspond to
a new MJP patiS(t) = (§,5 T), obtained by discarding virtual jumps frof,W). Effectively,
given an MJP path, an iteration of our algorithm corresponds to introdubinged events, rela-
belling the thinned and actual transitions using FFBS, and then discardimgehéinned events
to obtain a new MJP. We summarize this in Algorithm 2.
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Algorithm 2 Blocked Gibbs sampler for an MJP on the interit@h, tend
Input: A set of observationX, and parameterA (the rate matrix)7p (the
initial distribution over states) ard > max(|As|).
The previous MJP patl§(t) = (s,ST).
Output: A new MJP trajectons(t) = (5,5 T).
1: SampleUs C [tstart, tend from a Poisson process with piecewise-constant rate

R(t) = (Q JrAs(t)).

DefineW = T UUg (in increasing order).

2: Sample a patl&,V) from a discrete-time Markov chain with{1|W| steps using the FFBS al-
gorithm. The transition matrix of the Markov chainBs= (I + %) while the initial distribution
over states isp. The likelihood of states at stepi is

Li (S) = p(x[wi,wi+1)’8(t) =sfort € [Wi,\A/i+1)).

3: Let T be the set of times iV when the Markov chain changes state. Deff®s the corre-
sponding set of state valueReturn (5,ST).

Proposition 3 The auxiliary variable Gibbs sampler described above has the postastitdition
p(s0,S T|X) as its stationary distribution. Moreover, @ > max|As|, the resulting Markov chain
is irreducible.

Proof The first statement follows since the algorithm simply introduces auxiliaryblasd), and
then conditionally samplég givenX andW. For the second, note that®@ > max(|As|), then the
intensity of the subordinating Poisson process is strictly positive. Thu® ihpositive probability
density of sampling appropriate auxiliary jump timg¢&nd moving from any MJP trajectory to any
other. |

Note that it is essential faR to be strictly greater than maps|; equality is not sufficient for
irreducibility. For example, if all diagonal elements Afare equal td2, then the Poisson process
for Uz will have intensity 0, so that the set of jump timewwill never increase.

Since FFBS returns a new state sequéhdkat is independent &f givenW, the only depen-
dence between successive MCMC samples arises because the n@atesjndp times include the
old jump times, that isT € W. This means that the new MJP trajectory has non-zero probability
of making a jump at a same time as the old trajectory. Increaimgroduces more virtual jumps,
and asT becomes a smaller subsetWwf we get faster mixing. Of course, increasfignakes the
HMM chain grow longer, leading to a linear increase in the computationalpgssteration. Thus
the parameteR allows a trade-off between mixing rate and computational cost. We will study this
trade-off in Section 3.5. In all other experiments, we Qet max(2|As|) as we find this works
quite well, with the samplers typically converging after fewer than 5 iterations.

3.3 Previous Posterior Sampling Schemes

A simple approach when the MJP state is observed at the ends of an ingeejakction sampling:
sample paths given the observed start state via Gillespie’s algorithm, acitihejge that do not end
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in the observed end state (Nielsen, 2002). We can extend this to noisyatises by importance
sampling or particle filtering (Fan and Shelton, 2008). Recently, Golightlyditidnson (2011)
have applied particle MCMC methods to correct the bias introduced by sthpddicle filtering
methods. However, these methods are efficient only in situations wheratdexerts a relatively
weak influence on the unobserved trajectory (compared to the prior)rga &ate-space or an
unlikely end state can result in a large number of rejections or small effesdgimple sizes (Hobolth
and Stone, 2009).

A second approach, more specific to MJPs, integrates out the infinitely pading of the MJP
in between observations using matrix exponentiation (Equation (1)), axlfasvard-backward
dynamic programming to sum over the states at the finitely many observation tieseBl¢dolth
and Stone, 2009 for a review). Unfortunately, matrix exponentiation ixpersive operation that
scales a®D(N?), cubically in the number of states. Moreover, the matrix resulting from matrix
exponentiation is dense and any structure (like sparsity), in the rate rAataérnot be exploited.

A third approach is, like ours, based on the idea of uniformization (HobokthSione, 2009).
This proceeds by producing independent posterior samples of theR@&egsntdV in the interval
between observations, and then (like our sampler) running a discrete-tari@Wchain on this set
of times to sample a new trajectory. However, sampling from the posterior disbrboverW is
not easy, depending crucially on the observation process, and useliyes a random number of
O(N3) matrix multiplications (as the sampler iterates over the possible number of Poissus)e
By contrast, instead of producing independent samples, ours is an Mald@@Gthm. At the price of
producing dependent samples, our method scal€Xd$) given a random discretization of time,
does not require matrix exponentiations, easily exploits structure in the ratix suad naturally
extends to various extensions of MJPs. Moreover, we demonstrateuhatimpler mixes very
rapidly. We point out here that as the number of stAt@screases, if the transition rat@ss, s# S,
remainO(1), then the uniformization rat@ and the total number of state transitions ag\).
Thus, our algorithm now scales overall@&N?), while the matrix exponentiation-based approach
is O(N%). In either case, whethéXg is O(1) or O(1/N), our algorithm is an order of magnitude
faster.

3.4 Bayesian Inference on the MJP Parameters

In this section we briefly describe how full Bayesian analysis can beipeed by placing priors on
the MJP parametes andmp and sampling them as part of the MCMC algorithm. Like Fearnhead
and Sherlock (2006), we place independent gamma priors on the gegdiigonal elements of

A and independent Dirichlet priors on the transition probabilities. In partictdaall s let pys =
Ags/|As| and define the prior:

|As| ~ Gammda,az),
(Pss,S # S) ~ Dirichlet(B).

This prior is conjugate, with sufficient statistics for the posterior distributivarga trajectorys(t)
being the total amount of timg spent in each statand the number of transitiomgs from eachs
tos. In particular,

|As|| (50, S T) ~ Gammaa + Y ¢,sNgs, 02+ Ts), and (8)
(Pss,S # 9)|(50,S T) ~ Dirichlet(B+ (ngs, S #5)) ©)

3304



FAST MCMC SAMPLING FOR MJPs AND EXTENSIONS

Itis important to note that we resample the rate maireonditioned or{sy, S, T), andnot (vo, V,W).

A new rate matrixA implies a new uniformization rat®, and in the latter case, we must also
account for the probability of the Poisson evesinderQ. Besides being more complicated, this
coupling betwee® andQ can slow down mixing of the MCMC sampler. Thus, we first discard
the thinned eventd, updateA conditioned only on the MJP trajectory, and then reintroduce the
thinned events under the new parameters. We can view the sampler of Alg@ritis a transition
kernel Ka((s0,S,T), (8,5 1)) that preserves the posterior distribution under the rate matrGur
overall sampler then alternately updates S, T) via the transition kerneKa(+, -), and then updates
Agiven(s,ST).

Finally, we can either fixg or (as is sometimes appropriate) set it equal to the stationary distri-
bution of the MJP with rate matri&. In the latter case, Equations (8) and (9) serve as a Metropolis-
Hastings proposal. We accept a propoAempled from this distribution with probability equal to
the probability of the current initial state under the stationary distributich dfote that computing
this stationary distribution requires solving @iN3) eigenvector problem, so that in this case, the
overall Gibbs sampler scales cubically even though Algorithm 2 scalesaticadly.

3.5 Experiments

We first look at the effect of the paramet@ron the mixing on the MCMC sampler. We generated
a random 5-by-5 matri (with hyperparameters; = a, = = 1), and used this to generate an
MJP trajectory with a uniform initial distribution over states. The state of this WEjEctory was
observed via a Poisson process likelihood model (see Section 4), atetippsamples given the
observations ané were produced by a C++ implementation of our algorithm. 1000 MCMC runs
were performed, each run consisting of 10000 iterations after a buph-1900 iterations. For
each run, the number of transitions as well as the time spent in each statalaalated, and
effective sample sizes (ESSs) of these statistics (the number of indepeadeples with the same
‘information’ as the correlated MCMC samples) were calculated using RA@®EmMmer et al.,
2006). The overall ESS of a run is defined to be the median ESS acrdssss|ESSs.

Figure 3 (left) plots the overall ESS against computation time per run, faerdift scalings
k, whereQ = kmax|As|. We see that increasin@ does increase the mixing rate, however the
added computational cost quickly swamps out any benefit this might afféiglire 3 (right) is a
similar plot for the case where we also performed Bayesian inferendbddviJP parametek as
described in Section 3.4. Now we estimated the ESS of all off-diagonal eterofthe matrixA,
and the overall ESS of an MCMC run is defined as the median ESS. Intgtgsimthis scenario,
the ESS is fairly insensitive tQ, suggesting an ‘MCMC within Gibbs’ update as proposed here
using dependent trajectories is as effective as one using indepérajeatories. We found this to
be true in general: when embedded within an outer MCMC sampler, our sapnptirced similar
effective ESSs as an MJP sampler that produces independent triggctdhe latter is typically
more expensive, and in any case, we will show that the computationalgsapiovided by our
sampler far outweigh the cost of dependent trajectories.

In light of Figure 3, for all subsequent experiments we@et 2 max|As|. Figure 4 shows the
initial burn-in of a sampler with this setting for different initializations. The vetixis shows the
number of state transitions in the MJP trajectory of each iteration. This quanidiiy reaches its
equilibrium value within a few iterations.
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Figure 3: Effective sample sizes vs computation times for different scatih@sfor (left) a fixed
rate matrixA and (right) Bayesian inference én Whiskers are quatrtiles over 1000 runs.
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Figure 4: Trace plot of the number of MJP transitions for different initidilwes. Black lines are
the maximum and minimum number of MJP transitions for each iteration, over all initial-
izations.

4. Markov-M odulated Poisson Processes

A Markov modulated Poisson process (MMPP) is a doubly-stochasticdPgisecess whose inten-
sity function is piecewise-constant and distributed according to a Markop jorocess. Suppose
the MIP(S(t),t € [tstart, tend]) hasN states, and is parametrized by an initial distribution over states
Th and a rate matriA. Associate with each statea nonnegative constait called the emission
rate of states. Let O be a set of points drawn from a Poisson process with piecewise-coratan
R(t) = Agy). Note thatO is unrelated to the subordinating Poisson process from the uniformization-
based construction of the MJP, and we call it the output Poisson prodes$oisson observations
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O effectively form a continuous-time observation of the latent MJP, withatheenceof Poisson
events also informative about the MJP state. MMPPs have been used tbphedemenon like
the distribution of rare DNA motifs along a gene (Fearnhead and She66K), photon arrival in
single molecule fluorescence experiments (Burzykowski et al., 2008)rezjuests to web servers
(Scott and Smyth, 2003).

Fearnhead and Sherlock (2006) developed an exact sampler forPglM&sed on a dynamic
program for calculating the probability @ marginalizing out the MJP trajectory. The dynamic
program keeps track of the probability of the MMPP emitting all Poisson eyeitsto a timet
and ending in MJP stat The dynamic program then proceeds by iterating over all Poisson events
in O in increasing order, at each iteration updating probabilities using matrixnexpiation. A
backward sampling step then draws an exact posterior sample of the N&ana(S(t),t € O)
evaluated at the times @. Finally a uniformization-based endpoint conditioned MJP sampler is
used to fill in the MJP trajectory between every pair of time®in

The main advantage of this method is that it produces independent postariptes. It does
this at the price of being fairly complicated and computationally intensive. e it has the
disadvantage of operating at the time scale of the Poisson observaticersthattn the dynamics of
the latent MJP. For high Poisson rates, the number of matrix exponentiatitbie wigh even if
the underlying MJP has very low transition rates. This can lead to an ineffaligorithm.

Our MCMC sampler outlined in the previous section can be straightforwartinded to the
MMPP without any of these disadvantages. Resampling the auxiliary jumpseigtap 1 in algo-
rithm 2) remains unaffected, since conditioned on the current MJP trajetiiey are independent
of the observation®. Step 2 requires calculating the emission likelihobds), which is simply
given by:

Li(s) = (As)/%! exp(—As(Wir1 —w)),

|Oi| being the number of events 6fin the intervallw;, wi;1). Note that evaluating this likelihood
only requires counting the number of observed Poisson events betwesnseiccessive pair of
times inW. Compared to our algorithm, the approach of Fearnhead and Sherla@&)(® much
more involved and inefficient.

4.1 Experiments

In the following, we compare a C++ implementation of our algorithm with an implementatio
of the algorithm of Fearnhead and Sherlock (2006), coded in C. Werpssd fully Bayesian
inference, sampling both the MJP parameters (as described in Sectiom@8.%4)eaPoisson rates
As (conjugate gamma priors were placed on these). In all instances, outtaigdid significantly
better, the performance improvement increasing with the complexity of thégpnob

In the first set of experiments, the dimension of the latent MJP was fixedTtbesprior on the
rate matrixA had parameterms; = o, = = 1 (see Section 3.4). The shape parameter of the gamma
prior on the emission rate of stadghs, was set tes (thereby breaking symmetry across states); the
scale parameter was fixed at 1. 10 draw®afere simulated using the MMPP. For each observed
O, both MCMC algorithms were run for 1000 burn-in iterations followed byQ®iderations where
samples were collected. For each run, the ESS for each parametertiwestexs using R-CODA,
and the overall ESS was defined to be the median ESS over all parameters.

2. Code was downloaded from Chris Sherlock’s webpage.
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Figure 5: CPU time to produce 100 effective samples as we observe (lefasing number of
Poisson events in an interval of length 10, (centre) 10 Poisson eveartsoreasing time
intervals, and (right) increasing intervals with the number of events incigear average.

Figure 5 reports the average computation times required by each algorithrodocp 100
effective samples, under different scenarios. The leftmost plot stiber computation times as
a function of the numbers of Poisson events observed in an intervaleaf kength 10. For our
sampler, increasing the number of observed events leaves the computatidargietg unaffected,
while for the sampler of Fearnhead and Sherlock (2006), this increpstessignificantly. This
reiterates the point that our sampler works at the time scale of the latent Mil®Rearnhead and
Sherlock (2006) work at the time scale of the observed Poisson prdogse middle plot, we fix
the number of observed Poisson events to 10, while increasing the lertgthaiiservation interval
instead, while in the rightmost plot, we increase both the interval length andengge number of
observations in that interval. In both cases, our sampler again offeesaged efficiency of up to
two orders of magnitude. In fact, the only problems where we observeshthpler of Fearnhead
and Sherlock (2006) to outperform ours were low-dimensional probleitiisonly a few Poisson
observations in a long interval, and with one very unstable state. A fewstainje MJP states and a
few very unstable ones results in a high uniformization ateut only a few state transitions. The
resulting large number of virtual jumps can make our sampler inefficient.

In Figure 6, we plot the time to produce 100 effective samples as the nurhbttes of the
latent MJP increases. Here, we fixed the number of Poisson obsesvédid® over an interval
of length 10. We see that our sampler (plotted with squares) offers stibstspeed-up over the
sampler of Fearnhead and Sherlock (2006) (plotted with circles). Wehaedor both samplers
computation time scales cubically with the latent dimension. However, recall teatuiic scaling
is not a property of our MJP trajectory sampler; rather it is a conseguanesing the equilibrium
distribution of a sampled rate matrix as the initial distribution over states, whictiresccalculating
an eigenvector of a proposed rate matrix. If we fix the initial distribution steges (to the discrete
uniform distribution), giving the line plotted with inverted triangles in the figuve,observe that
our sampler scales quadratically.

5. Continuous-Time Bayesian Networ ks (CTBNS)

Continuous-time Bayesian networks (CTBNSs) are compact, multi-compoepregentations of
MJPs with structured rate matrices (Nodelman et al., 2002). Special instah¢ckese models
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Figure 6: CPU time to produce 100 effective samples as the MJP dimensieasesr

Figure 7: The predator-prey network (left) and the drug-effect NTBght)

have long existed in the literature, particularly stochastic kinetic models like thea{Mplterra
equations, which describe interacting populations of animal species, diamictants or gene
regulatory networks (Wilkinson, 2009). There have also been a nuailyetated developments,
see for example Bolch et al. (1998) or Didelez (2008). For concretamawever, we shall focus on
CTBNs, a formalism introduced in Nodelman et al. (2002) to harness thesemtational power of
Bayesian networks to characterize structured MJPs.

Just as the familiar Bayesian network uses a product of conditionahbildip tables to repre-
sent a much larger probability table, so too a CTBN represents a strucatieatatrix with smaller
conditional rate matrices. Am-component CTBN represents the state of an MJP at timith
the states ofn nodesSt(t),...,S™(t) in a directed (and possibly cyclic) gragh Figure 7 shows
two CTBNSs, the ‘predator-prey network’ and the ‘drug-effect netio The former is a CTBN
governed by the Lotka-Volterra equations (see subsection 5.3.1), whilatthr is used to model
the dependencies in events leading to and following a patient taking a doggliNan et al., 2002).
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Figure 8: Expanded CTBN

Intuitively, each node of the CTBN acts as an MJP with an instantaneous r&ig that de-
pends on the current configuration of its parents (and not its childidrgugh the presence of
directed cycles means a child can be a parent as well). The trajectoriksiofles are piecewise
constant, and when a node changes state, the event rates of all itsrcbildregye. The grapg and
the set of rate matrices (one for each node and for each configuraiisiparents) characterize the
dynamics of the CTBN, the former describing the structure of the depeieehetween various
components, and the latter quantifying this. Completing the specification of tB&@Tan initial
distributionTy over the state of nodes, possibly specified via a Bayesian network.

It is convenient to think of a CTBN as a compact representation of annelgga(and now
acyclic) graph, consisting of the nodes @frepeated infinitely along a continuum (viz. time). In
this graph, arrows lead from a node at a titrte instances of its children at timef- dt. Figure 8
displays this for a section of the drug-effect CTBN. The rates assdorth a particular node at
timet + dt are determined by the configuration of its parents at tinféigure 8 is the continuous-
time limit of a class of discrete-time models called dynamic Bayesian networks (D@&Nsphy,
2002). In a DBN, the state of a node at stagel is dependent upon the configuration of its parents
at stagd. Just as MJPs are continuous-time limits of discrete-time Markov chains, € aBNalso
continuous-time limits of DBNs.

It is possible to combine all local rate matrices of a CTBN into one global rateixr(ate
Nodelman et al., 2002), resulting in a simple MJP whose state-space is theistate-space of all
component nodes. Consequently, it possible, conceptually at leastettlyisample a trajectory
over an intervaltsiarn, tend USINg Gillespie’s algorithm. However, with an eye towards inference,
Algorithm 3 describes a generative process that exploits the structure graphg. Like Section
2, we represent the trajectory of the CTBS{t), with the initial statesy and the pair of sequences
(ST). Let the CTBN haven nodes. Nowgs, theith element ofS, is anm-component vector
representing the states of all nodeg ahe time of thdth state change of the CTBN. We write this
ass = (st,---,9M. Letk; identify the component of the CTBN that changed statg. afhe rate
matrix of a noden varies over time as the configuration of its parents changes, and we willAfifite
for the relevant matrix at time Following Equation (2), we can write down the probability density

3310



FAST MCMC SAMPLING FOR MJPs AND EXTENSIONS

of (%,ST) as

|T| kiti_1 m tend kit
p(s0,ST) = l—lAk' K| exp Z \ |A9k(t)|dt . (10)
k=1 " ‘start

Algorithm 3 Algorithm to sample a CTBN trajectory on the intery@{ar, tend|

Input: The CTBN graphg, a set of rate matricegA} for all nodes and for all
parent configurations and an initial distribution over stakgs
Output: A CTBN trajectoryS(t) = (%,ST).

1: Draw an initial configurationsy = (S}, S5, ...) ~ To. Setty = tstart andi =
2: loop
3. For each nod&, drawz ~ exp(\A;;ti ).

Letk;, 1 = argmin 2 be the first node to change state.
If t; + 2941 > teng then return (so, ..., S, t1,. .., t) andstop.
Incrementi and lett; = t;_; + 29 be the next jump time.
Lets = s , be the previous state of noﬁe

Setéq = swith probability proportional td\S -1 for eachs # §.
9. Sets =g, forallk#Kk.

10: end loop

© N9 A

5.1 Inferencein CTBNs

We now consider the problem of posterior inference over trajectoriengiome observations.
Write the parents and children of a nddas®? (k) andC(k) respectively. LetM B(k) be the Markov
blanket of nodek, which consists of its parents, children, and the parents of its childremenGie
entire trajectories of all nodes i B(k), nodek is independent of all other nodes in the network
(Nodelman et al., 2002) (see also Equation (12) below). This suggestiba &ampling scheme
where the trajectory of each node is resampled given the configuratitsméarkov blanket. This
approach was followed by El-Hay et al. (2008).

However, even without any associated observations, sampling a ngetgdrg conditioned on
the complete trajectory of its Markov blanket is not straightforward. Tdlsserearrange the terms
of Equation (10) to give

P(s0,ST) = |‘|cp(skT|soST ,T7®), and

tend
oS, THso, S"M, T710) = (L‘l Z«t;kl)exp(— / A |dt), (11)

where for any set of nodeB, (%,SB,TB) represents the associated trajectories. Note that the
@(-) terms are not conditional densities given parent trajectories, sincedpl grcan be cyclic.
We must also account for the trajectories of nd@echildren, so that the conditional density of
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(5, S, TX) is actually
P(s5, S, T, S T7) Dro(sflsp*) (S, T¥(s0, S, T#1)

- [ oS, T, S, T7). (12)
ceC(k)
Here—k denotes all nodes other thenThus, even over an interval of time where the parent configu-
ration remains constant, the conditional distribution of the trajectory of aisou# a homogeneous
MJP because of the effect of the node’s children, which act as redisens’ that are continuously
observed. For any child, if At is constant ovet, the corresponding(-) is the density of an MJP
given the initial state. SincA°! varies in a piecewise-constant manner according to the state of
k, the () term is actually the density of a piecewise-inhomogeneous MJP. Effectielave a
‘MJP-modulated MJP’, so that the inference problem here is a gendiatizd that for the MMPP
of Section 4.
El-Hay et al. (2008) described a matrix-exponentiation-based algoritlupdate the trajectory
of nodek. At a high-level their algorithm is similar to Fearnhead and Sherlock (208)IMPPs,
with the Poisson observations of the MMPP generalized to transitions in thettrags of child
nodes. Consequently, it uses an expensive forward-backwardthly involving matrix exponen-
tiations. In addition, El-Hay et al. (2008) resort to discretizing time via a lpisaarch to obtain the
transition times upto machine accuracy.

5.2 Auxiliary Variable Gibbs Sampling for CTBNs

We now show how our uniformization-based sampler can easily be adapteddiionally sample
a trajectory for nodé& without resorting to approximations. In the following, for notational simplic-
ity. we will drop the superscrigt whenever it is clear from context. For noklehe MJP trajectory
(s0,S T) has a uniformized construction from a subordinating Poisson prochegi@cewise con-
stant trajectories of the parentsloimply that the MJP is piecewise homogeneous, and we will use
a piecewise constant ra® which dominates the associated transition rates, th&t'is; |A'§’t| for
all s. This allows the dominating rate to ‘adapt’ to the local transition rates, and is efiicent
when, for example, the transition rates associated with different pavafigarations are markedly
different. Recall also that our algorithm first reconstructs the thinneds®wigventd), using a
piecewise homogeneous Poisson process with(fite- Ag(tt ), and then updates the trajectory us-
ing the forward-backward algorithm (so th&t= T UU+ forms the candidate transitions times of
the MJP).

Inthe present CTBN context, just as the subordinating Poisson priséeesmogeneous, so too
the Markov chain used for the forward-backward algorithm will havéed#nt transition matrices
at different times. In particular, the transition matrix at a timgwhereW = (wy,...,Wyy)) is

Ak,Wi
Qwi

Finally, we need also to specify the likelihood functibjis) accounting for the trajectories of
the children in addition to actual observations in each time intéwab; 1). From Equations (11)
and (12), this is given by

L'(S) = LO(S) |_| ( Ak7tj1> eXp< /WiHAg’kt ‘dt)
i(S) =L B ’
| ceC(k) j:kj:k,tjq )Slkgi(fl Wi ()

Wi, W1

Bi=I+
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whereL?(s) is the likelihood coming from actual observations dependent on the statalekiin

the time interval. Note that the likelihood above depends only on the numbensitioas each of

the children make as well as how much time they spend in each state, for eanhguanfiguration.
The new trajector)ék(t) is now obtained using the forward-filtering backward-sampling algo-

rithm, with the given inhomogeneous transition matrices and likelihood functidhe.following

proposition now follows directly from our previous results in Section 3:

Proposition 4 The auxiliary variable Gibbs sampler described above converges todstenor
distribution over the CTBN sample paths.

Note that our algorithm produces a new trajectory that is dependentgthiiguon the previ-
ous trajectory (unlike a true Gibbs update as in El-Hay et al. (2008) wtheyeare independent).
However, we find that since the update is part of an overall Gibbs cyelermdes of the CTBN,
the mixing rate is actually dominated by dependence across nodes. Thus,Gilibs update has
negligible benefit towards mixing, while being more expensive computationally.

5.3 Experiments

In the following, we evaluate a C++ implementation of our algorithm on a numb&T&Ns. As
before, the dominating ra@! was set to ma@Q\A'é’t].

5.3.1 THE LOTKA-VOLTERRA PROCESS

We first apply our sampler to the Lotka-Volterra process (Wilkinson, 2Q@fier and Sanguinetti,
2007). Commonly referred to as the predator-prey model, this describesvtiution of two in-
teracting populations of ‘prey’ and ‘predator’ species. The two sgeftiem the two nodes of a
cyclic CTBN (Figure 7 (left)), whose statesandy represent the sizes of the prey and predator
populations. The process rates are given by

A({X7y} — {X+17y}) = aX, A({va} — {X_ 17y}) = Bxy7
A({x Y} = {x,y+1}) =dxy, A({x Yy} = {xy—1}) =y,

where we set the parameters as follows= 5x 1074, =1x 104 y=5x10%48=1x 1074

All other rates are 0. This defines two infinite sets of infinite-dimensionalitional rate matrices.

In its present form, our sampler cannot handle this infinite state-spacsg@irao and Teh, 2012).
Like Opper and Sanguinetti (2007), we limit the maximum number of individUasach species to
200, leaving us with 400 rate matrices of size 2000. Note that these matrices are tridiagonal and
very sparse: at any time the size of each population can change by atmeosEansequently, the
complexity of our algorithm scaldimearly with the number of states (we did not modify our code to
exploit this structure, though this is straightforward). A ‘true’ path ofdater-prey population sizes
was sampled from this process, and its state attis® was observed noiselessly. Additionally 15
noisy observations were generated, spaced uniformly at intervalfofTh@ noise process was:

1

pP(X(1)[S(t)) O 2X®-St) {106

Given these observations (as well as the true parameter values), wexiapgied the posterior
distribution over paths by two methods: using 1000 samples from our MCMlsa (with a
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Figure 9: Posterior (mean and 90% credible intervals) over (left) prdy(aght) predator paths
(observations (circles) were available only until 1500).

burn-in period of 100) and using the mean-field (MF) approximation ofé@@md Sanguinetti
(2007)2 We could not apply the implementation of the Gibbs sampler of El-Hay et al. [1668
Section 5.4) to a state-space and time-interval this large. Figure 9 showsehgaths (in black),
the observations (as circles) as well as the posterior means and 90Meciatérvals produced
by the two algorithms for the prey (left) and predator (right) populations.c#s be seen, both
algorithms do well over the first half of the interval where data is presentihd second half, the
MF algorithm appears to underestimate the predicted size of the predatdagap. On the other
hand, the MCMC posterior reflects the true trajectory better. In geneedhund the MF algorithm
to underestimate the posterior variance in the MJP trajectories, especiallyegi@ns with few
observations.

5.4 Average Relative Error vs Number of Samples

For the remaining experiments, we compared our sampler with the Gibbs saifhgleday et al.
(2008). For this comparison, we used the CTBN-RLE package of Shettah (2010) (also im-
plemented in C++). In all our experiments, as with the MMPP, we found owrigthgn to be
significantly faster, especially for larger problems. To prevent detaitbetwo implementations
from clouding the picture and to reiterate the benefit afforded by avoidiaitgix exponentiations,
we also measured the amount of time CTBN-RLE spent exponentiating matffitissconstituted
between 10% to 70% of the total running time of their algorithm. In the plots we teetbis as ‘El
Hay et al. (Matrix Exp.)’. We found that our algorithm took less time than ekien

In our first experiment, we followed El-Hay et al. (2008) in studying haerage relative error
varies with the number of samples from the Markov chain. Average relatie is defined by
Yi |eje—je,-\, and measures the total normalized difference between empi@]’padu@d true @;) av-
erages of sufficient statistics of the posterior. The statistics in questidheatgne spent by each

node in different states as well as the number of transitions from eachisthtothers. The exact

3. We thank Guido Sanguinetti for providing us with his code.
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Figure 10: Average relative error vs number of samples for 1000 avtgnt runs; burn-in = 200.
Note that in this scenario, uniformization was about 12 times faster, so tithefsame
computational effort, it produces significantly lower errors.

values were calculated by numerical integration when possible, othemeiseaf very long run of
CTBN-RLE.

As in El-Hay et al. (2008), we consider a CTBN with the topology of a cheamsisting of 5
nodes, each with 5 states. The states of the nodes were observed atdingea®and we produced
endpoint-conditioned posterior samples of paths over the time intf)20]. We calculate the
average relative error as a function of the number of samples, with abofr200 samples. Figure
10 shows the results from running 1000 independent chains for boblees. Not surprisingly, the
sampler of El-Hay et al. (2008), which produces conditionally indepeinsiemples, has slightly
lower errors. However the difference in relative errors is minor, amgdgigible when considering
the dramatic (sometimes up to two orders of magnitude; see below) speed impraseof our
algorithm. For instance, to produce the 10000 samples, the El-Hay et @8)(&mpler took about
6 minutes, while our sampler ran in about 30 seconds.

5.5 Time Requirementsfor the Chain-Shaped CTBN

In the next two experiments, we compare the times required by CTBN-RLBwm¢hiformization-
based sampler to produce 100 effective samples as the size of the bhped<CTBN increased in
different ways. In the first cases, we increased the length of the ,caadhin the second, the
dimensionality of each node. In both cases, we produced posterior safnmie an endpoint-
conditioned CTBN with random gamma distributed parameters.

The time requirements were estimated from runs of 10000 samples after-ankperiod of
1000 iterations. Since CTBN-RLE does not support Bayesian inferemmdCTBN parameters, we
kept these fixed to the truth. To produce ESS estimates, we counted thermfntitaasitions of
each node and the amount of time spent in each state, and for each MGiVi@aestimated the
ESS of these quantities. Like in Section 4.1, the overall ESS is the median efdstmates. Each
point in the figures is an average over 10 simulations.
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Figure 11: CPU time vs (left) length of CTBN chain (centre) number of staft€STBN nodes
(right) time interval of CTBN paths.

In the first of these experiments, we measured the times to produce 16fivefleamples for
the chain-shaped CTBN described above, as the number of nodes ihdime(ce., its length)
increases. The leftmost plot in Figure 11 shows the results. As might leetex} the time required
by our algorithm grows linearly with the number of nodes. For El-Hay e8I08), the cost of the
algorithm grows faster than linear, and quickly becoming unmanagealgdiriié spent calculating
matrix exponentialdoesgrow linearly, however our uniformization-based sampler always takss le
time than even this.

Next, we kept the length of the chain fixed at 5, instead increasing the muidtates per node.
As seen in the middle plot, once again, our sampler is always faster. Asynafi{otice expect our
sampler to scale a9(N?) and El-Hay et al. (2008) a®(N®). While we have not hit that regime
yet, we can see that the cost of our sampler grows more slowly with the nuhéiates.

5.6 Time Requirementsfor the Drug-Effect CTBN

Our final experiment, reported in the rightmost plot of Figure 11, meashegsme required as the
interval length(teng — tstart) increases. For this experiment, we used the drug-effect networknshow
in Figure 7, where the parameters were set to standard values (obtaime@TBN-RLE) and the
state of the network was fully observed at the beginning and end times. ,Agaialgorithm is the
faster of the two, showing a linear increases in computational costs with thth lehthe interval.

It is worth pointing out here that the algorithm of El-Hay et al. (2008) hgwecision’ parameter,
and that by reducing the desired temporal precision, faster perfoemamcbe obtained. However,
since our sampler producegactsamples (up to numerical precision), our comparison is fair. In the
above experiments, we left this parameter at its default value.

6. Discussion

We proposed a novel Markov chain Monte Carlo sampling method for Majikmp processes.
Our method exploits the simplification of the structure of the MJP resulting fronmtheduction

of auxiliary variables via the idea of uniformization. This constructs a Majkmp process by
subordinating a Markov chain to a Poisson process, and amounts togumMarkov chain on a
random discretization of time. Our sampler is a blocked Gibbs sampler in this atepmepresen-
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tation and proceeds by alternately resampling the discretization given tHeWetnain and vice
versa. Experimentally, we find that this auxiliary variable Gibbs sampler is atatipnally very
efficient. The sampler easily generalizes to other MJP-based modelsegmésented samplers for
Markov-modulated Poisson processes and continuous-time Bayesiarrketin our experiments,
we showed significant speed-up compared to state-of-the-art sarfgulbath.

Our method opens a number of avenues worth exploring. One concersglibirdinating Pois-
son rateQ which acts as a free-parameter of the sampler. While our heuristic of settingpth
max 2|As| worked well in our experiments, this may not be the case for rate matrices \adéiyw
varying transition rates. A possible approach is to ‘learn’ a good settirti®fparameter via
adaptive MCMC methods. More fundamentally, it would be interesting to invastifitheoretical
claims can be made about the ‘best’ setting of this parameter under some esezfauixing speed
and computational cost.

Next, there are a number of immediate generalizations of our sampler. Firgtlgouithm is
easily applicable to inhomogeneous Markov jump processes where teebigsed on matrix ex-
ponentiation cannot be applied. Following recent work (Rao and Tel,®Qwe can also look at
generalizing our sampler to semi-Markov processes where the holding tintles states follow
non-exponential distributions. These models find applications in fields lik&atistics, neuro-
science and queueing theory (Mode and Pickens, 1988). By combiningechnique with slice
sampling ideas (Neal, 2003), we can explore Markov jump processes eititably infinite state
spaces. Another generalization concerns MJPs with unbounded raieesafor the predator-prey
model, we avoided this problem by bounding the maximum population sizeswiglét is impos-
sible to choose a dominatiry. Of course, in practical settings, any trajectory from this process is
bounded with probability 1, and we can extend our method to this case by ¢r€ntis a trajectory
dependent random variable. For some work in this direction, we refeadcalRd Teh (2012).
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Appendix A. The Forward-Filtering Backwar d-Sampling (FFBS) Algorithm

For completeness, we include a description of the forward-filtering backaampling algorithm
for discrete-time Markov chains. The earliest references for this thatre aware of are Bwirth-
Schnatter (1994) and Carter and Kohn (1996).

LetS, t € {O,--- T} be a discrete-time Markov chain with a discrete state sgaed1,---N}.
We allow the chain to be inhomogeneous, wBthbeing the state transition matrix at tirnéso that
P(S+1=75|8 =s) = B.,). Let g be the initial distribution over statestat 0. LetO' be a noisy
observation of the state at tinewith the likelihood given by !(s) = p(O!|S = s). Given a set of
observation® = (QV,---,O"), FFBS returns an independent posterior sample of the state vector.
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Definea!(s) = p(0%,---,0'"1, S = s). From the Markov property, we have the following re-
cursion:

atti(d) = iat (s)L'(s)Bl.

Calculating this for alN values ofs’ takesO(N?) computation, and a forward pass through all
T times isO(T N?). At the end of the forward pass, we have a vector

BT(s):=L"(s)a’ (s) = p(0,Sr =) O p(Sr = 50).
It is easy to sample a realization $f from this. Next, note that

P(S=9%11=5,0)0p(§=5%+1=5,0)
= at (S) BtS’SLt(S) p(oH_la T 7OT |S+l = S/)
Oa'(s)BylL'(s),
where the second equality follows from the Markov property. This toosy easample from, and

the backward pass of FFBS successively samptes to S. We thus have a samp(&, - - -, Sr).
The overall algorithm is given below:

Algorithm 4 The forward-filtering backward-sampling algorithm

I nput: An initial distribution over states, a sequence of transition matri-
cesB', a sequence of observatio@s= (O, - -- Or) with likelihoods
L'(s) = p(O'|S =s).

Output: A realization of the Markov chaifS, - - -, Sr).

1: Seta%(s) = my(s).

2. fort=1—Tdo

3 al(s) =38, (a (sl Y(s)BLt) fors e {1,---,N}.

4: end for

5. SampleSy ~ BT (-), whereBT(s) := LT (s)a'(s).

6

7

8

9

cfort=T —0do
Definef'(s) = a'(s)Bj, sL'(9).
. SampleS ~ B'(-).
. end for
10: return (S, -+, Sr).
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