
Journal of Machine Learning Research 14 (2013) 1387-1415 Submitted 1/11; Revised 12/12; Published 5/13

Finding Optimal Bayesian Networks Using Precedence Constraints∗

Pekka Parviainen PEKKAPA@KTH.SE

Science for Life Laboratory

School of Computer Science and Communication

Royal Institute of Technology (KTH)

Tomtebodavägen 23A

17121 Solna, Sweden

Mikko Koivisto MIKKO.KOIVISTO@CS.HELSINKI.FI

Helsinki Institute for Information Technology

Department of Computer Science

University of Helsinki

Gustaf Hällströmin katu 2b

00014 Helsinki, Finland

Editor: Chris Meek

Abstract

We consider the problem of finding a directed acyclic graph (DAG) that optimizes a decomposable

Bayesian network score. While in a favorable case an optimal DAG can be found in polynomial

time, in the worst case the fastest known algorithms rely on dynamic programming across the node

subsets, taking time and space 2n, to within a factor polynomial in the number of nodes n. In

practice, these algorithms are feasible to networks of at most around 30 nodes, mainly due to the

large space requirement. Here, we generalize the dynamic programming approach to enhance its

feasibility in three dimensions: first, the user may trade space against time; second, the proposed

algorithms easily and efficiently parallelize onto thousands of processors; third, the algorithms can

exploit any prior knowledge about the precedence relation on the nodes. Underlying all these results

is the key observation that, given a partial order P on the nodes, an optimal DAG compatible with

P can be found in time and space roughly proportional to the number of ideals of P , which can be

significantly less than 2n. Considering sufficiently many carefully chosen partial orders guarantees

that a globally optimal DAG will be found. Aside from the generic scheme, we present and analyze

concrete tradeoff schemes based on parallel bucket orders.

Keywords: exact algorithm, parallelization, partial order, space-time tradeoff, structure learning

1. Introduction

During the last two decades, Bayesian networks (BNs) have become one of the most popular and

powerful frameworks for modeling various aspects of intelligent reasoning, such as degrees of be-

lief, causality, and responsibility (Pearl, 1988, 2000; Chockler and Halpern, 2004). While the con-

ceptual basis of BNs can be regarded as satisfactory to a large extent, there remain computational

bottlenecks that currently limit the utilization of BNs in large and combinatorially complex do-

∗. A preliminary version of this work appeared in UAI 2009 (Parviainen and Koivisto, 2009). Part of the work was

done while the first author (P.P.) was affiliated with Helsinki Institute for Information Technology at University of

Helsinki. All correspondence should be addressed to the first author.

c©2013 Pekka Parviainen and Mikko Koivisto.

PARVIAINEN AND KOIVISTO

mains. Underlying many of these bottlenecks is the graphical structure of the model, a directed

acyclic graph (DAG). In particular, when one is supposed to learn a BN from data (Verma and

Pearl, 1990; Spirtes and Glymour, 1991; Cooper and Herskovits, 1992; Heckerman et al., 1995), in

principle, one has to exhaust the space of all possible DAGs, which can be enormous and does not

easily factorize due to the acyclicity constraint. Indeed, when formalized in a natural manner, the

problem is known to be NP-hard (Chickering, 1996; Chickering et al., 2004). Consequently, much

of the machine learning research on BNs has focused on tractable special cases or other restrictive

assumptions and, of course, on various heuristics.

However, the continued increase in computational resources and the advances in algorithmic

techniques have recently turned many researchers’ attention to exact means for learning BNs from

data. Common to such endeavors is that the problem is cast as optimization (or sometimes as

integration) of a scoring function that assigns each possible DAG a real number reflecting how well

the DAG fits the given data. Furthermore, it is assumed that the scoring function decomposes into

a sum of local terms, each local term depending on a child node and its parent nodes. For this

optimization problem, techniques similar to the classic dynamic programming (DP) treatment of

the traveling salesman problem (Bellman, 1962; Held and Karp, 1962) have yielded exponential-

time algorithms that solve instances of up to around 30 nodes with feasible worst-case runtime

guarantees (Ott and Miyano, 2003; Koivisto and Sood, 2004; Silander and Myllymäki, 2006; Singh

and Moore, 2005). Note that, while heuristic search algorithms may often find an optimal DAG in

instances of this size, that certainly does not happen always and there is usually no practical way

to verify or falsify a claim of optimality. Exact algorithms completely avoid that major uncertainty

concerning the quality of the algorithm’s output.1 Besides, they provide tools for the design and

analysis of heuristic methods that better scale up to larger instances. There are obvious interests in

extending the scope of exact algorithms.

The existing DP algorithms suffer from two major shortcomings: they have huge memory re-

quirements and they do not parallelize efficiently. For example, a streamlined implementation of the

DP algorithm, by Silander and Myllymäki (2006), is able to handle 29 nodes in around 10 hours,

but, needing almost 100 gigabytes of hard disk aside a main memory of a few gigabytes. As such,

the algorithm cannot handle larger instances. However, supposing the memory requirement was not

an issue and that the algorithm could be run in parallel on thousands of processors, much larger

instances could be solved. For example, a 40-node instance would take just about the same 10 hours

if given 211 = 2048 processors, or about a week if given one hundred processors. Unfortunately,

it is notoriously difficult to save space in related DP algorithms without an increase in the running

time (Bellman, 1962; Bodlaender et al., 2006, 2012). Thus, a plausible goal is to trade as little time

as possible for a fair amount of space and parallelization capacity.

In this article, we introduce new algorithmic schemes that address the issues of memory re-

quirement and parallelization of the DP algorithms for the BN learning problem. Our contributions

stem from the following observation: Suppose we know a priori some precedence constraints that

an optimal DAG we are searching for must obey; that is, if node u is constrained to precede node

1. The reader may wonder whether the search for an optimal DAG is important at all. Might not noise in the data,

limitations of the score function, etc., dampen any advantage of the optimality procedure over, say, heuristic local

search? Yes, they might. When that is the case, the research, indeed, ought to focus on removing the corresponding

bottlenecks, that is, improve data quality, the model, etc., which is a matter of more practical case-by-case studies.

But we also believe there is room for research in settings where “optimal” is truly more desirable than “arbitrary”,

and research on BNs is not an exception.

1388

OPTIMAL BAYESIAN NETWORKS USING PRECEDENCE CONSTRAINTS

v, then the DAG must not contain a directed path from v to u. In an extreme case, the precedence

constraints specify a linear order on the nodes, and more generally, the constraints specify a partial

order. The key observation is that the DP algorithms can be extended to exploit the precedence

constraints to save both time and space. Specifically, the time and space requirements can be made

to grow roughly linearly in the number of node subsets that are closed under taking predecessors,

called ideals (or downsets) of the partial order. As the number of ideals can be much smaller than

the number of all node subsets, depending on the width of the partial order, there is potential for

a significant improvement over the existing DP algorithms, which are ignorant of precedence con-

straints. To realize this potential, we need to consider partial orders that have only few ideals. The

second part of our observation addresses this requirement: Instead of assuming a single given partial

order, we may consider multiple partial orders that together cover all possible DAGs, that is, every

DAG is compatible with at least one of the partial orders. Each partial order amounts to a subprob-

lem that can be solved independently of the others, until only finally the best of the solutions to the

subproblems is returned. Because of the independence of the subproblems, the computations can

be run in parallel on as many processors as there are partial orders. We are left with the freedom to

choose either many partial orders, each with only few ideals (the extreme is to consider all linear

orders), or just a few partial orders, each with many ideals, or something in between. This freedom

allows us to trade time for space and parallelization in a smooth fashion, to adapt to the available

resources.

We begin the remainder of this article in Section 2 by formulating the optimization problem in

question more carefully and by reviewing the basic DP algorithm. Section 3 illustrates the problem

setting by describing a simple scheme, called the two-bucket scheme, that enables trading time for

space and parallelization. While that scheme is per se rather inefficient, it serves as a base for the

developments that follow in later sections. Specifically, Section 4 combines the two-bucket scheme

with divide and conquer to get efficient tradeoff in the small-space regime. While the resulting

algorithms are, admittedly, of merely theoretical interest, they connect to and extend what is known

about the polynomial-space solvability of related classic problems, such as the traveling salesman

problem (Savitch, 1970; Gurevich and Shelah, 1987; Björklund and Husfeldt, 2008; Bodlaender

et al., 2006, 2012). Section 5, on the other hand, generalizes the two-bucket scheme into a generic

partial order approach, constituting the main conceptual and technical contribution of this work.

The generic approach being quite abstract, its more concrete implications are derived in Section 6

for a particular class of partial orders, namely (parallel compositions of) bucket orders. Some of the

combinatorial analyses concerning bucket orders build on our on-going work on related permutation

problems—some results have been published in a preliminary form in a conference proceedings

(Koivisto and Parviainen, 2010) that we will cite in Section 6. Finally, in Section 7, we summarize

our main findings and discuss how they advance the state of the art in learning BNs from data.

After the publication of a preliminary version of this work (Parviainen and Koivisto, 2009),

several notable related results have been announced by other groups. Branch-and-bound methods

exploiting local constraints are proposed by de Campos et al. (2009, 2011) and Etminani et al.

(2010). Jaakkola et al. (2010) and Cussens (2011) have developed integer linear programming

techniques and achieved rather encouraging empirical results. Malone et al. (2011) and Yuan et al.

(2011) propose tighter implementations of the DP algorithm, yielding moderate savings in memory

and time usage. Finally, Tamada et al. (2011) present a parallelization scheme with somewhat

involved communication routines. We discuss the merits and limitations of these methods and their

relation to our work more thoroughly in Section 7.

1389

PARVIAINEN AND KOIVISTO

2. Preliminaries

This section presents the basic terminology and formulations needed in later sections. In particular,

we formalize the computational problem of finding an optimal Bayesian network, accompanied with

some remarks concerning the representation of the input. Then we review a dynamic programming

algorithm that sets the technical and conceptual baseline for the developments in Sections 3–6.

2.1 The Optimal Bayesian Network Problem

A Bayesian network is a multivariate probability distribution that obeys a structural representation

in terms of a directed acyclic graph (DAG) and a corresponding collection of univariate condi-

tional probability distributions. For our purposes, it is crucial to treat the DAG, that is, the network

structure, explicitly, whereas the conditional probabilities will enter our formalism only implicitly.

Formally, a DAG is a pair (N,A), where N is the node set and A ⊆N ×N is the arc set. A node

u is said to be a parent of a node v if the arc uv is in A. The parent set of a node v consists of the

parents of v and is denoted by Av. When there is no ambiguity about the node set we identify the

DAG with its arc set. We denote the cardinality of N by n. The number of parents or indegree of

node v in A is simply |Av|. A node that is not a parent of any node is called a sink of the DAG.

We formulate the task of learning a Bayesian network from data as a generic optimization prob-

lem over DAGs on a given node set N . Specifically, we assume that each DAG A is associated

with a real number f(A) that specifies how well the Bayesian networks with structure A fit the

given data. In particular, the scoring function f can take any of the various forms derived under

different paradigms for statistical inference, chiefly, the Bayesian, the maximum-likelihood, and the

minimum description length paradigms. For examples of concrete scoring functions and their jus-

tifications, see, for instance, de Campos’s (2006) review and the next paragraph. The optimization

problem becomes algorithmically interesting when the function f has some structure. To this end,

we make the usual assumption that the scoring function is decomposable, that is, for each node v
there exist a local scoring function fv such that

f(A) =
∑

v∈N

fv(Av) ,

for all DAGs A on N ; each fv is a function from the subsets of N \ {v} to real numbers. We call

f(A) and fv(Av) the score of A and the (local) score of Av, respectively.

Example 1 (the Bayesian Dirichlet (BD) score) Heckerman et al. (1995) define the Bayesian Dirich-

let (BD) metric as the joint probability distribution over the DAG and the data:

p(A)
∏

v∈N

qv
∏

x=1

Γ(m′
ux)

Γ(m′
ux +mux)

rv
∏

y=1

Γ(m′
uxy +muxy)

Γ(m′
uxy)

,

where p(A) is the prior of the structure A, rv is the number of possible values of node v and qv the

number of possible value configurations of the parents of v in A. Furthermore, muxy is the number

of data records in which u has value x and the parents of u in A have value configuration y. Here

we assume some arbitrary but fixed labeling of the values and value configurations by numbers

1,2,3, The numbers m′
uxy are nonnegative reals specified by the modeler, and mux and m′

ux are

obtained by taking the sum of the muxy and m′
uxy, respectively, over the range of y. The gamma

1390

OPTIMAL BAYESIAN NETWORKS USING PRECEDENCE CONSTRAINTS

function Γ appears in the expression as Dirichlet priors on the local conditional distributions are

marginalized out.

The BD score is obtained by taking a logarithm of the BD metric. Whether the BD score is

decomposable or not depends on the choice of the prior p(A). Often the prior is assigned such that

it factorizes into a product
∏

v ρv(Av), with, for instance ρv(Av) = cκ|Av | for some constants c and

κ independent of Av but possibly dependent on v (Heckerman et al., 1995). With such a prior, the

BD score is easily seen to yield a decomposable scoring function.

Definition 1 (the OBN problem) Given a decomposable scoring function f as input, the optimal

Bayesian network problem is to output a DAG A that maximizes f(A).

Concerning the representation of the problem input, some remarks are in order. First, while the

notion of decomposability concerns the mere existence of local scoring functions, we naturally as-

sume that the functions fv are given explicitly as input. In practice, the values fv(Av) are computed

for every relevant Av based on the data and the chosen scoring function. Second, we allow fv(Av)
to take the value −∞ to indicate that Av cannot be the parent set of v. In fact, we assume that

a collection of potential parent sets, denoted as Fv, is given as input, with the understanding that

outside that collection the values are −∞. Third, we remark that the size of Fv may often be much

less than the theoretical maximum 2n−1, due to several potential reasons:

(a) The maximum number of parents is set to k, a parameter specified by the modeler.

(b) The parents are assumed to be contained in a predetermined (small) set of candidates.

(c) One can safely ignore a parent set that has a subset with a better score (observed by comput-

ing the score or by analytical bounds specific to the scoring function).

We note that (a) and (b) are often assumed by the modeller but do not hold in general, and are

not assumed in the sequel, whereas (c) always holds. Common to (a) and (b) is that they yield

a downward closed collection of parent sets, that is, a collection that is closed with respect to set

inclusion. While the same does not hold for (c), it is plausible to expect that the pruned collection

is not much smaller than the downward closure of the collection, obtained by taking all members

of the collection and their subsets: In theory, the downward closure can be larger than the pruned

collection by a factor of about 2k, where k is the size of the largest parent set; for a small constant

k, this factor is not large. In practice, however, we have observed significantly smaller factors,

typically not exceeding 2.2 Motivated by this proximity, we for technical ease take the downward

closure of the pruned collection as the collection Fv. For the state of the art in pruning parent sets

we refer to the results of de Campos and Ji (2011).

These issues become relevant when it comes to representing the input in a data structure that

takes relatively little space but enables fast fetching of local scores. If only (a) and (b) hold, then a

2. We have examined the pruned parent set collections of 52 data sets made available by James Cussens at www.cs.

york.ac.uk/aig/sw/gobnilp/data/. In 21 of the data sets, the maximum number of parents was set to 3, and in

the rest it was set to 2. We found that the factor—defined as the size of the downward closure of the pruned collection

divided by the size of the pruned collection—varied (over the data sets and nodes) from 1.0 to 4.2. The median value

over the nodes varied (over the data sets) from 1.0 to 1.8. The maximum over the nodes varied from 1.0 to 4.2 and

was below 2.7 for all but one data set; the value 4.2 was due to having 5 members in the pruned collection while 21

members in the closure. This suggests that larger factors occur only when the closure is small, in which case the size

of the closure is not a bottleneck in the computations.

1391

PARVIAINEN AND KOIVISTO

simple array representation would suffice, because the regularity enables efficient indexing. How-

ever, to allow for general downward-closed collections we will work with the following augmented

representation. We assume that each fv is provided as an array of tuples (Z,fv(Z),U), where

Z ∈ Fv and U consists of the nodes u outside Z satisfying Z ∪ {u} ∈ Fv. We further assume

that the array is ordered lexicographically by Z (with respect to an arbitrary but fixed ordering of

the nodes). This representation is motivated by the following observation concerning set interval

queries, which we will need in Section 5.2.

The interval from set X to set Y , denoted as [X,Y], is the collection {Z : X ⊆ Z ⊆ Y }.

Proposition 2 (interval queries) Given a downward closed collection Fv in the augmented repre-

sentation and sets X,Y ⊆ N \ {v}, the scores fv(Z) for all Z ∈ Fv in the interval [X,Y] can be

listed in O(n) time per score.

Proof First, search for the tuple (X,fv(X),U). If no tuple is found, then stop and list no sets—

this is correct, because a downward closed collection intersects the interval [X,Y] only if X be-

longs to the collection. Otherwise let Z = X , list fv(Z), and proceed recursively to the tuples of

Z ′ = Z ∪{u} for each u ∈ U that belongs to Y \Z and succeeds the maximum node in Z \X .

Clearly, the algorithm visits all the desired tuples exactly once. For each visited tuple, locating it

takes O(log |Fv|)) time using binary search, and traversing through the nodes in U takes O(n) time.

Since log |Fv|= O(n), the claimed time bound follows.

It is worth noting that the simple array representation, for cases (a) and (b), is more efficient.

Compared to the augmented representation, it takes less space and enables faster interval queries,

both by a factor linear in n. We leave the verification of this to the reader.

As suggested by the above discussion, we gauge the time and space requirements of an algorithm

by the number of basic operations it executes and the maximum storage size it needs at any point of

its execution, respectively. More specifically, by basic operations we refer not only to addition and

comparison of real numbers but also to indexing arrays by nodes or node subsets. The storage size

is assumed to be constant for real numbers and individual nodes.

2.2 Dynamic Programming

The OBN problem can be solved by dynamic programming across the node subsets (Ott and Miyano,

2003; Koivisto and Sood, 2004; Silander and Myllymäki, 2006; Singh and Moore, 2005). The idea

of the algorithm can be described in terms of node orderings, as follows. Suppose Â is an optimal

DAG, that is, it maximizes the scoring function f . Because Â is acyclic, there is at least one topo-

logical ordering of the nodes that is compatible with Â, that is, if uv is an arc in Â, then u precedes

v in the topological ordering. We will call any such ordering an optimal linear order on the nodes.

Now, vice versa, if an optimal linear order is given, finding an optimal DAG is relatively simple: for

each node v, independently, find a best-score parent set3 among its predecessors in O(|Fv|) time.

Now, when such an optimal linear order is not given, we basically need to consider all possible

linear orders on the nodes. The key observation is that two linear orders imply the same best-score

3. Finding a best-score parent set is computationally hard for the usual local scoring functions, assuming the scoring

function is not given by an explicit array of numbers but by an implicit expression, like the one in Example 1, that is

efficient to evaluate for a given data set (Koivisto, 2006). In the worst case, there is little hope for doing better than

examining all possible sets up to size logarithmic in the number of data points.

1392

OPTIMAL BAYESIAN NETWORKS USING PRECEDENCE CONSTRAINTS

for node v whenever the set of predecessors of v are the same in the orders. Thus the algorithm only

needs to tabulate the best cumulated scores for the node subsets. In the following paragraphs we

present a dynamic programming algorithm that proceeds in two phases. We omit a rigorous proof

of correctness. See Section 5 for a proof concerning a generalization of the algorithm.

In the first phase, the algorithm computes the best-score for each node v and set of predecessors

Y ⊆N \{v}, defined as

f̂v(Y) = max
X⊆Y

fv(X) .

The direct computation of f̂v(Y) for any fixed v and Y requires 2|Y | basic operations. Thus, the total

number of basic operations scales as n
∑n−1

i=0

(n−1
i

)

2i = n3n−1. However, this can be significantly

lowered by the following observation.

Lemma 3 (Ott and Miyano 2003) If v ∈N and Y ⊆N \{v}, then

f̂v(Y) = max
{

fv(Y),max
u∈Y

f̂v(Y \{u})
}

.

This recurrence allows us to proceed levelwise, that is, in increasing cardinality of Y . If the values

f̂v(X) have already been computed for all X ⊂ Y and stored in an array, computing f̂v(Y) takes

no more than n comparisons. Recall we assume that indexing by subsets takes only constant time.

Thus, the values f̂v(Y) for all v and Y can be computed in O(n22n) time. We discuss the space

requirement later.

In the second phase, the algorithm goes through all node subsets Y ⊆N , tabulating the maxi-

mum score over all DAGs on Y , denoted as g(Y). In particular, g(N) is the maximum score over

all DAGs on N . One easily finds the recurrence

g(Y) = max
v∈Y

{

g(Y \{v})+ f̂v(Y \{v})
}

, (1)

with g(∅) = 0. In other words, g(Y \ {v}) + f̂v(Y \ {v}) is the maximum score over all DAGs on

Y such that v is the “last node”, that is, the parents of v are selected from Y \{v}. Given the values

f̂v(Y) computed in the first phase, the values g(Y) can be computed in O(n2n) basic operations.

So the time requirement of the whole algorithm is O(n22n).

Like the time requirement, also the space requirement is dominated by the first phase, the man-

agement of the values f̂v(Y). If all intermediate results are kept in memory, the space requirement

is O(n2n). However, this can be reduced to O(
√

n2n) by merging the two phases of the algorithm

(Bellman, 1962; Ott and Miyano, 2003; Malone et al., 2011): Note that the computation of both

g(Y) and f̂v(Y) requires information only about the sets of size |Y |−1. Therefore, we can proceed

levelwise and compute both phases for one level at a time. Thereby, at any level ℓ we need to keep

in memory the values g(Y) and f̂v(Y) only for O
((n

ℓ

)

+
(n

ℓ−1

))

sets Y of size ℓ and ℓ− 1. Hence

the space requirement is O
(

n
(n

⌈n/2⌉

))

.

Once the optimal score has been computed, an optimal DAG can be constructed with negligible

time and space overheads by back tracing, as follows. Starting with Y = N , first a node v ∈ Y such

that g(Y) = g(Y \ {v}) + f̂v(Y \ {v}) can be found in O(n) time, since the required values of g
and f̂v have already been computed and are available. An optimal parent set for v can then be found

by brute-force in O(|Fv|) time. If the values of g and f̂v are kept in memory for all node subsets,

1393

PARVIAINEN AND KOIVISTO

then this step can be just repeated n times. Otherwise, if the values of g and f̂v are kept in memory

only for the node subsets at the last two levels, one can resolve the entire problem on the smaller

node subset Y \ {v} to recompute the needed values of g and f̂v. While this is repeated n times,

the overall running time becomes not more than roughly two-fold, since the smaller instances are

solved exponentially faster.

3. Two-Bucket Scheme

In this section we present a simple scheme for solving the OBN problem with less space, albeit more

slowly. The idea is to guess the set of, say, s first nodes of an optimal linear order and then solve

separately the independent subproblems on those s first nodes and on the last n− s nodes. More

formally and in terms of DAGs, the key observation is the following: Let Â be an optimal DAG on

the node set N . Fix an integer s with n/2≤ s≤ n. Since Â is acyclic, there exists a partition of N
into two sets N0 and N1 of size s and n− s, respectively, such that every arc between N0 and N1

in Â is directed from N0 to N1. In other words, the parents of any node in N0 are from N0, while

a node in N1 may have parents from both N0 and N1. Thus, one can find Â—strictly speaking, the

associated optimal score f(Â)—by trying out all possible ordered partitions (N0,N1) of N , with

|N0|= s and |N1|= n−s, and solving the recurrences

g0(Y) = max
v∈Y

{

g0(Y \{v})+ f̂v(Y \{v})
}

, (2)

for ∅ ⊂ Y ⊆N0 with g0(∅) = 0, and

g1(Y) = max
v∈Y

{

g1(Y \{v})+ f̂v(N0∪Y \{v})
}

, (3)

for ∅ ⊂ Y ⊆ N1 with g1(∅) = 0. The score of Â is obtained as the maximum of g0(N0) + g1(N1)
over all the said partitions (N0,N1).

We notice that the two subproblems are independent of each other given the partition (N0,N1),

and thus they can be solved separately. Applying the algorithm of the previous section, the compu-

tation of g0 takes O(2sn2) time and O(2sn) space.

Computing g1 can be more expensive, since evaluating the term f̂v(N0 ∪ Y \ {v}) requires

considering all possible subsets of N0 as parents of v, in addition to a subset of Y \ {v}. To this

end, at each X1 ⊆N1 \{v} define

f ′
v(X1) = max

{

fv(X) : X ∩N1 = X1 ,X ∈ Fv
}

and

f̂ ′
v(Y1) = max

X1⊆Y1

f ′
v(X1) .

Observe that computing f ′
v(X1) for all X1 takes O((F +2n−s)n) time in total, where F is the size

of Fv. Now, because f̂v(N0∪Y1) = f̂ ′
v(Y1), the algorithm of the previous section again applies to

compute g1, running in O((F + 2n−s)n2 + 2n−sn2) time and O(2n−sn) space in total. Since there

are
(n

s

)

possible partitions (N0,N1), we have the following:

Proposition 4 OBN can be solved in O
((n

s

)

(2s + F)n2
)

time and O((2s + F)n) space for any

s = n,n−1, . . . ,n/2, assuming each node has at most F potential parent sets.

1394

OPTIMAL BAYESIAN NETWORKS USING PRECEDENCE CONSTRAINTS

When F is O(2s) we can derive simpler asymptotic bounds. For instance, putting s = 4/5n
yields O(2.872n) time and O(1.742n) space. In general, this approach yields a smooth time-space

tradeoff for space bounds between O(2n/2n) and O(2nn) (see Figure 4 in Section 7). However,

within this space complexity range a more efficient scheme exists, as we will show in Section 6.

Furthermore, with space less than O(2n/2n) the above scheme is not applicable.

4. Divide and Conquer Scheme

The partitioning idea from the previous section can be applied recursively, as described next. To

solve the subproblems, namely computing g0(N0) and g1(N1) via the recurrences (2–3), with less

space, we apply the partitioning technique again. The problem of computing g0(N0) is of the same

form as the original problem, and can thus be treated in a straightforward manner. The computation

of g1(N1) is only little more involved. Like before, for any fixed integer s satisfying 0≤ s≤ |N1|,
there exists a partitioning of the node set N1 into subsets N10 and N11 of size s and |N1| − s,

respectively, such that every arc between N10 and N11 in an optimal DAG Â is directed from N10

to N11. So, one can compute g1(N1) by trying out all possible partitions (N10,N11) of N1, with

|N10|= s and |N11|= |N1|−s, and solving the recurrences

g10(Y)= max
v∈Y

{

g10(Y \{v})+ f̂v((N0∪Y \{v})
}

,

for ∅ ⊂ Y ⊆N10 with g10(∅) = 0, and

g11(Y)= max
v∈Y

{

g11(Y \{v})+ f̂v(N0∪N10∪Y \{v})
}

,

for ∅ ⊂ Y ⊆ N11 with g11(∅) = 0. The score g1(N1) is obtained as the maximum of g10(N10) +
g11(N11) over all the said partitions (N10,N11). In general, one can apply partitioning recursively,

say to depth d, and then solve the remaining subproblems by dynamic programming.

For an analysis of the time and space requirements, it is convenient to assume a balanced

scheme: in every step of the recursion, the node set in question is partitioned into two sets of

about equal sizes. For simplicity, assume n is a power of 2. Then, at depth d≥ 0 of the recurrence,

the node set in each subproblem in question is of size s = n/2d. Hence, each subproblem can be

solved in time and space within a polynomial factor to 2s, assuming the number of parents per node

is polynomial in n; more precisely, if each node has at most F potential parent sets, the routines

described in the previous sections take O((2sn + F)n) time and O((2s + F)n) space. Because

each subproblem of size 2s is divided into 2
(2s

s

) ≤ 22s subproblems of size s, the total number of

subproblems of size s that need to be solved is at most 2n2n/22n/4 · · ·22s = 22n−2s.

Theorem 5 OBN can be solved in O
(

22n−2s(2s + F)n2
)

time and O((2s + F)n) space for any

s = n,n/2,n/4, . . ., assuming each node has at most F potential parent sets.

Choosing an s≥ 0 such that 2s ≤ F < 2s+1, gives a theoretically interesting implication:

Corollary 6 OBN can be solved in O(4nn2/F) time and O(nF) space, assuming each node has

at most F potential parent sets.

1395

PARVIAINEN AND KOIVISTO

In particular, when F grows polynomially in n, we have a polynomial-space algorithm whose

running time scales roughly as 4n. Analogous results are known for a number of related permutation

problems, such as the traveling salesman problem, the minimum fill-in problem, the pathwidth

problem, the cutwidth problem, the optimal linear arrangement problem, and the feedback arc set

problem (Gurevich and Shelah, 1987; Björklund and Husfeldt, 2008; Bodlaender et al., 2012). The

divide and conquer technique underlying all these results can be attributed to Savitch (1970).

5. The Partial Order Approach

This section generalizes the two-bucket scheme in a different direction than the divide and conquer

scheme. Informally speaking, we replace a two-bucket partition by a partial order and, accordingly,

the consideration of all fixed-size partitions by the consideration of sufficiently many partial orders

so as to “cover” the linear orders.

We begin by introducing the needed concepts. Then the following three subsections generalize

the two-phase dynamic programming algorithm. While Sections 5.2 and 5.3 present, respectively,

the first and the second phase of the dynamic programming algorithm in a logical order, the treat-

ment of the former is strongly motivated by the latter. The reader may prefer taking a look at the

second phase first. We end this section with some remarks about choosing an efficient system of

partial orders and about implications to parallel computation.

5.1 Partial Order Concepts

The following paragraphs introduce some concepts related to partial orders that will be needed in the

remainder of this paper; for a more thorough treatment, an interested reader may refer, for instance,

to the book by Davey and Priestley (2003).

Partial orders are binary relations that can be viewed as specializations of DAGs, for they inherit

the acyclicity property of DAGs but also require additional properties of reflexivity and transitivity.

But partial orders can also be viewed as extensions of DAGs, for the additional properties can be

achieved by augmenting a DAG with appropriate arcs. Formally, a partial order P on ground set

M is a subset of M ×M such that for all x,y,z ∈M it holds that xx ∈ P (reflexivity), xy ∈ P and

yx ∈ P implies y = x (antisymmetry), xy ∈ P and yz ∈ P implies xz ∈ P (transitivity). A partial

order P is a linear order if, in addition, for all x,y ∈M it holds that xy ∈ P or yx ∈ P (totality).

A linear order Q is a linear extension of a partial order P if P ⊆ Q. If xy ∈ P and x 6= y, we say

that x is smaller than y and that y is larger than x; we denote by Py the set of all elements that are

smaller than y. An element x is maximal if no element is larger than x, and minimal if no element is

smaller than x. The trivial order on M is the “diagonal” partial order {xx : x ∈M}. If the ground

set consists of a single element, we call the partial order a singleton order. Because a partial order

P determines its ground set M , there will usually be no need to refer to the structure (M,P) known

as a partially ordered set (poset). By writing xy ∈ P instead of xPy we emphasize the similar

treatment of DAGs and partial orders. A notion of compatibility between DAGs and partial orders

will be central in our developments:

Definition 7 (compatibility) A DAG A and a partial order P are said to be compatible with each

other if there exists a partial order Q that is a superset of both A and P .

One of the key concepts we need is an ideal of a partial order. Informally, an ideal is a subset

of the ground set that is closed under taking smaller elements. In the literature, ideals are also

1396

OPTIMAL BAYESIAN NETWORKS USING PRECEDENCE CONSTRAINTS

��

� � �

�

� �

� �

�

�

� �

� � �

�

(a) (b) (c)

Figure 1: Three binary relations on the set {A,B,C,D,E,F}. (a) A DAG. (b) A Hasse diagram of

a partial order compatible with the DAG. The partial order has 12 ideals, namely ∅, {A},
{B}, {A,B}, {A,B,C}, {A,B,D}, {A,B,E}, {A,B,C,D}, {A,B,C,E}, {A,B,D,E},
{A,B,C,D,E}, and {A,B,C,D,E,F}. One of the ideals is marked by black dots. (c) A

Hasse diagram of a linear order that is an extension (superset) of both the DAG and the

partial order.

called order ideals or downsets. We will show that, when maximizing a decomposable scoring

function over DAGs that are compatible with a given a partial order, the basic dynamic programming

algorithm can be trimmed to run only across the ideals. We illustrate this soon in Example 2 and

give a general treatment in Sections 5.2 and 5.3.

Definition 8 (ideal) Let P be a partial order on M . A subset I of M is called an ideal of P if y ∈ I
and xy ∈ P imply that x ∈ I . We denote the set of all ideals of P by I(P).

Figure 1 illustrates some of the above defined concepts. Note that we visualize a partially

ordered set (M,P) by its transitive reduction, that is, the graph obtained by removing from P all

pairs xy for which x = y or there exist a z that is larger than x and smaller than y. We draw a

transitive reduction on the plane using a Hasse diagram: a pair xy in the reduction corresponds to a

line segment such that x is positioned below or to the left of y.

Example 2 (dynamic programming across ideals) Consider maximizing a decomposable scor-

ing function over DAGs that are compatible with the partial order given in Figure 1(b). Because

the score is decomposable, an optimal DAG Â must have a sink node v ∈ N = {A,B,C,D,E,F}
such that the parent set Âv of v maximizes the local score over all subsets of N \ {v}, and the re-

mainder of the DAG maximizes the score over DAGs on N \ {v}—this is the essence of the basic

dynamic programming recurrence (1). For concreteness, the reader may think of the DAG of Fig-

ure 1(a) as the optimal DAG. The key observation we can make here is that, due to the precedence

constraints given by the partial order, not all nodes v ∈N need to be considered as the possible sink

node. Indeed, since F is the only maximal element in the partial order, it has to be a sink of any

DAG compatible with the partial order. Thus, in the dynamic programming recurrence it suffices

to consider only one out of the six cases, namely recursing on the subproblem of maximizing the

score over DAGs on N \{F}= {A,B,C,D,E}. It is not a coincidence that this is the only ideal of

1397

PARVIAINEN AND KOIVISTO

the partial order of size 5. Continuing the same reasoning to smaller subproblems shows that it is

sufficient to tabulate the optimal scores (DAGs) for the ideals of the partial order.

We will work with collections of partial orders that share the same ground set. We call such a

collection a partial order system on the ground set, or POS for short. Our interest is particularly in

partial order systems that exhibit sufficient diversity so as to “cover” all linear orders on the ground

set. This idea is formalized in the following:

Definition 9 (cover) A POS P on M is said to be a cover on M if any linear order on M is an

extension of at least one partial order in P .

An extreme example of a cover on a ground set M is the collection {T} formed by the trivial

order T on M . At the other extreme we have the cover that consists of all linear orders on M .

For yet another example, consider the three partial orders defined by P = {AA,BB,CC,AB,AC},
Q = {AA,BB,CC,BA,BC}, and R = {AA,BB,CC,CA,CB}. We see that the system {P,Q,R}
is a cover on the ground set {A,B,C}.

5.2 Dynamic Programming: First Phase

We aim at an algorithm that maximizes f(A) over all DAGs A on the node set N subject to the

constraint that A is compatible with a given partial order P . In this subsection, we modify the first

phase of the basic dynamic programming algorithm, described in Section 2.2, accordingly. In the

next subsection, we will modify the second phase.

Recall that in the first phase, the task is to compute the values f̂v(Y) for all nodes v and node

subsets Y ⊆N \{v}. However, it turns out that, in the second phase, we need these values only for

the ideals Y of the given partial order P . This gives us an opportunity to save space, provided that

we have an appropriate “sparse” variant of the recurrence of Lemma 3 at hand. Next we present

such a variant.

Our key insight is the following simple observation concerning collections of subsets. We leave

the proof to the reader.

Lemma 10 Let X and Y be sets with X ⊆ Y . Let

A= [X,Y] and B = {Z ⊆ Y : x 6∈ Z for some x ∈X} .

Then (i) 2Y =A∪B and (ii) B =
⋃

x∈X 2Y \{x}.

In terms of the set functions fv and f̂v, for an arbitrary v, Lemma 10 amounts to the following

generalization of Lemma 3 (one obtains Lemma 3 at X = Y):

Lemma 11 Let X and Y be subsets of N \{v} with X ⊆ Y . Then

f̂v(Y) = max
{

max
X⊆Z⊆Y

fv(Z), max
u∈X

f̂v(Y \{u})
}

.

Proof By Lemma 10(ii) and the definition of f̂v, the maximum of fv(Z) over Z ∈ ⋃

u∈X 2Y \{u}

equals maxu∈X f̂v(Y \{u}). By Lemma 10(i), the larger of maxX⊆Z⊆Y fv(Z) and maxu∈X f̂v(Y \
{u}) equals maxV ⊆Y fv(V), which by definition is f̂v(Y).

1398

OPTIMAL BAYESIAN NETWORKS USING PRECEDENCE CONSTRAINTS

ABCD

ABC BCDACDABD

AB AC BC AD BD CD

A B C D

∅

Figure 2: Tails of the ideals {A,B,C} and {A,B,C,D} of the partial order of Figure 1(b), marked

in black and gray, respectively, on the subset lattice of {A,B,C,D}. An interval from

one set to another consists of the sets that are along a shortest path between the two sets

in a Hasse diagram of the lattice. For example, the interval
[{C},{A,B,C}] consists of

the sets {C}, {A,C}, {B,C}, and {A,B,C}. In the figure, each subset is referred to by a

sequence of its elements.

Lemma 11 leaves us the freedom to choose a suitable node subset X for each set of interest Y .

For this choice, we make use of the fact that in the second phase of dynamic programming, as it will

turn out in the next subsection, we need the values f̂v(Y) only for sets Y that are ideals of P . Thus,

our goal is to choose X such that Y \{u} ∈ I(P) for all u ∈X . To this end, we let X consist of all

such nodes in Y that have no larger node in Y (w.r.t. P). Accordingly, for Y ∈ I(P) define

Y̌ = {u ∈ Y : uv 6∈ P for all v ∈ Y \{u}} .

Furthermore, define the tail of Y as the interval

TY = [Y̌ ,Y] ;

see Figure 2 for an illustration. By letting X = Y̌ and noting that fv(Z) =−∞ for Z 6∈ Fv, we may

rephrase the equation in Lemma 11 as

f̂v(Y) = max
{

max
Z∈TY ∩Fv

fv(Z), max
u∈Y̌

f̂v(Y \{u})
}

. (4)

The next two lemmas show that Y̌ indeed has the desired property (in a maximal sense) and that

the tails of different ideals Y are pairwise disjoint and thus optimally cover the subsets of N .

Lemma 12 Let Y ∈ I(P) and u ∈ Y . Then Y \{u} ∈ I(P) if and only if u ∈ Y̌ .

1399

PARVIAINEN AND KOIVISTO

Proof “If”: Let u ∈ Y̌ . Let st ∈ P . By the definition of I(P) we need to show that t ∈ Y \ {u}
implies s ∈ Y \ {u}. So, suppose t ∈ Y \ {u}, hence t ∈ Y . Now, since Y ∈ I(P), we must have

s ∈ Y . It remains to show that s 6= u. But this holds because ut 6∈ P by the definition of Y̌ .

“Only if”: Let u 6∈ Y̌ . Then we have uv ∈ P for some v ∈ Y \ {u}. But u 6∈ Y \ {u} and

v ∈ Y \{u}, implying Y \{u} 6∈ I(P) by the definition of I(P).

Lemma 13 Let Y and Y ′ be distinct ideals of P . Then the tails of Y and Y ′ are disjoint.

Proof The lemma states that there does not exist any nonempty Z such that Z ∈ TY ∩TY ′ . Suppose

the contrary that Z ∈ TY ∩TY ′ . By symmetry we may assume that Y \Y ′ contains an element w.

Thus w 6∈ Z, because Z ⊆ Y ′. Because Y̌ ⊆ Z, we have w 6∈ Y̌ . By the definition of Y̌ we con-

clude that for every u ∈ Y \ Y̌ there exists v ∈ Y̌ such that uv ∈ P . Therefore, in particular there

exists v ∈ Y̌ such that wv ∈ P . Since w /∈ Y ′ and Y ′ is an ideal of P it follows by definition of

an ideal that v /∈ Y ′. On the other hand, v ∈ Y̌ and Y̌ ⊆Z ⊆ Y ′ implies that v ∈ Y ′: contradiction.

We we will use these lemmas in Section 5.4 to perform the recurrence of Lemma 11 over the

ideals of the partial order and their tails.

5.3 Dynamic Programming: Second Phase

Recall that the second phase of the basic dynamic programming algorithm is captured by the recur-

rence (1), which concerns all subsets of N that can begin some linear order on N , that is, all the 2n

subsets. Now that we restrict our attention to DAGs that are compatible with the given partial order

P , we may restrict the recurrence to only those sets that can begin some linear extension of P , that

is, to the ideals of P . Formally, define the function gP by gP (∅) = 0 and for nonempty Y ∈ I(P)
recursively:

gP (Y) = max
v∈Y

Y \{v}∈I(P)

{

gP (Y \{v})+ f̂v(Y \{v})
}

. (5)

We can show that gP (N) equals the maximum score over the DAGs compatible with P :

Lemma 14 Let P be a partial order on N . Then

gP (N) = max{f(A) : A is compatible with P} .

Furthermore, if P is a cover on N , then

max
P ∈P

gP (N) = max
A

f(A) ,

where A runs through all DAGs on N .

Proof Let P be a partial order on N . For any subset Y ⊆ N denote by P [Y] the induced partial

order {xy ∈ P : x,y ∈ Y }. We show by induction on the size of Y that gP (Y) equals the maximum

score f(A′) over the DAGs A′ ⊆ Y ×Y compatible with P [Y], assuming Y is an ideal of P . Here

the score f(A′) is naturally defined as
∑

v∈Y fv(A′
v).

1400

OPTIMAL BAYESIAN NETWORKS USING PRECEDENCE CONSTRAINTS

For the base case, consider an arbitrary singleton {v} ∈ I(P). Clearly, there is exactly one

DAG A′ on {v} and it is compatible with P [{v}] = {vv}; the score of the DAG is f(A′) = fv(∅) =
f̂v(∅). This is precisely what the recurrence (5) gives, as gP (∅) = 0.

Suppose then that the recurrence (5) holds for all proper subsets of a subset Y ⊆ N . Without

any loss of generality, we assume Y = N for notational convenience. Now, write

max
A is compatible with P

f(A) = max
L⊇P

max
A⊆L

∑

v∈N

fv(Av)

= max
L⊇P

∑

v∈N

max
Av⊆Lv

fv(Av)

= max
L⊇P

∑

v∈N

f̂v(Lv)

= max
v∈N

{

f̂v(N \{v})+ max
L′⊇P [N\{v}]

∑

u∈N\{v}

f̂u(L′
u)

}

= max
v∈N

{

f̂v(N \{v})+gP [N\{v}](N \{v})
}

.

Here L and L′ run trough the respective linear extensions and A through the DAGs satisfying the

mentioned condition. The first identity holds by the definition of compatibility and the decompos-

ability of the scoring function f ; the second one by the distributive law; the third one by the defini-

tion of f̂v; the fourth one because addition distributes over maximization and the fact that some node

v is the last one in the linear order L and that the induced linear order L′ on the remaining nodes is

an extension of the induced partial order P [N \{v}]; the fifth one by the induction assumption (and

the third identity). Finally, it suffices to notice that gP (Y) = gP Y for Y ∈ I(P), since clearly

a subset X of Y is an ideal of P if and only if X is an ideal of P [Y].

For the second statement, it suffices to observe that

max
P ∈P

max
L⊇P

∑

v∈N

f̂v(Lv) = max
L

∑

v∈N

f̂v(Lv) = max
A

f(A) ,

since P is a cover on N .

5.4 Dynamic Programming: First and Second Phase Merged

We now merge the ingredients given in the previous two subsections into an algorithm for evaluating

gP using the recurrence (5) and Lemma 11, for a fixed P ∈ P . In Algorithm 1 below, gP [Y] and

f̂v[Y] denote program variables that correspond to the respective target values gP (Y) and f̂v(Y) to

be computed. Also, recall that Fv denotes the collection of potential parent sets for node v.

1401

PARVIAINEN AND KOIVISTO

Algorithm 1:

1. Let gP [∅]← 0.

2. For each v ∈N , let f̂v[∅]← fv(∅).

3. For each nonempty Y ∈ I(P), in increasing order of cardinality:

(a) let

gP [Y]←max
v∈Y̌

{

gP [Y \{v}]+ f̂v[Y \{v}]
}

;

(b) for each v ∈ Y , let f̂v[Y] be the larger of

max
Z∈TY ∩Fv

fv(Z) and max
u∈Y̌

f̂v[Y \{u}] .

Lemma 15 Algorithm 1 correctly computes gP , that is, gP [Y] = gP (Y) for all Y ∈ I(P).

Proof Observe first that the algorithm correctly computes f̂v for each v ∈ N , that is, after the

execution of the algorithm we have f̂v[Y] = f̂v(Y) for all v ∈ Y ∈ I(P). To this end, it suffices to

note that step 3(b) implements the recurrence of Lemma 11 as rephrased in (4).

Then notice that step 3(a) implements the recurrence (5). Indeed, by Lemma 12, the condition

“v ∈ Y and Y \ {v} ∈ I(P)” of (5) is equivalent to “v ∈ Y̌ ” of step 3(a), given that Y ∈ I(P)
(guaranteed in step 3). This completes the proof.

To solve the OBN problem it suffices to run Algorithm 1 for every partial order in a system that

is a cover on N . The appropriate partial order system of course varies with the problem instance,

particularly with the number of nodes n. In the following statement of the time and space complexity

of OBN, we do not fix any particular way to choose and construct the needed partial order system,

but we simply refer to any appropriate system. Thus, the complexity results are nonuniform with

this respect.

Theorem 16 (main) OBN can be solved in O
([

∑

P ∈P(|I(P)| + F)
]

n2
)

time and

O
([

maxP ∈P |I(P)|+ Fn
]

n
)

space, assuming P is a cover of N and each Fv is downward

closed and of size at most F .

Proof By Lemmas 14 and 15, it suffices to run Algorithm 1 for each P ∈ P .

The time requirement of Algorithm 1 is dominated by steps 3(a) and 3(b). Given Y , the set

Y̌ can be constructed in time O(n2) by removing from Y each element that is not maximal in Y .

Thus, the contribution of step 3(a) in the total time requirement is O(|I(P)|n2).

We then analyze the time requirement of step 3(b), for fixed v. By Proposition 2, the maxi-

mization of the local scores over TY ∩Fv can be done in O(|TY ∩Fv|n) time. By Lemma 13 the

collections TY ∩Fv are disjoint for different Y ∈ I(P). Thus the total contribution to the time

requirement is proportional to |Fv| ≤ F , for each v. Because step 3(b) is executed |I(P)| times, the

total time requirement of step 3(b) is O(|I(P)|n2 +Fn2). Combining the time bounds of steps 3(a)

and 3(b) and summing over all members of P yields the claimed bound O
([

∑

P ∈P |I(P)|+F
]

n2
)

.

1402

OPTIMAL BAYESIAN NETWORKS USING PRECEDENCE CONSTRAINTS

The space requirement for a fixed partial order P is O(|I(P)|n), since by Lemma 12 the values

gP [Y] and f̂v[Y] are only needed for Y ∈I(P). In addition, storing the local scores requires O(Fn)
space for each node v. Therefore, the total space requirement is O

([

maxP ∈P |I(P)|+Fn
]

n
)

.

Remark 17 Like in the basic DP algorithm, step 3 of Algorithm 1 can be implemented so that,

compared to the bound in Theorem 16, a space saving proportional to
√

n is obtained.

5.5 Notes

We end this section with a couple of remarks on the general partial order approach.

The results in this section apply to any POS that is a cover on the node set. However, they do not

tell us how to choose a POS that yields, in some sense, the most efficient tradeoff between space and

time. Ideally, we would like to have a scheme that given a space bound as a function of the number

of nodes n, say sn, gives us a POS Pn such that the space requirement implied by Pn is O(sn)
while the time requirement bound is minimized. Unfortunately, designing such an optimal scheme

seems difficult due to the combinatorial challenge of simultaneously controlling the required cov-

ering property of the partial order system and the number of ideals of the members of the system.

Note that both counting the linear extensions and the ideals of a given partial order are #P-hard com-

putational problems (Brightwell and Winkler, 1991; Provan and Ball, 1983), suggesting that their

mathematical analysis is also not easy. In the next section we give a partial and practical solution

to this issue by studying a subclass of series-parallel partial orders, which enables a derivation of

concrete, quantitative space-time tradeoff results.

As another remark, we note that the algorithms can be easily parallelized onto |P| processors,

each with its own memory, with negligible communication costs. This is in sharp contrast with the

basic dynamic programming algorithm that does not enable such large-scale parallelization. We

discuss the recent work by Tamada et al. (2011) in this light in Section 7. The ease of the paral-

lelization stems from the fact that dynamic programming over the ideals can be done independently

for each partial order P in P . More precisely, each processor gets a dedicated partial order P (and

the local scores) as input and outputs the score gP (N) and a respective DAG. It then remains to

communicate these outputs to a central unit that chooses an optimal one among them.

6. Bucket Order Schemes

To apply the partial order approach in practice, it is essential to find partial order systems that pro-

vide a good tradeoff between time and space requirements. This section concentrates on a class of

partial orders we call parallel bucket orders, which turn out to be relatively easy to analyze and seem

to yield good tradeoff in practice. They also subsume, for instance, the two-bucket construction of

Section 3.

6.1 Bucket Orders and Reorderings

Let P and Q be partial orders on disjoint ground sets M and N , respectively. We say that a partial

order R is a series composition of P and Q if R = P ∪Q∪{xy : x ∈M,y ∈ N}, and a parallel

composition of P and Q if simply R = P ∪Q. Note that both compositions always yield a partial

order, since the ground sets are disjoint. As both composition operations are associative, they read-

1403

PARVIAINEN AND KOIVISTO

ily extend to any finite number of partial orders. Because the series composition operation is not

commutative, it is, of course, applied to a sequence of partial orders. A series-parallel partial order

is defined recursively: a partial order is a series-parallel partial order if it is either a singleton order

or a parallel or series composition of two or more series-parallel partial orders. For example, the

partial order {AA,BB,CC,AB,AC} is a series composition of {AA} and {BB,CC}, of which the

former is a singleton order and the latter is a parallel composition of two singleton orders. Note that

any trivial order is a parallel composition of singleton orders.

We study two special classes of series-parallel partial orders, namely bucket orders and parallel

bucket orders. A bucket order is a series composition of the trivial orders on some ground sets

B1,B2, . . . ,Bℓ, called buckets. The bucket order is said to be of length ℓ and type |B1| ∗ |B2| ∗ · · · ∗
|Bℓ|. We may denote the bucket order by B1B2 · · ·Bℓ. For instance, the series-parallel partial order

in the previous paragraph is a bucket order {A}{B,C}, thus of length two and type 1∗2. Likewise,

the partial order in Figure 1(b) is a bucket order of length three and type 2 ∗ 3 ∗ 1, the trivial order

on some ground set M is of length one and type |M |, and a linear order on M is of length |M | and

type 1∗1∗ · · · ∗1.

By taking a parallel composition of some number of bucket orders we obtain a parallel bucket

order. Note that the same parallel bucket order may be obtained by different collections of bucket

orders. It is, however, easy to observe that for each parallel bucket order P there is a unique

collection of bucket orders P1,P2, . . . ,Pp, called the bucket orders of P , such that their parallel

composition is P and they are the connected components of P .

The following lemma states a well-known result concerning the number of ideals of a series-

parallel partial order (see, for example, Steiner’s article, 1990, and references therein).

Lemma 18 Let P1 and P2 be partial orders on disjoint ground sets. Then (i) the series composition

of P1 and P2 has |I(P1)|+ |I(P2)| − 1 ideals and (ii) the parallel composition of P1 and P2 has

|I(P1)||I(P2)| ideals.

The next two lemmas state the number of ideals of a parallel bucket order.

Lemma 19 Let B be a bucket order B1B2 . . .Bℓ. Then the number of ideals of B is given by

|I(B)|= 1− ℓ+2|B1| +2|B2| + · · ·+2|Bℓ|.

Proof Any singleton order has two ideals, namely the empty set and the ground set. Thus, by

Lemma 18(ii), the trivial order on the bucket Bi has 2|Bi| ideals, for each i. Hence, by Lemma 18(i),

B has 1− ℓ+2|B1| +2|B2| + · · ·+2|Bℓ| ideals.

We note that the order of buckets does not affect the number of ideals.

Lemma 20 Let P be the parallel composition of bucket orders P1,P2, . . . ,Pp. Then the number of

ideals of P is given by |I(P)|= |I(P1)||I(P2)| · · · |I(Pp)|.

Proof Follows immediately from Lemma 18(ii).

Let us return to the issue of choosing a POS that is a cover of the node sets and yields a good

space-time tradeoff. To this end, we will consider systems of parallel bucket orders of a certain

kind, namely systems obtained via “reordering” a fixed parallel bucket order:

1404

OPTIMAL BAYESIAN NETWORKS USING PRECEDENCE CONSTRAINTS

Definition 21 (reordering) We say two bucket orders are reorderings of each other if they have the

same ground set and they are of the same type. Furthermore, we say two parallel bucket orders are

reorderings of each other if their bucket orders can be labelled as P1,P2, . . . ,Pp and Q1,Q2, . . . ,Qp,

respectively, such that Pi is a reordering of Qi for each i. We denote the collection of reorderings

of a parallel bucket order P byR(P).

We note that two bucket orders are reorderings of each other if and only if they are automorphic

to each other. However, this equivalence does not hold for parallel bucket orders in general, for

reordering only allows shuffling within each bucket order, but not between different bucket orders.

It can be shown thatR(P) is a cover on the ground set of P . The proof below slightly simplifies

the one we have given earlier (Koivisto and Parviainen, 2010, Theorem 3.1).

Theorem 22 Let P be a parallel composition of bucket orders. ThenR(P) is a cover on the ground

set of P .

Proof Let L be a linear order on M . It suffices to construct a parallel bucket order Q ∈R(P) such

that L is an extension of Q. To this end, let P1,P2, . . . ,Pp be the bucket orders of P , with respective

ground sets M1,M2, . . . ,Mp. For each i = 1,2, . . . ,p, construct a bucket order Qi on Mi as follows:

Let m1 ∗m2 · · · ∗mℓ be the type of Pi. Let L′ be the induced order L[Mi]. Observe that L′ is a

linear order. Now, put Qi = C1C2 · · ·Cℓ where C1 consists of the first m1 elements in the order L′,

C2 consists of the next m2 elements in the order, and so forth. Observe that L′ is an extension of

Qi and that Qi is a reordering of Pi. Finally, let Q be the parallel composition of Q1,Q2, . . . ,Qp.

Clearly, Q ∈ R(P). To complete the proof, note that L is an extension of Q, since xy ∈Q implies

xy ∈Qi for some i, whence xy ∈ L[Mi]⊆ L.

When P is a parallel composition of p bucket orders, each of type b1 ∗ b2 ∗ · · · ∗ bℓ, we find

it convenient to denote the POS R(P) by (b1 ∗ b2 ∗ · · · ∗ bℓ)
p. This notation is explicit about the

combinatorial structure of the POS, while it ignores the arbitrariness of the labeling of the ground

set. When the size of the ground set, n, is clear from the context, we may extend the notation

(b1 ∗ b2 ∗ · · · ∗ bℓ)
p to refer to a system R(P), where P is a parallel composition of p bucket orders

of type b1 ∗ b2 ∗ · · · ∗ bℓ and one trivial order on the remaining n−p(b1 + b2 + · · ·+ bℓ) elements. It

is instructive to notice that a POS (b1 ∗ b2 ∗ · · · ∗ bℓ)
p consists of

(b1+b2+···+bℓ

b1 b2 ··· bℓ

)p
different partial

orders, since any bucket order of type b1 ∗ b2 ∗ · · · ∗ bℓ has exactly
(b1+b2+···+bℓ

b1 b2 ··· bℓ

)

= (b1+b2+···+bℓ)!
b1!b2!···bℓ!

different reorderings.

For an illustration of these concepts, consider a node set N = {A,B,C,D,E,F,G,H} parti-

tioned into N1 = {A,B,C,D,E,F} and N2 = {G,H}. Let the bucket order on N1 be the one shown

in Figure 1(b), denoted as P1, and let the bucket order on N2 be the trivial order {GG,HH}, denoted

as P2. Now the reorderings of the parallel composition of P1 and P2 form a POS (2 ∗ 3 ∗ 1)1. By

Lemma 19, P1 has 1−3+22 +23 +21 = 12 ideals and P2 has 1−1+22 = 4 ideals. By Lemma 20,

the total number of ideals of the parallel composition of P1 and P2 is 12×4 = 48. The number of

the partial orders in (2∗3∗1)1 is
(6

2 3 1

)1
= 60.

6.2 Bucket Order Schemes

A partial order system (b1 ∗ b2 ∗ · · · ∗ bℓ)
p is associated with some natural parameters, such as the

number of parallel bucket orders p. When all or some of the parameters are treated as variables

1405

PARVIAINEN AND KOIVISTO

that can take different values, we refer to the implied family of partial order systems as a bucket

order scheme. Furthermore, we denote the scheme simply by the expression (b1 ∗ b2 ∗ · · · ∗ bℓ)
p,

where the parameters and their ranges are assumed to understood from the context. For instance,

we may talk about the scheme (5∗5)p, understanding that p takes values over its natural range, that

is, p = 1,2, . . . ,⌊n/(5+5)⌋. Another example of a bucket order scheme is the two-bucket scheme of

Section 3, which corresponds to partial order systems (s∗ (n−s))1, with s treated as the parameter.

Other examples are the pairwise scheme, corresponding to systems (1∗1)p, with p as the parameter,

and the generalized two-bucket scheme defined by the systems (⌈m/2⌉ ∗ ⌊m/2⌋)⌊n/m⌋, with m as

the parameter.

Via Theorem 16, any fixed bucket order scheme implies parameterized time and space complex-

ity bounds for the OBN problem. Moreover, one scheme may dominate another scheme in the sense

of yielding an equal or smaller time bound at any space bound. While it is currently an open prob-

lem to characterize bucket order schemes that dominate all other bucket order schemes, our analysis

of the so-called space-time product (Koivisto and Parviainen, 2010) suggests that the most efficient

trade-off is achieved with the bucket order scheme (⌈m/2⌉,⌊m/2⌋)p. The scheme guarantees that

the product of the time and space requirements scales roughly as Cn, where C equals 4 or is slightly

below 4 depending on the space bound. If some other scheme resulted in a significantly faster algo-

rithm at any space bound, then that scheme would make a new record also in terms of the space-time

product, albeit possibly at a single point. Our prior study (Koivisto and Parviainen, 2010) shows

that no such scheme exists among bucket order schemes. When measured by the space-time prod-

uct, the tradeoff of the scheme (⌈m/2⌉,⌊m/2⌋)p slowly improves when m increases, until m = 26,

after which the tradeoff starts slowly getting worse. We next examine this scheme in more detail

focusing on the range 2≤m≤ 26. See Figure 4 (in Section 7) for the tradeoff curve.

6.3 Practical Bucket Order Schemes

A partial order system (⌈m/2⌉ ∗ ⌊m/2⌋)p consists of
(m

⌊m/2⌋

)p
partial orders, each having

2n−mp(2⌊m/2⌋ + 2⌈m/2⌉− 1)p ideals. Plugging these numbers into Theorem 16 gives us the fol-

lowing time and space bounds.

Corollary 23 OBN can be solved in O
([(m

⌊m/2⌋

)p
(I +F)

]

n2
)

time and O
(

[I +Fn]n
)

space, where

I = 2n−mp(2⌊m/2⌋ + 2⌈m/2⌉−1)p, for any m = 2, . . . ,n and p = 0, . . . ,⌊n/m⌋, assuming each Fv

is downward closed and of size at most F .

We observe that the number of ideals, I , dominates both the time and space requirements as

long as the input size, roughly F , is not too large. Note that pruning the parent sets affects F but has

no effect on I . Since in our case, I usually grows exponentially in n, exponentially large families

of potential parent sets can be handled with negligible extra cost. To investigate this issue more

carefully, we focus on the case where each node is allowed to have at most k = αn parents, with

some slope α≤ 1/2. How large can the slope α be, yet guaranteeing that the size of the input does

not dominate the time and space requirements? Recall that now the term Fn in the space bound can

be replaced by F .

Next we present some lower bounds for α. We note that the largest such slope varies depend-

ing on the scheme used. For a moment, let us focus on the (⌊m/2⌋ ∗ ⌈m/2⌉)⌊n/m⌋ scheme, and

to simplify calculations, assume m is even and n divisible by m. For any fixed m, we bound the

1406

OPTIMAL BAYESIAN NETWORKS USING PRECEDENCE CONSTRAINTS

largest slope by αm, as follows. It is well-known that
∑αmn

i=0

(n
i

)

, an upper bound for the num-

ber of potential parent sets per node, is at most 2H(αm)n, where H is the binary entropy function

(for a proof, see for example Flum and Grohe (2006, p. 427)). On the other hand, every par-

tial order in the system (m/2 ∗m/2)n/m has ((2m/2+1 − 1)1/m)n ideals. Thus, the number of

ideals dominates the space and time requirements if 2H(αm)n ≤ ((2m/2+1−1)1/m)n, equivalently,

H(αm)≤ 1/m log2(2m/2+1−1). Solving this inequality numerically gives us a bound αm. Table 1

shows the αm for each even m≤ 26.

m αm m αm m αm

2 0.238 12 0.139 20 0.127

4 0.190 14 0.135 22 0.125

6 0.167 16 0.131 24 0.124

8 0.153 18 0.129 26 0.123

10 0.145

Table 1: Bounds on the maximum indegree slopes for the scheme (m/2∗m/2)n/m.

Since the partial orders in (m/2∗m/2)n/m have as many or fewer ideals than the partial orders

in (m/2∗m/2)p, for p≤ n/m, we have the following characterization.

Corollary 24 OBN can be solved in O
(((m

m/2

)

2n−mp(2m/2+1 − 1)
)p

n2
)

time and

O
(

2n−mp(2m/2+1 − 1)pn
)

space for any p = 0,1,2, . . . ,⌊n/m⌋ and m = 2,4,6, . . .26, pro-

vided that each node has at most αmn parents, with αm as given in Table 1.

For example, the maximum indegree in 30-node DAGs can be set to ⌊0.238× 30⌋ = 7 in the

pairwise scheme (1∗1)p and to ⌊0.139×30⌋= 4 in the scheme (6∗6)p. A larger maximum indegree

may render the input size dominate the number of ideals in the time and space requirements. In the

next subsection we provide some empirical results, which suggest that the bounds in Table 1 are

only slightly conservative.

6.4 Empirical Results

We have implemented the presented algorithm in the C++ language into a publicly available com-

puter program BOSON (Bucket Order Scheme for Optimal Networks).4 As the implementation

is not fully optimized, the empirical results reported below should be viewed rather as a proof of

concept.5 We tested our implementation varying the number of nodes n, bucket order sizes m, and

the number of parallel bucket orders p. The experiments were run on Intel Xeon R5540 processors,

each with 32 GB of RAM.

We examined the running time for the limit of 16 GB of memory, letting the number of nodes

n vary from 25 to 34, with maximum indegree set to 3. The local scores were taken as given, so

4. BOSON is available at www.csc.kth.se/˜pekkapa/code/boson-1.0.tar.gz.

5. We found the Silander-Myllymäki implementation (Silander and Myllymäki, 2006) about five times faster when the

algorithms were run on the same setting, that is, running our algorithm on the trivial order on the nodes. It is likely

that also the space usage can be lowered by a similar small factor by implementing Remark 17. Taken together,

such improvements would allow us to deal with networks with two to three additional nodes compared to the present

implementation, with the same time and space resources.

1407

PARVIAINEN AND KOIVISTO

computing them is not included in the running time estimates. Since we do not prune potential

parent sets based on the local scores, we have them for all possible parent sets of size at most the

maximum indegree. Note that the actual scores are irrelevant when measuring the time and space

usage. First we estimated the smallest bucket order size m that yields a memory requirement of

16 GB or less. Then we ran Algorithm 1 for a partial order from the POS (⌈m/2⌉,⌊m/2⌋)1 and

gauged the running time. Finally, the measured running time was multiplied by the cardinality of

the POS to get an estimate of the total running time. As all partial orders in the POS yield identical

time and space requirements, there is no issue with estimation error or variance. Table 2 shows

the results. We observe that, as expected, the time requirement grows rapidly with n: An optimal

25-node DAG can be found in about 25 minutes, while a 30-node DAG requires over 16 days of

CPU time. Finding an optimal 34-node DAG is feasible using large-scale parallelization: with 1000

processors it takes about 6 days.

n p m Time per PO Cover size Total time

25 0 0 0.42 1 0.42

26 1 3 0.44 3 1.34

27 1 5 0.49 10 4.9

28 1 8 0.35 70 24.8

29 1 10 0.39 252 97.7

30 1 12 0.43 924 394

31 1 14 0.49 3432 1671

32 1 16 0.53 12 870 6784

33 1 18 0.83 48 620 40 332

34 1 20 0.78 184 756 144 930

Table 2: Time requirements for finding optimal Bayesian networks, for varying number of nodes

when space is limited to 16 GB. Columns: n is the number of nodes; p is the number

of parallel bucket orders; m is the size of the balanced bucket order; time per PO is the

running time (in CPU hours) per partial order; cover size is the number of partial orders

in the cover; total time is the total running times (in CPU hours), that is, time per partial

order multiplied by the size of the cover.

Next we studied how different schemes affect the running times and the space usage in practice.

We analyzed two specializations of the generalized bucket order scheme (⌈m/2⌉ ∗ ⌊m/2⌋)p: the

practical scheme, where p = 1, and the pairwise scheme, where m = 2. The results are shown

in Tables 3 and 4. As expected, the practical scheme yields a clearly better space-time tradeoff

than the pairwise scheme. This is perhaps even more clearly pronounced in Figure 3, which shows

the empirical tradeoffs in the space-time plane along with the analytical bounds (Corollary 23).

We see that, in general, the empirical and analytical bounds are in a good agreement, the analytical

bounds being slightly conservative for medium m (the practical scheme) and medium p (the pairwise

scheme).

We also investigated the influence of the maximum indegree k on various characteristics of

our implementation. Note that, in effect, k parameterizes the number of potential parent sets,

which in turn determines the computational complexity. Thus the observations readily extend to

the case when the number of potential parent sets is reduced using an appropriate pruning proce-

1408

OPTIMAL BAYESIAN NETWORKS USING PRECEDENCE CONSTRAINTS

m p Space Total time m p Space Total time

0 0 21248 1.01 14 1 331 32.51

2 1 15936 1.13 15 1 248 43.97

3 1 13280 1.41 16 1 166 64.35

4 1 9296 1.75 17 1 124 87.79

5 1 7304 2.13 18 1 83 129.65

6 1 4980 2.80 19 1 62 171.93

7 1 3818 3.57 20 1 41 256.61

8 1 2573 4.96 21 1 31 342.92

9 1 1950 6.88 22 1 21 489.88

10 1 1307 9.06 23 1 16 638.48

11 1 986 12.15 24 1 10 976.50

12 1 659 17.43 25 1 8 1444.53

13 1 495 24.31 26 1 5 2600.15

Table 3: Running times (in CPU hours) and space usage (in MB) of the practical scheme (⌈m/2⌉∗
⌊m/2⌋)1 with 2≤m≤ 26 and n = 26.

m p Space Total time m p Space Total time

0 0 21248 1.01 2 7 2836 12.79

2 1 15936 1.13 2 8 2127 20.25

2 2 11952 1.48 2 9 1595 32.36

2 3 8964 2.09 2 10 1197 51.66

2 4 6723 3.19 2 11 897 78.96

2 5 5042 4.97 2 12 673 126.52

2 6 3782 7.90 2 13 505 198.88

Table 4: Running times (in CPU hours) and space usage (in MB) of the pairwise scheme (1 ∗ 1)p

with 1≤ p≤ 13 and n = 26.

dure (de Campos and Ji, 2011). We analyzed the scheme (10 ∗ 10)1 with n = 20 nodes, varying k
from 1 to 8. For interpretation of the results, shown in Table 5, it is useful to note that the partial or-

ders in question have 2047 ideals. For comparison, the (worst-case) input size is 1160 for k = 3 and

5036 for k = 4. So we conclude that the number of ideals dominates the input size precisely when

k ≤ 3. Now, recall that the bounds in Corollary 24 guarantee this only for k ≤ 2, indicating that

the analytical bounds are not tight but slightly pessimistic. Table 5 shows also, perhaps somewhat

surprisingly, that even if the input size for k = 5 is more than 3 times the input size for k = 4, the

total running time less than doubles. This can be explained by the fact that the respective increase

in the tail accesses, from 46520 to 160260, does not yet pay off, since the number of computation

steps that are not related to the input (nor the maximum indegree) appears to be as large as 358300.

For larger k, the running time will grow about linearly with the number of tail accesses.

1409

PARVIAINEN AND KOIVISTO

1.4 1.6 1.8 2
2

2.2

2.4

2.6

2.8

3

3.2

 S (Space = S
n
)

 T
 (

T
im

e
 =

T

n
)

Tradeoffs in practice

Practical scheme (empirical)
Pairwise scheme (empirical)

Practical scheme (analytical)
Pairwise scheme (analytical)

Figure 3: Empirical and analytical time and space requirements of the pairwise scheme and the

practical scheme, for n = 26 nodes. The empirical time and space requirements were

normalized by dividing them, respectively, by the empirical time and space requirement

of the basic dynamic programming algorithm (the case of the trivial order). We took the

26th root of the ratio, multiplied by 2, as the normalized value. The analytical bounds

were normalized analogously.

7. Discussion

While this work is largely theoretical, it is mainly motivated by practical needs for solving larger

problem instances to guaranteed optimum. The presented methods address those needs by two

means. First, the algorithms truly decrease the space requirement of existing dynamic programming

algorithms, which makes it possible to process larger instances on a typical modern computer with

some limited amount of RAM, say 16 GB. Second, the algorithms can be easily and efficiently

implemented to run in parallel on practically as many processors as available. As large computer

clusters and grid computing with thousands of processing units are becoming more common, we

believe the presented schemes bring larger networks to within the reach of exact algorithms.

Figure 4 summarizes the relationship of the time and the space requirement of different schemes

presented in this work. Compared to the naive two-bucket scheme, the more general bucket order

schemes yield significantly more efficient exchange of time and space resources. Our most efficient

schemes enable saving space by practically any factor, specified by the user, at the cost of increasing

the runtime by about the same factor. It should be noted, though, that none of the schemes enables

saving space without an increase in the runtime. Whether more efficient schemes exist or whether

considerable space savings are possible even at no increase in the runtime, is a difficult open ques-

1410

OPTIMAL BAYESIAN NETWORKS USING PRECEDENCE CONSTRAINTS

k Input size Regular accesses Tail accesses Total time

1 20 210 90 2.4

2 191 1020 1350 2.5

3 1160 3060 9840 2.8

4 5036 6420 46500 4.3

5 16664 10200 160260 8.5

6 43796 13140 429480 18.3

7 94184 14700 932160 35.5

8 169766 15240 1687530 60.4

Table 5: Characteristics of the practical scheme (10∗10)1 with n = 20 nodes, for varying maximum

indegree k. Columns: input size is the number of parent sets per node; regular accesses is

the number of accesses to input when the parent set is an ideal; tail accesses is the number

of accesses to input when the parent set is in the tail of an ideal; total time is the running

time in hours. Regular and tail accesses are per partial order.

1 1.2 1.4 1.6 1.8 2
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4
Tradeoff

S (Space = S
n
)

T
 (

T
im

e
 =

 T
n
)

TS = 4

Dynamic Programming

Divide and Conquer

1 * 1

13 * 13

b * b , 1 ≤ b ≤ 12

b * b , 14 ≤ b ≤ n/2

b * (n − b)

Figure 4: Comparison of time and space requirements of different schemes. The base of the expo-

nential time and space requirement is shown on the vertical and horizontal axis, respec-

tively.

tion. The difficulty is suggested by the fact that, no more efficient schemes are known for the classic

traveling salesman problem, a simpler cousin of the BN problem studied here.

1411

PARVIAINEN AND KOIVISTO

We presented the results under the assumption that the local scores are given as input and stored

in the memory. While this approach sometimes yields an unnecessary large lower bound for the

space requirement, we find the assumption both convenient and most relevant for practical imple-

mentations. Namely, the number of potential parent sets, particularly after pruning, is typically

relatively small compared to the amount of memory available—the bottleneck regarding memory

consumption is the number of ideals of the partial orders. From a theoretical point of view, it is,

however, interesting to also consider the alternative approach, in which the local scores are always

computed anew from given data (in time polynomial in n) when needed in the calculations. For ex-

ample, this approach combined with the divide and conquer scheme yields an algorithm that takes

only polynomial space, albeit the runtime is within a polynomial factor to 8n (with no restrictions

on the number of potential parent sets, cf. Corollary 6). It is an intriguing open question whether

much faster polynomial-space algorithms exist.

Recently, also other approaches to save space and enhance parallelization have been proposed.

Specifically, Malone et al. (2011) and Yuan et al. (2011) present a tighter implementation of the

basic DP algorithm and demonstrate moderate space savings (proportional to the squareroot of the

number of nodes). Compared to the basic DP algorithm, it enables finding optimal BNs with a

couple of more nodes. Tamada et al. (2011) present yet a different approach. They divide the work

of the DP algorithm into several subtasks that overlap only little. The subtasks can be solved in

parallel, which enables efficient parallelization with a tolerable communication overhead. Com-

pared to our approach, their algorithm has two notable drawbacks, however: First, it has to be run

on a supercomputer that enables fast (and synchronized) communication between the processing

units, whereas in our approach communication is not an issue. Second, the total amount of memory

needed remains large: a 32-node instance was solved using over 800 GB of memory in total (with

256 CPU cores in less than six days) (Tamada et al., 2011).

Whether typical instances met in practice can be solved significantly faster than the present

worst-case bounds would suggest, is one of the most central open questions in the research area.

There is some hope for an affirmative answer. For an extreme example, consider an instance for

which the empty DAG (that is, no arcs) happens to be optimal. That particular instance can be

solved by just letting each node take its best-scoring parent set, namely the empty set, with no

worries about the acyclicity constraint. This can be done relatively fast if the number of potential

parent sets is small, for instance, due to an assumed bound on the number of parents per node.

Quite recently, this observation has been taken further using branch-and-bound (de Campos et al.,

2009; de Campos and Ji, 2011; Etminani et al., 2010) and linear programming ideas (Jaakkola et al.,

2010; Cussens, 2011). The reported results show promising scalability of these methods under some

favorable conditions, of which nature has, unfortunately, not yet been satisfactorily characterized.

In particular, no worst-case upper bounds for their runtime are known that would be competitive

to the bounds of the DP algorithms. What is worse, the methods are known to be unfeasibly slow

even for some small benchmark instances that DP algorithms solve in a few minutes. Indeed, an

illustrative example is the 19-variable image segmentation data set (from the UCI machine learning

repository), on which Cussens’s (2011) implementation of the linear programming method does not

terminate within two hours, using the BIC scoring that results in a total of 8164 potential parent sets

after pruning (B. Malone, personal communication). In comparison, the DP algorithms solve the

instance in a few seconds. Note that our schemes further enable solving that instance in very small

space, say, using about 215 bytes, by increasing the total runtime by a factor around 219−15 = 16, or

by running the algorithm on that many processors in parallel. Nevertheless, the branch-and-bound

1412

OPTIMAL BAYESIAN NETWORKS USING PRECEDENCE CONSTRAINTS

and linear programming techniques complement the DP methodology—hybrids between them is a

plausible topic of future research.

Finally, it is worth noting that sometimes a “good” partial order of the nodes is actually known to

the modeller. By “good” we mean one that encodes prior knowledge about the DAG to be found and

that has a relatively small number of ideals. For example, in causal discovery and dynamic Bayesian

networks it is quite expected that the precedence order is known for many pairs of nodes. In such

a case, one needs to run the presented DP algorithm on just that partial order, thereby using much

less time and space than the basic DP algorithm, which essentially cannot exploit given precedence

constraints (besides excluding some parent sets for some nodes). In other words, the presented DP

algorithm generalizes the basic DP algorithm to fully exploit given precedence constraints, if any.

Acknowledgments

The authors thank Kustaa Kangas, Petteri Kaski, Brandon Malone, and Teppo Niinimäki for valu-

able discussions. We also thank the anonymous reviewers of earlier versions of the manuscript for

concrete suggestions that enabled us to improve the presentation and clarity of this paper substan-

tially. This work was supported in part by the Academy of Finland, grants 125637, 218153, and

255675.

References

R. Bellman. Dynamic programming treatment of the travelling salesman problem. Journal of the

ACM, 9(1):61–63, 1962.

A. Björklund and T. Husfeldt. Exact algorithms for exact satisfiability and number of perfect match-

ings. Algorithmica, 52:226–249, 2008.

H. L. Bodlaender, F. V. Fomin, A. M. C. A. Koster, D. Kratsch, and D. M. Thilikos. On exact

algorithms for treewidth. In Proceedings of the 14th Annual European Symposium on Algorithms

(ESA), pages 672–683, 2006.

H. L. Bodlaender, F. V. Fomin, A. M. C. A. Koster, D. Kratsch, and D. M. Thilikos. A note on

exact algorithms for vertex ordering problems on graphs. Theory of Computing Systems, 50(3):

420–432, 2012.

G. Brightwell and P. Winkler. Counting linear extensions. Order, 8:225–242, 1991.

D. M. Chickering. Learning from Data: Artificial Intelligence and Statistics V, chapter Learning

Bayesian networks is NP-Complete, pages 121–130. Springer-Verlag, 1996.

D. M. Chickering, D. Heckerman, and C. Meek. Large-sample learning of Bayesian networks is

NP-hard. Journal of Machine Learning Research, 5:1287–1330, 2004.

H. Chockler and J. Y. Halpern. Responsibility and blame: A structural-model approach. Journal of

Artificial Intelligence Research, 22:93–115, 2004.

G. F. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks

from data. Machine Learning, 9(4):309–347, 1992.

1413

PARVIAINEN AND KOIVISTO

J. Cussens. Bayesian network learning with cutting planes. In Proceedings of the 27th Conference

on Uncertainty in Artificial Intelligence (UAI), pages 153–160, 2011.

B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge University Press,

2003.

C. P. de Campos and Q. Ji. Efficient structure learning of Bayesian networks using constraints.

Journal of Machine Learning Research, 12:663–689, 2011.

C. P. de Campos, Z. Zeng, and Q. Ji. Structure learning of Bayesian networks using constraints. In

Proceedings of the 26th International Conference on Machine Learning (ICML), pages 113–120,

2009.

L. M. de Campos. A scoring function for learning Bayesian networks based on mutual information

and conditional independence tests. Journal of Machine Learning Research, 7:2149–2187, 2006.

K. Etminani, M. Naghibzadeh, and A. R. Razavi. Globally optimal structure learning of Bayesian

networks from data. In Proceedings of the 20th International Conference on Artificial Neural

Networks (ICANN), pages 101–106, 2010.

J. Flum and M. Grohe. Parametrized Complexity Theory. Springer, 2006.

Y. Gurevich and S. Shelah. Expected computation time for Hamiltonian path problem. SIAM

Journal of Computation, 16(3):486–502, 1987.

D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination

of knowledge and statistical data. Machine Learning, 20(3):197–243, 1995.

M. Held and R. M. Karp. A dynamic programming approach to sequencing problem. Journal of

the Society for Industrial and Applied Mathematics, 10(1):196–210, 1962.

T. Jaakkola, D. Sontag, A. Globerson, and M. Meila. Learning Bayesian network structure using LP

relaxations. In Proceedings of the 13th International Conference on Artificial Intelligence and

Statistics (AISTATS), JMLR: W&CP, pages 358–365, 2010.

M. Koivisto. Parent assignment is hard for the MDL, AIC, and NML costs. In Proceedings of the

19th Annual Conference on Learning Theory (COLT), pages 289–303, 2006.

M. Koivisto and P. Parviainen. A space–time tradeoff for permutation problems. In Proceedings of

the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 484–492, 2010.

M. Koivisto and K. Sood. Exact Bayesian structure discovery in Bayesian networks. Journal of

Machine Learning Research, 5:549–573, 2004.

B. Malone, C. Yuan, E. A. Hansen, and S. Bridges. Improving the scalability of optimal Bayesian

network learning with external-memory frontier breadth-first branch and bound search. In Pro-

ceedings of the 27th Conference on Uncertainty in Artificial Intelligence (UAI), pages 479–488,

2011.

S. Ott and S. Miyano. Finding optimal gene networks using biological constraints. Genome Infor-

matics, 14:124–133, 2003.

1414

OPTIMAL BAYESIAN NETWORKS USING PRECEDENCE CONSTRAINTS

P. Parviainen and M. Koivisto. Exact structure discovery in Bayesian networks with less space. In

Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence (UAI), pages 436–

443, 2009.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan

Kaufmann, San Francisco, 1988.

J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, Cambridge,

2000.

S. Provan and M. O. Ball. On the complexity of counting cuts and of computing the probability that

a graph is connected. SIAM Journal of Computing, 12:777–788, 1983.

W. Savitch. Relationship between nondeterministic and deterministic tape complexities. Journal of

Computer and System Sciences, 4:177–192, 1970.

T. Silander and P. Myllymäki. A simple approach for finding the globally optimal Bayesian network

structure. In Proceedings of the 22th Conference on Uncertainty in Artificial Intelligence (UAI),

pages 445–452, 2006.

A. P. Singh and A. W. Moore. Finding optimal Bayesian networks by dynamic programming.

Technical Report CMU-CALD-05-106, Carnegie Mellon University, June 2005.

P. Spirtes and C. Glymour. An algorithm for fast recovery of sparse causal graphs. Social Science

Computer Review, 9:62–72, 1991.

G. Steiner. On the complexity of dynamic programming with precedence constraints. Annals of

Operations Research, 26:103–123, 1990.

Y. Tamada, S. Imoto, and S. Miyano. Parallel algorithm for learning optimal Bayesian network

structure. Journal of Machine Learning Research, 12:2437–2459, 2011.

T. S. Verma and J. Pearl. Equivalence and synthesis of causal models. In Proceedings of the Sixth

Annual Conference on Uncertainty in Artificial Intelligence (UAI), pages 255–270, 1990.

C. Yuan, B. Malone, and X. Wu. Learning optimal Bayesian networks using A* search. In Proceed-

ings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI), pages 2186–

2191, 2011.

1415

