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Abstract

Clustering analysis is widely used in many fields. Traditionally clustering is regarded as unsuper-

vised learning for its lack of a class label or a quantitative response variable, which in contrast is

present in supervised learning such as classification and regression. Here we formulate clustering

as penalized regression with grouping pursuit. In addition to the novel use of a non-convex group

penalty and its associated unique operating characteristics in the proposed clustering method, a

main advantage of this formulation is its allowing borrowing some well established results in clas-

sification and regression, such as model selection criteria to select the number of clusters, a difficult

problem in clustering analysis. In particular, we propose using the generalized cross-validation

(GCV) based on generalized degrees of freedom (GDF) to select the number of clusters. We use a

few simple numerical examples to compare our proposed method with some existing approaches,

demonstrating our method’s promising performance.

Keywords: generalized degrees of freedom, grouping, K-means clustering, Lasso, penalized re-

gression, truncated Lasso penalty (TLP)

1. Introduction

Clustering analysis has been widely used in many fields, for example, for microarray gene expres-

sion data (Thalamuthu et al., 2006), mainly for exploratory data analysis or class novelty discovery;

see Xu and Wunsch (2005) for an extensive review on the methods and applications. In the absence

of a class label, clustering analysis is also called unsupervised learning, as opposed to supervised

learning that includes classification and regression. Accordingly, approaches to clustering analysis

are typically quite different from supervised learning.

In this paper we adopt a novel framework for clustering analysis by viewing it as a regres-

sion problem (Pelckmans et al., 2005; Hocking et al., 2011; Lindsten et al., 2011). We explicitly

parametrize each multivariate observation, say xi, with its own centroid, say µi. Clustering analysis
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is formulated to identify a small subset of distinct values of these µi. Since we have observation-

specific and over-parameterized µi’s, a key question is how to estimate these parameters. Taking

advantage of the recent advance in penalized regression (Tibshirani et al., 2005; Shen and Huang,

2010), we propose a novel non-convex penalty for grouping pursuit that data-adaptively encour-

ages the equality among some unknown subsets of parameter estimates, thus effectively realizing

clustering. We call our proposed method as penalized regression-based clustering (PRclust).

An advantage of regarding clustering as a regression problem is its unification with regression,

which in turn provides the opportunity to apply or modify many established results and techniques,

such as model selection criteria, in regression to clustering. In particular, a notoriously difficult

model selection problem in clustering analysis is to determine the number of clusters; already nu-

merous methods exist with new ones constantly emerging (Tibshirani et al., 2001; Sugar and James,

2003; Wang, 2010). Here we propose the use of generalized cross-validation (GCV) (Golub et al.,

1979) that has been widely used for model selection in regression for its solid theoretical founda-

tion, computational efficiency and good empirical performance. However, GCV requires estimating

the degrees of freedom (df) or effective number of parameters. In clustering analysis, due to the

data-adaptive nature of model searches in finding clusters, it is unclear what is, or how to estimate

df. Here we propose using a general method called generalized degrees of freedom (GDF) that was

specifically developed in the context of classification and regression to take into account the com-

plex effects of data-adaptive modeling (Ye, 1998; Shen and Ye, 2002). To our knowledge, GDF is

mainly studied in the context of regression. Again by formulating clustering as regression, we can

adapt the use of GDF to our current context. Although not the main point of this paper, we will

show that GDF-based GCV performed well in our numerical examples.

In spite of many advantages of formulating clustering analysis as a penalized regression prob-

lem, there are some challenges in its implementation. In particular, with a desired non-smooth and

non-convex penalty function, many existing algorithms for penalized regression are not suitable.

We develop a novel and efficient computational algorithm that combines the difference of convex

(DC) programming (An and Tao, 1997) and a coordinate-wise descent algorithm (Friedman et al.,

2007; Wu and Lange, 2008).

Due to some conceptual similarity between our proposed PRclust and the popular K-means

clustering, we use the K-means as a benchmark to assess the performance of PRclust. In particular,

we show that in some complex situations, for example, in the presence of non-convex clusters, in

which the K-means is not suitable, PRclust might perform much better. Hence, complementary

to the K-means, PRclust is a potentially useful clustering tool. In addition, we consider a related

procedure based on hard thresholding pair-wise distances between observations, called HTclust.

Although simpler, due to the lack of shrinkage estimation, HTclust may not perform as well as

PRclust. Albeit not the focus here, we also propose GDF-based GCV as a general model selection

criterion to determine the number of clusters in the above clustering approaches; a comparison with

several existing methods demonstrates the promising performance of GCV.

2. Methods

We first present our new method, including its computational algorithm, before comparing it with

two related methods. Then we propose a GCV-based method to select the number of clusters.
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2.1 New Method: Clustering via Penalized Regression

Given data X = (x′1, ...,x
′
n)
′ with xi = (xi1,xi2, ...,xip)

′, we would like to conduct a cluster analysis;

that is, we would like to identify group-memberships of the observations such that the within-

group similarity and between-group dissimilarity are as strong as possible. There are different

ways of defining a similarity/dissimilarity between two observations, leading to various clustering

approaches. Here we consider the situation with continuous attributes xik’s, and define the dissim-

ilarity based on some distance metric, as to be elaborated later. We assume that each data point

xi has its own centroid µi = (µi1,µi2, ...,µip)
′, which can be its mean or median (or other measure),

depending on the application. Our goal is to estimate µi’s while acknowledging the possibility that

many µi’s would be equal if their corresponding xi’s are from the same cluster. Hence, we would

like to adopt a fused-Lasso-type or fusion penalty (Tibshirani et al., 2005) to encourage the equality

of the centroids. In general, we estimate the parameters µ = (µ′1, ...,µ
′
n)
′ through minimizing an

objective function

µ̂ = argmin
µ

1

2

n

∑
i=1

L(xi−µi)+λ∑
i< j

h(µi−µ j),

where L() is a loss function, for example, the squared error, h() is a grouping or fusion penalty,

for example, the L1-norm or Lasso penalty (Tibshirani, 1996), and λ is a tuning parameter to be

selected. Specifically, with a squared error and Lasso penalty, our objective function is

1

2

n

∑
i=1

||xi−µi||
2
2 +λ∑

i< j

||µi−µ j||1,

where ||.||q is the Lq-norm. The main idea is that, for the purpose of clustering, we would like

to strike a balance between minimizing the distance between the observations and their centroids

and reducing the number of centroids via grouping some close centroids together. As pointed out

by a reviewer, the general idea with a convex Lq-norm as the fusion penalty has appeared in the

literature (Pelckmans et al., 2005; Hocking et al., 2011; Lindsten et al., 2011); here we propose a

novel non-convex penalty.

Since it is well known that the Lasso penalty leads to biased parameter estimates (Fan and

Li, 2001; Shen et al., 2012), it is more desirable to consider some non-convex penalties; here we

propose a new form of the truncated Lasso penalty (TLP) (Shen et al., 2012). For a scalar parameter

α and a given tuning parameter τ, TLP is defined as

TLP(α;τ) = min(|α|,τ),

which is the L1-norm (i.e., Lasso) penalty for a small α ≤ τ, but imposes no further penalty for a

large α > τ. Importantly, TLP(α;τ)/τ tends to the L0-norm of α, L0(α) = I(α 6= 0), as τ→ 0+.

If two observations, xi and x j, come from the same cluster, we would have µi = µ j; that is, all the

components of µi are equal to that of µ j. Hence, to more effectively realize µi = µ j, we use a group

penalty that encourages simultaneous equality between all the components of µi and µ j (Yuan and

Lin, 2006). Again, to alleviate the bias of the usual convex L2-norm (or more generally, Lq-norm

for q > 1) group penalty, we propose a novel and non-convex group penalty based on TLP, called

group TLP or simply gTLP, defined as

gTLP(µi−µ j;τ) = TLP(||µi−µ j||2;τ).
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As to be shown, the group TLP performs much better than the Lasso (and other Lq-norms). Note

that the group TLP has not been used before.

In this paper, we consider the use of the squared error exclusively, though other loss functions

can be used as discussed later. Depending on the use of the penalty, we have two ways to estimate

µi’s:

µ̂ = argmin
µ

1

2

n

∑
i=1

||xi−µi||
2
2 +λ∑

i< j

||µi−µ j||1,

µ̂ = argmin
µ

1

2

n

∑
i=1

||xi−µi||
2
2 +λ∑

i< j

TLP(||µi−µ j||2;τ).

Once we have µ̂i, then the observations with an equal µ̂i are assigned to the same cluster.

2.2 Computing

The above grouping penalties are not separable in µi’s in the sense that they cannot be written as a

sum of the terms, each of which is a function of a single µi only. With the above non-separable penal-

ties, the efficient coordinate-wise algorithm may not converge to a stationary point (Friedman et al.,

2007; Wu and Lange, 2008). To develop an efficient coordinate-wise algorithm, we reparametrize

by introducing some new parameters and then apply the quadratic penalty method (Nocedal and

Wright, 2000). Specifically, we define θi j = µi− µ j for 1 ≤ i < j ≤ n, and then modify the new

objective function accordingly as:

SL(µ,θ) =
1

2

n

∑
i=1

||xi−µi||
2
2 +

λ1

2
∑
i< j

||µi−µ j−θi j||
2
2 +λ2 ∑

i< j

||θi j||1,

S(µ,θ) =
1

2

n

∑
i=1

||xi−µi||
2
2 +

λ1

2
∑
i< j

||µi−µ j−θi j||
2
2 +

λ2 ∑
i< j

TLP(||θi j||2;τ).

For SL(µ,θ), the first two terms are quadratic (and thus differentiable and convex) while the third is

non-smooth but separable and convex, so the coordinate-wise descent algorithm can be applied and

will converge to a global minimum (Tseng, 2001); its updates at iteration m+1 are

µ̂
(m+1)
i =

xi +λ1 ∑ j>i(µ̂
(m)
j + θ̂

(m)
i j )+λ1 ∑ j<i(µ̂

(m+1)
j − θ̂

(m)
ji )

1+λ1(n−1)
, (1)

θ̂
(m+1)
i j = ST(µ̂

(m+1)
i − µ̂

(m+1)
j ,λ2/λ1),

where ST(α,λ) = sign(α)(|α|−λ)+ is the soft-thresholding rule, and (a)+ takes the positive part

of a: it equals to a if a > 0, and equals to 0 otherwise. By default any scalar operation on a vector

is element-wise.

For S(µ,θ), the updating formula for µi remains the same as in (1). On the other hand, to deal

with the non-convex TLP on θi j’s, we apply the difference of convex programming technique. We
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decompose S(µ,θ) into a difference of two convex functions S1(µ,θ)−S2(θ):

S1(µ,θ) =
1

2

n

∑
i=1

||xi−µi||
2
2 +

λ1

2
∑
i< j

||µi−µ j−θi j||
2
2 +λ2 ∑

i< j

||θi j||2,

S2(θ) = λ2 ∑
i< j

(||θi j||2− τ)+.

We then construct a sequence of upper approximations iteratively by replacing S2(θ) at iteration

m+1 by its piecewise affine minorization

S
(m)
2 (θ) = S2(θ̂

(m))+λ2 ∑
i< j

(||θi j||2−||θ̂
(m)
i j ||2)I(||θ̂

(m)
i j ||2 ≥ τ)

at the current estimate θ̂(m) from iteration m, leading to an upper convex approximating function at

iteration m+1:

S(m+1)(µ,θ) =
1

2

n

∑
i=1

||xi−µi||
2
2 +

λ1

2
∑
i< j

||µi−µ j−θi j||
2
2 +

λ2 ∑
i< j

||θi j||2I(||θ̂
(m)
i j ||2 < τ)+λ2τ∑

i< j

I(||θ̂
(m)
i j ||2 ≥ τ). (2)

Applying the (block) coordinate-wise algorithm for the group Lasso (Yuan and Lin, 2006), we have

θ̂
(m+1)
i j =







µ̂
(m+1)
i − µ̂

(m+1)
j , if ||θ̂

(m)
i j ||2 ≥ τ;

(

||µ̂
(m+1)
i − µ̂

(m+1)
j ||2−

λ2

λ1

)

+

µ̂
(m+1)
i −µ̂

(m+1)
j

||µ̂
(m+1)
i −µ̂

(m+1)
j ||2

, otherwise.
(3)

We summarize below our DC algorithm as Algorithm 1:

STEP 1. (Initialization) Compute an initial estimate (µ̂(0), θ̂(0)).
STEP 2. (Iteration) At iteration m+1, compute (µ̂(m+1), θ̂(m+1)) that minimizes (2).

STEP 3. (Stopping rule) Terminate if S(µ̂(m+1), θ̂(m+1))− S(µ̂(m), θ̂(m)) ≥ 0; otherwise go to Step 2

with m← m+1.

We have the following convergence result; its proof is given in an appendix.

Theorem 1 In Algorithm 1, S(µ̂(m), θ̂(m)) decreases strictly in m until it terminates in finite steps;

that is, there exists an m⋆ < ∞ with

S(µ̂(m), θ̂(m)) = S(µ̂(m
⋆), θ̂(m⋆)) for m≥ m⋆.

Furthermore, (µ̂(m
⋆), θ̂(m⋆)) is a local minimizer of S(µ,θ).

In implementing the Step 2 of Algorithm 1, we can repeatedly apply the coordinate-wise up-

dates (1) and (3) to minimize (2). Since the objective function (2) is a sum of a differentiable and

convex function and a convex penalty in µ and θ (while θ̂(m) is a known vector), the coordinate-wise

descent algorithm will converge to its minimizer (Tseng, 2001). By Theorem 1, we know that this

implementation of Algorithm 1 will converge to a local minimum of S(µ,θ). In practice, especially

in earlier iterations, one may not want to run the coordinate-wise updates fully until convergence in

Step 2 to save computing time.
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Note that, due to the use of the quadratic/ridge penalty on µi−µ j−θi j, no matter how large λ1

is used, we cannot obtain exactly µi−µ j−θi j = 0, though their difference tends to 0 as λ1→ ∞; on

the other hand, the ridge penalty is smooth, and thus facilitates the applicability of the coordinate-

wise descent algorithm. To enforce the constraint µi−µ j = θi j approximately, it is desirable to use

a large λ1; however, by (1), we see that a large λ1 effectively reduces the weight of observation

xi’s contributing to estimating µi. We fix λ1 = 1 throughout, leaving it to section 4 to discuss an

alternative algorithm allowing λ1→ ∞.

Due to the use of Lasso or TLP on θi j’s, we can obtain exactly θ̂i j = 0 for a large λ2. We form

clusters based on θ̂i j’s: for any two observations xi and x j, if θ̂i j = 0, they are declared to be in

the same cluster. We construct a graph G based on an adjacency matrix A = (ai j) with elements

ai j = I(θ̂i j = 0); finding clusters is equivalent to finding connected subcomponents of G. It is

possible that other more sophisticated graph-based methods can be used to identify clusters, which

we leave as a future topic. By default, PRclust is based on the TLP, not Lasso, unless specified

otherwise.

2.3 Comparison with Two Related Methods

Our proposed method is closely related to the K-means method, which can be formulated as finding

the centroids, say µ1, ..., µK , for K clusters, where K ≥ 1 is a tuning parameter. To find the centroids

µ = (µ′1, ...,µ
′
K)
′,

µ̂ = argmin
µ

n

∑
i=1

||xi−µc(i)||
2
2,

where c(i) maps observation i to cluster c(i) ∈ {1,2, ...,K}, one of the K candidate clusters. A typi-

cal K-means algorithm starts with some initial estimate of µ, assigns each observation to its nearest

centroid/cluster, recalculates each centroid, then repeats the above process until convergence. De-

pending on the initial estimates, the K-means may converge only to a local minimum, hence multiple

starts are often used.

It is clear that both the PRclust and K-means aim to identify centroids by minimizing the total

L2 distance between observations and their corresponding centroids, but they approach and formu-

late the problem differently. PRclust over-parametrizes the centroid for each observation, then via

shrinking parameters by grouping pursuit, finds a fewer number of distinct centroids; the final result

depends on the specified tuning parameters λ2 and τ. In contrast, by specifying K, the number of

clusters as the only tuning parameter, the K-means starts with some K initial centroids, then assigns

each observation to a cluster before updating the centroid estimates. Hence, PRclust differs from

the K-means in that PRclust does not explicitly assign an observation to any cluster; clustering is

implicitly done after the convergence of the algorithm.

A simple alternative to PRclust is to apply the hard-thresholding rule to pair-wise distances be-

tween observations. Suppose that D = (di j) is a pair-wise distance matrix with di j = ||xi−x j||2. For

any threshold d, we can define an adjacency matrix A = (ai j) with ai j = I(di j < d); as in PRclust,

we can define any connected subcomponent based on A as a cluster, resulting in a clustering method

called HTclust, which is named as a“connected components” algorithm in Ng et al. (2002). As

a comparison, PRclust defines its adjacency matrix as ai j = I(θ̂i j = 0) = I(||µ̂i− µ̂ j||2 < d0,i j) for

some small and possibly (i, j)-dependent threshold d0,i j > 0. HTclust is related to agglomerative

hierarchical clustering: the latter also starts with each observation being its own cluster, then se-

quentially merges two nearest clusters until only one cluster left. Indeed, as shown in an appendix,
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HTclust is equivalent to the single-linkage hierarchical clustering, in which the distance between

two clusters is defined as the shortest distance between any two observations, one from each of the

two clusters. An apparent difference between PRclust and HTclust (and hierarchical clustering) is

the lack of shrinkage in parameter estimation in the latter, in contrast to that in the former as shown

in (1). In general PRclust behaves differently from HTclust, as to be shown in a few examples.

2.4 Selecting Tuning Parameters or Number of Clusters

A bonus with the regression approach to clustering is the potential application of many existing

model selection methods for regression or supervised learning to clustering. Here we propose using

generalized cross-validation (GCV) that has been used extensively, for example, in selecting the

tuning parameter in ridge regression (Golub et al., 1979). GCV can be regarded as an approximation

to leave-one-out cross-validation (CV). Hence, GCV provides an approximately unbiased estimate

of the prediction error. In our notation,

GCV(df) =
RSS

(np−df)2
=

∑n
i=1 ∑

p
k=1(xik− µ̂ik)

2

(np−df)2
,

where df is the degrees of freedom used in estimating µi’s. For our problem, a naive treatment is to

take df = K p, the number of unknown parameters in µi’s, which however does not take into account

the data-adaptive nature in estimating µi’s in clustering analysis. As to be shown, the naive estimate

of df, NDF=K p, is in general severely under-biased. A better way is to use the generalized degrees

of freedom (GDF) (Ye, 1998). We define GDF as

GDF =
n

∑
i=1

p

∑
k=1

1

σ2
cov(µ̂ik(X),xik−µik) =

n

∑
i=1

p

∑
k=1

lim
δ→0

Eµ

[

µ̂ik(X +δeik)− µ̂ik(X)

δ

]

,

where we write µ̂ik = µ̂ik(X) to emphasize that the estimate µ̂ik depends on the data X being used,

and eik is a vector of length np with all elements 0 except a 1 in position ik. Accordingly, we can

use Monte Carlo simulations to estimate GDF in the following way:

Step 1. For b = 1, ...,B, repeat Steps 2-3.

Step 2. Generate ∆b = (δb,1, ...,δb,np) with δb,i iid N(0,v).

Step 3. Conduct a cluster analysis (in the same way as for the original data X) with data X +∆b to

yield an estimate µ̂(X +∆b).

Step 4. For fixed i and k, regress µ̂ik(X +∆b) on δb,ik with b = 1, ...B; denote the slope estimate as

ĥik.

Step 5. Repeat Step 4 for each i and k. Then an GDF estimate is GDF = ∑n
i=1 ∑

p
k=1 ĥik.

We used B = 100 in Step 1 throughout. In Step 2, the perturbation size (i.e., standard deviation,

SD) v is chosen to be small, typically with v ∈ [0.5σ,σ], where a common variance σ2 = var(xik)
is assumed for all attributes. As discussed in Ye (1998) and Shen and Ye (2002), often the GDF

estimate is not too sensitive to the choice of v. In Step 3, we apply the same clustering algorithm

(e.g., PRclust or HTclust) with any fixed tuning parameter values as applied to the original data X .
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We try with various tuning parameter values, obtaining their corresponding GDFs and thus GCV

statistics, then choose the set of the tuning parameters with the minimum GCV statistic.

The above method can be equally applied to the K-means method to select the number of clus-

ters: we just need to apply the K-means with a fixed number of clusters, say K, in Step 3, then

use the cluster centroid of observation xi as its estimated mean µ̂i; other steps remain the same.

Again, we try various values of K, and choose K̂ = K that minimizes the corresponding GCV(GDF)

statistic.

As a comparison, we also apply the Jump statistic to select the number of clusters for the K-

means (Sugar and James, 2003). For K clusters, a distortion (or average within-cluster sum of

squares) is defined to be

WK =
n

∑
i=1

p

∑
k=1

(xik− µ̂ik)
2/(np),

and the Jump statistic is defined as

JK = 1/W
p/2

K −1/W
p/2

K−1,

with 1/W
p/2

0 = 0. We choose K̂ = argminK JK .

Wang (2010) proposed a consistent estimator for the number of clusters based on clustering

stability. It is based on an intuitive idea: with the correct number of clusters, the clustering results

should be most stable. The method requires the use of three subsets of data: two are used to build

two predictive models for the same clustering algorithm with the same number of clusters, and then

the third is used to estimate the clustering stability by comparing the predictive results of the third

subset when applied to the two built predictive models. For a given data set, cross-validation is used

to repeatedly splitting the data into three (almost equally sized) subsets. Wang (2010) proposed two

CV schemes, called CV with voting and CV with averaging. We will simply call the two methods

as CV1 and CV2.

3. Numerical Examples

Now we use both simulated data and real data to evaluate the performance of our method and

compare it with several other methods.

3.1 Simulation Set-ups

We considered five simulation set-ups, covering a variety of scenarios, as described below.

Case I: two convex clusters in two dimensions (Figure 1a). We consider two somewhat overlap-

ping clusters with the same spherical shape, which is ideal for the K-means. Specifically, we have

n = 100 observations, 50 from a bivariate Normal distribution N((0,0)′,0.33I) while the other 50

from N((1,1)′,0.33I).
Case II: two non-convex clusters in two dimensions (Figure 1b). In contrast to the previous case

favoring the K-means, the second simulation set-up was the opposite. There were 2 clusters as two

nested circles (distorted with some added noises), each with 100 observations (see the upper-left

panel in Figure 3). Specifically, for cluster 1, we had xi1 =−1+2(i−1)/99, xi2 = si

√

1− x2
i1 + εi,

si =−1 or 1 with an equal probability, εi randomly drawn from U(−0.1,0.1), for i = 1, ...,100; for

cluster 2, similarly we had xi1 =−2+4(i−101)/99, xi2 = si

√

4− x2
i1+εi for i = 101, ...,200. This
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c) Case VI

Figure 1: The first simulated data set in a) Case I, b) Case II and c) Case VI.

is similar to the “two-circle” case in Ng et al. (2002), but perhaps more challenging here with larger

distances between some points within the same cluster.

Case III: a null case with only a single cluster in 10 dimensions. 200 observations were uni-

formly distributed over a unit square independently in each of the 10 dimensions. This is scenario

(a) in Tibshirani et al. (2001).

Case IV: four clusters in 3 dimensions. The four cluster centers were randomly drawn from

N(0,5I) in each simulation; if any of their distance was less than 1.0, then the simulation was

abandoned and re-run. In each cluster, 25 or 50 observations were randomly chosen, each drawn

from a normal distribution with mean at the cluster center and the identity covariance matrix. This

is scenario (c) in Tibshirani et al. (2001).

Case V: two elongated clusters in 3 dimensions. This is similar to scenario (e) in Tibshirani

et al. (2001), but with a much shorter distance between the two clusters. Specifically, cluster one was

generated as follows: 100 observations were generated be equally spaced along the main diagonal of

a three dimensional cube, then independent normal variate with mean 0 and SD=0.1 were added to

each coordinate of each of the 100 observations; that is, xi j =−0.5+(i−1)/99+εi j, εi ∼N(0,0.1)
for j = 1, 2, 3 and i = 1, ...,100. Cluster 2 was generated in the same way, but with a shift of 2, not

10, making it harder than that used in Tibshirani et al. (2001) in each dimension.

Case VI: three clusters in 2 dimension with two spherically shaped clusters inside 3/4 of a

perturbed circle (Figure 1c). This is similar to a case in Ng et al. (2002). Specifically, for cluster 1,

we generated xi1 = 1.1sin(2π[30+5(i−1)]/360) and xi2 = 0.8sin(2π[30+5(i−1)]/360)+ εi for

i = 1, ...,50, where εi was randomly drawn from U(−0.025,0.025); 50 observations were drawn

from each of the two bivariate Normal distributions, N((0,0)′,0.1I) and N((0.8,0)′,0.1I).

For each case, we applied the K-mean, HTclust and PRclust to 100 simulated data sets. For

the K-means we used 20 random starts for each K = 1,2, ...,20. For HTclust and PRclust, we did

grid-searches for d, and (τ,λ2) respectively. For comparison, we also applied Gaussian mixture-

model based clustering as implemented in R package mclust (Fraley and Raftery, 2006); for each

data set, we fitted each of the 10 models corresponding to 10 different ways of parameterizing the

mixture model, for K = 1,2, ...,20 clusters, and the final model, including the number of clusters,

was selected by the Bayesian Information Criterion (BIC).
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Due to the conceptual similarity between our proposed PRclust and spectral clustering (Sclust),

we also included the spectral clustering algorithm of Ng et al. (2002) as outlined below. First, calcu-

late an affinity matrix A = (Ai j) with elements Ai j = exp(−||xi− x j||
2
2/γ) for any two observations

i 6= j and Aii = 0, where γ is a scaling parameter to be determined. Second, calculate a diagonal

matrix D = Diag(D11, ...,Dnn) with Dii = ∑n
j=1 Ai j. Third, calculate L = D−1/2AD−1/2. Fourth, for

a specified number of clusters k, we stack the k top eigen-vectors (corresponding to the k largest

eigen-values) of L column-wise to form an n× k matrix, say Zk; normalize each row of Zk to have

a unit L2-norm. Finally, treating each row of Zk as an observation, we apply the K-means to form

k clusters. There are two tuning parameters γ and k that have to be decided in the algorithm. We

used the implementation in the R package kernlab, which includes a method of Ng et al. (2002) to

select γ automatically; however, one has to specify k. We applied the GCV(GDF) to select k as for

the K-means. Unfortunately the function specc() in the R package kernlab was not numerically

stable and sometimes might break down (i.e., exiting with an error message), though it could work

in a re-run with a different random seed; the error occurred more frequently with an increasing k.

Hence we only considered its use in a few cases by restricting k to 1 to 3.

To evaluate the performance of a clustering algorithm, we used the Rand index (Rand, 1971),

adjusted Rand index (Hubert and Arabie, 1985) and Jaccard index (Jaccard, 1912), all measuring

the agreement between estimated cluster memberships and the truth. Each index is between 0 and

1 with a higher value indicating a higher agreement.

3.2 Simulation Results

Case I: For the K-means, we chose the number of clusters using Jump, CV1, CV2 and GCV statis-

tics; for comparison, we also fixed the number of clusters around its true value. The results are

shown in Table 1. Both the Jump and GCV with the naive df=np methods tended to select a too

large number of clusters. In contrast, the GCV(GDF) performed extremely well: it always chose

the correct K = 2 clusters. Figure 2 shows how GDF and NDF changed with K, the number of

clusters in the K-means algorithm, for the first simulated data set. Due to the adaptiveness of the

K-means, GDF quickly increased to 150 with K < 10 and approached the maximum df=np = 200

for K = 20. Since GDF was in general much larger than NDF, using GDF penalized more on more

complex models (i.e., larger K in the K-means), explaining why GCV(GDF) performed much better

than GCV(NDF).

Since the two clusters were formed by observations drawn from two Normal distributions, as

expected, the model-based clustering Mclust performed best. In addition, the spectral clustering

also worked well.

For PRclust, we searched τ ∈ {0.1,0.2, ...,1} and λ2 ∈ {0.01,0.05,0.1,0.2,1}. PRclust with

GCV(GDF) selecting its tuning parameters performed well too: the average number of clusters is

close to the truth K0 = 2; the corresponding clustering results had high degrees of agreement with

the truth, as evidenced by the high indices. Table 1 also displays the frequencies of the number of

clusters selected by GCV(GDF): for the overwhelming majority (98%), either the correct number

of cluster K0 = 2 was selected, or a slightly larger K = 3 or 4 with very high agreement indices was

chosen.

For the first (and a typical) simulated data set, we show how PRclust operated with various

values of the tuning parameter λ2 (while λ1 = 1 and τ = 0.5), yielding the solution path for µ̂i1,

the first coordinate of µ̂i (Figure 3a). Note that, due to the use of a fixed λ1, even if all θ̂i j = 0 for
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Case Method Selection of K K̂ Rand aRand Jaccard

I K-means Jump, K ∈ [1,20] 18.11 0.563 0.119 0.119

Jump, K ∈ [1,10] 2.54 0.956 0.911 0.912

CV1 2 0.984 0.967 0.968

CV2 2 0.984 0.967 0.968

GCV, df=K p 29.75 0.536 0.064 0.064

GCV, df=GDF 2 0.984 0.967 0.968

Fixed 3 0.859 0.717 0.720

Fixed 4 0.747 0.491 0.495

Fixed 5 0.704 0.405 0.408

Mclust BIC 2.01 0.983 0.966 0.967

Sclust GCV, df=GDF 2.05 0.973 0.946 0.953

K ∈ [1,3]
HTclust GCV, df=K p 60.29 0.524 0.039 0.039

GCV, df=GDF 4.12 0.901 0.802 0.858

Fixed 2 0.589 0.186 0.583

Fixed 3 0.711 0.426 0.690

Fixed 4 0.779 0.562 0.746

Fixed 5 0.805 0.612 0.760

PRclust GCV, df=K p 87.00 0.510 0.009 0.009

GCV, df=GDF 2.35 0.974 0.947 0.953

Subset, freq=1 1 0.495 0.000 0.495

Subset, freq=72 2 0.982 0.965 0.966

Subset, freq=19 3 0.973 0.946 0.946

Subset, freq=7 4 0.966 0.933 0.933

Subset, freq=1 5 0.887 0.774 0.788

Table 1: Simulation I results based on 100 simulated data sets with 2 clusters.

a sufficiently large λ2, there were still quite some unequal µ̂i1’s, which were all remarkably near

their true values 0 or 1. In contrast, with the Lasso penalty, the estimated centroids were always

shrunk towards each other, leading to their convergence to the same point at the end and thus much

worse performance (Figure 3c). It is also noted that the solution paths with the Lasso penalty were

almost linear, compared to the nearly step functions with the gTLP. Figure 3d) shows how HTclust

worked. In particular, as pointed out by Ng et al. (2002), HTclust is not robust to outliers: since an

“outlier” (lower left corner in Figure 1a) was farthest away from any other observations, it formed

its own cluster while all others formed another cluster when the threshold d was chosen to yield

two clusters. This example demonstrates different operating characteristics between PRclust and

HTclust, offering an explanation of the better performance of PRclust over HTclust.

Case II: Since each cluster was not spherically shaped, and more importantly, the two true

cluster centroids completely overlapped with each other, the K-means would not work: it could not

distinguish the two clusters. As shown in Table 2, no matter what method was used to choose or

fix the number of clusters, the K-means always gave results in low agreement with the truth. The

problem with the K-means is its defining a cluster centroid as the mean of the observations assigned
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Figure 2: GDF (marked with ”G”) and NDF (marked with ”N”) versus the number of clusters, K,

in the K-means algorithm for the first simulated data set in Case I. The horizontal line

gives the maximum df=200.

to the cluster and its assigning a cluster membership of an observation based on its distance to the

centroids; since the two clusters share the same centroid in truth, the K-means cannot distinguish

the two clusters. Similarly, Mclust did not perform well.

As a comparison, perhaps due to the nature of the local shrinkage in estimating the centroids,

PRclust worked much better than the above three methods, as shown in Table 2. Note that, the

cluster memberships in PRclust are determined by the estimates of θi j = µi− µ j; due to the use of

the ridge penalty with a fixed λ1 = 1, we might have θ̂i j = 0 but µ̂i 6= µ̂ j.

Since HTclust assigned the cluster-memberships according to the pair-wise distances among the

observations, not the nearest distance of an observation to the centroids as done in the K-means, it

also performed well.

If the GCV(GDF) was used in Sclust, it would select K̂ = 1 over K̂ = 2, even though a specified

K̂ = 2 often led to almost perfect clustering. The reason is that, by symmetry of the two clusters,

the two estimated cluster centroids for K̂ = 2 almost coincided with the estimated centroid of only

one cluster, leading to their almost equal RSS (the numerator of the GCV statistics); due to a much

larger GDF for K̂ = 2 than that for K̂ = 1, the GCV(GDF) statistic for K̂ = 1 was much smaller than

that for K̂ = 2. Interestingly, an exception happened in four (out of 100) simulations: when Sclust

could not correctly distinguish the two true clusters (with low agreement statistics) with K̂ = 2, it

had a smaller GCV(GDF) statistic than that for K̂ = 1. The results here suggest that, although Sclust

may perform well for non-convex clusters with an appropriately chosen γ (as selected by the method
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Figure 3: Solution paths of µ̂i,1 for a) PRclust (with gTLP), b) PRclust2, c) PRclust with the Lasso

penalty and d) HTclust for the first simulated data set in Case I.

of Ng et al. (2002)), a difficult problem is how to choose the number of clusters; in particular, GCV

is not ideal for non-convex clusters.
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Case Method Selection of K K̂ Rand aRand Jaccard

II K-means Jump, K ∈ [1,20] 18.88 0.557 0.111 0.110

Jump, K ∈ [1,10] 9.99 0.597 0.191 0.195

GCV, df=GDF 2 0.498 -0.005 0.329

CV1 2 0.498 -0.005 0.329

CV2 2 0.498 -0.005 0.329

Fixed 3 0.498 -0.006 0.261

Fixed 4 0.498 -0.008 0.194

Fixed 5 0.498 -0.007 0.166

Mclust BIC 16.07 0.572 0.141 0.140

Sclust GCV, df=GDF 1.06 0.501 0.007 0.493

K ∈ [1,3]
Subset, freq=95 1 0.497 0.000 0.497

Subset, freq=4 2 0.498 -0.005 0.329

Subset, freq=1 3 0.874 0.749 0.748

Fixed 2 0.980 0.960 0.973

HTclust GCV, df=GDF 3.32 0.862 0.724 0.738

Fixed 2 1.000 1.000 1.000

Fixed 3 0.881 0.763 0.762

Fixed 4 0.870 0.739 0.738

Fixed 5 0.866 0.732 0.731

PRclust GCV, df=GDF 2.93 0.895 0.791 0.790

Subset, freq=21 2 1.000 1.000 1.000

Subset, freq=66 3 0.880 0.759 0.759

Subset, freq=12 4 0.810 0.620 0.619

Subset, freq=1 5 0.746 0.491 0.490

Table 2: Simulation II results based on 100 simulated data sets with 2 clusters.

Cases III-IV: the simulation results are summarized in Table 3. All performed well for the null

Case III. Case IV seems to be challenging with partially overlapping spherically shaped clusters of

smaller cluster sizes: the number of clusters could be under- or over-selected by various methods.

In terms of agreement, overall, as expected, the K-means with GCV(GDF) and Mclust performed

best, closely followed by PRclust with GCV(GDF), which performed much better than HTclust.

Cases V-VI: the simulation results are summarized in Table 4. In Case V, all performed perfectly

except that the GCV(GDF) over-selected the number of the clusters in the K-means and the two

spectral clustering methods. This is interesting since GCV(GDF) seemed to perform well for both

HTclust and PRclust. HTclust and PRclust did not yield better clusters than that of the K-means

for K > 2 clusters, leading to the former two’s relatively large GDFs and thus relatively large GCV

statistics, while the latter possessed a smaller GDF and GCV, hence GCV(GDF) tended to select a

K > 2 for the K-means, but not for the other two. Note that the K-means implicitly assumes that all

clusters share the same volume and spherical shape, and GCV also implicitly favors such clusters

(with smaller within-cluster sum of squares, and thus a smaller GCV statistic). Hence the K-means
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Case Method Selection of K K̂ Rand aRand Jaccard

III K-means GCV, df=GDF 1.00 1.000 1.000 1.000

Mclust BIC 1.00 1.000 1.000 1.000

Sclust GCV, df=GDF 1.00 1.000 1.000 1.000

K ∈ [1,3]
HTclust GCV, df=GDF 1.00 1.000 1.000 1.000

PRclust GCV, df=GDF 1.00 1.000 1.000 1.000

IV K-means GCV, df=GDF 3.48 0.880 0.748 0.728

CV1 3.10 0.789 0.575 0.581

CV2 4.22 0.790 0.558 0.561

Mclust BIC 3.50 0.883 0.753 0.732

HTclust GCV, df=GDF 6.49 0.589 0.352 0.452

PRclust GCV, df=GDF 4.75 0.790 0.612 0.628

Table 3: Simulation Cases III-IV results based on 100 simulated data sets with 1 and 4 clusters,

respectively.

Case Method Selection of K K̂ Rand aRand Jaccard

V K-means GCV, df=GDF 7.03 0.646 0.289 0.288

CV1 2.00 1.000 1.000 1.000

CV2 2.00 1.000 1.000 1.000

Mclust BIC 2.04 0.995 0.990 0.990

HTclust GCV, df=GDF 2.00 1.000 1.000 1.000

PRclust GCV, df=GDF 2.00 1.000 1.000 1.000

VI K-means GCV, df=GDF 7.95 0.902 0.761 0.704

CV1 2.00 0.722 0.444 0.497

CV2 2.00 0.722 0.444 0.497

Mclust BIC 8.04 0.906 0.769 0.714

HTclust GCV, df=GDF 28.02 0.872 0.678 0.611

PRclust GCV, df=GDF 3.08 0.997 0.993 0.993

Table 4: Simulation cases V-VI results based on 100 simulated data sets with 2 and 3 clusters,

respectively.

divided an elongated cluster into several adjacent spherical clusters, which were then favored by

GCV(GDF).

For Case VI, due to the fact of a non-convex cluster, both the K-means with GCV(GDF) and

Mclust over-selected the number of clusters, though their agreement statistics were still high. On

the other hand, the K-means with CV1 or CV2 and the two spectral clustering methods seemed

to under-select the number of clusters, leading to lower agreement statistics. In contrast, PRclust

performed much better while HTclust was the worst.
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Truth: 3 cluster Truth: 2 cluster

Method Selection of K K̂ Rand aRand Jaccard Rand aRand Jaccard

K-means Jump, K ∈ [1,30] 27 0.710 0.154 0.122 0.490 0.069 0.077

Jump, K ∈ [1,10] 10 0.755 0.330 0.281 0.555 0.178 0.194

Jump, K ∈ [1,5] 5 0.767 0.420 0.399 0.662 0.362 0.388

CV1 2 0.776 0.568 0.595 1.000 1.000 1.000

CV2 2 0.776 0.568 0.595 1.000 1.000 1.000

GCV, df=GDF 9 0.760 0.357 0.313 0.579 0.218 0.237

Fixed 2 0.776 0.568 0.595 1.000 1.000 1.000

Fixed 3 0.832 0.620 0.594 0.777 0.570 0.597

Mclust BIC 2 0.776 0.568 0.595 1.000 1.000 1.000

Fixed 3 0.957 0.904 0.879 0.779 0.572 0.599

Sclust GCV, df=GDF 9 0.768 0.388 0.344 0.593 0.243 0.264

Fixed 2 0.776 0.568 0.595 1.000 1.000 1.000

Fixed 3 0.837 0.630 0.603 0.777 0.569 0.596

HTclust GCV, df=GDF 4 0.773 0.552 0.578 0.970 0.939 0.94

Fixed 2 0.776 0.568 0.595 1.000 1.000 1.000

Fixed 3 0.772 0.558 0.562 0.996 0.991 0.992

PRclust GCV, df=GDF 3 0.777 0.564 0.589 0.982 0.965 0.968

Fixed 2 0.776 0.568 0.595 1.000 1.000 1.000

Fixed 3 0.775 0.562 0.599 0.987 0.974 0.977

Table 5: Results for Fisher’s iris data with 2 or 3 clusters.

3.3 Iris Data

We applied the methods to the popular Fisher’s iris data. There are 4 measurements on the flower,

sepal length, sepal width, petal length and petal width, for each observation. There are 50 obser-

vations for each of the three iris subtypes. One subtype is well separated from the other two, but

the latter two overlap with each other. For this data set, it is debatable whether there are 2 or 3

clusters; for this reason, for any clustering results, we calculated the agreement indices based on the

3 clusters (each corresponding to each iris subtype), and that based on only 2 clusters by combining

the latter two overlapping subtypes into one cluster. Since two observations share an equal value on

each variable, there are at most K̂ = 149 clusters.

We standardized the data such that for each variable we had a sample mean 0 and SD=1. We

applied the methods to the standardized data (p = 4). We used v = 0.4; we tried a few other values

of v and obtained similar results for GDF. For the K-means, we tried the number of clusters K =
1,2, ...,30, each with 20 random starts. For HTclust, we searched 1000 candidate d’s according to

the empirical distribution of the pair-wise distances among the observations. For PRclust, we tried

λ2 =∈ {0.1,0.2, ...,2} and τ2 ∈ {1.0,1.1, ...,2}. The results are shown in Table 5.

For the K-means, in agreement with simulations, the Jump selected perhaps a too large K̂ = 27,

while GCV(GDF) selected K̂ = 9 perhaps due to the non-spherical shapes of the true clusters (Table

5). Both the K-means with CV1 (or CV2) and Mclust selected K̂ = 2 and yielded the same clustering

results. As for the K-means, GCV(GDF) also selected K̂ = 9 for Sclust. In comparison, PRclust with
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GCV(GDF) yielded K̂ = 3 clusters with higher agreement indices than those of the K-means, Mclust

and Sclust. HTclust selected K̂ = 4 clusters with the agreement indices less than but close to those

of PRclust. We also applied the K-means and Sclust with a fixed K̂ = 2 or 3, and took the subset of

the tuning parameter values yielding 2 or 3 clusters for HTclust and PRclust. It is interesting to note

that, with K̂ = 2, all the methods gave the same results that recovered the two true clusters; however,

with K̂ = 3, the results from PRclust and HTclust were similar, but different from the K-means and

Sclust: the K-means and Sclust performed better in terms of the agreement with the 3 true clusters,

but less well with the 2 true clusters, than PRclust and HTclust, demonstrating different operating

characteristics between the K-means/Sclust and the other two methods. When fixed K̂ = 3, Mclust

gave the best results for K = 3, suggesting the advantage of Mclust with overlapping and ellipsoidal

clusters.

4. Further Modifications and Comparisons

We explore two well-motivated modifications to our new method, which turn out to be less competi-

tive. Then we demonstrate the performance advantages of our new non-convex penalty over several

existing convex penalties.

4.1 Modifications

In PRclust, so far we have fixed λ1 = 1, which cannot guarantee θ̂i j = µ̂i− µ̂ j, even approximately

(Figure 3a). As an alternative, following Framework 17.1 of Nocedal and Wright (2000), we start

the algorithm at λ1 = 1, at convergence we increase the value of λ1, for example, by doubling its

current value, and re-run the algorithm with the parameter estimates from the previous iteration

as its starting values; this process is repeated until the convergence when the parameter estimates

barely change. As before, we can use the new estimates θ̂i j’s to form clusters. We call this modified

method PRclust2. As shown in Figure 3b), for a sufficiently large λ2, we’d have all θi j = 0, leading

to all µ̂i1’s (almost) equal in PRclust2; in contrast, no matter how large λ2 was, we had multiple

quite distinct µ̂i1’s in PRclust (Figure 3a). We applied PRclust2 to the earlier examples and obtained

the following results: when all the clusters were convex, PRclust2 yielded results very similar to

those of PRclust; otherwise, their results were different. Table 6 shows some representative results.

It is surprising that PRclust performed better than PRclust2 for simulation Case II with two non-

convex clusters. A possible explanation lies in their different estimates of θi j’s, which are used by

both PRclust and PRclust2 to perform clustering. PRclust2 yields θ̂i j = µ̂i− µ̂ j (approximately)

while PRclust does not. PRclust2 forms clusters based on the (approximate) equality of µ̂i’s, while

PRclust clusters two observations i and j together if their µ̂i and µ̂ j are close to each other, say,

||µ̂i− µ̂ j||2 < d0,i j, where the threshold d0,i j is possibly (i, j)-specific. Hence, PRclust2 seems to be

more rigid and greedy in forming clusters than PRclust. Alternatively, we can regard PRclust as an

early stopped and thus regularized version of PRclust2; it is well known that early stopping is an

effective regularization strategy that avoids over-fitting in neural networks and trees (Hastie et al.,

2001, p.326).

PRclust forms a cluster based on a connected component of a graph constructed with θ̂i j’s. More

generally, one can apply the spectral clustering of Ng et al. (2002) to either µ̂i’s or θ̂i j’s obtained

in PRclust; we call the resulting method PRclust3 and PRclust4 respectively. We propose using

the GCV(GDF) to select both the scale parameter in Sclust and the number of clusters. To reduce

computational demand, we manually chose a suitable γ for Sclust. We applied the methods to the
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Data Method Selection of K K̂ Rand aRand Jaccard

Case I PRclust2 GCV, df=GDF 2.28 0.980 0.959 0.960

PRclust3 GCV, df=GDF 2.98 0.923 0.845 0.845

PRclust4 GCV, df=GDF 3.88 0.876 0.751 0.752

Case II PRclust2 GCV, df=GDF 2.00 0.498 -0.005 0.329

PRclust3 GCV, df=GDF 2.00 0.498 -0.005 0.329

PRclust4 GCV, df=GDF 2.00 0.498 -0.005 0.329

Iris PRclust2 GCV, df=GDF 3 0.777 0.564 0.589

PRclust3 GCV, df=GDF 9 0.766 0.392 0.356

PRclust4 GCV, df=GDF 4 0.777 0.519 0.528

Table 6: Results for modified PRclust for 100 simulated data sets (2 clusters) or the iris data (3

clusters).

data examples; as shown in Table 6, the two methods did not improve over the original PRclust. As a

reviewer suggested, alternatively, we may also apply PRclust, not the K-means, to the eigen-vectors

in a modified Sclust; however, it will be challenging to develop computationally more efficient

methods to simultaneously choose multiple tuning parameters, that is, (γ,k) in Sclust and (λ2,τ) in

PRclust.

4.2 Comparison with Some Convex Fusion Penalties

In contrast to our non-convex gTLP penalty, several authors have studied the use of the Lq-norm-

based convex fusion penalties. Pelckmans et al. (2005) proposed using a fusion penalty based on

the Lq-norm with the objective function

1

2

n

∑
i=1

||xi−µi||
2
2 +λ∑

i< j

||µi−µ j||q,

and proposed an efficient quadratic convex programming-based computing method for q = 1. Lind-

sten et al. (2011) recognized the importance of using a group penalty with q > 1, and applied the

Matlab CVX package (Grant and Boyd, 2011) to solve the general convex programming problem

for the group Lasso penalty with q = 2 (Yuan and Lin, 2006). Hocking et al. (2011) exploited the

piecewise linearity of the solution paths for q = 1 or q = ∞, and proposed an efficient algorithm for

each of q = 1, 2 and ∞ respectively. We call these methods PRclust-Lq. Note that PRclust-L1 corre-

sponds to our PRclust-Lasso, for which (and our default PRclust-gTLP) however we have proposed

a different computing algorithm, the quadratic penalty method. Importantly, due to the use of the

convex penalty, the solution path of PRclust-Lq is quite different from that of PRclust-gTLP. Using

the Matlab CVX package, we applied PRclust-Lq with q∈ {1,2,∞} to simulation Case I; the results

for the first data set are shown in Figure 4. It is clear that the solution path of PRclust-L1 (Figure 4a)

was essentially the same as that of PRclust-Lasso (Figure 3c) (while different computing algorithms

were applied). More importantly, overall the solution paths of all three PRclust-Lq were similar to

each other, sharing the common feature that the estimated centroids were more and more biased

towards the overall mean as the penalty parameter λ increased. This feature of PRclust-Lq makes it
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Figure 4: Solution paths of µ̂i,1 for PRclust-Lq with a) q = 1, b) q = 2 and c) q = ∞ for the first

simulated data set in Case I.

difficult to correctly select the number of clusters. In fact, both Pelckmans et al. (2005) and Hocking

et al. (2011) treated PRclust-Lq as a hierarchical clustering tool; none of the authors discussed the

choice of the number of clusters. The issue of an Lq-norm penalty in yielding possibly severely bi-

ased estimates is well known in penalized regression, which partially motivated the development of

non-convex penalties such as TLP (Shen et al., 2012). In the current context, Lindsten et al. (2011)

has recognized the issue of the biased centroid estimates in PRclust-Lq and thus proposed a second

stage to re-estimate the centroids after a clustering result is obtained. In contrast, with the use of the

non-convex gTLP, the above issues are largely avoided as shown in Figure 3ab).

When we applied the GCV(GDF) to select the number of clusters for PRclust-Lq in simulation

Case I, as expected, it performed poorly. Hence, for illustration, we considered an ideal (but not

practical) alternative. For any d0 ≥ 0, similar to hierarchical clustering, we defined an adjacency

matrix A = (ai j) with ai j = I(||µ̂i− µ̂ j||2 ≤ d0); any two observations xi and x j were assigned to the

same cluster if ai j = 1. Then for any given λ> 0 and d0 ∈{10−1,10−2,10−3,10−4,0}, we calculated

the Rand index for the corresponding PRclust-Lq results and the true cluster memberships. We show

the results of PRclust-Lq with the values of (λ,d0) achieving the maximum Rand index, giving an

upper bound on the performance of PRclust-Lq with any practical criterion to select the number of

clusters. As shown in Table 7, a larger value of q seemed to give better ideal performance of PRclust-

Lq; when compared to PRclust-gTLP (Table 1), none of the three PRclust-Lq methods, even in the

ideal case of using the true cluster memberships to select the number of clusters, performed better

in selecting the correct number of clusters than PRclust-gTLP with the GCV(GDF) criterion.

5. Discussion

The proposed PRclust clustering bears some similarity to the K-means in terms of the objective in

minimizing the sum of squared distances between observations and their cluster centroids, how-

ever they differ significantly in their specific formulations, algorithms, and importantly, operating

characteristics. Consequently, PRclust can perform much better than the K-means in situations un-
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Data Method K̂ Rand aRand Jaccard

Case I PRclust-L1 10.42 0.860 0.719 0.723

PRclust-L2 5.56 0.949 0.899 0.900

PRclust-L∞ 3.06 0.976 0.951 0.952

Table 7: Results for PRclust-Lq with K̂ selected by maximizing the Rand index for 100 simulated

data sets (2 clusters) in Case I.

suitable or difficult to the K-means, such as in the presence of non-convex clusters, as demonstrated

in our simulation Case II (Table 2). Similarly, Mclust does not perform well for non-convex clusters

(Table 2), but may have advantages with overlapping and ellipsoidal clusters as for simulation Case

I (Table 1) and the iris data (Table 5). There is also some similarity between PRclust and HTclust (or

single-linkage hierarchical clustering). Although much simpler, HTclust does not have any mecha-

nism for shrinkage estimation, and in general did not perform better than PRclust in our examples.

Between PRclust and spectral clustering, it seems that they are complementary to each other, though

it remains challenging to develop competitive model selection criteria for spectral clustering. For

example, our results demonstrated the effectiveness of the method of Ng et al. (2002) in selecting

the scale parameter γ, but the clustering result also critically depended on the specified k, the number

of clusters, for which the GCV(GDF) might not perform well. Although Zelnik-Manor and Perona

(2004) have proposed a model selection criterion to self-tune the two parameters γ and k > 1, it does

not work for k = 1; if k = 1 is included, the criterion will always select k = 1. More generally, model

selection is related to kernel learning in spectral clustering (Bach and Jordan, 2006). It is currently

an open problem whether the strengths of PRclust and spectral clustering can be combined.

PRclust can be extended in several directions. First, rather than the squared error loss, we can

use other loss functions. Corresponding to modifying the K-means to the K-medians, K-midranges

or K-modes (Steinley, 2006), we can use an L1, L∞ and L0 loss function, respectively. Computa-

tionally, an efficient coordinate-wise algorithm can be implemented for penalized regression with

an L1 loss (Friedman et al., 2007; Wu and Lange, 2008), but it is unclear how to do so for the other

two. K-median clustering is closely related to partitioning-around-centroids (PAM) of Kaufman and

Rousseeuw (1990), and is more robust to outliers than is the K-means. A modification of PRclust

along this direction may retain this advantage. Second, rather than assuming spherically shaped

clusters, as implicitly used by the K-means, we can use a general covariance matrix V with a loss

function

L(xi−µi) =
1

2
(xi−µi)

′V−1(xi−µi),

where V is either given or to be estimated. A non-identity V allows a more general model of

ellipsoidal clusters. Alternatively, we can also relax the equal cluster volume assumption and use:

L(xi−µi) =
1

2
(xi−µi)

′(xi−µi)/σ2
i ,

where observation-specific variances σ2
i ’s have to be estimated through grouping pursuit, as for

observation-specific means/centroids µi’s (Xie et al., 2008). More generally, corresponding to the

more general Gaussian mixture model-based clustering (Banfield and Raftery, 1993; McLachlan
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and Peel, 2002), we might use

L(xi−µi) =
1

2
(xi−µi)

′V−1
i (xi−µi),

for a general and observation-specific covariance matrix Vi, though it will be challenging to adopt a

suitable grouping strategy to estimate Vi’s effectively. Among others, it might provide a computa-

tionally more efficient algorithm than the EM algorithm commonly adopted in mixture model-based

clustering (Dempster et al., 1977). Equally, we may accordingly modify the RSS term in GCV so

that it will not overly favor spherically shaped clusters. Third, in our current implementation, after

parameter estimation, we construct an adjacency matrix and search connected components in the

corresponding graph to form clusters. This is a special and simple approach to more general graph-

based clustering (Xu and Wunsch, 2005); other more sophisticated approaches may be borrowed

or adapted. We implemented a specific combination of PRclust and spectral clustering along with

GCV(GDF) for model selection: we first applied PRclust, then used its output as the input to spec-

tral clustering, but it did not show improvement over PRclust. Other options exist; for example, as

suggested by a reviewer, it might be more fruitful to replace the K-means in spectral clustering with

PRclust. These problems need to be further investigated. Fourth, in the quadratic penalty method,

rather than fixing λ1 = 1 or allowing λ1→∞, we may want to treat λ1 as a tuning parameter; a chal-

lenge is to develop computationally more efficient methods (e.g., than data perturbation-based GCV

estimation) to select multiple tuning parameters. Alternatively, as a reviewer suggested, we may also

apply the alternating direction method of multipliers (ADMM) (Boyd et al., 2011), which is closely

related to, but perhaps more general and simpler than the quadratic penalty method. Finally, we

have not applied the proposed method to high-dimensional data, for which variable selection is nec-

essary. In principle, we may add a penalty into our objective function for variable selection (Pan

and Shen, 2007), which again requires a fast method to select more tuning parameters and is worth

future investigation.

Perhaps the most interesting idea of our proposal is the view of regarding clustering analysis as

a penalized regression problem, blurring the typical line drawn to distinguish clustering (or unsu-

pervised learning) with regression and classification (i.e., supervised learning). This not only opens

a door to using various regularization techniques recently developed in the context of penalized

regression, such as novel non-convex penalties and algorithms, but also facilitates the use of other

model selection techniques. In particular, we find that our proposed regression-based GCV with

GDF is promising for the K-means and PRclust (but perhaps not for spectral clustering) in selecting

the number of clusters, a hard and interesting problem in itself; since this is not the main point of

this paper, we wish to report more on this topic elsewhere.
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Appendix A.

We prove Theorem 1 in Section 2.2.

By construction of S(m)(µ,θ) and the definition of minimization, for each m ∈ N,

0 ≤ S(µ̂(m), θ̂(m)) = S(m+1)(µ̂(m), θ̂(m))≤ S(m)(µ̂(m), θ̂(m))

≤ S(m)(µ̂(m), θ̂(m−1))≤ S(m)(µ̂(m−1), θ̂(m−1)) = S(µ̂(m−1), θ̂(m−1)),

implying that S(µ̂(m), θ̂(m)) decreases in m. Note that S(µ̂(m), θ̂(m)) ≥ 0 for all m. Then it con-

verges, and S(µ̂(m), θ̂(m)) must decreases strictly in m before meeting the stopping rule to terminate.

Moreover, by construction, S(m+1)(µ,θ) has only a finite number of distinctly different functions in

m. This implies that S(m+1)(µ̂(m), θ̂(m)) = S(µ̂(m), θ̂(m)) has a finite number of different minimizers

across all m ∈ N, hence termination must occur finitely.

To show that (µ̂(m
⋆), θ̂(m⋆)) is a local minimizer of S(µ,θ), we check if it satisfies a local opti-

mality of S(µ,θ), defined by regular subdifferentials (Rockafellar and Wets, 2003):

[1+λ1(n−1)]µi− xi−λ1 ∑
j>i

(µ j +θi j)−λ1 ∑
j<i

(µ j−θ ji) = 0, i = 1, ...,n, (4)

−λ1(µi−µ j−θi j)+λ2bi j

θi j

||θi j||2
= 0, i, j = 1, ...,n (i < j), (5)

where bi j is the regular subdifferential of min(||θi j||2,τ) at ||θi j||2. Note that (µ̂(m
⋆), θ̂(m⋆)) =

(µ̂(m
⋆−1), θ̂(m⋆−1)) at termination. Then (4) is satisfied with (µ,θ) = (µ̂(m

⋆−1), θ̂(m⋆−1)). For (5), we

discuss three cases. If ||θ̂
(m⋆−1)
i j ||2 > τ, then θ̂

(m⋆−1)
i j = µ̂

(m⋆)
i − µ̂

(m⋆)
j , implying (5) when θi j = θ̂

(m⋆)
i j

because bi j = 0. If 0 < ||θ̂
(m⋆)
i j ||2 < τ and ||µ̂

(m⋆)
i − µ̂

(m⋆)
j ||2 ≥

λ2

λ1
, then

θ̂
(m⋆)
i j = (||µ̂

(m⋆)
i − µ̂

(m⋆)
j ||2−

λ2

λ1

)
µ̂
(m⋆)
i − µ̂

(m⋆)
j

||µ̂
(m⋆)
i − µ̂

(m⋆)
j ||2

,

hence that ||θ̂
(m⋆)
i j ||2 = ||µ̂

(m⋆)
i − µ̂

(m⋆)
j ||2−

λ2

λ1
. Then (4) is met when θi j = θ̂

(m⋆)
i j because bi j = 1. If

0 < ||θ̂
(m⋆)
i j ||2 < τ and ||µ̂

(m⋆)
i − µ̂

(m⋆)
j ||2 <

λ2

λ1
, then ||θ̂

(m⋆)
i j ||2 = 0, which is contrary to the fact that

0 < ||θ̂
(m⋆)
i j ||2 < τ. This completes the proof.

Appendix B.

We prove the equivalence between HTclust and the single-linkage hierarchical clustering (SL-

Hclust).

Both the HTclust and SL-Hclust form clusters sequentially and in a finite number of steps; we

show that, in each step, the SL-Hclust gives the same clusters as those of HTclust if an appropriate

threshold is chosen in the latter. Suppose that the distinct values of di j = ||xi− x j||2 for all i 6= j

are ordered from the smallest to the largest as d(1),d(2), ...,d(m). At the beginning, each observation

forms its own cluster in both the HTclust and SL-Hclust. In the next step, the SL-Hclust combines

observations according to whether their distances satisfy di j ≤ d(1) to form clusters; in HTclust, if

we use a threshold d0 = d(1)+ ε with a tiny ε > 0, then it results in the same clusters as those of the

SL-Hclust. If the clustering results of the two methods are the same in step k−1 > 0 and if we use

d0 = d(k)+ ε in HTclust, then it leads to the same clusters as the SL-Hclust in step k. By induction,

this completes the proof.
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