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Abstract

The sum-product or belief propagation (BP) algorithm is a widely used message-passing tech-

nique for computing approximate marginals in graphical models. We introduce a new technique,

called stochastic orthogonal series message-passing (SOSMP), for computing the BP fixed point

in models with continuous random variables. It is based on a deterministic approximation of the

messages via orthogonal series basis expansion, and a stochastic estimation of the basis coefficients

via Monte Carlo techniques and damped updates. We prove that the SOSMP iterates converge to a

δ-neighborhood of the unique BP fixed point for any tree-structured graph, and for any graphs with

cycles in which the BP updates satisfy a contractivity condition. In addition, we demonstrate how to

choose the number of basis coefficients as a function of the desired approximation accuracy δ and

smoothness of the compatibility functions. We illustrate our theory with both simulated examples

and in application to optical flow estimation.

Keywords: graphical models, sum-product for continuous state spaces, low-complexity belief

propagation, stochastic approximation, Monte Carlo methods, orthogonal basis expansion

1. Introduction

Graphical models provide a parsimonious yet flexible framework for describing probabilistic de-

pendencies among large numbers of random variables. They have proven useful in a variety of

application domains, including computational biology, computer vision and image processing, data

compression, and natural language processing, among others. In all of these applications, a cen-

tral computational challenge is the marginalization problem, by which we mean the problem of

computing marginal distributions over some subset of the variables. Naively approached, such

marginalization problems become intractable for all but toy problems, since they entail performing

summation or integration over high-dimensional spaces. The sum-product algorithm, also known

as belief propagation (BP), is a form of dynamic programming that can be used to compute exact

marginals much more efficiently for graphical models without cycles, known as trees. It is an iter-

ative algorithm in which nodes in the graph perform a local summation/integration operation, and

then relay results to their neighbors in the form of messages. Although it is guaranteed to be exact on

trees, it is also commonly applied to graphs with cycles, in which context it is often known as loopy

BP. For more details on graphical models and BP, we refer the readers to the papers by Kschischang
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et al. (2001), Wainwright and Jordan (2008), Aji and McEliece (2000), Loeliger (2004) and Yedidia

et al. (2005).

In many applications of graphical models, we encounter random variables that take on contin-

uous values (as opposed to discrete). For instance, in computer vision, the problem of optical flow

calculation is most readily formulated in terms of estimating a vector field in R
2. Other applica-

tions involving continuous random variables include tracking problems in sensor networks, vehicle

localization, image geotagging, and protein folding in computational biology. With certain excep-

tions (such as multivariate Gaussian problems), the marginalization problem is very challenging for

continuous random variables: in particular, the messages correspond to functions, so that they are

expensive to compute and transmit, in which case BP may be limited to small-scale problems. Mo-

tivated by this challenge, researchers have proposed different techniques to reduce complexity of

BP in different applications (Arulampalam et al., 2002; Sudderth et al., 2010; Isard, 2003; Doucet

et al., 2001; Ihler and McAllester, 2009; Coughlan and Shen, 2007; Isard et al., 2009; Song et al.,

2011; Noorshams and Wainwright, 2012, 2013). For instance, various types of quantization schemes

(Coughlan and Shen, 2007; Isard et al., 2009) have been used to reduce the effective state space and

consequently the complexity. In another line of work, researchers have proposed stochastic methods

inspired by particle filtering (Arulampalam et al., 2002; Sudderth et al., 2010; Isard, 2003; Doucet

et al., 2001; Ihler and McAllester, 2009). These techniques are typically based on approximating

the messages as weighted particles (Doucet et al., 2001; Ihler and McAllester, 2009), or mixture

of Gaussians (Sudderth et al., 2010; Isard, 2003). Other researchers (Song et al., 2011) have pro-

posed the use of kernel methods to simultaneously estimate parameters and compute approximate

marginals in a simultaneous manner.

In this paper, we present a low-complexity (efficient) alternative to belief propagation with con-

tinuous variables. Our method, which we refer to as stochastic orthogonal series message-passing

(SOSMP), is applicable to general pairwise Markov random fields, and is equipped with various

theoretical guarantees. As suggested by its name, the algorithm is based on combining two in-

gredients: orthogonal series approximation of the messages, and the use of stochastic updates for

efficiency. In this way, the SOSMP updates lead to a randomized algorithm with substantial re-

ductions in communication and computational complexity. Our main contributions are to analyze

the convergence properties of the SOSMP algorithm, and to provide rigorous bounds on the overall

error as a function of the associated computational complexity. In particular, for tree-structured

graphs, we establish almost sure convergence, and provide an explicit inverse polynomial conver-

gence rate (Theorem 2). For loopy graphical models on which the usual BP updates are contractive,

we also establish similar convergence rates (Theorem 3). Our general theory provides quantitative

upper bounds on the number of iterations required to compute a δ-accurate approximation to the BP

message fixed point, as we illustrate in the case of kernel-based potential functions (Theorem 4).

The reminder of the paper is organized as follows. We begin in Section 2, with the necessary

background on the graphical models as well as the BP algorithm. Section 3 is devoted to a precise

description of the SOSMP algorithm. In Section 4, we state our main theoretical results and develop

some of their corollaries. In order to demonstrate the algorithm’s effectiveness and confirm theoret-

ical predictions, we provide some experimental results, on both synthetic and real data, in Section 5.

In Section 6, we provide the proofs of our main results, with some of the technical aspects deferred

to the appendices.
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2. Background

We begin by providing some background on graphical models and the BP algorithm.

2.1 Undirected Graphical Models

Consider an undirected graph G = (V ,E), consisting of a collection of nodes V = {1,2, . . . ,n},

along with a collection of edges E ⊂ V ×V . An edge is an undirected pair (u,v), and self-edges

are forbidden (meaning that (u,u) /∈ E for all u ∈ V ). For each u ∈ V , let Xu be a random variable

taking values in a space Xu. An undirected graphical model, also known as a Markov random field,

defines a family of joint probability distributions over the random vector X := {Xu, u∈V }, in which

each distribution must factorize in terms of local potential functions associated with the cliques of

the graph. In this paper, we focus on the case of pairwise Markov random fields, in which case the

factorization is specified in terms of functions associated with the nodes and edges of the graph.

More precisely, we consider probability densities p that are absolutely continuous with respect

to a given measure µ, typically the Lebesgue measure for the continuous random variables consid-

ered here. We say that p respects the graph structure if it can be factorized in the form

p(x1,x2, . . . ,xn) ∝ ∏
u∈V

ψu(xu) ∏
(u,v)∈E

ψuv(xu,xv). (1)

Here ψu : Xu → (0,∞) is the node potential function, whereas ψuv : Xu ×Xv → (0,∞) denotes the

edge potential function. A factorization of this form (1) is also known as pairwise Markov random

field; see Figure 1 for a few examples that are widely used in practice.

In many applications, a central computational challenge is the computation of the marginal

distribution

p(xu) :=
∫

X
. . .

∫
X︸ ︷︷ ︸

(n−1) times

p(x1,x2, . . . ,xn) ∏
v∈V \{u}

µ(dxv) (2)

at each node u ∈ V . Naively approached, this problem suffers from the curse of dimensionality,

since it requires computing a multi-dimensional integral over an (n− 1)-dimensional space. For

Markov random fields defined on trees (graphs without cycles), part of this exponential explosion

can be circumvented by the use of the BP or sum-product algorithm, to which we turn in the fol-

lowing section.

Before proceeding, let us make a few comments about the relevance of the marginals in ap-

plied problems. In a typical application, one also makes independent noisy observations yu of each

hidden random variable Xu. By Bayes’ rule, the posterior distribution of X given the observations

y = (y1, . . . ,yn) then takes the form

pX |Y (x1, . . . ,xn | y1, . . . ,yn) ∝ ∏
u∈V

ψ̃u(xu;yu) ∏
(u,v)∈E

ψuv(xu,xv), (3)

where we have introduced the convenient shorthand for the modified node-wise potential func-

tions ψ̃u(xu;yu) := p(yu | xu) ψu(xu). Since the observation vector y is fixed and known, any com-

putational problem for the posterior distribution (3) can be reduced to an equivalent problem for a

pairwise Markov random field of the form (1), using the given definition of the modified potential
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Figure 1: Examples of pairwise Markov random fields. (a) Two-dimensional grid. (b) Markov

chain model. Potential functions ψu and ψv are associated with nodes u and v respectively,

whereas potential function ψuv is associated with edge (u,v).

functions. In addition, although our theory allows for distinct state spaces Xu at each node u ∈ V ,

throughout the remainder of the paper, we suppress this possible dependence so as to simplify ex-

position.

2.2 Belief Propagation

The BP algorithm, also known as the sum-product algorithm, is an iterative method based on

message-passing updates for computing either exact or approximate marginal distributions. For

trees (graphs without cycles), it is guaranteed to converge after a finite number of iterations and

yields the exact marginal distributions, whereas for graphs with cycles, it yields only approxima-

tions to the marginal distributions. Nonetheless, this “loopy” form of BP is widely used in practice.

Here we provide a very brief treatment sufficient for setting up the main results and analysis of this

paper, referring the reader to various standard sources (Kschischang et al., 2001; Wainwright and

Jordan, 2008) for further background.

In order to define the message-passing updates, we require some further notation. For each node

v ∈ V , let N (v) := {u ∈ V | (u,v) ∈ E} be its set of neighbors, and we use ~E(v) := {(v → u) |
u ∈ N (v)} to denote the set of all directed edges emanating from v. We use ~E := ∪v∈V

~E(v) to

denote the set of all directed edges in the graph. Let M denote the set of all probability densities

(with respect to the base measure µ) defined on the space X —that is

M =
{

m : X → [0,∞)
∣∣
∫

X
m(x)µ(dx) = 1

}
.

The messages passed by the BP algorithm are density functions, taking values in the space M . More

precisely, we assign one message mv→u ∈ M to every directed edge (v → u)∈ ~E , and we denote the
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collection of all messages by m = {mv→u, (v → u) ∈ ~E}. Note that the full collection of messages

m takes values in the product space M |~E |.

At an abstract level, the BP algorithm generates a sequence of message densities {mt} in the

space M |~E |, where t = 0,1,2 . . . is the iteration number. The update of message mt to message mt+1

can be written in the form mt+1 = F (mt), where F : M |~E | → M |~E | is a non-linear operator. This

global operator is defined by the local update operators1 Fv→u : M |~E | → M , one for each directed

edge of the graph, such that mt+1
v→u = Fv→u(m

t).

More precisely, in terms of these local updates, the BP algorithm operates as follows. At each

iteration t = 0,1, . . ., each node v ∈ V performs the following steps:

• for each one of its neighbors u ∈ N (v), it computes mt+1
v→u = Fv→u(m

t).

• it transmits message mt+1
v→u to neighbor u ∈ N (v).

In more detail, the message update takes the form

[Fv→u(m
t)](·)︸ ︷︷ ︸

mt+1
v→u(·)

:= κ

∫
X

{
ψuv(·,xv) ψv(xv) ∏

w∈N (v)\{u}
mt

w→v(xv)
}

µ(dxv), (4)

where κ is a normalization constant chosen to enforce the normalization condition
∫

X
mt+1

v→u(xu)µ(dxu) = 1.

By concatenating the local updates (4), we obtain a global update operator F : M |~E | → M |~E |, as

previously discussed. The goal of belief propagation message-passing is to obtain a fixed point,

meaning an element m∗ ∈ M |~E | such that F (m∗) = m∗. Under mild conditions, it can be shown

that there always exists at least one fixed point, and for any tree-structured graph, the fixed point is

unique.

Given a fixed point m∗, each node u ∈ V computes its marginal approximation τ∗u ∈ M by

combining the local potential function ψu with a product of all incoming messages as

τ∗u(xu) ∝ ψu(xu) ∏
v∈N (u)

m∗
v→u(xu). (5)

Figure 2 provides a graphical representation of the flow of the information in these local updates.

For tree-structured (cycle-free) graphs, it is known that BP updates (4) converge to the unique fixed

point in a finite number of iterations (Wainwright and Jordan, 2008). Moreover, the quantity τ∗u(xu)
is equal to the single-node marginal, as previously defined (2). For general graphs, uniqueness of

the fixed point is no longer guaranteed (Wainwright and Jordan, 2008); however, the same message-

passing updates can be applied, and are known to be extremely effective for computing approximate

marginals in numerous applications.

1. It is worth mentioning, and important for the computational efficiency of BP, that mv→u is only a function of the

messages mw→v for w ∈ N (v)\{u}. Therefore, we have Fv→u : M dv−1 → M , where dv is the degree of the node v.

However, we suppress this local dependence so as to reduce notational clutter.
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Figure 2: Graphical representation of message-passing algorithms. (a) Node v transmits the mes-

sage mv→u = Fv→u(m), derived from Equation (4), to its neighbor u. (b) Upon receiving

all the messages, node u updates its marginal estimate according to (5).

Although the BP algorithm is considerably more efficient than the brute force approach to

marginalization, the message update Equation (4) still involves computing an integral and trans-

mitting a real-valued function (message). With certain exceptions (such as multivariate Gaussians),

these continuous-valued messages do not have finite representations, so that this approach is com-

putationally very expensive. Although integrals can be computed by numerical methods, the BP

algorithm requires performing many such integrals at each iteration, which becomes very expen-

sive in practice.

3. Description of the Algorithm

We now turn to the description of the SOSMP algorithm. Before doing so, we begin with some

background on the main underlying ingredients: orthogonal series expansion, and stochastic mes-

sage updates.

3.1 Orthogonal Series Expansion

As described in the previous section, for continuous random variables, each message is a density

function in the space M ⊂ L2(X ;µ). We measure distances in this space using the usual L2 norm

‖ f − g‖2
2 :=

∫
X ( f (x)− g(x))2µ(dx). A standard way in which to approximate functions is via or-

thogonal series expansion. In particular, let {φ j}∞
j=1 be an orthonormal basis of L2(X ;µ), meaning

a collection of functions such that

∫
X

φi(x)φ j(x)µ(dx)
︸ ︷︷ ︸

:=〈φi,φ j〉L2

=

{
1 when i = j

0 otherwise.

Any function f ∈M ⊂ L2(X ;µ) then has an expansion of the form f =∑∞
j=1 a jφ j, where a j = 〈 f , φ j〉L2

are the basis expansion coefficients.
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Of course, maintaining the infinite sequence of basis coefficients {a j}∞
j=1 is also computation-

ally intractable, so that any practical algorithm will maintain only a finite number r of basis coef-

ficients. For a given r, we let f̂r ∝
[

∑r
j=1 a jφ j

]
+

be the approximation based on the first r coeffi-

cients. (Applying the operator [t]+ = max{0, t} amounts to projecting ∑r
j=1 a jφ j onto the space of

non-negative functions, and we also normalize to ensure that it is a density function.) In using only

r coefficients, we incur the approximation error

‖ f̂r − f‖2
2

(i)

≤ ‖
r

∑
j=1

a jφ j − f‖2
2

(ii)
=

∞

∑
j=r+1

a2
j , (6)

where inequality (i) uses non-expansivity of the projection, and step (ii) follows from Parseval’s

theorem. Consequently, the approximation error will depend both on

• how many coefficients r that we retain, and

• the decay rate of the expansion coefficients {a j}∞
j=1.

For future reference, it is worth noting that the local message update (4) is defined in terms of

an integral operator of the form

f (·) 7→
∫

X
ψuv(·,y) f (y)µ(dy). (7)

Consequently, whenever the edge potential function ψuv has desirable properties—such as differen-

tiability and/or higher order smoothness—then the messages also inherit these properties. With an

appropriate choice of the basis {φ j}∞
j=1, such properties translate into decay conditions on the basis

coefficients {a j}∞
j=1. For instance, for α-times differentiable functions expanded into the Fourier

basis, the Riemann-Lebesgue lemma guarantees that the coefficients a j decay faster than (1/ j)2α.

We develop these ideas at greater length in the sequel.

3.2 Stochastic Message Updates

In order to reduce the approximation error (6), the number of coefficients r needs to be increased (as

a function of the ultimate desired error δ). Since increases in r lead to increases in computational

complexity, we need to develop effective reduced-complexity methods. In this section, we describe

(at a high-level) how this can be done via a stochastic version of the BP message-passing updates.

We begin by observing that message update (4), following the appropriate normalization, can

be cast as an expectation operation. This equivalence is essential, because it allows us to obtain

unbiased approximations of the message update using stochastic techniques. In particular, for every

directed edge (v → u) let us define

Γuv(·,y) :=
ψuv(·,y)∫

X ψuv(x,y)µ(dx)
, and βv→u(y) := ψv(y)

∫
X

ψuv(x,y)µ(dx), (8)

the normalized compatibility function and the marginal potential weight respectively. By construc-

tion, for each y, we have
∫

X Γuv(x,y)µ(dx) = 1.
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Lemma 1 Given an input collection of messages m, let Y be a random variable with density pro-

portional to

[pv→u(m)](y) ∝ βv→u(y) ∏
w∈N (v)\{u}

mw→v(y). (9)

Then the message update Equation (4) can be written as

[Fv→u(m)](·) = EY

[
Γuv(·,Y )

]
.

Proof Let us introduce the convenient shorthand M(y) = ∏
w∈N (v)\{u}

mw→v(y). By definition (4) of

the message update, we have

[Fv→u(m)](·) =

∫
X

(
ψuv(·,y)ψv(y)M(y)µ(dy)∫

X

∫
X

(
ψuv(x,y)ψv(y)M(y)

)
µ(dy)µ(dx)

.

Since the integrand is positive, by Fubini’s theorem (Durrett, 1995), we can exchange the order of

integrals in the denominator. Doing so and simplifying the expression yields

[Fv→u(m)](·) =
∫

X

ψuv(·,y)∫
X ψuv(x,y)µ(dx)︸ ︷︷ ︸

Γuv(·,y)

βv→u(y)M(y)∫
X βv→u(z)M(z)µ(dz)︸ ︷︷ ︸

[pv→u(m)](y)

µ(dy),

which establishes the claim.

Based on Lemma 1, we can obtain a stochastic approximation to the message update by drawing

k i.i.d. samples Yi from the density (9), and then computing ∑k
i=1 Γuv(·,Yi) / k. Given the non-

negativity and chosen normalization of Γuv, note that this estimate belongs to M by construction.

Moreover, it is an unbiased estimate of the correctly updated message, which plays an important

role in our analysis.

3.3 Precise Description of the Algorithm

The SOSMP algorithm involves a combination of the orthogonal series expansion techniques and

stochastic methods previously described. Any particular version of the algorithm is specified by the

choice of basis {φ j}∞
j=1 and two positive integers: the number of coefficients r that are maintained,

and the number of samples k used in the stochastic update. Prior to running the algorithm, for each

directed edge (v → u), we pre-compute the inner products

γv→u; j(y) :=
∫

X
Γuv(x,y)φ j(x)µ(dx),

︸ ︷︷ ︸
〈Γuv(·, y),φ j(·)〉L2

for j = 1, . . . ,r. (10)

When ψuv is a symmetric and positive semidefinite kernel function, these inner products have an

explicit and simple representation in terms of its Mercer eigendecomposition (see Section 4.3).

In the general setting, these r inner products can be computed via standard numerical integration

techniques. Note that this is a fixed (one-time) cost prior to running the algorithm.
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SOSMP algorithm:

1. At time t = 0, initialize the message coefficients

a0
v→u; j = 1/r for all j = 1, . . . ,r, and (v → u) ∈ ~E .

2. For iterations t = 0,1,2, . . ., and for each directed edge (v → u)

(a) Form the projected message approximation m̂t
w→v(·) =

[
∑r

j=1 at
w→v; jφ j(·)

]
+

, for all

w ∈ N (v)\{u}.

(b) Draw k i.i.d. samples Y t+1
i from the probability density proportional to

βv→u(y) ∏
w∈N (v)\{u}

m̂t
w→v(y),

where βv→u was previously defined in Equation (8).

(c) Use the samples {Y t+1
1 , . . . ,Y t+1

k } from step (b) to compute

b̃t+1
v→u; j :=

1

k

k

∑
i=1

γv→u; j(Y
t+1
i ) for j = 1,2, . . . ,r, (12)

where the function γv→u; j is defined in Equation (10).

(d) For step size ηt = 1/(t + 1), update the r-dimensional message coefficient vectors

at
v→u 7→ at+1

v→u via

at+1
v→u = (1−ηt)at

v→u + ηt b̃t+1
v→u. (13)

Figure 3: The SOSMP algorithm for continuous state space marginalization.

At each iteration t = 0,1,2, . . ., the algorithm maintains an r-dimensional vector of basis expan-

sion coefficients

at
v→u = (at

v→u;1, . . . ,a
t
v→u;r) ∈ R

r, on directed edge (v → u) ∈ ~E .

This vector should be understood as defining the current message approximation mt
v→u on edge

(v → u) via the expansion

mt
v→u(·) :=

r

∑
j=1

at
v→u; j φ j(·). (11)

We use at =
{

at
v→u,(v → u) ∈ ~E

}
to denote the full set of r |~E | coefficients that are maintained by

the algorithm at iteration t. With this notation, the algorithm consists of a sequence of steps, detailed

in Figure 3, that perform the update at 7→ at+1, and hence implicitly the update mt 7→ mt+1.
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3.4 Computational Complexity

The sampling in Step 2(b) of the algorithm may be performed using standard sampling methods

(Ripley, 1987). For instance, accept-reject sampling involves drawing from an auxiliary distribution,

and then performing an accept-reject step. Let c denote the average number of times that an auxiliary

sample must be drawn until acceptance. From Figure 3, it can be seen that each iteration requires

O(crk) floating point operations on average per edge. Note that the accept-reject factor c depends

only on the state space X and the auxiliary distribution, and it is independent of r, k, and the graph

structure.

It is also interesting to compare the computational complexity of our algorithm to that of com-

peting methods. For instance, the non-parametric (Gaussian mixture) BP algorithm, as proposed

in past works (Sudderth et al., 2010; Isard, 2003), involves approximating each message with an ℓ-
component mixture of Gaussians. The associated computational complexity is O(ℓdmax) per iteration

per edge, where dmax is the maximum degree of the graph, so that the method is suitable for graphs

of relatively low degree. Ihler and McAllester (2009) suggested an improvement known as particle

BP, in which messages are approximated by particles associated with the nodes (as opposed to the

edges). Given an approximation based on ℓ particles at each node, the computational complexity of

particle BP is O(ℓ2) per iteration per edge. More recently, Song et al. (2011) proposed a method

known as kernel BP, designed for jointly estimating the potential functions and computing (approx-

imate) marginal distributions. Their approach is based on representing the potentials as weighted

sums of kernels in a reproducing kernel Hilbert space, which leads to simple BP updates. For a

training set with M samples, the computational complexity of the kernel BP is O(M2) per iteration

per edge. They also proposed a more efficient variant of the kernel BP by approximating the feature

matrices by weighted combination of subsets of their columns.

4. Theoretical Guarantees

We now turn to the theoretical analysis of the SOSMP algorithm, and guarantees relative to the fixed

points of the true BP algorithm. For any tree-structured graph, the BP algorithm is guaranteed to

have a unique message fixed point m∗ = {m∗
v→u, (v → u) ∈ ~E}. For graphs with cycles, uniqueness

is no longer guaranteed, which would make it difficult to compare with the SOSMP algorithm. Ac-

cordingly, in our analysis of the loopy graph, we make a natural contractivity assumption, which

guarantees uniqueness of the fixed point m∗.

The SOSMP algorithm generates a random sequence {at}∞
t=0, which define message approxi-

mations {mt}∞
t=0 via the expansion (11). Of interest to us are the following questions:

• under what conditions do the message iterates approach a neighborhood of the BP fixed point

m∗ as t →+∞?

• when such convergence takes place, how fast is it?

In order to address these questions, we separate the error in our analysis into two terms: al-

gorithmic error and approximation error. For a given r, let Πr denote the projection operator onto

the span of {φ1, . . . ,φr}. In detail, given a function f represented in terms of the infinite series
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expansion f = ∑∞
j=1 a jφ j, we have

Πr( f ) :=
r

∑
j=1

a jφ j.

For each directed edge (v → u) ∈ ~E , define the functional error

∆t
v→u := mt

v→u −Πr(m∗
v→u) (14)

between the message approximation at time t, and the BP fixed point projected onto the first r basis

functions. Moreover, define the approximation error at the BP fixed point as

Ar
v→u := m∗

v→u −Πr(m∗
v→u). (15)

Since ∆t
v→u belongs to the span of the first r basis functions, the Pythagorean theorem implies that

the overall error can be decomposed as

‖mt
v→u −m∗

v→u‖2
L2 = ‖∆t

v→u‖2
L2︸ ︷︷ ︸

Estimation error

+ ‖Ar
v→u‖2

L2︸ ︷︷ ︸
Approximation error

.

Note that the approximation error term is independent of the iteration number t, and can only be

reduced by increasing the number r of coefficients used in the series expansion. Our analysis of the

estimation error is based on controlling the |~E |-dimensional error vector

ρ2
(
∆t
)

:=
{
‖∆t

v→u‖2
L2 , (v → u) ∈ ~E

}
∈ R

|~E |, (16)

and in particular showing that it decreases as O(1/t) up to an error floor imposed by the approxi-

mation error. In order to analyze the error, we also introduce the |~E |-dimensional vector of approx-

imation errors

ρ2
(
Ar
)

:=
{
‖Ar

v→u‖2
L2 , (v → u) ∈ ~E

}
∈ R

|~E |. (17)

By increasing r, we can reduce this approximation error term, but at the same time, we increase

the computational complexity of each update. In Section 4.3, we discuss how to choose r so as to

trade-off the estimation and approximation errors with computational complexity.

4.1 Bounds for Tree-Structured Graphs

With this set-up, we now turn to bounds for tree-structured graphs. Our analysis of the tree-

structured case controls the vector of estimation errors ρ2
(
∆t
)

using a nilpotent matrix N ∈R
|~E |×|~E |

determined by the tree structure (Noorshams and Wainwright, 2013). Recall that a matrix N is

nilpotent with order ℓ if Nℓ = 0 and Nℓ−1 6= 0 for some ℓ. As illustrated in Figure 4, the rows and

columns of N are indexed by directed edges. For the row indexed by (v → u), there can be non-zero

entries only for edges in the set {(w→ v), w∈N (v)\{u}}. These directed edges are precisely those

that pass messages relevant in updating the message from v to u, so that N tracks the propagation

of message information in the graph. As shown in our previous work (see Lemma 1 in the paper

by Noorshams and Wainwright, 2013), the matrix N with such structure is nilpotent with degree at
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3 4

m1→2

m1→2

m2→1

m2→1 m3→2

m3→2

m2→3

m2→3

m2→4

m2→4

m4→2

m4→2

(a) (b)

Figure 4: (a) A simple tree with |E | = 3 edges and hence |~E | = 6 directed edges. (b) Structure

of nilpotent matrix N ∈ R
|~E |×|~E | defined by the graph in (a). Rows and columns of the

matrix are indexed by directed edges (v → u) ∈ ~E ; for the row indexed by (v → u), there

can be non-zero entries only for edges in the set {(w → v), w ∈ N (v)\{u}}.

most the diameter of the tree. (In a tree, there is always a unique edge-disjoint path between any

pair of nodes; the diameter of the tree is the length of the longest of these paths.)

Moreover, our results on tree-structured graphs impose one condition on the vector of approxi-

mation errors Ar, namely that

inf
y∈X

Πr
(
Γuv(x,y)

)
> 0, and |Ar

v→u(x)| ≤
1

2
inf
y∈X

Πr
(
Γuv(x,y)

)
(18)

for all x ∈ X and all directed edges (v → u) ∈ ~E . This condition ensures that the L2-norm of the ap-

proximation error is not too large relative to the compatibility functions. Since supx,y∈X |Πr
(
Γuv(x,y)

)
−

Γuv(x,y)| → 0 and supx∈X |Ar
v→u(x)| → 0 as r →+∞, assuming that the compatibility functions are

uniformly bounded away from zero, condition (18) will hold once the number of basis expansion

coefficients r is sufficiently large. Finally, our bounds involve the constants

B j := max
(v→u)∈~E

sup
y∈X

〈Γuv(·,y), φ j〉L2 . (19)

With this set-up, we have the following guarantees:

Theorem 2 (tree-structured graphs) Suppose that X is closed and bounded, the node and edge

potential functions are continuous, and that condition (18) holds. Then for any tree-structured

model, the sequence of messages {mt}∞
t=0 generated by the SOSMP algorithm have the following

properties:
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(a) There is a nilpotent matrix N ∈ R
|~E |×|~E | such that the error vector ρ2

(
∆t
)

converges almost

surely to the set

B :=
{

e ∈ R
|~E | | |e| � N(I −N)−1ρ2

(
Ar
)}

,

where � denotes elementwise inequality for vectors.

(b) Furthermore, for all iterations t = 1,2, . . ., we have

E
[
ρ2
(
∆t
)]

�
(

12
r

∑
j=1

B2
j

) (I − log t N)−1

t
(N~1 + 8) + N(I −N)−1ρ2

(
Ar
)
.

To clarify the statement in part (a), it guarantees that the difference ρ2
(
∆t
)
−ΠB

(
ρ2
(
∆t
))

be-

tween the error vector and its projection onto the set B converges almost surely to zero. Part (b)

provides a quantitative guarantee on how quickly the expected absolute value of this difference con-

verges to zero. In particular, apart from logarithmic factors in t, the convergence rate guarantees is

of the order O(1/t).

4.2 Bounds for General Graphs

Our next theorem addresses the case of general graphical models. The behavior of the ordinary

BP algorithm to a graph with cycles—in contrast to the tree-structured case—is more complicated.

On one hand, for strictly positive potential functions (as considered in this paper), a version of

Brouwer’s fixed point theorem can be used to establish existence of fixed points (Wainwright and

Jordan, 2008). However, in general, there may be multiple fixed points, and convergence is not

guaranteed. Accordingly, various researchers have studied conditions that are sufficient to guarantee

uniqueness of fixed points and/or convergence of the ordinary BP algorithm: one set of sufficient

conditions, for both uniqueness and convergence, involve assuming that the BP update operator is

a contraction in a suitable norm (e.g., Tatikonda and Jordan, 2002; Ihler et al., 2005; Mooij and

Kappen, 2007; Roosta et al., 2008).

In our analysis of the SOSMP algorithm for a general graph, we impose the following form of

contractivity: there exists a constant 0 < γ < 2 such that

‖Fv→u(m)−Fv→u(m
′)‖L2 ≤

(
1− γ

2

)√ 1

|N (v)\{u}| ∑
w∈N (v)\{u}

‖mw→v −m′
w→v‖2

L2 , (20)

for all directed edges (v → u) ∈ ~E , and feasible messages m, and m′. We say that the ordinary BP

algorithm is γ-contractive when condition (20) holds.

Theorem 3 (general graphs) Suppose that the ordinary BP algorithm is γ-contractive (20), and

consider the sequence of messages {mt}∞
t=0 generated with step-size ηt = 1/(γ(t +1)). Then for all

t = 1,2, . . ., the error sequence {∆t
v→u}∞

t=0 is bounded in mean-square as

E
[
ρ2
(
∆t
)]

�
[(

8∑r
j=1 B2

j

γ2

)
log t

t
+

1

γ
max

(v→u)∈~E
‖Ar

v→u‖2
L2

]
~1. (21)

where Ar
v→u = m∗

v→u −Πr(m∗
v→u) is the approximation error on edge (v → u).
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Theorem 3 guarantees that under the contractivity condition (20), the SOSMP iterates converge

to a neighborhood of the BP fixed point. The error offset depends on the approximation error term

that decays to zero as r is increased. Moreover, disregarding the logarithmic factor, the conver-

gence rate is O(1/t), which is the best possible for a stochastic approximation scheme of this type

(Nemirovsky and Yudin, 1983; Agarwal et al., 2012).

4.3 Explicit Rates for Kernel Classes

Theorems 2 and 3 are generic results that apply to any choices of the edge potential functions. In this

section, we pursue a more refined analysis of the number of arithmetic operations that are required

to compute a δ-uniformly accurate approximation to the BP fixed point m∗, where δ > 0 is a user-

specified tolerance parameter. By a δ-uniformly accurate approximation, we mean a collection of

messages m such that

max
(v→u)∈~E

E
[
‖mv→u −m∗

v→u‖2
L2

]
≤ δ.

In order to obtain such an approximation, we need to specify both the number of coefficients r to be

retained, and the number of iterations that we should perform. Based on these quantities, our goal

is to specify the minimal number of basic arithmetic operations T (δ) that are sufficient to compute

a δ-accurate message approximation.

In order to obtain concrete answers, we study this issue in the context of kernel-based potential

functions. In many applications, the edge potentials ψuv : X ×X → R+ are symmetric and positive

semidefinite (PSD) functions, frequently referred to as kernel functions.2 Commonly used exam-

ples include the Gaussian kernel ψuv(x,y) = exp(−γ‖x− y‖2
2), the closely related Laplacian kernel,

and other types of kernels that enforce smoothness priors. Any kernel function defines a positive

semidefinite integral operator, namely via Equation (7). When X is compact and the kernel function

is continuous, then Mercer’s theorem (Riesz and Nagy, 1990) guarantees that this integral operator

has a countable set of eigenfunctions {φ j}∞
j=1 that form an orthonormal basis of L2(X ;µ). Moreover,

the kernel function has the expansion

ψuv(x,y) =
∞

∑
j=1

λ j φ j(x)φ j(y),

where λ1 ≥ λ2 ≥ ·· · ≥ 0 are the eigenvalues, all guaranteed to be non-negative. In general, the

eigenvalues might differ from edge to edge, but we suppress this dependence for simplicity in expo-

sition. We study kernels that are trace class, meaning that the eigenvalues are absolutely summable

(i.e., ∑∞
j=1 λ j < ∞).

For a given eigenvalue sequence {λ j}∞
j=1 and some tolerance δ > 0, we define the critical di-

mension r∗ = r∗(δ;{λ j}) to be the smallest positive integer r such that

λr ≤ δ. (22)

Since λ j → 0, the existence of r∗ < ∞ is guaranteed for any δ > 0.

2. In detail, a PSD kernel function has the property that for all natural numbers n and {x1, . . . ,xn} ⊂ X , the n×n kernel

matrix with entries ψuv(xi,x j) is symmetric and positive semidefinite.
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Theorem 4 (complexity vs. accuracy) In addition to the conditions of Theorem 3, suppose that the

compatibility functions are defined by a symmetric PSD trace-class kernel with eigenvalues {λ j}. If

we run the SOSMP algorithm with r∗ = r∗(δ;{λ j}) basis coefficients, and k = O(1) samples, then

it suffices to perform

T (δ;{λ j}) = O
(

r∗
( r∗

∑
j=1

λ2
j

) (
1/δ

)
log(1/δ)

)
(23)

arithmetic operations per edge in order to obtain a δ-accurate message vector m.

The proof of Theorem 4 is provided in Section 6.3. It is based on showing that the choice (22) suf-

fices to reduce the approximation error to O(δ), and then bounding the total operation complexity

required to also reduce the estimation error.

Theorem 4 can be used to derive explicit estimates of the complexity for various types of kernel

classes. We begin with the case of kernels in which the eigenvalues decay at an inverse polynomial

rate: in particular, given some α > 1, we say that they exhibit α-polynomial decay if there is a

universal constant C such that

λ j ≤C/ jα for all j = 1,2, . . .. (24)

Examples of kernels in this class include Sobolov spline kernels (Gu, 2002), which are a widely

used type of smoothness prior. For example, the spline class associated with functions that are

s-times differentiable satisfies the decay condition (24) with α = 2s.

Corollary 5 In addition to the conditions of Theorem 3, suppose that the compatibility functions

are symmetric kernels with α-polynomial decay (24). Then it suffices to perform

Tpoly(δ) = O
((

1/δ
) 1+α

α log(1/δ)
)

operations per edge in order to obtain a δ-accurate message vector m.

The proof of this corollary is immediate from Theorem 4: given the assumption λ j ≤C/ jα, we see

that r∗ ≤ (C/δ)
1
α and ∑r∗

j=1 λ2
j = O(1). Substituting into the bound (23) yields the claim. Corollary 5

confirms a natural intuition—namely, that it should be easier to compute an approximate BP fixed

point for a graphical model with smooth potential functions. Disregarding the logarithmic factor

(which is of lower-order), the operation complexity Tpoly(δ) ranges from O
(
(1/δ)2

)
, obtained as

α → 1+ all the way down to O
(
1/δ

)
, obtained as α →+∞.

Another class of widely used kernels are those with exponentially decaying eigenvalues: in

particular, for some α > 0, we say that the kernel has α-exponential decay if there are universal

constants (C,c) such that

λ j ≤C exp(−c jα) for all j = 1,2, . . .. (25)

Examples of such kernels include the Gaussian kernel, which satisfies the decay condition (25) with

α = 2 (e.g., Steinwart and Christmann, 2008).
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Figure 5: Plot of normalized error et/e0 vs. the number of iterations t for 10 different sample paths

on a chain of size n = 100. The dashed lines are sample paths whereas the solid line is

the mean square error. In this experiment node and edge potentials are mixtures of three

Gaussians and we implemented SOSMP using the first r = 10 Fourier coefficients with

k = 5 samples.

Corollary 6 In addition to the conditions of Theorem 3, suppose that the compatibility functions

are symmetric kernels with α-exponential decay (25). Then it suffices to perform

Texp(δ) = O
(
(1/δ)

(
log(1/δ)

) 1+α
α

)
(26)

operations per edge in order to obtain a uniformly δ-accurate message vector m.

As with our earlier corollary, the proof of this claim is a straightforward consequence of Theo-

rem 4. Corollary 6 demonstrates that kernel classes with exponentially decaying eigenvalues are

not significantly different from parametric function classes, for which a stochastic algorithm would

have operation complexity O(1/δ). Apart from the lower order logarithmic terms, the complexity

bound (26) matches this parametric rate.

5. Experimental Results

In this section, we describe some experimental results that help to illustrate the theoretical predic-

tions of the previous section.

5.1 Synthetic Data

We begin by running some experiments for a simple model, in which both the node and edge po-

tentials are mixtures of Gaussians. More specifically, we form a graphical model with potential
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functions of the form

ψu(xu) =
3

∑
i=1

πu;i exp
(
− (xu −µu;i)

2/(2σ2
u;i)

)
, for all u ∈ V , and (27)

ψuv(xu,xv) =
3

∑
i=1

πuv;i exp
(
− (xv − xu)

2/(2σ2
uv;i)

)
for all (u,v) ∈ E , (28)

where the non-negative mixture weights are normalized (i.e., ∑3
i=1 πuv;i = ∑3

i=1 πu;i = 1). For each

vertex and edge and for all i = 1,2,3, the mixture parameters are chosen randomly from uniform

distributions over the range σ2
u;i,σ

2
uv;i ∈ (0,0.5] and µu;i ∈ [−3,3].

5.1.1 SAMPLE PATHS ON A TREE-STRUCTURED GRAPH

For a chain-structured graph with n = 100 nodes, we first compute the fixed point of the standard

BP, using direct numerical integration to compute the integrals,3 so to compute (a very accurate ap-

proximation of) the fixed point m∗. We compare this “exact” answer to the approximation obtained

by running the SOSMP algorithm using the first r = 10 Fourier basis coefficients and k = 5 samples.

Having run the SOSMP algorithm, we compute the average squared error

et :=
1

|~E | ∑
(v→u)∈~E

r

∑
j=1

(at
v→u; j −a∗v→u; j)

2 (29)

at each time t = 1,2, . . ..
Figure 5 provides plots of the error (29) versus the number of iterations for 10 different trials

of the SOSMP algorithm. (Since the algorithm is randomized, each path is slightly different.) The

plots support our claim of of almost sure convergence, and moreover, the straight lines seen in the

log-log plots confirm that convergence takes place at a rate inverse polynomial in t.

5.1.2 EFFECT OF THE NUMBER OF COEFFICIENTS r AND THE NUMBER OF SAMPLES k

In the next few simulations, we test the algorithm’s behavior with respect to the number of expansion

coefficients r, and number of samples k. In particular, Figure 6(a) illustrates the expected error,

averaged over several sample paths, vs. the number of iterations for different number of expansion

coefficients r ∈ {2,3,5,10} when k = 5 fixed; whereas Figure 6(b) depicts the expected error vs.

the number of iterations for different number of samples k ∈ {1,2,5,10} when r = 10 is fixed. As

expected, in Figure 6(a), the error decreases monotonically, with the rate of 1/t, till it hits a floor

corresponding the offset incurred by the approximation error. Moreover, the error floor decreases

with the number of expansion coefficients. On the other hand, in Figure 6(b), increasing the number

of samples causes a downward shift in the error. This behavior is also expected since increasing the

number of samples reduces the variance of the empirical expectation in Equation (12).

5.1.3 EFFECT OF THE EDGE POTENTIAL SMOOTHNESS

In our next set of experiments, still on a chain with n = 100 vertices, we test the behavior of the

SOSMP algorithm on graphs with edge potentials of varying degrees of smoothness. In all cases,

3. In particular, we approximate the integral update (4) with its Riemann sum over the range X = [−5,5] and with 100

samples per unit time.
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Figure 6: Normalized mean squared error E[et/e0] verses the number of iterations for a Markov

chain with n = 100 nodes, using potential functions specified by the mixture of Gaussians

model (27) and (28). (a) Behavior as the number of expansion coefficients is varied over

the range r ∈ {2,3,5,10} with k = 5 samples in all cases. As predicted by the theory,

the error drops monotonically with the number of iterations until it hits a floor. The

error floor, which corresponds to the approximation error incurred by message expansion

truncation, decreases as the number of coefficients r is increased. (b) Mean squared error

E[et ] verses the number of iterations t for different number of samples k ∈ {1,2,5,10},

in all cases using r = 10 coefficients. Increasing the number of samples k results in a

downward shift in the error.

we use node potentials from the Gaussian mixture ensemble (27) previously discussed, but form

the edge potentials in terms of a family of kernel functions. More specifically, consider the basis

functions

φ j(x) = sin
(
(2 j−1)π(x+5)/10

)
for j = 1,2, . . ..

each defined on the interval [−5,5]. It is straightforward that the family {φ j}∞
j=1 forms an orthonor-

mal basis of L2[−5,5]. We use this basis to form the edge potential functions

ψuv(x,y) =
1000

∑
j=1

(1/ j)αφ j(x)φ j(y),

where α > 0 is a parameter to be specified. By construction, each edge potential is a positive

semidefinite kernel function satisfying the α-polynomial decay condition (24).

Figure 7 illustrate the error curves for two different choices of the smoothness parameter: panel

(a) shows α = 0.1, whereas panel (b) shows α = 1. For the larger value of α shown in panel (b), the

messages in the BP algorithm are smoother, so that the SOSMP estimates are more accurate with

the same number of expansion coefficients. Moreover, similar to what we have observed previously,

the error decays with the rate of 1/t till it hits the error floor. Note that this error floor is lower for
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Figure 7: Plot of the estimation error et/e0 verses the number of iterations t for the cases of (a)

α = 0.1 and (b) α = 1. The BP messages are smoother when α = 1, and accordingly

the SOSMP estimates are more accurate with the same number of expansion coefficients.

Moreover, the error decays with the rate of 1/t till it hits a floor corresponding to the

approximation error incurred by truncating the message expansion coefficients.

the smoother kernel (α = 1) compared to the rougher case (α = 0.1). Moreover, as predicted by

our theory, the approximation error decays faster for the smoother kernel, as shown by the plots in

Figure 8, in which we plot the final error, due purely to approximation effects, versus the number of

expansion coefficients r. The semilog plot of Figure 8 shows that the resulting lines have different

slopes, as would be expected.

5.2 Computer Vision Application

Moving beyond simulated problems, we conclude by showing the SOSMP algorithm in application

to a larger scale problem that arises in computer vision—namely, that of optical flow estimation

(Baker et al., 2011). In this problem, the input data are two successive frames of a video sequence.

We model each frame as a collection of pixels arrayed over a
√

n×√
n grid, and measured in-

tensity values at each pixel location of the form {I(i, j), I′(i, j)}
√

n

i, j=1. Our goal is to estimate a

2-dimensional motion vector xu = (xu;1,xu;2) that captures the local motion at each pixel u = (i, j),
i, j = 1,2, . . . ,

√
n of the image sequence.

In order to cast this optical flow problem in terms of message-passing on a graph, we adopt the

model used by Boccignone et al. (2007). We model the local motion Xu as a 2-dimensional random

vector taking values in the space X = [−d,d]× [−d,d], and associate the random vector Xu with

vertex u, in a 2-dimensional grid (see Figure 1(a)). At node u = (i, j), we use the change between

the two image frames to specify the node potential

ψu(xu;1,xu;2) ∝ exp

(
− (I(i, j)− I′(i+ xu;1, j+ xu;2))

2

2σ2
u

)
.
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Figure 8: Final approximation error vs. the number of expansion coefficients for the cases of α =
0.1 and α = 1. As predicted by the theory, the error floor decays with a faster pace for the

smoother edge potential.

(a) (b)

Figure 9: Two frames, each of dimension 250×250 pixels, taken from a video sequence of moving

cars.

On each edge (u,v), we introduce the potential function

ψuv(xu,xv) ∝ exp

(
− ‖xu − xv‖2

2σ2
uv

)
,
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which enforces a type of smoothness prior over the image.

To estimate the motion of a truck, we applied the SOSMP algorithm using the 2-dimensional

Fourier expansion as our orthonormal basis to two 250× 250 frames from a truck video sequence

(see Figure 9). We apply the SOSMP algorithm using the first r = 9 coefficients and k = 3 samples.

Figure 10 shows the HSV (hue, saturation, value) codings of the estimated motions after t = 1,10,40

iterations, in panels (a), (b) and (c) respectively. Panel (d) provides an illustration of the HSV

encoding: hue is used to represent the angular direction of the motion whereas the speed (magnitude

of the motion) is encoded by the saturation (darker colors meaning higher speeds). The initial

estimates of the motion vectors are noisy, but it fairly rapidly converges to a reasonable optical flow

field. (To be clear, the purpose of this experiment is not to show the effectiveness of SOSMP or BP

as a particular method for optical flow, but rather to demonstrate its correctness and feasibility of

the SOSMP in an applied setting.)

6. Proofs

We now turn to the proofs of our main results, which involve various techniques from concentration

of measure, stochastic approximation, and functional analysis. For the reader’s convenience, we

provide a high-level outline here. We begin in Section 6.1 by proving Theorem 2 dealing with

the case of tree-structured graphical models. In Section 6.2, we turn to the proof of Theorem 3

concerning the case of general graphs. Finally, in Section 6.3 we characterize the trade-off between

computational complexity and accuracy by proving Theorem 4. Each section involve technical

steps some of which are presented as lemmas. To increase the readability of the paper, proofs of the

lemmas are deferred to the appendices and can be ignored without affecting the flow of the main

argument.

6.1 Trees: Proof of Theorem 2

Our goal is to bound the error

‖∆t+1
v→u‖2

L2 = ‖mt+1
v→u −Πr(m∗

v→u)‖2
L2 =

r

∑
j=1

(
at+1

v→u; j −a∗v→u; j

)2
, (30)

where the final equality follows by Parseval’s theorem. Here {a∗v→u; j}r
j=1 are the basis expansion

coefficients that define the best r-approximation to the BP fixed point m∗. The following lemma pro-

vides an upper bound on this error in terms of two related quantities. First, we let {bt
v→u; j}∞

j=1 denote

the basis function expansion coefficients of the Fv→u(m̂
t)—that is, [Fv→u(m̂

t)](·)=∑∞
j=1 bt

v→u; jφ j(·).
Second, for each j = 1,2, . . . ,r, define the deviation ζt+1

v→u; j := b̃t+1
v→u; j−bt

v→u; j, where the coefficients

b̃t+1
v→u; j are updated in Step 2(c) Figure 3.

Lemma 7 For each iteration t = 0,1,2, . . ., we have

‖∆t+1
v→u‖2

L2 ≤ 2

t +1

r

∑
j=1

t

∑
τ=0

[
bτ

v→u; j −a∗v→u; j

]2

︸ ︷︷ ︸
Deterministic term Dt+1

v→u

+
2

(t +1)2

r

∑
j=1

[ t

∑
τ=0

ζτ+1
v→u; j

]2

︸ ︷︷ ︸
Stochastic term St+1

v→u

. (31)
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(a) (b)

(c) (d)

Figure 10: Color coded images of the estimated motion vectors after (a) t = 1, (b) t = 10, (c) t = 40

iterations. Panel (d) illustrates the hsv color coding of the flow. The color hue is used to

encode the angular dimension of the motion, whereas the saturation level corresponds to

the speed (length of motion vector). We implemented the SOSMP algorithm by expand-

ing in the two-dimensional Fourier basis, using r = 9 coefficients and k = 3 samples.

Although the initial estimates are noisy, it converges to a reasonable optical flow esti-

mate after around 40 iterations.

The proof of this lemma is relatively straightforward; see Appendix A for the details. Note that

inequality (31) provides an upper bound on the error that involves two terms: the first term Dt+1
v→u

depends only on the expansion coefficients {bτ
v→u; j,τ = 0, . . . , t} and the BP fixed point, and there-

fore is a deterministic quantity when we condition on all randomness in stages up to step t. The

second term St+1
v→u, even when conditioned on randomness through step t, remains stochastic, since

the coefficients b̃t+1
v→u (involved in the error term ζt+1

v→u) are updated stochastically in moving from

iteration t to t +1.
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We split the remainder of our analysis into three parts: (a) control of the deterministic com-

ponent; (b) control of the stochastic term; and (c) combining the pieces to provide a convergence

bound.

6.1.1 UPPER-BOUNDING THE DETERMINISTIC TERM

By the Pythagorean theorem, we have

t

∑
τ=0

r

∑
j=1

[
bτ

v→u; j −a∗v→u; j

]2 ≤
t

∑
τ=0

‖Fv→u(m̂
t)−Fv→u(m

∗)‖2
L2 . (32)

In order to control this term, we make use of the following lemma, proved in Appendix B:

Lemma 8 For all directed edges (v → u) ∈ ~E , there exist constants {Lv→u;w,w ∈ N (v)\{u}} such

that

‖Fv→u(m̂
t) − Fv→u(m

∗)‖L2 ≤ ∑
w∈N (v)\{u}

Lv→u;w ‖m̂t
w→v − m∗

w→v‖L2 ,

for all t = 1,2, . . ..

Substituting the result of Lemma 8 in Equation (32) and performing some algebra, we find that

t

∑
τ=0

r

∑
j=1

[
bτ

v→u; j −a∗v→u; j

]2 ≤
t

∑
τ=0

(
∑

w∈N (v)\{u}
Lv→u;w ‖m̂τ

w→v − m∗
w→v‖L2

)2

≤ (dv −1)
t

∑
τ=0

∑
w∈N (v)\{u}

L2
v→u;w ‖m̂τ

w→v − m∗
w→v‖2

L2 , (33)

where dv is the degree of node v ∈ V . By definition, the message m̂τ
w→v is the L2-projection of mτ

w→v

onto M . Since m∗
w→v ∈ M and projection is non-expansive, we have

‖m̂τ
w→v − m∗

w→v‖2
L2 ≤ ‖mτ

w→v − m∗
w→v‖2

L2

= ‖∆τ
w→v‖2

L2 + ‖Ar
w→v‖2

L2 , (34)

where in the second step we have used the Pythagorean identity and recalled the definitions of

estimation error as well as approximation error from (14) and (15). Substituting the inequality (34)

into the bound (33) yields

t

∑
τ=0

r

∑
j=1

[
bτ

v→u; j −a∗v→u; j

]2 ≤ (dv −1)
t

∑
τ=0

∑
w∈N (v)\{u}

L2
v→u;w

(
‖∆τ

w→v‖2
L2 +‖Ar

w→v‖2
L2

)
.

Therefore, introducing the convenient shorthand L̃v→u,w := 2 (dv −1)L2
v→u;w, we have shown that

Dt+1
v→u ≤ 1

t +1

t

∑
τ=0

∑
w∈N (v)\{u}

L̃v→u,w

(
‖∆t

w→v‖2
L2 + ‖Ar

w→v‖2
L2

)
. (35)

We make further use of this inequality shortly.
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6.1.2 CONTROLLING THE STOCHASTIC TERM

We now turn to the stochastic part of the inequality (31). Our analysis is based on the following

fact, proved in Appendix C:

Lemma 9 For each t ≥ 0, let G t := σ(m0, . . . ,mt) be the σ-field generated by all messages through

time t. Then for every fixed j = 1,2, . . . ,r, the sequence ζt+1
v→u; j = b̃t+1

v→u; j − bt
v→u; j is a bounded

martingale difference with respect to {G t}∞
t=0. In particular, we have |ζt+1

v→u; j| ≤ 2B j, where B j was

previously defined (19).

Based on Lemma 9, standard martingale convergence results (Durrett, 1995) guarantee that for each

j = 1,2, . . . ,r, we have ∑t
τ=0 ζτ+1

v→u; j/(t +1) converges to 0 almost surely (a.s.) as t → ∞, and hence

St+1
v→u =

2

(t +1)2

r

∑
j=1

{ t

∑
τ=0

ζτ+1
v→u; j

}2

= 2
r

∑
j=1

{ 1

t +1

t

∑
τ=0

ζτ+1
v→u; j

}2 a.s.−→ 0. (36)

Furthermore, we can apply the Azuma-Hoeffding inequality (Chung and Lu, 2006) in order to char-

acterize the rate of convergence. For each j = 1,2, . . . ,r, define the non-negative random variable

Z j :=
{

∑t
τ=0 ζτ+1

v→u; j

}2
/(t +1)2. Since |ζτ+1

v→u; j| ≤ 2B j, for any δ ≥ 0, we have

P
(
Z j ≥ δ

)
= P

(√
Z j ≥

√
δ
)
≤ 2 exp

(
− (t +1) δ

8 B2
j

)
,

for all δ > 0. Moreover, Z j is non-negative; therefore, integrating its tail bound we can compute the

expectation

E[Z j] =
∫ ∞

0
P
(
Z j ≥ δ

)
dδ ≤ 2

∫ ∞

0
exp

(
− (t +1) δ

8 B2
j

)
dδ =

16B2
j

t +1
,

and consequently

E
[
|St+1

v→u|
]
≤

32 ∑r
j=1 B2

j

t +1
.

6.1.3 ESTABLISHING CONVERGENCE

We now make use of the results established so far to prove the claims. Substituting the upper

bound (35) on Dt+1
v→u into the decomposition (31) from Lemma 7, we find that

‖∆t+1
v→u‖2

L2 ≤ 1

t +1

t

∑
τ=0

∑
w∈N (v)\{u}

L̃v→u,w

{
‖∆τ

w→v‖2
L2 + ‖Ar

w→v‖2
L2

}
+St+1

v→u. (37)

For convenience, let us introduce the vector T t+1 = {T t+1
v→u,(v → u) ∈ ~E} ∈ R

|~E | with entries

T t+1
v→u :=

1

t +1

{
∑

w∈N (v)\{u}
L̃v→u,w ‖∆0

w→v‖2
L2

}
+ St+1

v→u. (38)
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Now define a matrix N ∈ R
|~E |×|~E | with entries indexed by the directed edges and set to

Nv→u, w→s :=

{
L̃v→u,w if s = v and w ∈ N (v)\{u}
0 otherwise.

In terms of this matrix and the error terms ρ2
(
·
)

previously defined in Equations (16) and (17), the

scalar inequalities (37) can be written in the matrix form

ρ2
(
∆t+1

)
� N

[ 1

t +1

t

∑
τ=1

ρ2
(
∆τ
)]

+ N ρ2
(
Ar
)
+ T t+1, (39)

where � denotes the element-wise inequality based on the orthant cone.

From Lemma 1 in the paper by Noorshams and Wainwright (2013), we know that the matrix N

is guaranteed to be nilpotent with degree ℓ equal to the graph diameter. Consequently, unwrapping

the recursion (39) for a total of ℓ= diam(G) times yields

ρ2
(
∆t+1

)
� T t+1

0 + N T t+1
1 + . . . + Nℓ−1 T t+1

ℓ−1 + (N + N2 + . . . + Nℓ)ρ2
(
Ar
)
,

where we define T t+1
0 ≡ T t+1, and then recursively T t+1

s :=(∑t
τ=1 T τ

s−1)/(t+1) for s = 1,2, . . . , ℓ−1.

By the nilpotency of N, we have the identity I +N + . . .+Nℓ−1 = (I −N)−1; so we can further sim-

plify the last inequality

ρ2
(
∆t+1

)
�

ℓ−1

∑
s=0

Ns T t+1
s + N (I −N)−1 ρ2

(
Ar
)
. (40)

Recalling the definition B :=
{

e ∈ R
|~E | | |e| � N(I −N)−1ρ2

(
Ar
)}

, inequality (40) implies that

∣∣ρ2
(
∆t+1

)
− ΠB

(
ρ2
(
∆t+1

))∣∣�
ℓ−1

∑
s=0

Ns T t+1
s . (41)

We now use the bound (41) to prove both parts of Theorem 2.

To prove the almost sure convergence claim in part (a), it suffices to show that for each s =
0,1, . . . , ℓ−1, we have T t

s
a.s.−→ 0 as t →+∞. From Equation (36) we know St+1

v→u → 0 almost surely

as t → ∞. In addition, the first term in (38) is at most O(1/t), so that also converges to zero

as t → ∞. Therefore, we conclude that T t
0

a.s.−→ 0 as t → ∞. In order to extend this argument to

higher-order terms, let us recall the following elementary fact from real analysis (Royden, 1988):

for any sequence of real numbers {xt}∞
t=0 such that xt → 0, then we also have (∑t

τ=0 xτ)/t → 0. In

order to apply this fact, we observe that T t
0

a.s.−→ 0 means that for almost every sample point ω the

deterministic sequence {T t+1
0 (ω)}∞

t=0 converges to zero. Consequently, the above fact implies that

T t+1
1 (ω) = (∑t

τ=1 T τ
0 (ω))/(t+1)→ 0 as t →∞ for almost all sample points ω, which is equivalent to

asserting that T t
1

a.s.−→~0. Iterating the same argument, we establish T t+1
s

a.s.−→~0 for all s = 0,1, . . . , ℓ−
1, thereby concluding the proof of Theorem 2(a).

Taking the expectation on both sides of the inequality (41) yields

E
[
|ρ2

(
∆t+1

)
−ΠB

(
ρ2
(
∆t+1

))
|
]
�

ℓ−1

∑
s=0

Ns
E[T t+1

s ] (42)

so that it suffices to upper bound the expectations E[T t+1
s ] for s = 0,1, . . . , ℓ−1. In Appendix D, we

prove the following result:
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Lemma 10 Define the |~E |-vector ~v :=
{

∑r
j=1 B2

j

}
(4N~1+ 32). Then for all s = 0,1, . . . , ℓ−1 and

t = 0,1,2, . . .,

E[T t+1
s ] � ~v

t +1

(
s

∑
u=0

(log(t +1))u

u!

)
. (43)

Using this lemma, the proof of part (b) follows easily. In particular, substituting the bounds (43)

into Equation (42) and doing some algebra yields

E
[
|ρ2

(
∆t+1

)
− ΠB

(
ρ2
(
∆t+1

))
|
]
�

ℓ−1

∑
s=0

Ns
s

∑
u=0

(log(t +1))u

u!

( ~v

t +1

)

� 3
ℓ−1

∑
s=0

(log(t +1))s Ns
( ~v

t +1

)

� 3 (I − log(t +1)N)−1
( ~v

t +1

)
,

where again we used the fact that Nℓ = 0.

6.2 General Graphs: Proof of Theorem 3

Recall the definition of the estimation error ∆t
v→u from (14). By Parseval’s identity we know that

‖∆t
v→u‖2

L2 = ∑r
j=1(a

t
v→u; j − a∗v→u; j)

2. For convenience, we introduce the following shorthands for

mean squared error on the directed edge (v → u)

ρ2(∆t
v→u) := E[‖∆t

v→u‖2
L2 ] = E

[ r

∑
j=1

(at
v→u; j −a∗v→u; j)

2
]
,

as well as the ℓ∞ error

ρ2
max(∆

t) := max
(v→u)∈~E

E[‖∆t
v→u‖2

L2 ],

similarly defined for approximation error

ρ2
max(A

r) := max
(v→u)∈~E

‖Ar
v→u‖2

L2 .

Using the definition of ρ2(∆t
v→u), some algebra yields

ρ2(∆t+1
v→u)−ρ2(∆t

v→u) = E

[ r

∑
j=1

(
at+1

v→u; j −a∗v→u; j

)2 −
r

∑
j=1

(
at

v→u; j −a∗v→u; j

)2
]

= E

[ r

∑
j=1

{
at+1

v→u; j −at
v→u; j

} {(
at+1

v→u; j −at
v→u; j

)
+ 2

(
at

v→u; j −a∗v→u; j

)}]
.

From the update Equation (13), we have

at+1
v→u; j −at

v→u; j = ηt
(
b̃t+1

v→u; j −at
v→u; j

)
,
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and hence

ρ2(∆t+1
v→u)−ρ2(∆t

v→u) = U t
v→u + V t

v→u, (44)

where

U t
v→u := (ηt)2

r

∑
j=1

E

[(
b̃t+1

v→u; j −at
v→u; j

)2
]
, and

V t
v→u := 2ηt

r

∑
j=1

E

[(
b̃t+1

v→u; j −at
v→u; j

)(
at

v→u; j −a∗v→u; j

)]
.

The following lemma, proved in Appendix E, provides upper bounds on these two terms.

Lemma 11 For all iterations t = 0,1,2, . . ., we have

U t
v→u ≤ 4(ηt)2

r

∑
j=1

B2
j , and (45)

V t
v→u ≤ ηt

(
1− γ

2

)
ρ2

max
(Ar) + ηt

(
1− γ

2

)
ρ2

max
(∆t) − ηt(1+

γ

2
)ρ2(∆t

v→u). (46)

We continue upper-bounding ρ2(∆t+1
v→u) by substituting the results of Lemma 11 into Equation (44),

thereby obtaining

ρ2(∆t+1
v→u) ≤ 4(ηt)2

r

∑
j=1

B2
j +ηt

(
1− γ

2

)
ρ2

max(A
r) + ηt

(
1− γ

2

)
ρ2

max(∆
t)

+
{

1−ηt
(
1+

γ

2

)}
ρ2(∆t

v→u)

≤ 4(ηt)2
r

∑
j=1

B2
j +ηt

(
1− γ

2

)
ρ2

max(A
r) +

(
1−ηtγ

)
ρ2

max(∆
t).

Since this equation holds for all directed edges (v → u), taking the maximum over the left-hand side

yields the recursion

ρ2
max(∆

t+1) ≤ (ηt)2 B2 + ηt
(
1− γ

2

)
ρ2

max(A
r) +

(
1−ηtγ

)
ρ2

max(∆
t),

where we have introduced the shorthand B2 = 4∑r
j=1 B2

j . Setting ηt = 1/(γ(t +1)) and unwrapping

this recursion, we find that

ρ2
max(∆

t+1) ≤ B2

γ2

t+1

∑
τ=1

1

τ(t +1)
+

2− γ

2γ
ρ2

max(A
r)

≤ 2B2

γ2

log(t +1)

t +1
+

1

γ
ρ2

max(A
r),

which establishes the claim.
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6.3 Complexity versus Accuracy: Proof of Theorem 4

As discussed earlier, each iteration of the SOSMP algorithm requires O(r) operations per edge. Con-

sequently, it suffices to show that running the algorithm with r = r∗ coefficients for

(∑r
j=1 λ2

j)(1/δ) log(1/δ) iterations suffices to achieve mean-squared error of the order of δ.

The bound (21) consists of two terms. In order to characterize the first term (estimation error),

we need to bound B j defined in (19). Using the orthonormality of the basis functions and the fact

that the supremum is attainable over the compact space X , we obtain

B j = max
(v→u)∈~E

sup
y∈X

λ j φ j(y)∫
X ψuv(x,y)µ(dx)

= O(λ j).

Therefore, the estimation error decays at the rate O
(
(∑r

j=1 λ2
j) (log t/t)

)
, so that a total of t =

O
(
(∑r

j=1 λ2
j)(1/δ) log(1/δ)

)
iterations are sufficient to reduce it to O(δ).

The second term (approximation error) in the bound (21) depends only on the choice of r, and

in particular on the r-term approximation error ‖Ar
v→u‖2

L2 = ‖m∗
v→u −Πr(m∗

v→u)‖2
L2 . To bound this

term, we begin by representing m∗
v→u in terms of the basis expansion ∑∞

j=1 a∗jφ j. By the Pythagorean

theorem, we have

‖m∗
v→u −Πr(m∗

v→u)‖2
L2 =

∞

∑
j=r+1

(a∗j)
2. (47)

Our first claim is that ∑∞
j=1(a

∗
j)

2/λ j <∞. Indeed, since m∗ is a fixed point of the message update

equation, we have

m∗
v→u(·) ∝

∫
X

ψuv(·,y)M(y)µ(dy),

where M(·) := ψv(·)∏w∈N (v)\{u} m∗
w→v(·). Exchanging the order of integrations using Fubini’s the-

orem, we obtain

a∗j = 〈m∗
v→u, φ j〉L2 ∝

∫
X
〈φ j(·), ψuv(·,y)〉L2 M(y)µ(dy). (48)

By the eigenexpansion of ψuv, we have

〈φ j(·), ψuv(·,y)〉L2 =
∞

∑
k=1

λk〈φ j, φk〉L2 φk(y) = λ j φ j(y).

Substituting back into our initial Equation (48), we find that

a∗j ∝ λ j

∫
X

φ j(y) M(y)µ(dy) = λ j ã j,

where ã j are the basis expansion coefficients of M. Since the space X is compact, one can see that

M ∈ L2(X ), and hence ∑∞
j=1 ã2

j < ∞. Therefore, we have

∞

∑
j=1

(a∗j)
2

λ j

∝
∞

∑
j=1

λ j ã2
j < +∞,
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where we used the fact that ∑∞
j=1 λ j < ∞.

We now use this bound to control the approximation error (47). For any r = 1,2, . . ., we have

∞

∑
j=r+1

(a∗j)
2 =

∞

∑
j=r+1

λ j

(a∗j)
2

λ j

≤ λr

∞

∑
j=r+1

(a∗j)
2

λ j

= O(λr),

using the non-increasing nature of the sequence {λ j}∞
j=1. Consequently, by definition of r∗ (22), we

have

‖m∗
v→u −Πr∗(m∗

v→u)‖2
L2 = O(δ),

as claimed.

7. Conclusion

Belief propagation is a widely used message-passing algorithm for computing (approximate)

marginals in graphical models. In this paper, we have presented and analyzed the SOSMP algo-

rithm for running BP in models with continuous variables. It is based on two forms of approxi-

mation: a deterministic approximation that involves projecting messages onto the span of r basis

functions, and a stochastic approximation that involves approximating basis coefficients via Monte

Carlo techniques and damped updates. These approximations, while leading to an algorithm with

substantially reduced complexity, are also controlled: we provide upper bounds on the convergence

of the stochastic error, showing that it goes to zero as O(log t/t) with the number of iterations, and

also control on the deterministic error. For graphs with relatively smooth potential functions, as

reflected in the decay rate of their basis coefficients, we provided a quantitative bound on the total

number of basic arithmetic operations required to compute the BP fixed point to within δ-accuracy.

We illustrated our theoretical predictions using experiments on simulated graphical models, as well

as in a real-world instance of optical flow estimation.

Our work leaves open a number of interesting questions. First, although we have focused ex-

clusively on models with pairwise interactions, it should be possible to develop forms of SOSMP

for higher-order factor graphs. Second, the bulk of our analysis was performed under a type of

contractivity condition, as has been used in past works (Tatikonda and Jordan, 2002; Ihler et al.,

2005; Mooij and Kappen, 2007; Roosta et al., 2008) on convergence of the standard BP updates.

However, we suspect that this condition might be somewhat relaxed, and doing so would demon-

strate applicability of the SOSMP algorithm to a larger class of graphical models. Finally, it would

be interesting to see if the ideas presented in this work can be applied to other graph-based learning

problems.
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Appendix A. Proof of Lemma 7

Subtracting a∗v→u; j from both sides of the update (13) in Step 2(c), we obtain

at+1
v→u; j −a∗v→u; j = (1−ηt)

[
at

v→u; j −a∗v→u; j

]
+ ηt

[
bt

v→u; j −a∗v→u; j

]
+ ηt ζt+1

v→u; j. (49)

Setting ηt = 1/(t +1) and unwrapping the recursion (49) then yields

at+1
v→u; j −a∗v→u; j =

1

t +1

t

∑
τ=0

[
bτ

v→u; j −a∗v→u; j

]
+

1

t +1

t

∑
τ=0

ζτ+1
v→u; j.

Squaring both sides of this equality and using the upper bound (a+b)2 ≤ 2a2 +2b2, we obtain

(
at+1

v→u; j −a∗v→u; j

)2 ≤ 2

(t +1)2

{ t

∑
τ=0

[
bτ

v→u; j −a∗v→u; j

]}2

+
2

(t +1)2

{ t

∑
τ=0

ζτ+1
v→u; j

}2

.

Summing over indices j = 1,2, . . . ,r and recalling the expansion (30), we find that

‖∆t
v→u‖2

L2 ≤
r

∑
j=1

{
2

(t +1)2

{ t

∑
τ=0

[
bτ

v→u; j −a∗v→u; j

]}2

+
2

(t +1)2

{ t

∑
τ=0

ζτ+1
v→u; j

}2

}

(i)

≤ 2

(t +1)

r

∑
j=1

t

∑
τ=0

[
bτ

v→u; j −a∗v→u; j

]2

︸ ︷︷ ︸
Deterministic term Dt+1

v→u

+
2

(t +1)2

r

∑
j=1

{ t

∑
τ=0

ζτ+1
v→u; j

}2

.

︸ ︷︷ ︸
Stochastic term St+1

v→u

Here step (i) follows from the elementary inequality

{ t

∑
τ=0

[
bτ

v→u; j −a∗v→u; j

]}2

≤ (t +1)
t

∑
τ=0

[
bτ

v→u; j −a∗v→u; j

]2
.

Appendix B. Proof of Lemma 8

Recall the probability density

[pv→u(m)](·) ∝ βv→u(·) ∏
w∈N (v)\{u}

mw→v(·),

defined in Step 2 of the SOSMP algorithm. Using this shorthand notation, the claim of Lemma 1

can be re-written as [Fv→u(m)](x) = 〈Γuv(x, ·), [pv→u(m)](·)〉L2 . Therefore, applying the Cauchy-

Schwartz inequality yields

|[Fv→u(m)](x)− [Fv→u(m
′)](x)|2 ≤ ‖Γuv(x, ·)‖2

L2 ‖pv→u(m) − pv→u(m
′)‖2

L2 .

Integrating both sides of the previous inequality over X and taking square roots yields

‖Fv→u(m) − Fv→u(m
′)‖L2 ≤ Cuv ‖pv→u(m) − pv→u(m

′)‖L2 ,

where we have denoted the constant Cuv :=
(∫

X |Γuv(x,y)|2µ(dy)µ(dx)
)1/2

.
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The next step is to upper bound the term ‖pv→u(m)− pv→u(m
′)‖L2 . In order to do so, we first

show that pv→u(m) is a Frechet differentiable4 operator on the space M ′ :=
convhull{m∗,⊕(v→u)∈~E M ′

v→u}, where

M ′
v→u :=

{
m̂v→u

∣∣∣ m̂v→u =
[
EY∼ f

[
Πr

(
Γuv(·,Y )

)]]
+
, for some probability density f

}
,

denotes the space of all feasible SOSMP messages on the directed edge (v → u). Doing some

calculus using the chain rule, we calculate the partial directional (Gateaux) derivative of the operator

pv→u(m) with respect to the function mw→v. More specifically, for an arbitrary function hw→v, we

have

[Dw pv→u(m)](hw→v) =
βv→u ∏s∈N (v)\{u,w} ms→v

〈Mv→u, βv→u〉L2

hw→v

− βv→uMv→u

〈Mv→u, βv→u〉2
L2

〈hw→v, βv→u ∏
s∈N (v)\{u,w}

ms→v〉L2 ,

where Mv→u = ∏w∈N (v)\{u} mw→v. Clearly the Gateaux derivative is linear and continuous. It is also

bounded as will be shown now. Massaging the operator norm’s definition, we obtain

sup
m∈M ′

|||Dw pv→u(m)|||2 = sup
m∈M ′

sup
hw→v∈M ′

w→v

‖[Dw pv→u(m)](hw→v)‖L2

‖hw→v‖L2

≤ sup
m∈M ′

supx∈X βv→u(x)∏s∈N (v)\{u,w} ms→v(x)

〈Mv→u, βv→u〉L2

+ sup
m∈M ′

‖βv→uMv→u‖L2 ‖βv→u ∏s∈N (v)\{u,w} ms→v‖L2

〈Mv→u, βv→u〉2
L2

. (50)

Since the space X is compact, the continuous functions βv→u and ms→v achieve their maximum over

X . Therefore, the numerator of (50) is bounded and we only need to show that the denominator is

bounded away from zero.

For an arbitrary message mv→u ∈ M ′
v→u there exist 0 < α < 1 and a bounded probability density

f so that

mv→u(x) = α m∗
v→u(x) + (1−α)

[
EY∼ f

[
Γ̃uv(x,Y )

]]
+
,

4. For the convenience of the reader, we state the notions of Gateaux and Frechet differentiability (Clarke, 2013; Fabian

et al., 2011). For normed spaces X and Y , let U be an open subset of X , and let F : X → Y be an operator. For x ∈U

and z ∈ X , the F is Gateaux differentiable at x in the direction z if and only if the following limit exists

[DF(x)](z) := lim
t→0

F(x+ tz) − F(x)

t
=

d

dt
F(x+ tz) |t=0 .

Moreover, the operator F is Frechet differentiable at x if there exists a bounded linear operator DF(x) : X → Y such

that

lim
z→0

‖F(x+ z) − F(x) − [DF(x)](z)‖
‖z‖ = 0.
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where we have introduced the shorthand Γ̃uv(·,y) :=Πr(Γuv(·,y)). According to Lemma 1, we know

m∗
v→u = EY [Γuv(·,Y )], where Y ∼ pv→u(m

∗). Therefore, denoting p∗ = pv→u(m
∗), we have

mv→u(x) ≥ αEY∼p∗ [Γuv(x,Y )] + (1−α)EY∼ f [Γ̃uv(x,Y )]

= EY∼(αp∗+(1−α) f )[Γ̃uv(x,Y )] + αEY∼p∗ [Γuv(x,Y )− Γ̃uv(x,Y )]. (51)

On the other hand, since X is compact, we can exchange the order of expectation and projection

using Fubini’s theorem to obtain

EY∼p∗ [Γuv(·,Y )− Γ̃uv(·,Y )] = m∗
v→u −Πr(m∗

v→u) = Ar
v→u.

Substituting the last equality into the bound (51) yields

mv→u(x) ≥ inf
y∈X

Γ̃uv(x,y) − |Ar
v→u(x)|.

Recalling the assumption (18), one can conclude that the right hand side of the above inequality is

positive for all directed edges (v→ u). Therefore, the denominator of the expression (50) is bounded

away from zero and more importantly supm∈M ′ |||Dw pv→u(m)|||2 is attainable.

Since the derivative is a bounded, linear, and continuous operator, the Gateaux and Frechet

derivatives coincides and we can use Proposition 2 (Luenberger, 1969, page 176) to obtain the

following upper bound

‖pv→u(m) − pv→u(m
′)‖L2 ≤ ∑

w∈N (v)\{u}
sup

0≤α≤1

|||Dw pv→u(m
′+α (m−m′))|||2 ‖mw→v − m′

w→v‖L2 .

Setting Lv→u;w := Cuv supm∈M ′ |||Dw pv→u(m)|||2 and putting the pieces together yields

‖Fv→u(m) − Fv→u(m
′)‖L2 ≤ ∑

w∈N (v)\{u}
Lv→u;w ‖mw→v − m′

w→v‖L2 ,

for all m,m′ ∈ M ′.
The last step of the proof is to verify that m∗ ∈M ′, and m̂t ∈M ′ for all t = 1,2, . . .. By definition

we have m∗ ∈ M ′. On the other hand, unwrapping the update (13) we obtain

at
v→u; j =

1

t

t−1

∑
τ=0

b̃τ+1
v→u; j

=
1

t

t−1

∑
τ=0

1

k

k

∑
ℓ=1

∫
X

Γuv(x,Y
τ+1
ℓ )φ j(x)µ(dx)

=
∫

X
EY∼ p̂[Γuv(x,Y )]φ j(x)µ(dx),

where p̂ denotes the empirical probability density. Therefore, mt
v→u = ∑r

j=1 at
v→u; j φ j is equal to

Πr(EY∼ p̂[Γuv(·,Y )]), thereby completing the proof.
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Appendix C. Proof of Lemma 9

We begin by taking the conditional expectation of b̃t+1
v→u; j, previously defined (12), given the filter-

ation G t and with respect to the random samples {Y t+1
1 , . . . ,Y t+1

k } i.i.d.∼ [pv→u(m̂)](·). Exchanging

the order of expectation and integral5 and exploiting the result of Lemma 1, we obtain

E[b̃t+1
v→u; j |G t ] =

∫
X
[Fv→u(m̂

t)](x)φ j(x)µ(dx) = bt
v→u; j, (52)

and hence E[ζt+1
v→u; j |G t ] = 0, for all j = 1,2, . . . ,r and all directed edges (v → u) ∈ ~E . Also it is

clear that ζt+1
v→u; j is G t-measurable. Therefore, {ζτ+1

v→u; j}∞
τ=0 forms a martingale difference sequence

with respect to the filtration {G τ}∞
τ=0. On the other hand, recalling the bound (19), we have

|b̃t+1
v→u; j| ≤

1

k

k

∑
ℓ=1

|〈Γuv(·,Yℓ), φ j〉L2 | ≤ B j.

Moreover, exploiting the result of Lemma 1 and exchanging the order of the integration and expec-

tation once more yields

|bt
v→u; j| = |〈EY [Γuv(·,Y )], φ j〉L2 | = |EY [〈Γuv(·,Y ), φ j〉L2 ]| ≤ B j, (53)

where we have Y ∼ [pv→u(m̂
t)](y). Therefore, the martingale difference sequence is bounded, in

particular with

|ζt+1
v→u; j| ≤ |b̃t+1

v→u; j| + |bt
v→u; j| ≤ 2B j.

Appendix D. Proof of Lemma 10

We start by uniformly upper-bounding the terms E[|T t+1
v→u|]. To do so we first need to bound

‖∆t
v→u‖L2 . By definition we know ‖∆t

v→u‖2
L2 = ∑r

j=1[a
t
v→u; j − a∗v→u; j]

2; therefore we only need to

control the terms at
v→u; j and a∗v→u; j for j = 1,2, . . . ,r.

By construction, we always have |b̃t+1
v→u; j| ≤ B j for all iterations t = 0,1, . . .. Also, assuming that

|a0
v→u; j| ≤ B j, without loss of generality, a simple induction using the update Equation (13) shows

that |at
v→u; j| ≤ B j for all t. Moreover, using a similar argument leading to (53), we obtain

|a∗v→u; j| = |〈EY [Γuv(·,Y )], φ j〉L2 | = |EY [〈Γuv(·,Y ), φ j〉L2 ]| ≤ B j,

where we have Y ∼ [pv→u(m
∗)](y). Therefore, putting the pieces together, recalling the defini-

tion (38) of T t+1
v→u yields

E[|T t+1
v→u|] ≤

4

t +1
∑

w∈N (v)\{u}
L̃v→u,w

r

∑
j=1

B2
j +

32

t +1

r

∑
j=1

B2
j .

5. Since Γuv(x,y)φi(x)[pv→u(m̂
t)](y) is absolutely integrable, we can exchange the order of the integrals using Fubini’s

theorem.
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Concatenating the previous scalar inequalities yields E[T t+1
0 ] �~v/(t + 1), for all t ≥ 0, where we

have defined the |~E |-vector~v :=
{

∑r
j=1 B2

j

}
(4N~1+32). We now show, using an inductive argument,

that

E[T t+1
s ] � ~v

t +1

s

∑
u=0

(log(t +1))u

u!
,

for all s = 0,1,2, . . . and t = 0,1,2, . . .. We have already established the base case s = 0. For some

s > 0, assume that the claim holds for s−1. By the definition of T t+1
s , we have

E[T t+1
s ] =

1

t +1

t

∑
τ=1

E[T τ
s−1]

� ~v

t +1

t

∑
τ=1

{1

τ
+

s−1

∑
u=1

(logτ)u

u! τ

}
,

where the inequality follows from the induction hypothesis. We now make note of the elementary

inequalities ∑t
τ=1 1/τ ≤ 1+ log t, and

t

∑
τ=1

(logτ)u

u! τ
≤

∫ t

1

(logx)u

u! x
dx =

(log t)(u+1)

(u+1)!
, for all u ≥ 1

from which the claim follows.

Appendix E. Proof of Lemma 11

By construction, we always have |b̃t+1
v→u; j| ≤ B j for all iterations t = 0,1,2, . . .. Moreover, assuming

|a0
v→u; j| ≤ B j, without loss of generality, a simple induction on the update equation shows that

|at
v→u; j| ≤ B j for all iterations t = 0,1, . . .. On this basis, we find that

U t
v→u = (ηt)2

r

∑
j=1

E
[(

b̃t+1
v→u; j −at

v→u; j

)2] ≤ 4(ηt)2
r

∑
j=1

B2
j ,

which establishes the bound (45).

It remains to establish the bound (46) on V t
v→u. We first condition on the σ-field G t =σ(m0, . . . ,mt)

and take expectations over the remaining randomness, thereby obtaining

V t
v→u = 2ηt

E

[
E
[ r

∑
j=1

(
b̃t+1

v→u; j −at
v→u; j

)(
at

v→u; j −a∗v→u; j

)∣∣G t
]]

= 2ηt
E

[ r

∑
j=1

(
bt

v→u; j −at
v→u; j

)(
at

v→u; j −a∗v→u; j

)]
,

where {bt
v→u; j}∞

j=1 are the expansion coefficients of the function Fv→u(m̂
t)

(i.e., bt
v→u; j = 〈Fv→u(m̂

t), φ j〉L2), and we have recalled the result E[b̃t+1
v→u; j|G t ] = bt

v→u; j from (52).

By Parseval’s identity, we have

T :=
r

∑
j=1

(
bt

v→u; j −at
v→u; j

)(
at

v→u; j −a∗v→u; j

)

= 〈Πr(Fv→u(m̂
t))−mt

v→u, mt
v→u −Πr(m∗

v→u)〉L2 .
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Here we have used the basis expansions

mt
v→u =

r

∑
j=1

at
v→u; jφ j, and Πr(m∗

v→u) =
r

∑
j=1

a∗v→u; jφ j.

Since Πr(mt
v→u) = mt

v→u and Fv→u(m
∗) = m∗

v→u, we have

T = 〈Πr
(
Fv→u(m̂

t)−Fv→u(m
∗)
)
, mt

v→u −Πr(m∗
v→u)〉L2 − ‖mt

v→u −Πr(m∗
v→u)‖2

L2

(i)

≤ ‖Πr
(
Fv→u(m̂

t)−Fv→u(m
∗)
)
‖L2 ‖mt

v→u −Πr(m∗
v→u)‖L2 − ‖mt

v→u −Πr(m∗
v→u)‖2

L2

(ii)

≤ ‖Fv→u(m̂
t)−Fv→u(m

∗)‖L2 ‖mt
v→u −Πr(m∗

v→u)‖L2 − ‖mt
v→u −Πr(m∗

v→u)‖2
L2 .

where step (i) uses the Cauchy-Schwarz inequality, and step (ii) uses the non-expansivity of projec-

tion. Applying the contraction condition (20), we obtain

T ≤
(
1− γ

2

)
√√√√ ∑

w∈N (v)\{u}
‖m̂t

w→v −m∗
w→v‖2

L2

|N (v)|−1
‖mt

v→u −Πr(m∗
v→u)‖L2

− ‖mt
v→u −Πr(m∗

v→u)‖2
L2

≤
(
1− γ

2

){1

2

∑w∈N (v)\{u} ‖mt
w→v −m∗

w→v‖2
L2

|N (v)|−1
+

1

2
‖mt

v→u −Πr(m∗
v→u)‖2

L2

}

− ‖mt
v→u −Πr(m∗

v→u)‖2
L2 ,

where the second step follows from the elementary inequality ab ≤ a2/2 + b2/2 and the non-

expansivity of projection onto the space of non-negative functions. By the Pythagorean theorem,

we have

‖mt
w→v −m∗

w→v‖2
L2 = ‖mt

w→v −Πr(m∗
w→v)‖2

L2 + ‖Πr(m∗
w→v)−m∗

w→v‖2
L2

= ‖∆t
w→v‖2

L2 +‖Ar
w→v‖2

L2 .

Using this equality and taking expectations, we obtain

E[T ] ≤
(
1− γ

2

){1

2

∑w∈N (v)\{u}[ρ
2(∆t

w→v)+‖Ar
w→v‖2

L2 ]

|N (v)|−1
+

1

2
ρ2(∆t

v→u)

}
− ρ2(∆t

v→u)

≤
(1

2
− γ

4

)
ρ2

max(A
r) +

(1

2
− γ

4

)
ρ2

max(∆
t) − (

1

2
+

γ

4
)ρ2(∆t

v→u).

Since V t
v→u = 2ηt

E[T ], the claim follows.
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