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Abstract

Manifold regularization (Belkin et al., 2006) is a geomeditly motivated framework for machine
learning within which several semi-supervised algorithmase been constructed. Here we try to
provide some theoretical understanding of this approacir.n@ain result is to expose the natural
structure of a class of problems on which manifold reguédi@n methods are helpful. We show
that for such problems, no supervised learner can learnt®fy. On the other hand, a manifold
based learner (that knows the manifold or “learns” it fromabeled examples) can learn with
relatively few labeled examples. Our analysis follows aimax style with an emphasis on finite
sample results (in terms of the number of labeled examples). These results allow usoizeply
interpret manifold regularization and related spectral gaometric algorithms in terms of their
potential use in semi-supervised learning.

Keywords: semi-supervised learning, manifold regularization, grapplacian, minimax rates

1. Introduction

The last decade has seen a flurry of activity within machine learning on fostthat are the
subject of this papemanifold metho&ndsemi-supervised learningVhile manifold methods are
generally applicable to a variety of problems, the framework of manifoldlaeigation (Belkin
et al., 2006) is especially suitable for semi-supervised applications.

Manifold regularization provides a framework within which many graph tadgorithms for
semi-supervised learning have been derived (see Zhu, 2008, toveys There are many things
that are poorly understood about this framewdiikst, manifold regularization is not a single algo-
rithm but rather a collection of algorithms. So what exactly is “manifold regedéion”? Second
while many semi-supervised algorithms have been derived from this p#rsp@nd many have en-
joyed empirical success, there are few theoretical analyses thattdrarathe class of problems on
which manifold regularization approaches are likely to work. In partictiare is some confusion
on a seemingly fundamental point. Even when the data might have a manifattlsgrLit is not
clear whether learning the manifoldrigcessaryor good performance. For example, recent results
(Bickel and Li, 2007; Lafferty and Wasserman, 2007) suggest thatwdata lives on a low dimen-
sional manifold, it may be possible to obtain good rates of learning usingadhsgethods suitably
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adapted without knowing very much about the manifold in question beyonhitndion. This has
led some people (e.g., Lafferty and Wasserman, 2007) to suggest thiédlcheggularization does
not provide any particular advantage.

What is particularly missing in the prior research so far is a crisp theoratigsdment which
shows the benefits of manifold regularization techniques quite clearly. Hpisrgprovides such
a theoretical analysis, and explicates the nature of manifold regularizattbe itontext of semi-
supervised learning. Our main theorems (Theorems 2 and 4) show thet#mebe classes of learn-
ing problems on which (i) a learner that knows the manifold (alternativelyseifrom large (in-
finite) unlabeled data via manifold regularization) obtains a fast rate ofcgawnce (upper bound)
while (ii) without knowledge of the manifold (via oracle access or manifoldiiea), no learning
schemeexists that is guaranteed to converge to the target function (lower hotind)provides for
the first time a clear separation between a manifold method and alternativestddably chosen
class of problems (problems that have intrinsic manifold structure). To iltestnégs conceptual
point, we have defined a simple class of problems where the support oathesdsimply a one
dimensional manifold (the circle) embedded in an ambient Euclidean space=<bit is the first of
this kind. However, it is worth emphasizing that this conceptual point mayadddsain in far more
general manifold settings. The discussion of Section 2.3 and the theore®estidn 3.2 provide
pointers to these more general results that may cover cases of greatirgirelevance.

The plan of the paperAgainst this backdrop, the rest of the paper is structured as follows.
In Section 1.1, we develop the basic minimax framework of analysis that allevis compare
the rates of learning for manifold based semi-supervised learners dndidpervised learners.
Following this in Section 2, we demonstrate a separation between the two kindaroérs by
proving an upper bound on the manifold based learner and a lower looLenay alternative learner.
In Section 3, we take a broader look at manifold learning and regularizetionder to expose
some subtle issues around these subjects that have not been careisitjeced by the machine
learning community. This section also includes generalizations of our mairethemf Section 2.
In Section 4, we consider the general structure that learning probleni$iavgsfor semi-supervised
approaches to be viable. We show how both the classical results of CastklGover (1996, one
of the earliest known examples of the power of semi-supervised learaimpdhe recent results of
manifold regularization relate to this general structure. Finally, in Section eiteraite our main
conclusions.

1.1 A Minimax Framework for Analysis

A learning problem is specified by a probability distributipon X x Y according to which labelled
examples; = (x;,y;) pairs are drawn and presented to a learning algorithm (estimation pregedur
We are interested in an understanding of the case in wkiehRP, Y C R but px (the marginal
distribution of p on X) is supported on some submanifeld C X. In particular, we are interested
in understanding how knowledge of this submanifold may potentially help aitepatgorithm. To
this end, we will consider two kinds of learning algorithms:

1. Algorithms that have no knowledge of the submanifdfdbut learn from(x;,y;) pairs in a
purely supervised way.

2. Algorithms that have perfect knowledge of the submanifold. This kraiydenay be acquired
by a manifold learning procedure through unlabeled examplesnd having access to an
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essentially infinite number of them. Such a learner may be viewed as a semiisage
learner.

Our main result is to elucidate the structure of a class of problems on whighisreedifference
in the performance of algorithms of Type 1 and 2.

Let 2 be a collection of probability distributionsand thus denote a class of learning problems.
For simplicity and ease of comparison with other classical results, we place sggularity con-
ditions on?. Every p € P is such that its margingbx has support on &dimensional manifold
M c X. Different p's may have different supports. For simplicity, we will consider the caseravh
px is uniform on4/: this corresponds to a situation in which the marginal is the most regular.

Given such & we can naturally define the cla®y, to be

Py = {p € P|px is uniform onM }.

Clearly, we have
P = Uy Pay-

Considerp € P,,. This denotes a learning problem and the regression funetias defined as
mp(X) = Ely|x] whenx e M.

Note thatmp(x) is not defined outside aM. We will be interested in cases whem, belongs to
some restricted family of functiond,, (for example, a Sobolev space). Thus assuming a family
H,, is equivalent to assuming a restriction on the class of conditional probabditjbaditionsp(y|x)
wherep € 2. For simplicity, we will assume the noiseless case wipéy) is either 0 or 1 for every
x and everyy, that is, there is no noise in the Y space.

SinceX\M has measure zero (with respeciig), we can definen,(x) to be anything we want
whenx € X\ M. We definemy(x) = 0 whenx ¢ M.

For a learning problenp, the learner is presented with a collection of labeled exam{@es
(%,¥i),i =1,...,n} where eactz is drawn i.i.d. according t@. A learning algorithm A maps the
collection of dat& = (z,...,z,) into a functionA(z). Now we can define the following minimax
rate (for the clas®) as

R(n, P) = inf SUPEZ||A(Z) — Mp||L2(py)-
A perp
This is the best possible rate achieved by any learner thatdksowledge of the manifolt. We
will contrast it with a learner that has oracle access endowing it with krigelef the manifold. To
begin, note that sinc® = U4, P,,, we see that

R(n, P) = infsup sup Ez||A(2) — Mp||L2(py)-
A af pePy

Now a manifold based learnéf is given a collection of labeled examples- (z,...,z,) just
like the supervised learner. However, in addition, it also has knowletigé ¢the support of the
unlabeled data). It might acquire this knowledge through manifold learmittg@augh oracle access
(the limit of infinite amounts of unlabeled data). Th¥smaps(z M) into a function denoted by
A(z,M). The minimax rate for such a manifold based learner for the @®gsss given by

inf sup E4||A'(2, M) —mMp||2(p,)-
N pey,
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Taking the supremum over all possible manifolds (just as in the supenasel, eve have

Q(n, P) = supinf sup Ezl|A — mp |2y
M DE?M

1.2 TheManifold Assumption for Semi-supervised Learning

So the question at hand is: for what class of problggth the structure as described above, might
one expect a gap betwe&(n, ?) andQ(n, P). This is a class of problems for which knowing the
manifold confers an advantage to the learner.

There are two main assumptions behind the manifold based approach to pemvised learn-
ing. First, one assumes that the support of the probability distribution isroe &w dimensional
manifold. The motivation behind this assumption comes from the intuition that akhoatyral
data in its surface form lives in a high dimensional space (speech, imagestte), they are often
generated by systems with much fewer underlying degrees of freeddrtharefore have lower
intrinsic dimensionality. This assumption and its corresponding motivation hers dticulated
many times in papers on manifold methods (see Roweis and Saul, 2000, rigplexaSecond, one
assumes that the underlying target function one is trying to learn (foigbie® is smooth with
respect to this underlying manifold. A smoothness assumption lies at thedfieaginy machine
learning methods including especially splines (Wahba, 1990), regulariza¢ittvorks (Evgeniou
et al., 2000), and kernel based methods (using regularization in tepngdkernel Hilbert spaces;
Sclolkopf and Smola, 2002). However, smoothness in these approachgscallfymeasured in
the ambient Euclidean space. In manifold regularization, a geometric smestbaealty is instead
imposed.

Thus, for a manifoldM, let @y, ¢, .. ., be the eigenfunctions of the manifold Laplacian (ordered
by frequency). Themny(x) may be expressed in this basisas= 5 ai@ or

mp = sign(y ai@)

where theni’s have a sharp decay to zero.

Against this backdrop, one might now consider manifold regularizationttecgee better under-
standing of when and why it might be expected to provide good semi-ggpdnearning. First off,
it is worthwhile to clarify what is meant by manifold regularization. The term “iftdah regulariza-
tion” was introduced by Belkin et al. (2006) to describe a class of algorithmvich geometrically
motivated regularization penalties were used. One unifying framewoadasetting of Tikhonov
regularization over a Reproducing Kernel Hilbert Space of functionseaid algorithms that arise
as special cases of the following:

=argfgugnzv )0+ Yal | Fllic + i1 FI[7- (1)
HereK : X x X — R is a p.d. kernel that defines a suitable RKHHg ) of functions that are ambi-
ently defined. The ambient RKHS noriirf ||k and an “intrinsic norm’|| f||, are traded-off against
each other. Intuitively the intrinsic normf ||, penalizes functions by considering onfy, the
restriction off to M and essentially considering various smoothness functionals. Since the eige
functions of the Laplacian provide a basis fdr functions intrinsically defined ofi/, one might
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expressfy, = ;0@ in this basis and consider constraints on the coefficients.

Remarks;

1.

Various choices off f||? include: (i)iteratedLaplacian given by],, f(Af) = Y ajz)\‘j, (i)
heat kernegiven by ;e*ia?, and (iiijband limitinggiven by|| f||? = 5 a? wherep; = o

foralli > p.

. The loss functioW can vary from squared loss to hinge loss to the 0-1 loss for classification

giving rise to different kinds of algorithmic procedures.

. While Equation 1 is regularization in the Tikhonov form, one could constieer kinds of

model selection principles that are in the spirit of manifold regularization.ekample, the
method of Belkin and Niyogi (2003) is a version of the method of sieves thgthmanter-
preted as manifold regularization with bandlimited functions where one allowsatiawidth
to grow as more and more data becomes available.

. The formalism provides a class of algorithisthat have access to labeled exam@esnd

the manifoldM fr9m which all the terms in the optimization of Equation 1 can be computed.
ThusA(z, M) = f.

. Finally it is worth noting that in practice when the manifold is unknown, the tiyaif ||2 =

Jar f(A'f) is approximated by collecting unlabeled poirts 4, making a suitable nearest
neighbor graph with the vertices identified with the unlabeled points, andar&gng the
function using the graph Laplacian. The graph is viewed as a proxy éomimnifold and
in this sense, many graph based approaches to semi-supervised I¢seeirzhu, 2008, for
review) may be accommodated within the purview of manifold regularization.

The point of these remarks is that manifold regularization combines thegquéinapof kernel
based methods with the perspective of manifold and graph based methoadmits a variety
of different algorithms that incorporate a geometrically motivated complexihalpe We will
later demonstrate (in Section 3) one such canonical algorithm for the dldsarning problems
considered in Section 2 of this paper.

2. A Prototypical Example: Embeddings of the Circleinto Euclidean Space

In this section, we will construct a class of learning probletthat have manifold structur@ =
UarPar and demonstrate a separation betwém 2) andQ(n, ). For simplicity, we will show a
specific construction where evefy considered is a different embedding of the circle into Euclidean
space. In particular, we will see th&tn) = Q(1) while lim,,.Q(n) = 0 at a fast rate. Thus the
learner with knowledge of the manifold learns easily while the learner with ob knowledge
cannot learn at all.

Let @: S' — X be an isometric embedding of the circle into a Euclidean space. Now consider
the family of such isometric embeddings and let this be the family of one-dimemhsidmaanifolds
that we will deal with. Thus eaci C X is of the formM = @(S') for someq.

Let Hg be the set of functions defined on the circle that take the vallen half the circle and
—1 on the other half. Thus in local coordinat@signoting the coordinate of a point $1), we can
write the clas#Hq as
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Hg = {hq : St — R|hy(8) = sign(sin(8+a));a € [0, 2m)}.

Now for each = 8(S!) we can define the class,, as

Har = {h: M — R|h(X) = hy (¢ 1(x)) for somehg € Hg }. (2)

This defines a class of regression functions (also classification fusgfienour setting. Cor-
respondingly, in our noiseless setting, we can now defigeas follows. For eachh € H,,, we
can define the probability distributiapi™ on X x Y by letting the marginapl” be uniform ons/
and the conditionap(" (y|x) be a probability mass function concentrated on two pojrts+1 and
y = —1 such that

p(h) (y=+1x)=1<=h(x)=+1

Thus

Par = {P"|h € Hyr}

In our setting, we can therefore interpret the learning problem as amiisgian either of re-
gression or of classification based on our interest.

Now that ?,, is defined, the seP = U,,P,, follows naturally. A picture of the situation is
shown in Figure 1.

Remark 1 Recall that many machine learning methods (notably splines and kesibbds) con-
struct classifiers from spaces of smooth functions. The Sobolev gs@eeddams and Fournier,
2003) are spaces of functions whose derivatives up to a certain ordescarare integrable. These
spaces arise in theoretical analysis of such machine learning methatlg snoften the case that
predictors are chosen from such spaces or regression functionssargraed to be in such spaces
depending on the context of the work. For example, Lafferty and Waasg2007) make precisely
such an assumption. In our setting, note that Bind correspondingly k} as defined above is not
itself a Sobolev space. However, it is obtained by thresholding functionsSimbalev space. In
particular, we can write

Hg = {sign(h)|h = aop+ By}

where @(8) = sin(0) and Y(0) = cogB) are eigenfunctions of the Laplaciaks on the circle.
These are the eigenfunctions corresponding to 1 and define the corresponding two dimensional
eigenspace. More generally one could consider a family of functions @oteiy thresholding
functions in a Sobolev space of any chosen order and cleaglys-tontained in any such family.
Finally it is worth noting that the arguments presented below do not depertiresholding and
would work with functions that are bandlimited or in a Sobolev space just Hs we
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+1 1
-1
M 1 M2

Figure 1: Shown are two embeddingsM{ andM of the circle in Euclidean space (the plane in
this case). The two functions, one frdvh — R and the other fronM, — R are denoted
by labelings+1, —1 correspond to half circles shown.

2.1 Upper Bound on Q(n,P)

Let us begin by noting that if the manifol@/ is known, the learner knows the cla®g,. The
learner merely needs to approximate one of the target functidfg,inlt is clear that the spadd,,
is a family of 0 — 1 valued functions whose VC-dimension is 2. Thereforalgorithm that does

empirical risk minimization over the class,, will yield an upperbound of %) by the usual
arguments. Therefore the following theorem is obtained.

Theorem 2 Following the notation of Section 1, letjdbe the family of functions defined by Equa-
tion 2 and® be the corresponding family of learning problems. Then the learner witvlauge of
the manifold converges at a fast rate given by

3log(n)
n
and this rate is optimal. Thus every problem in this class P can be learneipfiy.

Q(n,P) <2

Remark 3 If the class H, is a a parametric family of the fornzip:lo(i(g whereq are the eigen-
functions of the Laplacian, one obtains the same parametric rate. Similathe i€lass H, is a
ball in a Sobolev space of appropriate order, suitable rates on the family meaobtained by the
usual arguments.

2.2 Lower Bound on R(n,P)

We now prove the following.

Theorem 4 Let P = Uy, Py Where eachM = @(S') is an isometric embedding of the circle into
X as shown. For each @ P, the marginal g is uniform on somé/ and the conditional fy|x) is
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given by the construction in the previous section. Then

R(n,P) = meUQEJEzHA( 2) — Mp||L2(p,) = Q(1)
pe

Thus, it is not the case that every problem in the clAssan be learned efficiently. In other words,
for every n, there exists a problem4hthat requires more than n examples.

We provide the proof below. A specific role in the proof is played by attangon (Construc-
tion 1 later in the proof) that is used to show the existence of a family of geomltratructured
learning problems (probability measures) that will end up becoming unlglaraa a family.

Proof Givenn, choose a numbat = 2n. Following Construction 1, there exist a set (denoted
by 74 C ) of 29 probability distributions that may be defined. Our proof uses the probabilistic
method. We show that there exists a universal con#tdinidependent off) such that

1 _
VA, 55 > EZf|A(2) —mpllzp,) > K

pe%s

from which we conclude that

VA, SUPEZ|[A(Z) — Mp||i2(p) > K
pEPy

Since?y C P, the result follows.

To begin, consider @€ P. Letz=(z,...,z,) be a set of i.i.d. examples drawn according to
p. Note that this is equivalent to drawing= (X, ...,%y) i.i.d. according topx and for eachx;,
drawingy; according top(y|x;). Since the conditiongb(y|x) is concentrated on one point, thés
are deterministically assigned. Accordingly, we can denote this depenbgmritingz = zy(X).

Now consider

Ez||A(Z) — Mp||L2(py)-

This is equal to
1, AP@IA®) ~mil iz = [ ABIAE(X) ~ Mz
(To clarify notation, we observe the{ is the singular measure off' with support ontM™" which

is the natural product measure corresponding to the distributiondafta points«s, ..., x, drawn
i.i.d. with eachx; distributed according tpx.) The above in turn is lowerbounded by

3 / o IR OIAZ(R) = Mo

where
= {x € X"| exactlyl segments contain data and links do hot

More formally,

S = {xe X"|xNc; # @for exactlyl segmentg; andxN B = 0}.
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Now we concentrate on Iowerboundl[ﬁgs d P& (R)[|A(Zp(X)) — Mp||L2(py)- Using the fact that
px is uniform, we have thadl p§ (X) = cd(X) (wherec is a normalizing constant ard{X) is the
Lebesgue measure or volume form on the associated product spedbgeafore

L B AB(30) ~ Mol = | _ A ~ Ml

Thus, we have

=}

Ed|A@) = millipo > 3 / _ CARIIAH() — Myl 5 3

Now we see that

s 3 EdIAGR) ~ Mluzqpo > z c [ dmIA=m|

PEPy peﬂ

- |Z)C/xes <2d % A mpH) d(x).

By Lemma 5, we see that for eagle §, we have
1 d—n
>d % [A=mp|| = (1—a—B)—7
from which we conclude that

1 _
?%EfHA(Z)—mpHLZ(px )= (1-a- B Zj/xes

Now we note that

i/  cdix) = ProbxnB=0) > (1-p)"
S/ xe

Therefore,
SUPE: A2~ Myl > (1=~ B) g (1= > (L-a—Pg(L—p". (@

Sincea andf (and for that mattex) are in our control, we can choose them to make the right-
hand side of Inequality 4 greater than some constant. This proves oveitheo |

We now construct a family of intersecting manifolds such that given two poimeny manifold
in this family, it is difficult to judge (without knowing the manifold) whether theséngts are near
or far in geodesic distance. The class of learning problems consistslwdlglity distributionsp
such thatpy is supported on some manifold in this class. This construction plays a ceslgdhr
the proof of the lower bound.
Construction 1. Consider a set of 2manifolds where each manifold has a structure shown in
Figure 2. Each manifold has three disjoint subsAtfoops),B (links), andC (chain) such that

M =AUBUC.
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Loops (A) Loops (A)

Links

Links

Figure 2: Figure accompanying Construction 1.

The chainC consists ofl segments denoted I6f,C,, . ..,Cq such thaC = UG;. The links connect
the loops to the segments as shown in Figure 2 so that one obtains a closedawesponding to
an embedding of the circle inf&°. For each choic&c {1,...,d} one constructs a manifold (we
can denote this byMs) such that the links conne€t (for i € S) to the “upper half” of the loop and
they connecC; (for j € {1,...,d}\ S to the “bottom half” of the loop as indicated in the figure.
Thus there are®manifolds altogether where eaglfs differs from the others in the link structure
but the loops and chain are common to all, that is,

AUC C NsMs.

For manifold s, let

(A [ 9 _
(M) _/Apx (gdx=as
(S

wherepy” is the probability density function on the manifalds. Similarly

= [P (odx=Bs

and ©)
iy ~ Jo P00

It is easy to check that one can construct these manifolds so that

Bs<B;ys>Y.

Thus for each manifolds, we have the associated class of probability distributiBys. These
are used in the construction of the lower bound. Now for each such narifg, we pick one
probability distributionp'S € 2, such that for everk € S, we have

Forallke S p®(y=+1|x) = 1 for all x € Gy
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and for evenk € {1,...,d}\ S we have
Forallke {1,...,d}\S p®(y=—1|x) = 1 forall x € Gy.

Furthermore, the@'® are all chosen so that the associated conditiop@i$y: +1|x) agree on
the loops, that is, forang & € {1,...,d},

pS(y=+1|x) = p&(y=+1|x) forall x e A

This defines 2 different probability distributions that satisfy for eagh (i) the support of the
marginalpy includesAUC, (ii) the support ofpx for different p have different link structures (iii)
the conditional9(y|x) disagree on the the chain. We now prove the following technical lemma that
proves an inequality that holds when the data only lives on the segment®tad the links that
constitute the embedded circle of Construction 1. This inequality is used inabégqirTheorem 4.

Lemma5 Letx € § be a collection of n points such that no point belongs to the links and exactly
| segments contain at least one point.
1 d—n

>d pezfd [[A(Zp(X)) — Mp||L2(py) = (L -0 — B)W'

Proof Sincex € G, there ared — | segments of the chai@ such that no data is seen from them.
We let A(z,(X)) be the function hypothesized by the learner on receiving the da®g @Sgt We
begin by noting that the familgy may be naturally divided into' Zubsets in the following way.
Following the notation of Construction 1, recall that every elemenfpmay be identified with

a setSc {1,...,d}. We denote this element biyS. Now let L denote the set of indices of the
segment€; that contain data, that is,

L = {i|G nx # 0}.
Then for every subsé@ C L, we have
P = {p® e #4|SNL = D}.

Thus all the elements dfy agree in their labelling of the segments containing data but disagree
in their labelling of segments not containing data. Clearly there 'appgsible choices fob and
each such choice leads to a family containifty@obability distributions. Let us denote these 2
families by®; through?,.

Consider®. By construction, for all probability distributions,q € 7, we have thaz,(X) =
Z4(X). Let us denote this b (X), that is,z (X) = zy(X) for all p € 7.

Now f = A(z (X)) is the function hypothesized by the learner on receiving the data (gt
For anyp € ? and any segmert, we say thap “disagrees” withf onc if |f(x)my(x)| > 1 on a
majority of ¢, that is,

[0z [ pxx
A ck\A

whereA = {x € c||f(x)mp(x)| > 1}. Therefore, iff andp disagree oy, we have
) 1 1
[ (100 =m0 = 5 [ px(9 = 5(1-a~P).
o 2 Je 2d
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It is easy to check that for every choice plunseen segments, there existp @ # such thatp
disagrees witH on each of the chosen segments. Therefore, for syx;lwa have

(A @(R) ~ Myl > 5 51— P)

Counting all the 9 elements of2 based on the combinatorics of unseen segments, we see (using
the fact thaf|A(zp(X)) — mp|| > /2J(1—a—B) > 1L (1—a-B))

d-I : B
3 1m0 -ml =3 (9] ) Sgaa-p =2 e

peh

NI

Therefore, sincé < n, we have

2 d—n

i;p;ﬂ ARp(X)) —mp|| > 2%(1— o — B)ﬂ

2.3 Discussion

Thus we see that knowledge of the manifold can have profound cossees for learning. The
proof of the lower bound reflects the intuition that has always been avtiteof manifold based
methods for semi-supervised learning. Following Figure 2, if one knows#refold, one sees that
C1 andCy are “close” whileC; andC3 are “far.” But this is only one step of the argument. We
must further have the prior knowledge that the target function varies thitgcong the manifold
and so “closeness on the manifold” translates to similarity in function valudst{erprobabilities).
However, this closeness is not obvious from the ambient distances albiemakes the task of
the learner who does not know the manifold difficult: in fact impossible in theeseescribed in
Theorem 4.

Some further remarks are in order. These provide an idea of the waylsich wur main the-
orems can be extended. Thus we may appreciate the more general cireeeasiader which we
might see a separation between manifold methods and alternative methods.

1. While we provide a detailed construction for the case of different edibgs of the circle
into RN, it is clear that the argument is general and similar constructions can beforade
many different classes &fmanifolds. Thus ifM is taken to be &-dimensional submanifold
of RN, then one could lef/ be a family ofk-dimensional submanifolds &N and let® be
the naturally associated family of probability distributions that define a collecfitgaming
problems. Our proof of Theorem 4 can be naturally adapted to such gysettin

2. Our example explicitly considers a cldsg, that consists of a one-parameter family of func-
tions. It is important to reiterate that many different choicesigf would provide the same
result. For one, thresholding is not necessary, and if the ¢lggssavas simply defined as
bandlimited functions, that is, consisting of functions of the fozﬁ;lo(i(g (where@ are
the eigenfunctions of the Laplacian 8f), the result of Theorem 4 holds as well. Similarly
Sobolev spaces (constructed from functidns ; ai@ wherea?\$ < «) also work with and
without thresholding.

1240



MANIFOLD REGULARIZATION THEORY

3. We have considered the simplest case where there is no noise¥rdihection, that is, the
conditionalp(y|x) is concentrated at one poimk,(x) for eachx. Considering a more general
setting with noise does not change the import of our results. The uppedlmdheorem 2
makes use of the fact that, belongs to a restricted (uniformly Glivenko-Cantelli) family
Har. With a 0 — 1 loss function defined &h,z) = 1.y, the rate may be as good as
O*(%) in the noise-free case but drops(tﬁ(%) in the noisy case. The lower bound of
Theorem 4 for the noiseless case also holds for the noisy case by immediétatioip.
Both upper and lower bounds are valid also for arbitrary marginal disiitsipy (not just
uniform) that have support on some maniféifl.

4. Finally, one can consider a variety of loss functions other thah4lass function considered
here. The natural 0 — 1-valued loss function (which for the specia oadinary valued
functions coincides with the the, loss) can be interpreted as the probability of error of the
classifier in the classification setting.

3. Manifold L earning and M anifold Regularization

3.1 Knowing the Manifold and Learning It

In the discussion so far, we have implicitly assumed that an oracle can enpeifect information
about the manifold in whatever form we choose. We see that accesghtaisuecacle can provide
great power in learning from labeled examples for classes of probletrisa¥a suitable structure.

Yet, the whole issue dfnowing the manifolds considerably more subtle than appears at first
blush and in fact has never been carefully considered by the machiminpgommunity. For
example, consider the following oracles that all provide knowledge of thefadd but in different
forms.

1. One could knowM as a set through some kind of set-membership oracle. For example, a
membership oracle that makes sense is of the following sort: given axamicta number >
0, the oracle tells us whetheiis in a tubular neighborhood of radinsround the manifold.

2. One could know a system of coordinate charts on the manifold. For éxampps of the
form y; : U; — RP whereU; c R¥ is an open set.

3. One could know in some explicit form the harmonic functions on the manitoéd, aplacian
A4, and the Heat Kernédl; (p,q) on the manifold.

4. One could know the manifold up to some geometric or topological invariardas.eXxam-
ple, one might know just the dimension of the manifold. Alternatively, one mightkthe
homology, the homeomorphism or diffeomorphism type, etc. of the manifold.

5. One could have metric information on the manifold. One might know the metriontes
points on the manifold, one might know the geodesic distances between poithits mani-
fold, or one might know the heat kernel from which various derivethdises (such as diffu-
sion distance) are obtained.

Depending upon the kind of oracle access we have, the task of therlenigtg vary from
simple to impossible. For example, in the problem described in Section 2 of thes, pla@ natural

1241



NIYOoGI

algorithm that realizes the upper bound of Theorem 2 performs empis&ahinimization over the
classH,,. To do this it needs, of course, to be able to reprebigptin a computationally efficient
manner. In order to do this, it needs to know the eigenfunctions (in théfispeample, only the
first two, but in general some arbitrary number depending on the chbldg pof the Laplacian on
the M. This is immediately accessible from Oracle 3. It can be computed from Grack and 5
but this computation is intractable in general. From Oracle 4, it cannot bewtechpt all.

The next question one needs to address is: In the absence of anbartagileen random samples
of example points on the manifold, can dearn the manifol@ In particular, can one learn it in a
form that is suitable for further processing. In the context of this paperanswer is yes.

Let us recall the following fundamental fact from Belkin and Niyogi (2D@3at has some
significance for the problem in this paper.

Let M be a compact, Riemannian submanifold (without boundaryg™fand letA,, be the
Laplace operator (on functions) on this manifold. ket {xi,...,xm} be a collection ofn points
sampled in i.i.d. fashion according to the uniform probability distributiondén Then one may
define the point cloud Laplace operatdy as follows:

00 = ¢ argjazm 8,100~ Fl)e

The point cloud Laplacian is a random operator that is the natural exteofibe graph Lapla-
cian operator to the whole space. For any thrice differentiable funétiaW’ — R, we have

Theorem 6
lim L. f(X) =20, f(X).

t—0,m—o0

Some remarks are in order:

1. Givenx € M as above, consider the graph with vertices \idte the vertex set) identified

x—x; |2 .
with the points inX and adjacency matriv; = m%me*“ a Given f : M — R, the

restrictionfy : X — R is a function defined on the vertices of this graph. Correspondingly, the
graph Laplaciai. = (D —W) acts onfy and it is easy to check that

(Lﬁnf)’Xi - (LfV)‘Xr

In other words, the point cloud Laplacian and graph Laplacian agreékeodata. However,
the point cloud Laplacian is defined everywhere while the graph Lapl&@my defined on
the data.

2. The quantityt (similar to a bandwidth) needs to go to zero at a suitable tai& ¢ — o)
S0 there exists a sequengesuch that the point cloud Laplacian converges to the manifold
Laplacian agn — oo.

3. It is possible to show (see Belkin and Niyogi, 2005; Coifman and La2006; Gire and
Koltchinskii, 2006; Hein et al., 2005) that this basic convergence is truarfotrary proba-
bility distributions (not just the uniform distribution as stated in the above timepirewhich
case the point cloud Laplacian converges to an operator of the Laplpeehgt may be
related to the weighted Laplacian (Grigoryan, 2006).
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4. While the above convergence is pointwise, it also holds uniformly ovesetaof functions
with suitable conditions on their derivatives (Belkin and Niyogi, 2008;&zind Koltchinskii,
2006).

5. Finally, and most crucially (see Belkin and Niyogi, 2006)),\&? and(gqq) are theith (in in-
creasing order) eigenvalue and corresponding eigenfunctionatéagg of the operatot.m,
then with probability 1, asn goes to infinity,

liMm s Ai A =0

and ,

liMmsee @ — @y (a) = O.
In other words, the eigenvalues and eigenfunctions of the point clopkhtian converge to
those of the manifold Laplacian as the number of data pargs to infinity.

These results enable us to present a semi-supervised algorithm thattleamanifold from
unlabeled data and uses this knowledge to realize the upper bound o&ith2o

3.2 A Manifold Regularization Algorithm For Semi-supervised L earning

Letz=(z,...,z,) be a set ohi.i.d. labeled examples drawn accordingg@ndX = (X, ..., Xn)

be a set omi.i.d. unlabeled examples drawn accordinggie Then a semi-supervised learner’s
estimate may be denoted Byz X). Let us consider the following kind of manifold regularization
based semi-supervised learner.

1. Construct the point cloud Laplacian operdtfyfrom theunlabeleddatax.

2. Solve for the eigenfunctions bf and take the first two (orthogonal to the constant unction).
Let these bep,, andyy, respectively.

3. Perform empirical risk minimization with the empirical eigenfunctions by minimizing

¢ . 12
fm= argf:aminﬁwm = i;V(f(x.),y.)

subject toa? + B2 = 1. HereV (f(x),y) = 5|y — sign(f(x))|?is the 0- 1 loss. This is equiva-
lent to Ivanov regularization with an intrinsic norm that forces candidapetiesis functions
to be bandlimited.

Note that if the empirical risk minimization was performed with the true eigenfureipand
Y respectively), then the resulting algorithm achieves the rate of Thear&me@e for largam, the
empirical eigenfunctions are close to the true ones by the result in BelkiNigindi (2006), we may
expect the above algorithm to perform well. Thus we may compare the twoatcgarefularization
algorithms (an empirical one with unlabeled data and an oracle one that kimewsnifold):

AZX) = sign(fm) = SIgN(Gm@+ Brlim)

and
Ammm@#M3::99Wf): 99W3¢+B¢)
We can now state the following:
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Theorem 7 For anye > 0, we have

4 . 1 3log(n)
m. A2 <2 L le— a2 2 slogn)
SUP My — AllFp) < r(@rcsine)) + (11—l 10— )+ 3y =

Proof Considerp € 2 and letm, = sign(a @+ BpW). Letgm = o p@m+ BpWm. Now, first note that
by the fact of empirical risk minimization, we have

1 1 :

=3 V(A(X),y) < = V(sign(gm(X)),y)-

n ez n zcZ

Second, note that the set of functiofis= {sign(f)|f = a@m+ BYm} has VC dimension equal

to 2. Therefore the empirical risk converges to the true risk uniformly thierclass so that with
probability > 1 — &, we have

2log(n) +log(1/9)
n

EN (A9 - <SS V(AK).Y

< &5V (signgn(x)).Y) < ExV (sign(am(x)).y)] + \/2log(

n ez

n)+log(1/d)
- :

Using the fact tha¥ (h(x),y) = %(y—h)?, we have in general for arly

1 1
ExlV (h(x).Y)] = 5 Exly—mp)>+ 1Mo — hliZ o,
from which we obtain with probability> 1 — & over choices of labeled training s&ts

2log(n) +log(1/9)
2-+2y/ 2080+ .

[Imp — AJ[? < [|mp — sign(gm
Settingd = % and noting that/m, — AJ|? < 1, we have after some straightforward manipulations,

. 3log(n
ExfImp — Al[* < |Imp — sign(gm)[|*+3 S()

Using Lemma 8, we get for arg/> 0,

4 - 1 3log(n
SUp By~ A[2 < A (@rcsir(e)) + (10— @nll? (10— Wl 2) + 3y >0
PE Py

Lemma8 Let f,g be any two functions. Then for aay- O,
. . 1
[Isign(f) —sign(g)|[Z2(p,) < MXe.1) + 51T —llEz(p,
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where X ¢ = {x| |f(X)| < &} and p is the measure corresponding the the marginal distributign p
Further, if f = a@+ B (0?4 B? = 1) and g= @y + PWm where@ g are eigenfunctions of
the Laplacian onM while @n, m are eigenfunctions of point cloud Laplacian as defined in the

previous developments. Then for any O
. . 2 4 . 1 2 2
Isign(f) = Sign(@) |72 o, < 5 (@rcsir(e)) + 5 (10— @l + 14— wm[%).
Proof We see that
ISign( 1) = SIgN)| z(p = [ 110N(100) —Sign@)*+ [ [si0n(1(9) —signig0o)|
<A(Xer) + sign(f (x)) — sign(g(x))|*.
)+ Isign( () —sign(g00)

Note that ifx € M\ X¢ , we have that

[sign(f(x)) —sign(g(x))| < glf(x) —g(x)|-

Therefore,
/ |sign(f (x)) — sign(g(x))|* < 4/ 1F(X) —g(x)|* < iHf —glIf
MAXe 1 &2 JanXes — g2 L2(px)

This proves the first part. The second part follows by a straightfahealculation on the circle.
[ |

Some remarks:

1. While we have stated the above theorem for our running example of eimbeaf the circle
into RP, it is clear that the results can be generalized to cover arbitrary k-masiifisidre
general classes of functiots,,, noise, and loss functions. Many of these extensions are
already implicit in the proof and associated technical discussions.

2. A corollary of the above theorem is relevant for the=£ «) case that has been covered in
Castelli and Cover (1996). We will discuss this in the next section. Thalaoy is

Corollary 9 Let P = Uy, Py, be a collection of learning problems with the structure de-
scribed in Section 2, that is, eachg@? is such that the marginal yphas support on a
submanifoldM of RP which corresponds to a particular isometric embedding of the circle
into Euclidean space. For each such p, the regression functigr=r&[p(y|x)] belongs to

a class of functions k} which consists of thresholding bandlimited functionsf@n Then

no supervised learning algorithm exists that is guaranteed to convergavéoy problem in

? (Theorem 4). Yet the semi-supervised manifold regularization algorigsordhed above
(with infinite amount of unlabeled data) converges at a fast rate as a funatiabelled data.

In other words,
suplim sup||my — Az, X)||%. . = 3 8log(n)
ﬂl;pml%fl;{pl\ p = AZR)C2pg) =3\ —(
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3. Itis natural to ask what it would take to move the limmit— o outside. In order to do this,
one will need to put additional constraints on the class of possible manifdldbat we
are allowed to consider. But putting such constraints we can constreseslaf learning
problems where for any realistic number of labeled examp|dkere is a gap between the
performance of a supervised learner and the manifold based semiisegdelearner. An
example of such a theorem is:

Theorem 10 Fix any number N. Then there exists a class of learning problB&gsuch that

foralln < N
R(n, Pn) = inf supE;||my, —A(z)|| > 1/100
A pemy
while
. o 3log(n
M=% pey n

Proof We provide only a sketch of the argument and avoid technical details. @ie bg
choosing a family of submanifolds 6f M, M]P with a uniform bound on their curvature. One
form such a bound can take is the following: lidbe the largest number such that the open
normal bundle of radius about is an imbedding for any < 1. This provides a bound on
the norm of the second fundamental form (curvature) and nearnesff intersection of the
submanifold. NowPy will contain probability distributiong such thatpy is supported on
someM with at curvature bound angd(y|x) is 0 or 1 for everyx,y such that the regression
functionmy, = E[y|x] belongs tdH,,. As before, we choosd,, to be the span of the firt
eigenfunctions of the Laplaciak on M. For a lower boundR(n), we follow Construction

1 and choosel = 2N (from the proof of the lower bound of Theorem 4). Following Con-
struction 1, the circle can be embedded-#M, M]P by twisting in all directions. Let be
the length of a single segment of the chain. Sincetthendition needs to be respected for
every embedding, the circle cannot twist too much and come too close to sedirtien. In
particular, this will imply that XIV; < MP whereV, is the volume of thé — 1 dimensional
ball of radiust. For an upper boun®(n), we follow the the manifold regularization algo-
rithm of the previous section and note that eigenfunctions of the Laplaambe estimated
for compact manifolds with a curvature bound. [ |

However, asymptoticallyR(n) and Q(n) have the same rate for>> N. SinceN can be
arbitrarily chosen to be astronomically large, this asymptotic rate is of little coesee in
practical learning situations. This suggests the limitations of asymptotic analifssutiva
careful consideration of the finite sample situation.

4. The Structure of Semi-supervised Learning

It is worthwhile to reflect on why the manifold regularization algorithm is ableispldy improved
performance in semi-supervised learning. The manifold assumption is @destallows us to link
the marginalpx with the conditionalp(y|x). Through unlabeled datg we can learn the manifold
M thereby greatly reducing the class of possible conditiop@f) that we need to consider. More
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generally, semi-supervised learning will be feasible only if such a link is maaeclarify the

structure of problems on which semi-supervised learning is likely to be mdahifeg us define a

mapTt: p — px that takes any probability distributignon X x Y and maps it to the margingl.
Given any collection of learning problen?s we have

. P — P

where®x = {px|p € P}. Consider the case in which the structurefoi such that for ang € %,
the family of conditionalst(q) = {p € P|px = q} is “small.” For a situation like this, knowing
the marginal tells us a lot about the conditional and therefore unlabeledatatze useful.

4.1 Castelli and Cover Interpreted

Let us consider the structure of the class of learning problems congitgr€astelli and Cover
(1996). They consider a two-class problem with the following structurke dlass of learning
problems? is such that for eacp € 2, the marginafj = px can be uniquely expressed as

q=pf+(1-wg

where 0< p < 1 andf,g belong to some class of possible probability distributions. In other
words, the marginal is always a mixture (identifiable) of two distributionstHeumore, the class
P of possible probability distributions is such that there are precisely twoapility distributions
p1, P2 € P such that their marginals are equabtdn other words,

™ (q) = {p1, p2}

wherep; (y = 1|x) ) andpy(y = 1|x) = %

In this setting, unﬂaioeled data allows the(iearner to estimate the maggi@adce the marginal
is obtained, the class of possible conditionals is reduceeksmtly two functions Castelli and
Cover (1996) show that the risk now converges to the Bayes’ riskrexgi@lly as a function of
labeled data (i.e., the analog of an upper boun®@m ) is approximatelye"). The reason semi-
supervised learning is successful in this setting is that the mangiedls us a great deal about the
class of possible conditionals. It seems that a precise lower bound ely puipervised learning
(the analog oR(n, ?)) has never been clearly stated in that setting.

4.2 Manifold Regularization Interpreted

In its most general form, manifold regularization encompasses a clas®miegigcally motivated
approaches to learning. Spectral geometry provides the unifying pbinew and the spectral
analysis of a suitable geometrically motivated operator yields a “distinguisigs.’bSince (i) only
unlabeled examples are needed for the spectral analysis and the legrtiirggbasis, and (i) the
target function is assumed to be compactly representable in this basis, tHegldee possibility
to succeed in semi-supervised learning. Indeed, the previous thedaifstbe theoretical basis
of this approach. This, together with the empirical success of algorithnesl lmasthese intuitions
suggest there is some merit in this point of view.

In general, letq be a probability density function o = RP. The support oy may be a
submanifold ofX (with possibly many connected components). Alternatively, it may lie close to a
submanifold, it may be all oK, or it may be a subset &f. As long asq is far from uniform, that
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is, it has a “shape,” one may consider the following “weighted Laplaciaag (Grigoryan, 2006)

defined as 1
Ngf(X) = —
qf (%) a0

where the gradient (grad) and divergence (div) are with respeittetaupport ofg (which may
simply be all ofX).

The heat kernel associated with this weighted Laplacian (essentially thefBlanck operator)
is given bye % . Laplacian eigenmaps and Diffusion maps are thus defined in this moreatjener
setting.

If @,@,... represent an eigenbasis for this operator, then, one may consideggifession
functionmy to belong to the family (parameterized by- (s1, S, ...)) where eacls € RU {}.

div(qgradf)

Hg = {h: X — R such that = > aig andZaizs,- < oo}
| |

Some natural choices sfare (i)Vi > p,s = o : this gives us bandlimited functions (&) = A!
is theith eigenvalue of\q : this gives us spaces of Sobolev type (ific A,s = 1, elses = o where
Ais afinite set: this gives us functions that are sparse in that basis.

The class of learning problentys) may then be factored as

where
qu(S) = {plpx = gandm, € H3}.

The logic of the geometric approach to semi-supervised learning is as follows

1. Unlabeled data allow us to approximatethe eigenvalues and eigenfunctions/gf and
therefore the spadeé®.

2. If sis such thatt1(q) is “small” for everyqg, then a small number of labeled examples suffice
to learn the regression function,.

In problems that have this general structure, we expect manifold régatlan and related al-
gorithms (that use the graph Laplacian or a suitable spectral approximitiomwyk well. Precise
theorems showing the correctness of these algorithms for a variety ofeshaiic remains part of
future work. The theorems in this paper establish results for some chdisemd are a step in a
broader understanding of this question.

5. Conclusions

We have considered a minimax style framework within which we have investiglagepotential
role of manifold learning in learning from labeled and unlabeled examplesdaWenstrated the
natural structure of a class of problems on which knowing the manifold neakasdifference. On
such problems, we see that manifold regularization is provably better tlyasupervised learning
algorithm.

Our proof clarifies a potential source of confusion in the literature on rolahiéarning. We
see that if data lives on an underlying manifold but this manifolghiksnownand belongs to a class
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of possible smooth manifolds, it is possible that supervised learning (otasiifi and regression
problems) may be ineffective, even impossible. In contrast, if the manifobkid though unknown,

it may be possible to (e.g., Bickel and Li, 2007) learn effectively by a dabksnethod suitably

modified. In between these two cases lie various situations that need todezlprexplored for a

greater understanding of the potential benefits and limitations of manifold neetimothe need for
manifold learning.

Our analysis allows us to see the role of manifold regularization in semi-dapdriearning
in a clear way. Several algorithms using manifold and associated graela-baethods have seen
some empirical success recently. Our paper provides a framework witlialmwve may be able to
analyze and possibly motivate or justify such algorithms.

Acknowledgments

I would like to thank Misha Belkin for wide ranging discussions on the themékisfpaper and
Andrea Caponnetto for discussions leading to the proof of Theorem 4.

References

Robert A. Adams and John J.F. Fourni8obolev Spacesolume 140. Academic press, 2003.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality ¢ctda and data
representationNeural Computation15(6):1373-1396, 2003.

Mikhail Belkin and Partha Niyogi. Towards a theoretical foundation foplaaian-based mani-
fold methods. IrEighteenth Annual Conference on Learning Thepages 486-500. Springer,
Bertinoro, Italy, 2005.

Mikhail Belkin and Partha Niyogi. Convergence of Laplacian eigenmapiIPS pages 129-136,
2006.

Mikhail Belkin and Partha Niyogi. Towards a theoretical foundation fgolhaian-based manifold
methods.Journal of Computer and System Sciend@g8):1289-1308, 2008.

Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularizatiégeometric frame-
work for learning from labeled and unlabeled exampleirnal of Machine Learning Research
7:2399-2434, 2006.

Peter J Bickel and Bo Li. Local polynomial regression on unknown mbtsféMS Lecture Notes-
Monograph Seriegpages 177-186, 2007.

Vittorio Castelli and Thomas M. Cover. The relative value of labeled andbeféd samples in
pattern recognition with an unknown mixing parametaformation Theory, IEEE Transactions
on, 42(6):2102-2117, 1996.

Ronald R Coifman and 8phane Lafon. Diffusion mapsApplied and Computational Harmonic
Analysis 21(1):5-30, 2006.

1249



NIYOoGI

Theodoros Evgeniou, Massimiliano Pontil, and Tomaso Poggio. Regulanzatavorks and sup-
port vector machinesddvances in Computational Mathemati@é8(1):1-50, 2000.

Evarist Gire and Vladimir Koltchinskii. Empirical graph Laplacian approximation of Laplace
Beltrami operators: Large sample resultsecture Notes-Monograph Serjggages 238-259,
2006.

Alexander Grigoryan. Heat kernels on weighted manifolds and applicati@mstemporary Math-
ematics 398:93—-191, 2006.

Matthias Hein, Jean-Yves Audibert, and Ulrike von Luxburg. From lgsap manifolds - weak and
strong pointwise consistency of graph LaplaciansCOLT, pages 470-485, 2005.

John Lafferty and Larry Wasserman. Statistical analysis of semi-sisgédrtegression. IAdvances
in Neural Information Processing SysterhNdPS Foundation, 2007.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction jlydimear embed-
ding. Science290(5500):2323-2326, 2000.

Bernhard Scblkopf and Alexander J Smolal.earning with Kernels: Support Vector Machines,
Regularization, Optimization and Beyarttie MIT Press, 2002.

Grace WahbaSpline Models for Observational Dateolume 59. Society for industrial and applied
mathematics, 1990.

Xiaojin Zhu. Semi-supervised learning literature survey. Technical REp0A530, University of
Wisconsin—Madison, Computer Sciences Department, 2008.

1250



