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Abstract
Manifold regularization (Belkin et al., 2006) is a geometrically motivated framework for machine
learning within which several semi-supervised algorithmshave been constructed. Here we try to
provide some theoretical understanding of this approach. Our main result is to expose the natural
structure of a class of problems on which manifold regularization methods are helpful. We show
that for such problems, no supervised learner can learn effectively. On the other hand, a manifold
based learner (that knows the manifold or “learns” it from unlabeled examples) can learn with
relatively few labeled examples. Our analysis follows a minimax style with an emphasis on finite
sample results (in terms ofn: the number of labeled examples). These results allow us to properly
interpret manifold regularization and related spectral and geometric algorithms in terms of their
potential use in semi-supervised learning.
Keywords: semi-supervised learning, manifold regularization, graph Laplacian, minimax rates

1. Introduction

The last decade has seen a flurry of activity within machine learning on two topics that are the
subject of this paper:manifold methodandsemi-supervised learning. While manifold methods are
generally applicable to a variety of problems, the framework of manifold regularization (Belkin
et al., 2006) is especially suitable for semi-supervised applications.

Manifold regularization provides a framework within which many graph based algorithms for
semi-supervised learning have been derived (see Zhu, 2008, for a survey). There are many things
that are poorly understood about this framework.First, manifold regularization is not a single algo-
rithm but rather a collection of algorithms. So what exactly is “manifold regularization”? Second,
while many semi-supervised algorithms have been derived from this perspective and many have en-
joyed empirical success, there are few theoretical analyses that characterize the class of problems on
which manifold regularization approaches are likely to work. In particular,there is some confusion
on a seemingly fundamental point. Even when the data might have a manifold structure, it is not
clear whether learning the manifold isnecessaryfor good performance. For example, recent results
(Bickel and Li, 2007; Lafferty and Wasserman, 2007) suggest that when data lives on a low dimen-
sional manifold, it may be possible to obtain good rates of learning using classical methods suitably
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adapted without knowing very much about the manifold in question beyond its dimension. This has
led some people (e.g., Lafferty and Wasserman, 2007) to suggest that manifold regularization does
not provide any particular advantage.

What is particularly missing in the prior research so far is a crisp theoreticalstatement which
shows the benefits of manifold regularization techniques quite clearly. This paper provides such
a theoretical analysis, and explicates the nature of manifold regularization inthe context of semi-
supervised learning. Our main theorems (Theorems 2 and 4) show that there can be classes of learn-
ing problems on which (i) a learner that knows the manifold (alternatively learns it from large (in-
finite) unlabeled data via manifold regularization) obtains a fast rate of convergence (upper bound)
while (ii) without knowledge of the manifold (via oracle access or manifold learning),no learning
schemeexists that is guaranteed to converge to the target function (lower bound). This provides for
the first time a clear separation between a manifold method and alternatives fora suitably chosen
class of problems (problems that have intrinsic manifold structure). To illustrate this conceptual
point, we have defined a simple class of problems where the support of the data is simply a one
dimensional manifold (the circle) embedded in an ambient Euclidean space. Our result is the first of
this kind. However, it is worth emphasizing that this conceptual point may alsoobtain in far more
general manifold settings. The discussion of Section 2.3 and the theorems ofSection 3.2 provide
pointers to these more general results that may cover cases of greater practical relevance.

The plan of the paper: Against this backdrop, the rest of the paper is structured as follows.
In Section 1.1, we develop the basic minimax framework of analysis that allows us to compare
the rates of learning for manifold based semi-supervised learners and fully supervised learners.
Following this in Section 2, we demonstrate a separation between the two kinds oflearners by
proving an upper bound on the manifold based learner and a lower boundon any alternative learner.
In Section 3, we take a broader look at manifold learning and regularizationin order to expose
some subtle issues around these subjects that have not been carefully considered by the machine
learning community. This section also includes generalizations of our main theorems of Section 2.
In Section 4, we consider the general structure that learning problems must have for semi-supervised
approaches to be viable. We show how both the classical results of Castelliand Cover (1996, one
of the earliest known examples of the power of semi-supervised learning)and the recent results of
manifold regularization relate to this general structure. Finally, in Section 5 we reiterate our main
conclusions.

1.1 A Minimax Framework for Analysis

A learning problem is specified by a probability distributionp onX×Y according to which labelled
exampleszi = (xi ,yi) pairs are drawn and presented to a learning algorithm (estimation procedure).
We are interested in an understanding of the case in whichX = R

D, Y ⊂ R but pX (the marginal
distribution ofp on X) is supported on some submanifoldM ⊂ X. In particular, we are interested
in understanding how knowledge of this submanifold may potentially help a learning algorithm. To
this end, we will consider two kinds of learning algorithms:

1. Algorithms that have no knowledge of the submanifoldM but learn from(xi ,yi) pairs in a
purely supervised way.

2. Algorithms that have perfect knowledge of the submanifold. This knowledge may be acquired
by a manifold learning procedure through unlabeled examplesxi ’s and having access to an
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essentially infinite number of them. Such a learner may be viewed as a semi-supervised
learner.

Our main result is to elucidate the structure of a class of problems on which there is a difference
in the performance of algorithms of Type 1 and 2.

LetP be a collection of probability distributionsp and thus denote a class of learning problems.
For simplicity and ease of comparison with other classical results, we place some regularity con-
ditions onP . Every p ∈ P is such that its marginalpX has support on ak-dimensional manifold
M ⊂ X. Different p’s may have different supports. For simplicity, we will consider the case where
pX is uniform onM : this corresponds to a situation in which the marginal is the most regular.

Given such aP we can naturally define the classPM to be

PM = {p∈ P|pX is uniform onM }.

Clearly, we have
P = ∪M PM .

Considerp∈ PM . This denotes a learning problem and the regression functionmp is defined as

mp(x) = E[y|x] whenx∈M .

Note thatmp(x) is not defined outside ofM . We will be interested in cases whenmp belongs to
some restricted family of functionsHM (for example, a Sobolev space). Thus assuming a family
HM is equivalent to assuming a restriction on the class of conditional probability distributionsp(y|x)
wherep∈P . For simplicity, we will assume the noiseless case wherep(y|x) is either 0 or 1 for every
x and everyy, that is, there is no noise in the Y space.

SinceX\M has measure zero (with respect topX), we can definemp(x) to be anything we want
whenx∈ X\M . We definemp(x) = 0 whenx /∈M .

For a learning problemp, the learner is presented with a collection of labeled examples{zi =
(xi ,yi), i = 1, . . . ,n} where eachzi is drawn i.i.d. according top. A learning algorithm A maps the
collection of dataz= (z1, . . . ,zn) into a functionA(z). Now we can define the following minimax
rate (for the classP ) as

R(n,P ) = inf
A

sup
p∈P

Ez||A(z)−mp||L2(pX).

This is the best possible rate achieved by any learner that hasno knowledge of the manifoldM . We
will contrast it with a learner that has oracle access endowing it with knowledge of the manifold. To
begin, note that sinceP = ∪M PM , we see that

R(n,P ) = inf
A

sup
M

sup
p∈PM

Ez||A(z)−mp||L2(pX).

Now a manifold based learnerA′ is given a collection of labeled examplesz= (z1, . . . ,zn) just
like the supervised learner. However, in addition, it also has knowledge of M (the support of the
unlabeled data). It might acquire this knowledge through manifold learning or through oracle access
(the limit of infinite amounts of unlabeled data). ThusA′ maps(z,M ) into a function denoted by
A′(z,M ). The minimax rate for such a manifold based learner for the classPM is given by

inf
A′

sup
p∈PM

Ez||A′(z,M )−mp||L2(pX).
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Taking the supremum over all possible manifolds (just as in the supervised case), we have

Q(n,P ) = sup
M

inf
A′

sup
p∈PM

Ez||A′−mp||L2(pX).

1.2 The Manifold Assumption for Semi-supervised Learning

So the question at hand is: for what class of problemsP with the structure as described above, might
one expect a gap betweenR(n,P ) andQ(n,P ). This is a class of problems for which knowing the
manifold confers an advantage to the learner.

There are two main assumptions behind the manifold based approach to semi-supervised learn-
ing. First, one assumes that the support of the probability distribution is on some low dimensional
manifold. The motivation behind this assumption comes from the intuition that although natural
data in its surface form lives in a high dimensional space (speech, image, text, etc.), they are often
generated by systems with much fewer underlying degrees of freedom and therefore have lower
intrinsic dimensionality. This assumption and its corresponding motivation has been articulated
many times in papers on manifold methods (see Roweis and Saul, 2000, for example). Second, one
assumes that the underlying target function one is trying to learn (for prediction) is smooth with
respect to this underlying manifold. A smoothness assumption lies at the heartof many machine
learning methods including especially splines (Wahba, 1990), regularization networks (Evgeniou
et al., 2000), and kernel based methods (using regularization in reproducing kernel Hilbert spaces;
Scḧolkopf and Smola, 2002). However, smoothness in these approaches is typically measured in
the ambient Euclidean space. In manifold regularization, a geometric smoothness penalty is instead
imposed.

Thus, for a manifoldM, let φ1,φ2, . . . , be the eigenfunctions of the manifold Laplacian (ordered
by frequency). Then,mp(x) may be expressed in this basis asmp = ∑i αiφi or

mp = sign(∑
i

αiφi)

where theαi ’s have a sharp decay to zero.
Against this backdrop, one might now consider manifold regularization to get some better under-

standing of when and why it might be expected to provide good semi-supervised learning. First off,
it is worthwhile to clarify what is meant by manifold regularization. The term “manifold regulariza-
tion” was introduced by Belkin et al. (2006) to describe a class of algorithmsin which geometrically
motivated regularization penalties were used. One unifying framework adopts a setting of Tikhonov
regularization over a Reproducing Kernel Hilbert Space of functions toyield algorithms that arise
as special cases of the following:

f̂ = arg min
f∈HK

1
n

n

∑
i=1

V( f (xi),yi)+ γA|| f ||2K + γI || f ||2I . (1)

HereK : X×X → R is a p.d. kernel that defines a suitable RKHS (HK) of functions that are ambi-
ently defined. The ambient RKHS norm|| f ||K and an “intrinsic norm”|| f ||I are traded-off against
each other. Intuitively the intrinsic norm|| f ||I penalizes functions by considering onlyfM the
restriction of f to M and essentially considering various smoothness functionals. Since the eigen-
functions of the Laplacian provide a basis forL2 functions intrinsically defined onM , one might
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expressfM = ∑i αiφi in this basis and consider constraints on the coefficients.

Remarks:

1. Various choices of|| f ||2I include: (i) iteratedLaplacian given by
∫
M f (∆i f ) = ∑ j α2

j λi
j , (ii)

heat kernelgiven by∑ j e
tλ j α2

j , and (iii)band limitinggiven by|| f ||2I = ∑i µiα2
i whereµi = ∞

for all i > p.

2. The loss functionV can vary from squared loss to hinge loss to the 0–1 loss for classification
giving rise to different kinds of algorithmic procedures.

3. While Equation 1 is regularization in the Tikhonov form, one could considerother kinds of
model selection principles that are in the spirit of manifold regularization. Forexample, the
method of Belkin and Niyogi (2003) is a version of the method of sieves that may be inter-
preted as manifold regularization with bandlimited functions where one allows thebandwidth
to grow as more and more data becomes available.

4. The formalism provides a class of algorithmsA′ that have access to labeled examplesz and
the manifoldM from which all the terms in the optimization of Equation 1 can be computed.
ThusA′(z,M ) = f̂ .

5. Finally it is worth noting that in practice when the manifold is unknown, the quantity || f ||2I =∫
M f (∆i f ) is approximated by collecting unlabeled pointsxi ∈M , making a suitable nearest

neighbor graph with the vertices identified with the unlabeled points, and regularizing the
function using the graph Laplacian. The graph is viewed as a proxy for the manifold and
in this sense, many graph based approaches to semi-supervised learning(see Zhu, 2008, for
review) may be accommodated within the purview of manifold regularization.

The point of these remarks is that manifold regularization combines the perspective of kernel
based methods with the perspective of manifold and graph based methods. Itadmits a variety
of different algorithms that incorporate a geometrically motivated complexity penalty. We will
later demonstrate (in Section 3) one such canonical algorithm for the class of learning problems
considered in Section 2 of this paper.

2. A Prototypical Example: Embeddings of the Circle into Euclidean Space

In this section, we will construct a class of learning problemsP that have manifold structureP =
∪M PM and demonstrate a separation betweenR(n,P ) andQ(n,P ). For simplicity, we will show a
specific construction where everyM considered is a different embedding of the circle into Euclidean
space. In particular, we will see thatR(n) = Ω(1) while limn→∞Q(n) = 0 at a fast rate. Thus the
learner with knowledge of the manifold learns easily while the learner with no such knowledge
cannot learn at all.

Let φ : S1 → X be an isometric embedding of the circle into a Euclidean space. Now consider
the family of such isometric embeddings and let this be the family of one-dimensional submanifolds
that we will deal with. Thus eachM ⊂ X is of the formM = φ(S1) for someφ.

Let HS1 be the set of functions defined on the circle that take the value+1 on half the circle and
−1 on the other half. Thus in local coordinates (θ denoting the coordinate of a point inS1), we can
write the classHS1 as
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HS1 = {hα : S1 → R|hα(θ) = sign(sin(θ+α));α ∈ [0,2π)}.

Now for eachM = θ(S1) we can define the classHM as

HM = {h : M → R|h(x) = hα(φ−1(x)) for somehα ∈ HS1}. (2)

This defines a class of regression functions (also classification functions) for our setting. Cor-
respondingly, in our noiseless setting, we can now definePM as follows. For each,h ∈ HM , we

can define the probability distributionp(h) on X×Y by letting the marginalp(h)X be uniform onM
and the conditionalp(h)(y|x) be a probability mass function concentrated on two pointsy=+1 and
y=−1 such that

p(h)(y=+1|x) = 1⇐⇒ h(x) = +1

Thus

PM = {p(h)|h∈ HM }

In our setting, we can therefore interpret the learning problem as an instantiation either of re-
gression or of classification based on our interest.

Now thatPM is defined, the setP = ∪M PM follows naturally. A picture of the situation is
shown in Figure 1.

Remark 1 Recall that many machine learning methods (notably splines and kernel methods) con-
struct classifiers from spaces of smooth functions. The Sobolev spaces(see Adams and Fournier,
2003) are spaces of functions whose derivatives up to a certain order are square integrable. These
spaces arise in theoretical analysis of such machine learning methods and it is often the case that
predictors are chosen from such spaces or regression functions are assumed to be in such spaces
depending on the context of the work. For example, Lafferty and Wasserman (2007) make precisely
such an assumption. In our setting, note that HS1 and correspondingly HM as defined above is not
itself a Sobolev space. However, it is obtained by thresholding functions in aSobolev space. In
particular, we can write

HS1 = {sign(h)|h= αφ+βψ}

whereφ(θ) = sin(θ) and ψ(θ) = cos(θ) are eigenfunctions of the Laplacian∆S1 on the circle.
These are the eigenfunctions corresponding toλ = 1 and define the corresponding two dimensional
eigenspace. More generally one could consider a family of functions obtained by thresholding
functions in a Sobolev space of any chosen order and clearly HS1 is contained in any such family.
Finally it is worth noting that the arguments presented below do not depend on thresholding and
would work with functions that are bandlimited or in a Sobolev space just as well.
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+1

−1

+1

−1

Μ Μ1 2

Figure 1: Shown are two embeddings ofM1 andM2 of the circle in Euclidean space (the plane in
this case). The two functions, one fromM1 →R and the other fromM2 →R are denoted
by labelings+1,−1 correspond to half circles shown.

2.1 Upper Bound on Q(n,P )

Let us begin by noting that if the manifoldM is known, the learner knows the classPM . The
learner merely needs to approximate one of the target functions inHM . It is clear that the spaceHM

is a family of 0 – 1 valued functions whose VC-dimension is 2. Therefore, analgorithm that does

empirical risk minimization over the classHM will yield an upperbound of O(
√

log(n)
n ) by the usual

arguments. Therefore the following theorem is obtained.

Theorem 2 Following the notation of Section 1, let HM be the family of functions defined by Equa-
tion 2 andP be the corresponding family of learning problems. Then the learner with knowledge of
the manifold converges at a fast rate given by

Q(n,P )≤ 2

√

3log(n)
n

and this rate is optimal. Thus every problem in this class P can be learned efficiently.

Remark 3 If the class HM is a a parametric family of the form∑p
i=1 αiφi whereφi are the eigen-

functions of the Laplacian, one obtains the same parametric rate. Similarly, ifthe class HM is a
ball in a Sobolev space of appropriate order, suitable rates on the family may be obtained by the
usual arguments.

2.2 Lower Bound on R(n,P )

We now prove the following.

Theorem 4 Let P = ∪M PM where eachM = φ(S1) is an isometric embedding of the circle into
X as shown. For each p∈ P , the marginal pX is uniform on someM and the conditional p(y|x) is
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given by the construction in the previous section. Then

R(n,P ) = inf
A

sup
p∈P

Ez||A(z)−mp||L2(pX) = Ω(1)

Thus, it is not the case that every problem in the classP can be learned efficiently. In other words,
for every n, there exists a problem inP that requires more than n examples.

We provide the proof below. A specific role in the proof is played by a construction (Construc-
tion 1 later in the proof) that is used to show the existence of a family of geometrically structured
learning problems (probability measures) that will end up becoming unlearnable as a family.
Proof Given n, choose a numberd = 2n. Following Construction 1, there exist a set (denoted
by Pd ⊂ P ) of 2d probability distributions that may be defined. Our proof uses the probabilistic
method. We show that there exists a universal constantK (independent ofn) such that

∀A,
1
2d ∑

p∈Pd

Ez||A(z)−mp||L2(pX) ≥ K

from which we conclude that

∀A, sup
p∈Pd

Ez||A(z)−mp||L2(pX) ≥ K

SincePd ⊂ P , the result follows.
To begin, consider ap∈ P . Let z= (z1, . . . ,zn) be a set of i.i.d. examples drawn according to

p. Note that this is equivalent to drawingx = (x1, . . . ,xn) i.i.d. according topX and for eachxi ,
drawingyi according top(y|xi). Since the conditionalp(y|x) is concentrated on one point, theyi ’s
are deterministically assigned. Accordingly, we can denote this dependence by writingz= zp(x).

Now consider
Ez||A(z)−mp||L2(pX).

This is equal to
∫

Zn
dP(z)||A(z)−mp||L2(pX) =

∫
Xn

dpn
X(x)||A(zp(x))−mp||L2(pX).

(To clarify notation, we observe thatdpn
X is the singular measure onXn with support onM n which

is the natural product measure corresponding to the distribution ofn data pointsx1, . . . ,xn drawn
i.i.d. with eachxi distributed according topX.) The above in turn is lowerbounded by

≥
n

∑
l=0

∫
x∈Sl

dpn
X(x)||A(zp(x))−mp||L2(pX)

where
Sl = {x∈ Xn| exactlyl segments contain data and links do not}.

More formally,

Sl = {x∈ Xn|x∩ci 6= φ for exactlyl segmentsci andx∩B= /0}.
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Now we concentrate on lowerbounding
∫

x∈Sl
dpn

X(x)||A(zp(x))−mp||L2(pX). Using the fact that
pX is uniform, we have thatdpn

X(x) = cd(x) (wherec is a normalizing constant andd(x) is the
Lebesgue measure or volume form on the associated product space) and therefore

∫
x∈Sl

dpn
X(x)||A(zp(x))−mp||L2(pX) =

∫
x∈Sl

cd(x)||A(zp(x))−mp||L2(pX).

Thus, we have

Ez||A(z)−mp||L2(pX) ≥
n

∑
l=0

∫
x∈Sl

cd(x)||A(zp(x))−mp||L2(pX). (3)

Now we see that

[l ]
1
2d ∑

p∈Pd

Ez||A(zp(x))−mp||L2(pX) ≥
1
2d ∑

p∈Pd

n

∑
l=0

c
∫

x∈Sl

d(x)||A−mp||

≥
n

∑
l=0

c
∫

x∈Sl

(

1
2d ∑

p
||A−mp||

)

d(x).

By Lemma 5, we see that for eachx∈ Sl , we have

1
2d ∑

p
||A−mp|| ≥ (1−α−β)

d−n
4d

from which we conclude that

1
2d ∑

p
Ez||A(z)−mp||L2(pX) ≥ (1−α−β)

d−n
4d

n

∑
l=0

∫
x∈Sl

cd(x).

Now we note that
n

∑
l=0

∫
x∈Sl

cd(x) = Prob(x∩B= /0)≥ (1−β)n.

Therefore,

sup
p

Ez||A(z)−mp||L2(pX) ≥ (1−α−β)
d−n
4d

(1−β)n ≥ (1−α−β)
1
8
(1−β)n. (4)

Sinceα andβ (and for that matter,d) are in our control, we can choose them to make the right-
hand side of Inequality 4 greater than some constant. This proves our theorem.

We now construct a family of intersecting manifolds such that given two pointson any manifold
in this family, it is difficult to judge (without knowing the manifold) whether these points are near
or far in geodesic distance. The class of learning problems consists of probability distributionsp
such thatpX is supported on some manifold in this class. This construction plays a central role in
the proof of the lower bound.
Construction 1. Consider a set of 2d manifolds where each manifold has a structure shown in
Figure 2. Each manifold has three disjoint subsets:A (loops),B (links), andC (chain) such that

M = A∪B∪C.
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Loops (A) Loops (A)

C C C C C1 4 532

Links

Links

Figure 2: Figure accompanying Construction 1.

The chainC consists ofd segments denoted byC1,C2, . . . ,Cd such thatC= ∪Ci . The links connect
the loops to the segments as shown in Figure 2 so that one obtains a closed curve corresponding to
an embedding of the circle intoRD. For each choiceS⊂ {1, . . . ,d} one constructs a manifold (we
can denote this byMS) such that the links connectCi (for i ∈ S) to the “upper half” of the loop and
they connectCj (for j ∈ {1, . . . ,d} \S) to the “bottom half” of the loop as indicated in the figure.
Thus there are 2d manifolds altogether where eachMS differs from the others in the link structure
but the loops and chain are common to all, that is,

A∪C⊂ ∩SMS.

For manifoldMS, let
l(A)

l(MS)
=

∫
A

p(S)X (x)dx= αS

wherep(S)X is the probability density function on the manifoldMS. Similarly

l(B)
l(MS)

=
∫

B
p(S)X (x)dx= βS

and
l(C)

l(MS)
=

∫
C

p(S)X (x)dx= γS.

It is easy to check that one can construct these manifolds so that

βS≤ β;γS≥ γ.

Thus for each manifoldMS, we have the associated class of probability distributionsPMS
. These

are used in the construction of the lower bound. Now for each such manifold MS, we pick one
probability distributionp(S) ∈ PMS

such that for everyk∈ S, we have

For allk∈ S, p(S)(y=+1|x) = 1 for all x∈Ck
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and for everyk∈ {1, . . . ,d}\S, we have

For allk∈ {1, . . . ,d}\S, p(S)(y=−1|x) = 1 for all x∈Ck.

Furthermore, thep(S) are all chosen so that the associated conditionalsp(S)(y=+1|x) agree on
the loops, that is, for anyS,S′ ∈ {1, . . . ,d},

p(S)(y=+1|x) = p(S′)(y=+1|x) for all x∈ A

This defines 2d different probability distributions that satisfy for eachp: (i) the support of the
marginalpX includesA∪C, (ii) the support ofpX for different p have different link structures (iii)
the conditionalsp(y|x) disagree on the the chain. We now prove the following technical lemma that
proves an inequality that holds when the data only lives on the segments and not on the links that
constitute the embedded circle of Construction 1. This inequality is used in the proof of Theorem 4.

Lemma 5 Let x∈ Sl be a collection of n points such that no point belongs to the links and exactly
l segments contain at least one point.

1
2d ∑

p∈Pd

||A(zp(x))−mp||L2(pX) ≥ (1−α−β)
d−n
4d

.

Proof Sincex ∈ Sl , there ared− l segments of the chainC such that no data is seen from them.
We let A(zp(x)) be the function hypothesized by the learner on receiving the data setzp(x). We
begin by noting that the familyPd may be naturally divided into 2l subsets in the following way.
Following the notation of Construction 1, recall that every element ofPd may be identified with
a setS⊂ {1, . . . ,d}. We denote this element byp(S). Now let L denote the set of indices of the
segmentsCi that contain data, that is,

L = {i|Ci ∩x 6= /0}.

Then for every subsetD ⊂ L, we have

PD = {p(S) ∈ Pd|S∩L = D}.

Thus all the elements ofPD agree in their labelling of the segments containing data but disagree
in their labelling of segments not containing data. Clearly there are 2l possible choices forD and
each such choice leads to a family containing 2dl probability distributions. Let us denote these 2l

families byP1 throughP2l .
ConsiderPi . By construction, for all probability distributionsp,q ∈ Pi , we have thatzp(x) =

zq(x). Let us denote this byzi(x), that is,zi(x) = zp(x) for all p∈ Pi .
Now f = A(zi(x)) is the function hypothesized by the learner on receiving the data setzi(x).

For anyp∈ P and any segmentck, we say thatp “disagrees” withf on ck if | f (x)mp(x)| ≥ 1 on a
majority ofck, that is, ∫

A
pX(x)≥

∫
ck\A

pX(x)

whereA= {x∈ ck|| f (x)mp(x)| ≥ 1}. Therefore, iff andp disagree onck, we have
∫

ck

( f (x)−mp(x))
2pX(x)≥

1
2

∫
ck

pX(x)≥
1
2d

(1−α−β).
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It is easy to check that for every choice ofj unseen segments, there exists ap ∈ Pi such thatp
disagrees withf on each of the chosen segments. Therefore, for such ap, we have

||(A(zp(x))−mp||2L2(pX)
≥ 1

2
j
d
(1−α−β).

Counting all the 2dl elements ofPi based on the combinatorics of unseen segments, we see (using

the fact that||A(zp(x))−mp|| ≥
√

1
2

j
d(1−α−β)≥ 1

2
j
d(1−α−β))

∑
p∈Pi

||A(xp(x)−mp|| ≥
d−l

∑
j=0

(

d− l
j

)

1
2

j
d
(1−α−β) = 2d−l (1−α−β)

d− l
4d

.

Therefore, sincel ≤ n, we have

2l

∑
i=1

∑
p∈Pi

||A(xp(x))−mp|| ≥ 2d(1−α−β)
d−n
4d

.

2.3 Discussion

Thus we see that knowledge of the manifold can have profound consequences for learning. The
proof of the lower bound reflects the intuition that has always been at the root of manifold based
methods for semi-supervised learning. Following Figure 2, if one knows themanifold, one sees that
C1 andC4 are “close” whileC1 andC3 are “far.” But this is only one step of the argument. We
must further have the prior knowledge that the target function varies smoothly along the manifold
and so “closeness on the manifold” translates to similarity in function values (orlabel probabilities).
However, this closeness is not obvious from the ambient distances alone.This makes the task of
the learner who does not know the manifold difficult: in fact impossible in the sense described in
Theorem 4.

Some further remarks are in order. These provide an idea of the ways in which our main the-
orems can be extended. Thus we may appreciate the more general circumstances under which we
might see a separation between manifold methods and alternative methods.

1. While we provide a detailed construction for the case of different embeddings of the circle
into R

N, it is clear that the argument is general and similar constructions can be madefor
many different classes ofk-manifolds. Thus ifM is taken to be ak-dimensional submanifold
of RN, then one could letM be a family ofk-dimensional submanifolds ofRN and letP be
the naturally associated family of probability distributions that define a collection of learning
problems. Our proof of Theorem 4 can be naturally adapted to such a setting.

2. Our example explicitly considers a classHM that consists of a one-parameter family of func-
tions. It is important to reiterate that many different choices ofHM would provide the same
result. For one, thresholding is not necessary, and if the classHM was simply defined as
bandlimited functions, that is, consisting of functions of the form∑p

i=1 αiφi (whereφi are
the eigenfunctions of the Laplacian ofM ), the result of Theorem 4 holds as well. Similarly
Sobolev spaces (constructed from functionsf = ∑i αiφi whereα2

i λs
i < ∞) also work with and

without thresholding.
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3. We have considered the simplest case where there is no noise in theY-direction, that is, the
conditionalp(y|x) is concentrated at one pointmp(x) for eachx. Considering a more general
setting with noise does not change the import of our results. The upper bound of Theorem 2
makes use of the fact thatmp belongs to a restricted (uniformly Glivenko-Cantelli) family
HM . With a 0 – 1 loss function defined asV(h,z) = 1[y6=h(x)], the rate may be as good as
O∗(1

n) in the noise-free case but drops toO∗( 1√
n) in the noisy case. The lower bound of

Theorem 4 for the noiseless case also holds for the noisy case by immediate implication.
Both upper and lower bounds are valid also for arbitrary marginal distributions pX (not just
uniform) that have support on some manifoldM .

4. Finally, one can consider a variety of loss functions other than theL2 loss function considered
here. The natural 0 – 1-valued loss function (which for the special case of binary valued
functions coincides with the theL2 loss) can be interpreted as the probability of error of the
classifier in the classification setting.

3. Manifold Learning and Manifold Regularization

3.1 Knowing the Manifold and Learning It

In the discussion so far, we have implicitly assumed that an oracle can provide perfect information
about the manifold in whatever form we choose. We see that access to such an oracle can provide
great power in learning from labeled examples for classes of problems that have a suitable structure.

Yet, the whole issue ofknowing the manifoldis considerably more subtle than appears at first
blush and in fact has never been carefully considered by the machine learning community. For
example, consider the following oracles that all provide knowledge of the manifold but in different
forms.

1. One could knowM as a set through some kind of set-membership oracle. For example, a
membership oracle that makes sense is of the following sort: given a pointx and a numberr >
0, the oracle tells us whetherx is in a tubular neighborhood of radiusr around the manifold.

2. One could know a system of coordinate charts on the manifold. For example, maps of the
form ψi : Ui → R

D whereUi ⊂ R
k is an open set.

3. One could know in some explicit form the harmonic functions on the manifold,the Laplacian
∆M , and the Heat KernelHt(p,q) on the manifold.

4. One could know the manifold up to some geometric or topological invariants. For exam-
ple, one might know just the dimension of the manifold. Alternatively, one might know the
homology, the homeomorphism or diffeomorphism type, etc. of the manifold.

5. One could have metric information on the manifold. One might know the metric tensor at
points on the manifold, one might know the geodesic distances between points on the mani-
fold, or one might know the heat kernel from which various derived distances (such as diffu-
sion distance) are obtained.

Depending upon the kind of oracle access we have, the task of the learner might vary from
simple to impossible. For example, in the problem described in Section 2 of this paper, the natural
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algorithm that realizes the upper bound of Theorem 2 performs empirical risk minimization over the
classHM . To do this it needs, of course, to be able to representHM in a computationally efficient
manner. In order to do this, it needs to know the eigenfunctions (in the specific example, only the
first two, but in general some arbitrary number depending on the choice of HM ) of the Laplacian on
theM . This is immediately accessible from Oracle 3. It can be computed from Oracles 1, 2, and 5
but this computation is intractable in general. From Oracle 4, it cannot be computed at all.

The next question one needs to address is: In the absence of an oraclebut given random samples
of example points on the manifold, can onelearn the manifold? In particular, can one learn it in a
form that is suitable for further processing. In the context of this paper, the answer is yes.

Let us recall the following fundamental fact from Belkin and Niyogi (2005) that has some
significance for the problem in this paper.

Let M be a compact, Riemannian submanifold (without boundary) ofR
N and let∆M be the

Laplace operator (on functions) on this manifold. Letx= {x1, . . . ,xm} be a collection ofm points
sampled in i.i.d. fashion according to the uniform probability distribution onM . Then one may
define the point cloud Laplace operatorLt

m as follows:

Lt
m f (x) =

1
t

1

(4πt)d/2

1
m

m

∑
i=1

( f (x)− f (xi))e
− ||x−xi ||2

4t

The point cloud Laplacian is a random operator that is the natural extension of the graph Lapla-
cian operator to the whole space. For any thrice differentiable functionf : M → R, we have

Theorem 6
lim

t→0,m→∞
Lt

m f (x) = ∆M f (x).

Some remarks are in order:

1. Givenx ∈M as above, consider the graph with vertices (letV be the vertex set) identified

with the points inx and adjacency matrixWi j =
1
mt

1
(4πt)d/2 e−

||x−xi ||2
4t . Given f : M → R, the

restriction fV : x→R is a function defined on the vertices of this graph. Correspondingly, the
graph LaplacianL = (D−W) acts onfV and it is easy to check that

(Lt
m f )|xi = (L fV)|xi .

In other words, the point cloud Laplacian and graph Laplacian agree onthe data. However,
the point cloud Laplacian is defined everywhere while the graph Laplacianis only defined on
the data.

2. The quantityt (similar to a bandwidth) needs to go to zero at a suitable rate (tmd+2 → ∞)
so there exists a sequencetm such that the point cloud Laplacian converges to the manifold
Laplacian asm→ ∞.

3. It is possible to show (see Belkin and Niyogi, 2005; Coifman and Lafon,2006; Gińe and
Koltchinskii, 2006; Hein et al., 2005) that this basic convergence is true for arbitrary proba-
bility distributions (not just the uniform distribution as stated in the above theorem) in which
case the point cloud Laplacian converges to an operator of the Laplace type that may be
related to the weighted Laplacian (Grigoryan, 2006).
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4. While the above convergence is pointwise, it also holds uniformly over classes of functions
with suitable conditions on their derivatives (Belkin and Niyogi, 2008; Giné and Koltchinskii,
2006).

5. Finally, and most crucially (see Belkin and Niyogi, 2006), ifλ(i)
m andφ(i)

m are theith (in in-
creasing order) eigenvalue and corresponding eigenfunction respectively of the operatorLtm

m,
then with probability 1, asmgoes to infinity,

limm→∞|λi −λ(i)
m |= 0

and
limm→∞|φ(i)

m −φi |L2(M ) = 0.

In other words, the eigenvalues and eigenfunctions of the point cloud Laplacian converge to
those of the manifold Laplacian as the number of data pointsmgo to infinity.

These results enable us to present a semi-supervised algorithm that learns the manifold from
unlabeled data and uses this knowledge to realize the upper bound of Theorem 2.

3.2 A Manifold Regularization Algorithm For Semi-supervised Learning

Let z= (z1, . . . ,zn) be a set ofn i.i.d. labeled examples drawn according top andx= (x1, . . . ,xm)
be a set ofm i.i.d. unlabeled examples drawn according topX. Then a semi-supervised learner’s
estimate may be denoted byA(z,x). Let us consider the following kind of manifold regularization
based semi-supervised learner.

1. Construct the point cloud Laplacian operatorLtm
m from theunlabeleddatax.

2. Solve for the eigenfunctions ofLtm
m and take the first two (orthogonal to the constant unction).

Let these beφm andψm respectively.

3. Perform empirical risk minimization with the empirical eigenfunctions by minimizing

f̂m = arg min
f=αφm+βψm

1
n

n

∑
i=1

V( f (xi),yi)

subject toα2
i +β2

i = 1. HereV( f (x),y) = 1
4|y− sign( f (x))|2 is the 0−1 loss. This is equiva-

lent to Ivanov regularization with an intrinsic norm that forces candidate hypothesis functions
to be bandlimited.

Note that if the empirical risk minimization was performed with the true eigenfunctions (φ and
ψ respectively), then the resulting algorithm achieves the rate of Theorem 2. Since for largem, the
empirical eigenfunctions are close to the true ones by the result in Belkin andNiyogi (2006), we may
expect the above algorithm to perform well. Thus we may compare the two manifold regularization
algorithms (an empirical one with unlabeled data and an oracle one that knowsthe manifold):

A(z,x) = sign( f̂m) = sign(α̂mφm+ β̂mψm)

and
Aoracle(z,M ) = sign( f̂ ) = sign(α̂φ+ β̂ψ).

We can now state the following:
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Theorem 7 For anyε > 0, we have

sup
p∈PM

Ez||mp−A||2L2(pX)
≤ 4

2π
(arcsin(ε))+

1
ε2(||φ−φm||2+ ||ψ−ψm||2)+3

√

3log(n)
n

.

Proof Considerp∈ P and letmp = sign(αpφ+βpψ). Let gm= αpφm+βpψm. Now, first note that
by the fact of empirical risk minimization, we have

1
n ∑

z∈z
V(A(x),y)≤ 1

n ∑
z∈z

V(sign(gm(x)),y).

Second, note that the set of functionsF = {sign( f )| f = αφm+βψm} has VC dimension equal
to 2. Therefore the empirical risk converges to the true risk uniformly overthis class so that with
probability> 1−δ, we have

[l ]Ez[V(A(x),y)]−
√

2log(n)+ log(1/δ)
n

≤ 1
n ∑

z∈z
V(A(x),y)

≤ 1
n ∑

z∈z
V(sign(gm(x)),y)≤ Ez[V(sign(gm(x)),y)]+

√

2log(n)+ log(1/δ)
n

.

Using the fact thatV(h(x),y) = 1
4(y−h)2, we have in general for anyh

Ez[V(h(x),y)] =
1
4

Ez(y−mp)
2+

1
4
||mp−h||2L(pX)

from which we obtain with probability> 1−δ over choices of labeled training setsz,

||mp−A||2 ≤ ||mp− sign(gm)||2+2

√

2log(n)+ log(1/δ)
n

.

Settingδ = 1
n and noting that||mp−A||2 ≤ 1, we have after some straightforward manipulations,

Ez||mp−A||2 ≤ ||mp− sign(gm)||2+3

√

3log(n)
n

.

Using Lemma 8, we get for anyε > 0,

sup
p∈PM

Ez||mp−A||2 ≤ 4
2π

(arcsin(ε))+
1
ε2(||φ−φm||2+ ||ψ−ψm||2)+3

√

3log(n)
n

.

Lemma 8 Let f,g be any two functions. Then for anyε > 0,

||sign( f )−sign(g)||2L2(pX)
≤ µ(Xε, f )+

1
ε2 || f −g||2L2(pX)
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where Xε, f = {x | | f (x)| ≤ ε} and µ is the measure corresponding the the marginal distribution pX.
Further, if f = αφ+ βψ (α2+ β2 = 1) and g= αφm+ βψm whereφ,ψ are eigenfunctions of

the Laplacian onM while φm,ψm are eigenfunctions of point cloud Laplacian as defined in the
previous developments. Then for anyε > 0

||sign( f )−sign(g)||2L2(pX)
≤ 4

2π
(arcsin(ε))+

1
ε2(||φ−φm||2+ ||ψ−ψm||2).

Proof We see that

||sign( f )−sign(g)||2L2(pX)
=

∫
Xε, f

|sign( f (x))−sign(g(x))|2+
∫
M \Xε, f

|sign( f (x))−sign(g(x))|2

≤ 4µ(Xε, f )+
∫
M \Xε, f

|sign( f (x))−sign(g(x))|2.

Note that ifx∈M \Xε, f , we have that

|sign( f (x))−sign(g(x))| ≤ 2
ε
| f (x)−g(x)|.

Therefore,
∫
M \Xε, f

|sign( f (x))−sign(g(x))|2 ≤ 4
ε2

∫
M \Xε, f

| f (x)−g(x)|2 ≤ 4
ε2 || f −g||2L2(pX)

.

This proves the first part. The second part follows by a straightforward calculation on the circle.

Some remarks:

1. While we have stated the above theorem for our running example of embeddings of the circle
into R

D, it is clear that the results can be generalized to cover arbitrary k-manifolds, more
general classes of functionsHM , noise, and loss functionsV. Many of these extensions are
already implicit in the proof and associated technical discussions.

2. A corollary of the above theorem is relevant for the (m= ∞) case that has been covered in
Castelli and Cover (1996). We will discuss this in the next section. The corollary is

Corollary 9 Let P = ∪M PM be a collection of learning problems with the structure de-
scribed in Section 2, that is, each p∈ P is such that the marginal pX has support on a
submanifoldM of RD which corresponds to a particular isometric embedding of the circle
into Euclidean space. For each such p, the regression function mp = E[p(y|x)] belongs to
a class of functions HM which consists of thresholding bandlimited functions onM . Then
no supervised learning algorithm exists that is guaranteed to converge forevery problem in
P (Theorem 4). Yet the semi-supervised manifold regularization algorithm described above
(with infinite amount of unlabeled data) converges at a fast rate as a function of labelled data.
In other words,

sup
M

lim
m→∞

sup
PM

||mp−A(z,x)||2L2(pX)
= 3

√

3log(n)
n

.
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3. It is natural to ask what it would take to move the limitm→ ∞ outside. In order to do this,
one will need to put additional constraints on the class of possible manifoldsM that we
are allowed to consider. But putting such constraints we can construct classes of learning
problems where for any realistic number of labeled examplesn, there is a gap between the
performance of a supervised learner and the manifold based semi-supervised learner. An
example of such a theorem is:

Theorem 10 Fix any number N. Then there exists a class of learning problemsPN such that
for all n < N

R(n,PN) = inf
A

sup
p∈PN

Ez||mp−A(z)|| ≥ 1/100

while

Q(n,PN) = lim
m→∞

sup
p∈PN

||mp−Amanreg(z,x)||2 ≤
√

3log(n)
n

.

Proof We provide only a sketch of the argument and avoid technical details. We begin by
choosing a family of submanifolds of[−M,M]D with a uniform bound on their curvature. One
form such a bound can take is the following: Letτ be the largest number such that the open
normal bundle of radiusr aboutM is an imbedding for anyr < τ. This provides a bound on
the norm of the second fundamental form (curvature) and nearness toself intersection of the
submanifold. NowPN will contain probability distributionsp such thatpX is supported on
someM with a τ curvature bound andp(y|x) is 0 or 1 for everyx,y such that the regression
functionmp = E[y|x] belongs toHM . As before, we chooseHM to be the span of the firstK
eigenfunctions of the Laplacian∆ onM . For a lower boundR(n), we follow Construction
1 and choosed = 2N (from the proof of the lower bound of Theorem 4). Following Con-
struction 1, the circle can be embedded in[−M,M]D by twisting in all directions. Letl be
the length of a single segment of the chain. Since theτ condition needs to be respected for
every embedding, the circle cannot twist too much and come too close to self intersection. In
particular, this will imply that 2NlVτ < MD whereVτ is the volume of theD−1 dimensional
ball of radiusτ. For an upper boundQ(n), we follow the the manifold regularization algo-
rithm of the previous section and note that eigenfunctions of the Laplacian can be estimated
for compact manifolds with a curvature bound.

However, asymptotically,R(n) andQ(n) have the same rate forn >> N. SinceN can be
arbitrarily chosen to be astronomically large, this asymptotic rate is of little consequence in
practical learning situations. This suggests the limitations of asymptotic analysis without a
careful consideration of the finite sample situation.

4. The Structure of Semi-supervised Learning

It is worthwhile to reflect on why the manifold regularization algorithm is able to display improved
performance in semi-supervised learning. The manifold assumption is a device that allows us to link
the marginalpX with the conditionalp(y|x). Through unlabeled datax, we can learn the manifold
M thereby greatly reducing the class of possible conditionalsp(y|x) that we need to consider. More
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generally, semi-supervised learning will be feasible only if such a link is made. To clarify the
structure of problems on which semi-supervised learning is likely to be meaningful, let us define a
mapπ : p→ pX that takes any probability distributionp onX×Y and maps it to the marginalpX.

Given any collection of learning problemsP , we have

π : P → PX

wherePX = {pX|p∈ P}. Consider the case in which the structure ofP is such that for anyq∈ PX,
the family of conditionalsπ−1(q) = {p∈ P |pX = q} is “small.” For a situation like this, knowing
the marginal tells us a lot about the conditional and therefore unlabeled datacan be useful.

4.1 Castelli and Cover Interpreted

Let us consider the structure of the class of learning problems considered by Castelli and Cover
(1996). They consider a two-class problem with the following structure. The class of learning
problemsP is such that for eachp∈ P , the marginalq= pX can be uniquely expressed as

q= µ f +(1−µ)g

where 0≤ µ ≤ 1 and f ,g belong to some classG of possible probability distributions. In other
words, the marginal is always a mixture (identifiable) of two distributions. Furthermore, the class
P of possible probability distributions is such that there are precisely two probability distributions
p1, p2 ∈ P such that their marginals are equal toq. In other words,

π−1(q) = {p1, p2}

wherep1(y= 1|x) = µ f(x)
q(x) andp2(y= 1|x) = (1−µ)g(x)

q(x) .
In this setting, unlabeled data allows the learner to estimate the marginalq. Once the marginal

is obtained, the class of possible conditionals is reduced toexactly two functions. Castelli and
Cover (1996) show that the risk now converges to the Bayes’ risk exponentially as a function of
labeled data (i.e., the analog of an upper bound onQ(n,P ) is approximatelye−n). The reason semi-
supervised learning is successful in this setting is that the marginalq tells us a great deal about the
class of possible conditionals. It seems that a precise lower bound on purely supervised learning
(the analog ofR(n,P )) has never been clearly stated in that setting.

4.2 Manifold Regularization Interpreted

In its most general form, manifold regularization encompasses a class of geometrically motivated
approaches to learning. Spectral geometry provides the unifying point of view and the spectral
analysis of a suitable geometrically motivated operator yields a “distinguished basis.” Since (i) only
unlabeled examples are needed for the spectral analysis and the learningof this basis, and (ii) the
target function is assumed to be compactly representable in this basis, the ideahas the possibility
to succeed in semi-supervised learning. Indeed, the previous theorems clarify the theoretical basis
of this approach. This, together with the empirical success of algorithms based on these intuitions
suggest there is some merit in this point of view.

In general, letq be a probability density function onX = R
D. The support ofq may be a

submanifold ofX (with possibly many connected components). Alternatively, it may lie close to a
submanifold, it may be all ofX, or it may be a subset ofX. As long asq is far from uniform, that
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is, it has a “shape,” one may consider the following “weighted Laplacian” (see Grigoryan, 2006)
defined as

∆q f (x) =
1

q(x)
div(qgradf )

where the gradient (grad) and divergence (div) are with respect tothe support ofq (which may
simply be all ofX).

The heat kernel associated with this weighted Laplacian (essentially the Fokker-Planck operator)
is given bye−t∆q . Laplacian eigenmaps and Diffusion maps are thus defined in this more general
setting.

If φ1,φ2, . . . represent an eigenbasis for this operator, then, one may consider the regression
functionmq to belong to the family (parameterized bys= (s1,s2, . . .)) where eachsi ∈ R∪{∞}.

HS
q = {h : X → R such thath= ∑

i

αiφi and∑
i

α2
i si < ∞}.

Some natural choices ofs are (i)∀i > p,si = ∞ : this gives us bandlimited functions (ii)si = λt
i

is theith eigenvalue of∆q : this gives us spaces of Sobolev type (iii)∀i ∈A,si = 1, elsesi = ∞ where
A is a finite set: this gives us functions that are sparse in that basis.

The class of learning problemsP (s) may then be factored as

P(s) = ∪qP
(s)
q

where
P

(s)
q = {p|px = q andmp ∈ HS

q}.
The logic of the geometric approach to semi-supervised learning is as follows:

1. Unlabeled data allow us to approximateq, the eigenvalues and eigenfunctions of∆q, and
therefore the spaceHs.

2. If s is such thatπ−1(q) is “small” for everyq, then a small number of labeled examples suffice
to learn the regression functionmq.

In problems that have this general structure, we expect manifold regularization and related al-
gorithms (that use the graph Laplacian or a suitable spectral approximation)to work well. Precise
theorems showing the correctness of these algorithms for a variety of choices of s remains part of
future work. The theorems in this paper establish results for some choices of s and are a step in a
broader understanding of this question.

5. Conclusions

We have considered a minimax style framework within which we have investigatedthe potential
role of manifold learning in learning from labeled and unlabeled examples. Wedemonstrated the
natural structure of a class of problems on which knowing the manifold makesa big difference. On
such problems, we see that manifold regularization is provably better than any supervised learning
algorithm.

Our proof clarifies a potential source of confusion in the literature on manifold learning. We
see that if data lives on an underlying manifold but this manifold isunknownand belongs to a class
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of possible smooth manifolds, it is possible that supervised learning (classification and regression
problems) may be ineffective, even impossible. In contrast, if the manifold is fixed though unknown,
it may be possible to (e.g., Bickel and Li, 2007) learn effectively by a classical method suitably
modified. In between these two cases lie various situations that need to be properly explored for a
greater understanding of the potential benefits and limitations of manifold methods and the need for
manifold learning.

Our analysis allows us to see the role of manifold regularization in semi-supervised learning
in a clear way. Several algorithms using manifold and associated graph-based methods have seen
some empirical success recently. Our paper provides a framework within which we may be able to
analyze and possibly motivate or justify such algorithms.
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