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Abstract

Constraint-based learning of Bayesian networks (BN) from limited data can lead to multiple testing

problems when recovering dense areas of the skeleton and to conflicting results in the orientation

of edges. In this paper, we present a new constraint-based algorithm, light mutual min (LMM) for

improved accuracy of BN learning from small sample data. LMM improves the assessment of can-

didate edges by using a ranking criterion that considers conditional independence on neighboring

variables at both sides of an edge simultaneously. The algorithm also employs an adaptive relax-

ation of constraints that, selectively, allows some nodes not to condition on some neighbors. This

relaxation aims at reducing the incorrect rejection of true edges connecting high degree nodes due

to multiple testing. LMM additionally incorporates a new criterion for ranking v-structures that is

used to recover the completed partially directed acyclic graph (CPDAG) and to resolve conflicting

v-structures, a common problem in small sample constraint-based learning. Using simulated data,

each of these components of LMM is shown to significantly improve network inference compared

to commonly applied methods when learning from limited data, including more accurate recovery

of skeletons and CPDAGs compared to the PC, MaxMin, and MaxMin hill climbing algorithms. A

proof of asymptotic correctness is also provided for LMM for recovering the correct skeleton and

CPDAG.

Keywords: Bayesian networks, skeleton, constraint-based learning, mutual min

1. Introduction

Learning a Bayesian network (BN) from observational data is a reverse engineering process that

can provide insight into the direct relations between observed variables and can be used to establish

causation (Pearl, 1988; Spirtes et al., 2001). BNs have been used in learning applications in a num-

ber of fields including systems biology (Friedman et al., 2000; Friedman, 2004), medicine (Cowell

et al., 1999), and artificial intelligence (Russell and Norvig, 2009) where emerging applications and

the growing availability of complex data sets containing thousands of variables are requiring faster,

more scalable, and more accurate methods.

Unconstrained learning of a BN is a search for a network that fits the observational data with

the highest posterior probability. However, due to the large number of all possible networks, which
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is super exponential in the number of variables being modeled, an exhaustive search is not possible

for more than a few tens of variables (Chickering et al., 2004) while heuristic search methods tend

to converge to suboptimal solutions. This scalability issue is a known limitation of score-based

methods, where a scoring criterion such as the Bayesian information criterion (BIC) (Cooper and

Herskovits, 1992) or the minimum description length criterion (MDL) (Lam and Bacchus, 1994) is

used to rank candidate networks.

An alternative learning approach to score-based search is the use of conditional independence

testing, also referred to as constraint-based learning. Methods in this class such as the IC algorithm

(inductive causation) (Pearl, 1988), PC algorithm (Spirtes et al., 2001), and TPDA algorithm (three-

phase dependency analysis) (Cheng et al., 2002), first recover the skeleton of the network and edges

are oriented afterward. The learning is performed in a way to ensure that the resulting network is

consistent with the conditional independences/dependencies entailed by the observations. Under

the faithfulness assumption (see Section 3 for definition), constraint-based methods were shown

to recover the correct network as the size of the observed samples approaches infinity (Zhang and

Spirtes, 2003; Kalisch and Bühlmann, 2007). Moreover, their computational complexity has a poly-

nomial order when the maximum number of connections per node is bounded. Constraint-based

methods have also been used in combination with score-based search in what typically is referred

to as hybrid learning. Hybrid methods such as the SC algorithm (sparse candidate) (Friedman et al.,

1999), MMHC algorithm (MaxMin hill climbing) (Tsamardinos et al., 2006), and the COS algo-

rithm (constrained optimal search) (Perrier et al., 2008) first recover a super structure of the skeleton

using a constraint-based approach. Afterward, a constrained score-based search is used to find an

optimal network where the search is restricted only to edges existing in the super structure. This

strategy can reduce the size of the search space considerably and can lead to higher score solutions.

Although constraint-based learning can, under appropriate assumptions, recover the correct

graph in the asymptotic limit, its performance in real applications depends heavily on the accuracy

of independence testing, which in turn is sensitive to noise and sample size. As will be discussed in

this paper, when learning from small sample data, the use of conditional independence testing can

lead to multiple testing problems that deteriorate the accuracy of skeleton recovery and to conflict-

ing results in the orientation of edges. In addition, errors in the first phase of recovering the skeleton

can also deteriorate the precision of orienting the edges, resulting in a propagated error.

2. Contribution

We present a new constraint-based algorithm, light mutual min (LMM), for learning Bayesian net-

works that has properties well suited for learning from limited sample data. For skeleton recovery,

LMM improves the assessment of candidate edges by using a new mutual dependence criterion that

considers conditional independence on subsets of neighboring variables at both sides of an edge

simultaneously. In addition, we implement an adaptive relaxation of independence constraints in

dense areas of the graph by, selectively, allowing only one node of a connected pair to be aware

of the edge. This relaxation is only performed whenever asymmetric evidence of conditional inde-

pendence is found between a pair of connected variables, where the aim is to reduce the accidental

rejection of true edges connecting high degree nodes due to the multiple testing problem in the case

of limited training samples. Another consequence of this relaxation is that sets of the recognized

neighbors that are used for conditional independence testing remain small, leading to a considerable

reduction in the number of required independence tests.
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Moreover, we present a new approach to recover v-structures in a given skeleton based on the

level of induced dependence caused by common neighbors, and LMM is extended to recover the

completed partially directed acyclic graph (CPDAG) of the equivalence class. The name light mu-

tual min is motivated by the fact that the algorithm is fast and uses reduced sets of neighbors (light)

in addition to ranking edges using a measure that combines the minimal dependence from both sides

of an edge (mutual min). Also, we refer to LMM as a sub-local approach due to using reduced sets

of neighbors for independence testing as compared to local algorithms such as the PC and MaxMin

algorithms which use subsets of all neighbors for conditional independence testing.

For completeness, a proof of asymptotic correctness is provided to show that the proposed ap-

proaches will recover the correct skeleton and CPDAG when the number of observations grows suf-

ficiently large. Also, to empirically assess performance, we compare LMM to the PC and MaxMin

algorithms, two of the most popular and computationally efficient BN learning methods (Spirtes

et al., 2001; Tsamardinos et al., 2006; Kalisch et al., 2010). Based on empirical evaluation us-

ing simulated data, LMM is shown to significantly and consistently outperform both the PC and

MaxMin algorithms in recovering the skeleton of the graph in terms of both accuracy and speed

when learning from limited sample data. In addition, the extended LMM is found to recover more

accurate CPDAGs than the PC algorithm, while being competitive with the MMHC algorithm in the

small network case and more accurate in the large network case.

The rest of this paper is organized as follows: Section 3 presents necessary definitions. Section

4 presents related work. Section 5 presents a discussion of the limitations of existing methods.

Section 6 presents our proposed methods. Section 7 presents experimental results and comparison

to other methods. A proof of asymptotic correctness for the presented methods is provided in the

Appendix for the recovery of both the skeleton and the CPDAG.

Availability: Our implementation of all presented methods in addition to a supplementary

material of further discussion and illustrations are made available with this publication and they

also can be accessed at http://www.mloss.org/software/view/460/ or alternatively at http:

//mezeysoftware.bscb.cornell.edu/index.php/LMM.

3. Definitions and Preliminaries

In this section, we present necessary definitions and notations following Pearl (1988) and Neapolitan

(2004) with slight variations.

Definition 1 (Directed Graph) A directed graph G = (V,E) consists of a set of nodes representing

variables V = {1, ..., p} and a set of edges E ⊆V ×V where an edge (i, j) ∈ E implies that E(i, j)
is an edge pointing from Vi (parent) to Vj (child). Two variables i and j are adjacent in G if and

only if (i, j) ∈ E or ( j, i) ∈ E.

In this paper, the notation CP∗i is used to refer to the true set of child and parent variables of the

variable i while the notation CPi is used to refer to the set of child and parent variables of i that are

being inferred by the algorithm. The set of child and parent variables are also sometimes referred

to as the neighbor set of i.

Definition 2 (Directed Acyclic Graph (DAG)) A directed graph G = (V,E) is said to be acyclic

if and only if for every node Vi in the graph, there does not exist a path of connected and directed

edges such that starting from node Vi and following the direction of edges can lead back to the same

node Vi.
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Definition 3 (Skeleton) The skeleton of a directed graph G = (V,E) is a graph that contains all

the nodes and edges of G such that all the edges have no directions. Every undirected edge in the

skeleton represents a parent-child relation without informing who is the parent and who is the child.

Definition 4 (Conditional Independence) Two variables x and y are conditionally independent

given a set of variables Z\x,y w.r.t a probability distribution P, denoted as x ⊥⊥ y | Z, if and only if

P(x,y | Z = z) = P(x | Z = z)×P(y | Z = z), ∀z where P(Z = z)> 0.

The notation Z\x,y means x and y are excluded from the conditioning set Z which is always the

case for all methods presented in this paper even if it is not explicitly stated. Examples of methods

to determine conditional independence are the use of statistical tests of partial correlation and the

G-squared measure (Neapolitan, 2004).

Definition 5 (Bayesian Network) A directed acyclic graph G= (V,E) is said to be a Bayesian net-

work w.r.t a probability distribution P if it satisfies the Markov condition (local Markov property):

Every variable x ∈ V is independent of any subset of its non-descendant variables conditioned on

the set of its parents.

Definition 6 (V-Structure) An ordered triplet of nodes (x,w,y) forms a v-structure in a DAG if and

only if x and y meet head to head at w (x→ w← y) while x and y are not directly connected in the

graph.

Definition 7 (Faithfulness) A graph G and a probability distribution P are said to satisfy the faith-

fulness condition (or to be faithful to one another) if and only if, based on the Markov condition, G

entails all and only the conditional independence relations in P.

Many researchers have suggested some constraints on BN inference that would facilitate finding

sound solutions. The most used of these constraints is the faithfulness property, and it has been

argued that, in most cases, the true BN will have such a property (Spirtes et al., 1993). As a

consequence of the faithfulness assumption (Spirtes et al., 2001), an edge between a node x and a

node y exists in G if and only if there does not exist a set Z\x,y such that x and y are independent

when conditioned on Z\x,y: (∄Z ⊆V\x,y s.t. x⊥⊥y | Z, w.r.t P).

Definition 8 (Blocked Path) In a directed graph G = (V,E), a path Pa of connected edges between

two distinct nodes x,y ∈ V is said to be blocked by a set of nodes Z ⊆ V\x,y if one of the following

holds:

1. There is a node w ∈ Z on the path Pa where the edges incident to w on Pa meet head-to-tail

at w (..→ w→ .. or ..← w← .. ).

2. There is a node w ∈ Z on the path Pa where the edges incident to w on Pa meet tail-to-tail at

w (..← w→ ..).

3. There is a node w on the path Pa, such that w and all of w’s descendants are not in Z, and the

edges incident to w on Pa meet head-to-head at w (..→ w← ..).
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Definition 9 (D-Separation) In a DAG G = (V,E), two distinct nodes x,y ∈ V are said to be d-

separated by Z ⊆ V\x,y, denoted by Dsep
G
(x,y | Z), if every path between x and y is blocked by Z.

Moreover, two disjoint sets of nodes X ,Y ⊂V are said to be d-separated by Z ⊆V − (X ∪Y ) if and

only if every x ∈ X and every y ∈ Y are d-separated by Z.

Theorem 10 (Pearl, 1988, D-Separation⇔ Conditional Independence) Given a faithful BN of a

DAG G and a probability distribution P, every d-separation in G entails a conditional independence

relation in P and every conditional independence relation in P is represented by a d-separation in

G:

Dsep
G
(x,y | Z)⇔ x⊥⊥ y | Z (w.r.t P).

Definition 11 (Markov Equivalence) Two DAGs G1 = (V,E1) and G2 = (V,E2) are called Markov

equivalent if for every three mutually disjoint subsets X ,Y,Z ⊂V , X and Y are d-separated by Z in

G1 if and only if X and Y are also d-separated by Z in G2:

Dsep
G1
(X ,Y | Z)⇔ Dsep

G2
(X ,Y | Z).

Based on Theorem 10, two Markov equivalent DAGs entail the same set of conditional inde-

pendence relations. Also, when given the same observational data, it is possible that there exist

multiple equivalent DAGs that are equally likely to have generated the same observations. With the

absence of any external information, this equivalence bounds our inference ability to learning the

set of equivalent DAGs as opposed to learning a single causal DAG. In spite of this limitation, the

structural characteristics shared by equivalent DAGs (Theorem 12), can still be very informative

about the underlying causal relations.

Theorem 12 (Verma and Pearl, 1990, Equivalence Class of DAGs) Two DAGs G(1) and G(2) are

equivalent if and only if they have the same skeleton and contain the same set of v-structures.

Typically, the class of equivalent DAGs is represented by the completed partially directed acyclic

graph (CPDAG). A partially directed acyclic graph (PDAG) is a graph where some edges are di-

rected and some are undirected. A PDAG is said to be complete if (1) every directed edge exists

also in every DAG in the equivalence class of the DAG and (2) for every undirected edge i− j, there

exists a DAG with i→ j and a DAG with i← j in the same equivalence class.

4. Local Constraint-Based Algorithms

Several constraint-based methods were developed to recover the skeleton of BNs (Pearl, 1988;

Spirtes et al., 2001; Cheng et al., 2002; Tsamardinos et al., 2006) and all these methods share

common properties in that, a local search is typically performed to identify possible marginal or

conditional independence between pairs of variables using a statistical test such as the G-squared

test or the partial correlation test (Neapolitan, 2004). In this paper, we restrict the discussion and

the comparison to two representative methods: the PC and MaxMin algorithms, which are two of

the most popular methods. A detailed comparison among several methods, including the PC and

MaxMin algorithms, can be found in the work of Tsamardinos et al. (2006).
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The PC algorithm (Spirtes et al., 2001) starts with a fully connected graph where unnecessary

edges get iteratively deleted one at a time. For every node Vi, the conditional independences are

tested along the existing edges by conditioning on all subsets of the current neighbors and edges

are deleted whenever dependences are found to be insignificant. The extended version of the PC

algorithm uses the recovered skeleton to recover the CPDAG of the equivalence class by identifying

v-structures and using an additional set of CPDAG orientation rules (Meek, 1995).

In contrast to the PC algorithm, the MaxMin algorithm (Tsamardinos et al., 2006) starts with an

empty graph. Afterward, for every node in the graph, the algorithm performs a forward selection of

neighbors followed by a backward elimination regardless of which is a parent and which is a child.

In either phase, the algorithm tests for independence by conditioning on all subsets of recognized

neighbors. In addition, a post-processing step is performed in which edges are deleted if the de-

pendence between two nodes does not appear to be significant from both sides simultaneously. The

extended version of the algorithm, MaxMin hill climbing (MMHC), is a hybrid algorithm that uses a

score-based search constrained by the recovered skeleton to recover the CPDAG of the equivalence

class.

5. Difficulties when Learning from Small Sample Data

Using independence testing statistics to learn a BN from small sample data gives rise to a number

of issues that can deteriorate the accuracy of both the recovery of the skeleton and the orientation

of the edges. In this paper, we will focus on the PC and the MaxMin algorithms as case studies.

We note that these issues are a consequence of sampling and do not contradict that these algorithms

were proven to recover the correct network in the asymptotic limit.

5.1 Unused Conditional Independence Testing Information

In local constraint-based learning algorithms, an edge Exy is usually excluded from the skeleton

if either node, x or y, finds at least one subset of their neighboring variables to induce complete

conditional independence between x and y. This approach is analogous to searching for two subsets

of variables Zx ⊆CPx and Zy ⊆CPy that induce conditional independence between x and y with the

highest statistical confidence based on the observational data. If the maximum of the confidence

about conditional independence on either Zx or Zy is found to be greater than a threshold α, Exy gets

excluded from the skeleton and included otherwise. Although this approach is sufficient to recover

the correct skeleton in the infinite sample case, its use in learning from limited sample data ignores

information about how probable we are to be correct in rejecting the conditional independence

hypothesis with the lower confidence. For example, when an edge Exy is being evaluated using two

tests of conditional independence with p-values of 0.04 and 0.03, we are more likely to be incorrect

to include Exy in the skeleton than if the p-values of the two tests were 0.04 and 0.01. Though we

are equally likely to be correct in rejecting the first null hypothesis of conditional independence

in both cases, we are more likely to be correct in rejecting the second conditional independence

hypothesis in the second case. Therefore, to improve the accuracy of constraint-based learning,

candidate edges should be ranked based on a joint confidence criterion that combines the outcome of

conditional independence tests at both sides of the edge simultaneously as complementary sources

of information.
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5.2 Increased Type II Error in Dense Regions of the Graph: P(re ject Exy|trueExy)

The type II error in this context refers to the main null hypothesis that the edge does not exist

(H̄0 : Exy /∈ Skeleton). In constraint based learning, an edge Exy is typically rejected if at least one

conditional independence hypothesis gets accepted when conditioning on all subsets of neighbors

(CPx and CPy). However, as the number of recovered connections to a certain node x increases, the

probability of incorrectly inferring conditional independence between x and other variables tends to

increase. There are two reasons for this behavior:

1. Multiple Testing: In order to recover a correct edge Exy, the number of conditional indepen-

dence tests that must be correctly rejected grows fast with the number of current neighbors

(CPx or CPy). However, due to limited training samples, the probability of incorrectly ac-

cepting an individual independence hypothesis is greater than zero. Therefore, the chance of

rejecting a correct edge increases as the number of independence tests increases (Tsamardinos

and Brown, 2008).

2. Vanishing Dependence Coefficients: Conditioning on a larger set of parent and/or child vari-

ables of a variable x can, in many cases, lead to smaller dependence coefficients with other

parent and child variables (see supplementary material for a poof of multiple cases). For

example, conditioning on a larger set of child variables of x can result in smaller partial corre-

lations with its parent or other child variables. This in turn increases the chance of incorrectly

deciding that the true partial correlation is zero and hence incorrectly rejecting the edge when

learning from small sample data.

The increased type II error is a consequence of the fact that connectivity density varies across

the network where some nodes are connected to more neighbors than others. Therefore, a fixed

threshold for accepting or rejecting the individual null hypothesis of conditional independence does

not take this into account.

5.3 Conflicting Results in the Recovery of the CPDAG

The constraint-based method for identifying the direction of BN edges relies on the identification

of v-structures based on the concept of separation sets (Meek, 1995; Spirtes et al., 2001). Using

this method, it is possible to recover two or more conflicting v-structures (i.e., x→ w← y and

w→ y← u). The PC algorithm which is the most widely used constraint-based CPDAG recov-

ery algorithm does not offer any resolution for such conflicts. Also, it was not until recently that

an algorithm, called Edge-Opt (Fast, 2010), was proposed to resolve conflicting CPDAG results.

Edge-Opt resolves conflicts by performing a heuristic search for a DAG that maximizes the number

of satisfied d-separation constraints as implied by the observed data in addition to performing a

tie-breaking based on a score criterion. However, Edge-Opt considers all d-separation constraints

equally significant which, for limited sample data, does not take into account that marginal and

conditional independences are inferred from the data with different confidence levels.

In this paper, we propose a fundamentally different approach than Edge-Opt, where we take

advantage of the confidences at which the constraints are inferred to rank v-structures and to re-

solve conflicts. The proposed approach, in addition to being easy to implement, does not require a

heuristic search or any scoring criterion of the global network.

1569



MAHDI AND MEZEY

6. Methods: Light Mutual Min Algorithm (LMM)

In the proposed algorithm, we attempt to address the above issues related to skeleton recovery

using two main techniques. First, candidate edges are ranked using a new measure that combines

independence tests when conditioning on all subsets of neighboring variables of the first and second

node simultaneously. The proposed ranking criterion is an estimate of the joint conditional posterior

probability that the dependence between the corresponding two variables cannot be explained away

by subsets of neighboring variables of either the first or the second variable. Second, to ease the

multiple testing problem, a new method is presented to relax independence constraints in dense

areas of the graph. Moreover, to address the conflicting results issue in orienting edges, we propose

a new criterion to rank all candidate v-structures. This ranking offers a method to simultaneously

identify v-structures and resolve conflicts. All methods presented are illustrated for the multivariate

Gaussian case. However, the same approach can also be extended to other cases with necessary

modifications.

6.1 Joint Criterion of Conditional Dependence for All Conditioning Sets

In the multivariate Gaussian case, two variables i and j are considered independent when condition-

ing on the set Z\i, j if and only if they have a zero partial correlation (ρi j|Z = 0⇔ i ⊥⊥ j|Z). Since

the true partial correlation is unknown, a statistical test is typically used to test whether the sample

partial correlation ρ̂i j|Z is significant or not (Neapolitan, 2004). In constraint-based learning, an

edge Ei j is rejected from the graph if and only if at least one independence test is accepted when

conditioning on all subsets of the neighbor sets CPi or CPj separately. In contrast, in our method,

we suggest using a joint dependence criterion that combines independence tests from both sides of

an edge simultaneously. To do so, we first follow the approach of Schäfer and Strimmer (2005) to

compute an estimate of the posterior probability that the true partial correlation is not zero when

given the sample partial correlation ρ̂i j|Z .

From Hotelling (1953), when the true partial correlation is zero (H0 : ρ = 0), the sample partial

correlation has the following null distribution:

f0(ρ) = (1−ρ2)(κ−3)/2 Γ(κ/2)

π1/2Γ [(κ−1)/2]
. (1)

In (1), Γ is a gamma function with κ degrees of freedom, which in this case should be set to

(N − |Z| − 1) where N is the number of samples and |Z| is the size of the conditioning set. In

contrast, for the alternative hypothesis (HA : ρ 6= 0), ρ can have any value in the range [-1,1], and

unless we possess prior information about its distribution, for simplicity, we assume it follows a

uniform distribution ( fA(ρ) = 0.5, ∀ρ ∈ [−1,1] and 0 otherwise).

Using the sample partial correlation and the distributions of ρ under both the null and the al-

ternative hypothesis, the posterior probability of the true partial correlation being non-zero can be

computed as:

P(ρi j|Z 6= 0 | ρ̂i j|Z) =
πA× fA(ρ̂i j|Z)

πA× fA(ρ̂i j|Z)+π0× f0(ρ̂i j|Z)
. (2)

In (2), π0 and πA are the prior probabilities of the null and the alternative hypothesis respectively

where π0+πA = 1. although these priors are generally not known a priori, they can be approximated

by the user or empirically estimated using likelihood maximization (see Section 6.1.1 for details).
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Assuming the faithfulness property, when given the correct neighbor set of a variable i (CP∗i ),

the dependence of i on another variable j, with a true neighbor set (CP∗j ) that is neither a child

nor a parent of i, can sufficiently be explained away by at least one subset of either CP∗i or CP∗j .

Therefore, when learning from limited observation data D and CPi is our current best estimate of

the neighbor set of i, an estimate of a one-sided conditional posterior probability that the edge Ei j is

part of the correct graph can be computed as follows:

P(Ei j|D)
[CPi]

= min
Z⊆CPi, j/∈Z

P(ρi j|Z 6= 0 | ρ̂i j|Z). (3)

Similarly, given the estimated neighbor set of j (CPj), one can also compute the one-sided

conditional posterior P(Ei j|D)[CPj ]
. Here, we refer to P(Ei j|D)[CPi]

as one-sided because it ignores the

information about independence tests when conditioning on subsets of the neighbor set of the other

variable. We also call it conditional because we restrict the conditioning tests to subsets of CPi as if

it contains all child and parent variables of i.

In order to take advantage of the mutual dependence between a parent and a child variable and

the asymptotic property that this dependence cannot be explained away by any set of other vari-

ables, in the proposed approach, we rank edges using an estimate of the joint conditional posterior

probability that none of the subsets of either of the two neighbor sets can make the two variables

conditionally independent as follows:

P(Ei j|D)
[CPi,CPj ]

= P(Ei j|D)
[CPi]
×P(Ei j|D)

[CPj ]
. (4)

Equation (4) can be interpreted as an estimate of the joint conditional posterior probability that

the minimal partial correlations from conditioning on subsets of neighboring variables of i and j

separately are both significant. In Section A of the Appendix, ranking edges using Equation (4) is

shown to be sufficient for recovering the correct skeleton in the asymptotic limit. For the rest of this

paper, we use the acronyms one-sided CPPD and joint CPPD to refer to the quantities measured

by Equations (3) and (4) respectively, where CPPD is short for conditional posterior probability of

dependence (for all conditioning sets) between the two corresponding variables.

What distinguishes ranking edges using Equation (4) is that it combines the two one-sided CP-

PDs to make one decision about each edge. In contrast, other constraint-based methods such as

the PC and MaxMin algorithms reject the edge if a single subset of either CPi or CPj renders i and

j conditionally independent. This is equivalent to ranking edges using the minimum of the two

one-sided conditional posteriors in the right hand side of Equation (4) and ignoring how larger than

the minimum the other one-sided conditional posterior was in comparison. While either the mini-

mum or the product can work perfectly when given a very large number of samples, combining two

sources of information about the edge as in Equation (4) is anticipated to improve the estimation

of the posterior that the edge is part of the correct graph in limited sample problems. In this work,

we empirically compare the two ranking criterion and show that the proposed criterion provides a

consistent and significant improvement in the accuracy of skeleton recovery.

However, we should note that, for simplification, the factorization in the right hand side in (4)

does ignore a possible correlation between the minimal partial correlations from both sides of the

edge and it also ignores the possibility that CPi and CPj might be overlapping. In Section B of

the Appendix, we elaborate on the effect of overlapping neighbor sets on ranking edges and use

examples to illustrate why the overlap of neighbor sets is not likely to have a significant negative

effect on the accuracy of ranking edges.
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Though all methods presented in this paper are restricted to the multivariate normal case, the

proposed ranking criterion (Equation 4) can be extended to incorporate other types of independence

testing statistics. For example, the method proposed by Margaritis and Thrun (2001) for comput-

ing a posterior of conditional independence for the non-linear case, based on multi-resolution dis-

cretization, can be used in Equation (2) to compute the posterior of conditional dependence. Other

conditional independence testing methods (i.e., G2 statistic, Neapolitan, 2004) can also be used

by incorporating the correct null and alternative distributions. These extensions, however, require

further research and empirical analysis that goes beyond the scope of the current work.

6.1.1 ESTIMATING PRIORS

Although the priors π0 and πA in Equation (2) are not known a priori, one can anticipate that BN

learning is typically applied to sparse networks (π0 >> πA). In addition, likelihood maximization

can be used to empirically estimate these priors. For example, in the case of zero order partial

correlations (conditioning on the empty set: /0), πA can be selected to maximize the log of the

likelihood of the sample partial correlations generated from a mixture of the null and the alternative

distributions as follows:

π̂A = arg max
0<πA<1

log∏
i, j

[πA× fA(ρ̂i j)+(1−πA)× f0(ρ̂i j)] . (5)

Although πA and π0 are expected to vary between the zero order and higher order partial cor-

relations, the π̂A estimated in (5) can be considered as an upper bound for the alternative prior for

the purpose of computing Equation (2). This is because as we take the least significant of all partial

correlations when conditioning on more than one set, including the empty set, dependence becomes

more likely to be explained away. Therefore, in all experiments reported in this paper, as a heuristic

and for simplicity, using the π̂A estimated in (5), we set πA and π0 in Equation (2) to π̂A/2 and

(1− π̂A/2) respectively for all partial correlations. To maximize (5), we used a line search where πA

was restricted to [0.001, 0.2].

6.2 Adaptive Reduction of Independence Testing

While in theory, a locally adaptive threshold can resolve the increased type II error problem de-

scribed in Section 5.2, estimating an accurately variable threshold is a nontrivial problem. As an

alternative, we employ a heuristic procedure to relax independence testing across the network, such

that dense regions in the graph get the most relaxation.

When inferring a skeleton from small sample data, pairs of nodes are expected to show asym-

metric one-sided CPPD (Equation 3). This is because every node in the graph has its own neighbor

set, and parameter estimation from small sample data is not perfect. In addition, due to the multi-

ple testing problem, nodes with many recognized neighbors will tend to show smaller CPPD with

other variables. The proposed approach takes advantage of this asymmetry to identify which node

of every pair to be connected might be suffering from multiple testing. Afterward, candidate edges

connecting to the identified node become candidates for relaxation of constraints. This relaxation

is performed whenever a new edge Ei j is added to the skeleton by selectively updating the neighbor

sets of i and j using the following rules:

1572



SUB-LOCAL LEARNING OF BN USING A JOINT DEPENDENCE CRITERION

1. Both neighbor sets of i and j are updated ( j ∈CPi, i ∈CPj) if the one-sided CPPD between

i and j is symmetric or almost symmetric (|P(Ei j|D)[CPi]
−P(Ei j|D)[CPj ]

| < ω, for small and

constant ω ∈ (0,1]).

2. Only the neighbor set of i is updated ( j ∈ CPi, i /∈ CPj) if i has the higher one-sided CPPD

(P(Ei j|D)[CPi]
> P(Ei j|D)[CPj ]

+ω).

3. Only the neighbor set of j is updated ( j /∈CPi, i ∈CPj) if j has the higher one-sided CPPD

(P(Ei j|D)[CPj ]
> P(Ei j|D)[CPi]

+ω).

In this paper, when a node i is added to the neighbor set of a node j, j is said to be aware of the

connection Ei j. The process of occasionally making only one of a connected pair of nodes aware of

a recovered edge will result in a reduction in the number of tests used to evaluate edges connecting

to the other node.

In the given rules, ω is a threshold to decide whether dependence is significantly asymmetric

between two nodes. In the limited sample case, when ω= 1, the selective reduction of independence

testing will not be performed, whereas when ω is set to a small positive value (ω ∈ (0,1)), the

reduction of independence testing will be applied whenever the difference of the one-sided CPPD

(Equation 3) is greater than ω. Though any value of ω in the range (0,1] can be used, in this paper,

we limit the comparison to two extreme cases (ω = 1 or 10−6). Also, in the Appendix, we provide a

proof that the proposed algorithm recovers the correct skeleton in the asymptotic limit for all ω > 0.

Note that our approach relies mainly on selective reduction of independence testing to mitigate

the effect of multiple testing. The proposed approach can also be integrated with other heuristics

to control for multiple testing. For example, the false discovery rate control methods proposed by

Tsamardinos and Brown (2008) or Li and Wang (2009) can potentially be integrated in Equation (3)

for even further inference accuracy. This integration however is beyond the scope of the current

work.

6.2.1 MOTIVATION FOR THE SELECTIVE REDUCTION OF INDEPENDENCE TESTING

In the limited sample case, the proposed method of selectively updating neighbor sets serves as

an adaptive reduction/relaxation of the independence testing where highly connected nodes in the

graph get the most relaxation due to their rapidly growing independence from other variables as a

result of the increased type II error. As a consequence of this relaxation, the set of neighbors used

in conditional independence testing remains small and the multiple testing issue is less likely to

contribute to the rejection of true edges. Furthermore, the smaller neighbor sets lead to a dramatic

decrease in the number of conditional independence tests and thus much faster learning.

Although making a node not aware of some of its neighbors might enable it to accept a new edge

without taking into consideration all its neighbors, leading to a possible false positive identification,

this is not expected to be a common behavior due to the following reasons:

1. Due to ranking edges by the product of the one-sided CPPDs from both sides of an edge, for

an edge to be incorrectly selected by the algorithm, the dependence has to appear incorrectly

significant from both sides simultaneously.

2. Assigning information about edges to the nodes that show higher one-sided CPPD serves to

assign neighbor sets of minimal size in a way that provides a maximal mutual information
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with the nodes to which they are assigned. For example, if in a new edge Ei j, i shows higher

one-sided CPPD than j (P(Ei j|D)[CPi]
> P(Ei j|D)[CPj ]

+ω), this means the set CPj contains

variables that partially contain the information that node i provides about j. Therefore, by

exclusively assigning the information about the edge to node i, less information is lost than

if the information about the edge was exclusively assigned to node j. Also, since node j has

low one-sided CPPD on i, it is less likely that node i is needed to block the dependence of j

on non-true neighbors.

In addition, as the number of training samples increases, fewer pairs of variables will show

asymmetric dependence leading to less relaxation of independence testing. As a result, in the case

of a large number of training samples, every node will become aware of all of its neighbors, and

hence the algorithm still retains its correctness in recovering the true skeleton in the asymptotic limit

(see Appendix for proof). Note that, this approach is heuristic and the algorithm behavior will vary

depending on the number of observational samples and the local density of edges in the graph. Sec-

tion 6.3.1 gives an example that illustrates the behavior of the proposed relaxation of independence

testing during skeleton recovery. Moreover, the second part of the supplementary material gives

further illustrations with further discussion of the motivation for the proposed approach.

6.3 LMM Algorithm for Skeleton Recovery

The simplified version of LMM (Algorithm 1) has two major phases: forward selection and back-

ward elimination. In the forward selection, the algorithm incrementally adds new edges with the

highest joint CPPD (Equation 4) until a certain number of edges are added or a threshold is reached.

In the backward elimination phase, the algorithm incrementally eliminates edges with the least joint

CPPD. As edges are added to the skeleton, sets of neighbors are updated using the rules stated in

Section 6.2.

As the forward selection phase of LMM proceeds, the joint CPPD (Equation 4) along a previ-

ously recovered edge Ei j might become less significant as more edges are added due to the recovery

of new neighbors, such as common parent variables that explain the observed dependence between

i and j. Therefore, to improve the efficiency of the algorithm (Aliferis et al., 2010), the recovered

edge Ei j with the least joint CPPD becomes a candidate for early deletion. Also, as the network

grows in the first phase, the node with the higher one-sided CPPD among a pair of connected nodes

might change. For example, when an edge Ei j is first added, i has a higher one-sided CPPD on j

and hence only the neighbor set of i is updated to include j. However, as more edges are added

that connect to i, j might become the node with the higher one-sided CPPD and hence, j should be

made aware of the edge (CPj←CPj

⋃
i). To address these issues, every three iterations of forward

selection, we perform the following three operations:

1. OPT1: Delete the edge Ei j with the least joint CPPD if it is less than the joint CPPD of any

yet unrecovered edge.

2. OPT2: Set (CPj ←CPj ∪ i) if Ei j is the recovered edge with the highest joint CPPD where j

is more or almost equally dependent on i (P(Ei j|D)[CPj ]
> P(Ei j|D)[CPi]

−ω) but it is not aware

of the edge (i /∈CPj).

3. OPT3: Set (CPj ←CPj− i) if Ei j is the recovered edge with the least joint CPPD where j is

less dependent on i (P(Ei j|D)[CPj ]
< P(Ei j|D)[CPi]

−ω) but it is aware of the edge (i ∈CPj).
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Algorithm 1 : LMM Simplified(D, ω, γ, [MinSize], [MaxSize])

Input: Data D, Relaxation Parameter ω ∈ (0,1], Joint CPPD Threshold γ ∈ (0,1]
Input: [Optional]: Maximum # of Edges to Add in Forward Selection: MaxSize

Input: [Optional]: Minimum # of Edges to Leave in Backward Elimination: MinSize

Output: Skeleton: ĜS

1: ĜS← /0 // /0 is the empty set

2: CPi← /0,∀i
%Phase I:Forward Selection

3: repeat

4: Ei j← arg max
Exy /∈ĜS

P(Exy|D)[CPx,CPy]

5: addEdge(i, j)
6: until |ĜS|= MaxSize or max

Exy /∈ĜS

P(Exy|D)[CPx,CPy] < γ

%Phase II:Backward Elimination

7: repeat

8: Ei j← arg min
Exy∈ĜS

P(Exy|D)[CPx,CPy]

9: deleteEdge(i, j)
10: until |ĜS|= MinSize or min

Exy∈ĜS

P(Exy|D)[CPx ,CPy] > γ

11: return ĜS

Procedure addEdge(i, j)

12: ĜS← ĜS∪Ei j

13: if P(Ei j|D)[CPi]
> P(Ei j|D)[CPj ]

−ω then

14: CPi←CPi∪ j

15: end if

16: if P(Ei j|D)[CPj ]
> P(Ei j|D)[CPi]

−ω then

17: CPj←CPj ∪ i

18: end if

End Procedure

Procedure deleteEdge(i, j)

19: ĜS← ĜS−Ei j

20: CPi←CPi− j

21: CPj←CPj− i

End Procedure

Note that the OPT1 operation tries to ensure that at every stage of the forward selection, the

recovered edges are the edges that thus far showed the most significant mutual dependence that has

not yet been explained away by any of the recovered relations. On the other hand, OPT2 and OPT3

serve to ensure that the selective reduction of independence testing complies with the rules stated in

Section 6.2. The selection of the edge with the highest joint CPPD in OPT2 and the edge with the

least joint CPPD in OPT3 is consistent with creating neighbor sets of maximum mutual information
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with the nodes to which they are assigned. Algorithm 2 details the changes to the forward selection

of the simplified LMM (Algorithm 1: Lines 5-6).

Algorithm 2 : LMM(D, ω, γ)

% Update Algorithm 1 by adding the following lines between Lines 5 and 6.

5: ....

if iterationNumber is multiple of 3 then

% OPT1

Ei j← arg min
Exy∈ĜS

P(Exy | D)[CPx ,CPy]

if P(Ei j | D)[CPi ,CPj ]
< max

Exy /∈ĜS

P(Exy | D)[CPx ,CPy] then

deleteEdge(i, j)

end if

% OPT2

EQ←{Ei j : Ei j ∈ ĜS, i /∈CPj, j ∈CPi, P(Ei j | D)[CPj ]
> P(Ei j | D)[CPi]

−ω}
if EQ 6= /0 then

Ei j← arg max
Exy∈EQ

P(Exy | D)[CPy]

CPj←CPj ∪ i

end if

% OPT3

EQ←{Ei j : Ei j ∈ ĜS, i ∈CPj, j ∈CPi, P(Ei j | D)[CPj ]
< P(Ei j | D)[CPi]

−ω}
if EQ 6= /0 then

Ei j← arg min
Exy∈EQ

P(Exy | D)[CPy]

CPj←CPj− i

end if

end if

6: ....

Note, LMM algorithm is presented here in high level language. Details on how we implemented

and optimized LMM are presented in the supplementary material and also can be seen in the source

code which we are making available with this publication. In the case of applying OPT1-3, to avoid

closed loops of adding and deleting the same edges or updating the same sets of neighbors, in our

implementation, edges added in the last ten iterations are not considered for either of OPT1, OPT2,

or OPT3 operations.

6.3.1 SIMULATED EXAMPLE

To illustrate the behavior of LMM, we simulated the network in Figure 1, and generated 1,000

samples as described in Section 7.1 below. We used a relatively large number of observations to

ease the replication of our results and to test whether or how well LMM can recover the correct

network given the proposed method of reducing independence testing when given a large set of

samples.

Figure 2 (a) shows a network of 13 edges recovered by LMM forward selection. A solid connec-

tion point (circle) indicates that the node is aware of the connection. For example, in Figure 2 (a),

node F is connected to all of H, K, and J, but it is only aware of its neighbor J: CPF = {J}. Such
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Figure 1: A simulated network of 19 nodes and 20 edges

a result is expected, since once a node starts conditioning on child variables it can develop smaller

partial correlations with its parent variables (see Supplement). On the other hand, node J has only

one parent and therefore, it will always be aware of it as a neighbor and hence its dependence on

grandparent variables (nodes E, G, and H) or sibling variables (node K) will always be successfully

blocked.

Figure 2 (b) shows a network of 25 edges recovered by continuing the forward selection for the

same network and the same run of LMM. False edges are represented by red dotted lines. In this

case, although the resulting connectivity information is not complete (distributed), it is sufficient to

block candidate false edges. For example, all child variables of node O are aware of O as a neighbor

and therefore, their mutual dependence is blocked (e.g., P(EQR|D)[CPQ]
∼= 0). On the other hand,

node O is only aware of three of its child variables and that does not have any effect of increasing

the chances of recovering false edges among its child variables. Also, note that all the false edges

recovered in Figure 2 (b) were only selected due to forcing LMM to recover more than 20 edges

and the dependence along these edges is already blocked (e.g., P(EJG|D)[CPJ ]
∼= 0) and they will be

eliminated in the backward elimination phase as shown in Figure 2 (c).

The sub-network of node O and its child variables in Figure 2 is a good example of why LMM

can outperform other algorithms such as the PC or MaxMin in limited sample problems. For exam-

ple, in PC algorithm, to correctly recover the edge EON , all independence tests of conditioning on all

subsets of the other 5 neighbors must be rejected while in LMM, node O was aware of three neigh-

bors only and therefore the chances of rejecting the edge due to multiple testing was reduced without

increasing the risk of false positive edges among the child variables of O. However, this is still a

heuristic approach, and it is possible that in more complex examples the dependence along a false

edge is only partially blocked (see the supplementary material for more examples and illustrations).

6.3.2 RANKING OF SKELETON EDGES

The LMM algorithm for skeleton recovery as given in Algorithm 1 can be used to recover skeletons

in any of the following three approaches:

1. By using a threshold value (γ∈ (0,1]) for the joint CPPD to decide which edges to be accepted

or rejected.

2. By specifying the number of edges to be added in the forward selection and the number of

edges to remain after backward elimination (MaxSize > MinSize > 0, and γ = 0).

3. By allowing the algorithm to add many edges in the forward selection (large MaxSize, and

γ = 0) and letting the backward elimination eliminate all of them one at a time (MinSize = 0).
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Figure 2: LMM output during forward selection and backward elimination of the same algorithm

run at iterations where a) 13 edges have been added in forward selection, b) 25 edges

have been added in forward selection, and c) 20 edges have remained in the skeleton

after backward elimination has started. Red dotted lines represent false edges. A solid

connection point (filled circle) at the end of an edge indicates the node is aware of its

neighbor at the other side of the edge.

The order at which edges are deleted in the backward elimination is then used to rank edges

where the last deleted edges become the most significant.

Using a threshold for the joint CPPD (Approach 1) makes running LMM similar to running the

PC and MaxMin algorithms where a threshold for independence testing is also needed. However,

providing the optimal value for any of these thresholds is not trivial for users in limited sample

problems. Running LMM by specifying the number of edges to be added and deleted (Approach

2) can be an ideal alternative in cases where the users have a rough estimate of the correct number

of edges. For example, if the user thinks the correct network contains about a 1,000 edges, the

user can set MinSize to 1,000 and MaxSize to a slightly larger number (e.g., 1,200). Nonetheless,

using LMM to provide a rank of edges (Approach 3) instead of recovering a single skeleton can be

more useful, in that, it relieves users from providing a threshold or guessing the number of edges

ahead of time. In addition, the rank of edges has a simple interpretation, where the top edges have

the highest confidence of being correct while the later edges have less confidence of being correct.

The justification for this ranking procedure is that at every iteration of the backward elimination,
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the edge with the least joint CPPD is deleted, and thus, the remaining edges are considered to have

higher evidence of direct dependence (higher joint CPPD) and are thus more likely to be correct.

To our knowledge, this flexibility property of this last approach has no match in the algorithmic

procedure of either the PC or the MaxMin algorithms where one needs to re-run the algorithm many

times using different thresholds for independence testing to be able to rank edges. In addition, our

approach can be used as a practical alternative to re-sampling and model averaging methods that are

typically used to rank edges (Neapolitan, 2004). However, we should note that, ranking skeleton

edges is not new to BN learning. For example, Tsamardinos and Brown (2008) ranked edges based

on their p-values to control for false discovery rate in skeleton recovery. A similar approach for

ranking edges was also proposed by Armen (2011).

In all experiments reported, the skeletons produced by LMM were generated using the proposed

ranking procedure (Approach 3). The only exception of this configuration was the experiments of

computational complexity comparison where we used a threshold parameter (Approach 1: γ∈ (0,1])
for the joint CPPD in order to make the computational complexity comparison as fair as possible.

Also, note that, one can also use a hybrid approach by using a non-zero γ in Approaches 2 and 3

above. This later case, however, is not used in any of the presented empirical results.

6.4 Complexity Analysis of Skeleton Recovery

The computational complexity of constraint-based methods is a measure of the number of inde-

pendence tests needed to recover the skeleton. However, approximating the exact number of tests

needed to execute LMM or other algorithms is a non-trivial problem. Alternatively and similar to

other authors (Kalisch and Bühlmann, 2007; Tsamardinos et al., 2006), we use the worst case as an

upper bound on the expected complexity.

In the worst case, the three algorithms, PC, MaxMin, and LMM, have a computational complex-

ity of O(p2×2q) where p is the number of nodes and q is the maximum size of all neighbor sets in

the recovered network (q = maxi |CPi|). This is because the worst case assumes all nodes have the

same maximum connectivity, and therefore we need to perform O(p2× 2q) independence tests to

evaluate candidate edges. However, when using LMM with limited sample data, the proposed adap-

tive reduction method of independence testing discussed in Section 6.2 (Algorithm 1: Lines 12-18)

forces the algorithm to avoid using some neighbors in conditional independence tests. Therefore,

although the node with the maximum connectivity is connected to q edges in the true DAG, dur-

ing the skeleton recovery, it will only be aware of a fraction of them, leading to a reduced number

of independence tests (i.e., O(p2× 2q/δ)s.t.δ ≥ 1). Unfortunately, estimating this fraction before

running the algorithm is not possible. Therefore, in this paper, we mainly rely on the empirical

evaluation to compare the time complexity of LMM to the other two algorithms.

One of the popular techniques to speed constraint-based learning is by limiting the size of the

conditioning sets. This method can reduce computational complexity and it can be used with the PC,

MaxMin or LMM algorithms. In the supplementary material, we elaborate on how we implemented

LMM and on the optimization techniques we used to avoid redundant computations while making

the search for the next edge to add or delete computationally efficient.

6.5 Extending the Skeleton to the Equivalence Class

Learning a directed graph from observational data is typically restricted to learning the completed

partially directed acyclic graph (CPDAG). This restriction is motivated by the equivalence nature
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of some Bayesian networks, in that, multiple networks with partially different orientations of edges

can produce the same observational data. As a consequence, learning the complete directed graph

from observational data alone can be impossible in many cases (Meek, 1995; Spirtes et al., 2001).

Once a skeleton is recovered, different approaches can be used to extend it to a CPDAG. Exam-

ples of these methods are the score-based constrained hill climbing search algorithm (Tsamardinos

et al., 2006) and the constraint-based approaches such as the PC algorithm (Meek, 1995; Spirtes

et al., 2001). We stress that our contribution in recovering the skeleton can be used with any other

algorithm to recover the CPDAG. However, in this work, we focus on constraint-based learning due

to its easy implementation and its computational scalability. In addition, we improve upon the clas-

sical constraint-based inference by presenting a new method for resolving conflicting v-structures.

Recovering CPDAGs using constraint-based inference relies on the recovery of the v-structures

(see definitions) which are proven to be common among all DAGs of the same equivalence class.

From properties of v-structure relations (see Lemma 13 below), a common child variable w in a

v-structure relation (x→ w← y) induces a conditional dependence between the parent variables x

and y. Moreover, since x and y are not adjacent in the skeleton, w cannot belong to any set Z\x,y that

makes x and y conditionally independent. This property is the basic idea in constraint-based methods

(Spirtes et al., 2001). However, this approach can produce inconsistent results. For example, in a

case of limited training samples, it is possible to recover multiple conflicting v-structures.

To improve the accuracy of constraint-based inference of CPDAG, we present a new approach

for ranking v-structures that can be used to resolve conflicts. The proposed method is derived from

the following Lemma (see Neapolitan, 2004, Chapter 2):

Lemma 13 Suppose we have a DAG G = (V,E) and an uncoupled meeting x−w− y . Then the

following are equivalent:

1. x−w− y is a head-to-head meeting: x→ w← y.

2. There exists a set not containing w that d-separates x and y.

3. All sets containing w do not d-separate x and y.

Based on Lemma 13 and using the partial correlation method, when x→ w← y is a correct

v-structure and we have data with a large sample size n, then both of the following statements are

correct (see Appendix for proof):

1. lim
n→∞

[
min

Z⊆V\x,y,w
P(ρxy|Z 6= 0 | ρ̂xy|Z)

]
= 0.

2. lim
n→∞

[
min

Z⊆V\x,y,w∈Z
P(ρxy|Z 6= 0 | ρ̂xy|Z)

]
= 1.

Although, Lemma 13 was shown to be accurate in true DAGs (Neapolitan, 2004, Chapter 2), it

might not always hold when learning DAGs in real applications due to the unguaranteed accuracy

of independence testing methods based on small sample data. As a result, it is possible to recover

wrong or conflicting results (e.g., conflicting v-structures: x→ w← y and w→ x← u).

In order to identify v-structures in a given skeleton and to resolve conflicts, in the proposed

approach, we rank all candidate v-structures based on the confidence that the candidate head of
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the v-structure is a common child of the other two variables. To compute this confidence criterion

for every candidate v-structure (x→ w← y), we compute the joint CPPD (Equation 4) between x

and y when w is added to all conditioning sets and the joint CPPD when w is removed from all

the conditioning sets. The difference between the two joint CPPDs is then used as a measure of

the level of the induced dependence between x and y caused by w. If the joint CPPD is found to

increase when w is added to all conditioning sets, w is concluded to be a common child of both x

and y. Also, in a case where two conflicting v-structures get accepted, we take advantage of the

amount of increase in the joint CPPD to perform tie-breaking and ignore the v-structure with the

smaller induced dependence. The justification for this approach follows directly from Lemma 13,

in that, w induces dependence between x and y if and only if it is their common child, and in small

sample problems, it becomes intuitive to use the increase in the joint CPPD when w is added to all

conditioning sets as a measure of the confidence that w is a common child.

Algorithm 3 presents a summary of the proposed constraint-based orientation of a given skele-

ton. Note that, testing for induced dependence from common neighbors does not have the multiple

testing problem. This is because the number of conditioning sets that contain the common neighbor

is equal to the number of conditioning sets that do not contain the common neighbor. Therefore, in

the orientation algorithm, we use the complete set of neighbors found in the skeleton. To distinguish

these types of sets, we use bar notation on top of the set name (i.e., CPx).

The set of additional orientation rules in Algorithm 3 are also used in other constraint based

learning methods of the CPDAG such as the PC and TPDA algorithms. Meek (1995) provides a

detailed discussion of these rules and their correctness for finding the CPDAG.

As mentioned earlier (Section 5.3), to our knowledge, there is only one other algorithm called

Edge-Opt (Fast, 2010) that attempts to resolve conflicts in the constraint-based orientation of BN

edges. Our approach is fundamentally different from Edge-Opt, in that, Edge-Opt considers all

constraints to be equally significant, while our approach takes advantage of the differences in confi-

dence at which the constraints are inferred and uses these differences to rank candidate v-structures.

Moreover, in addition to being easy to implement, our approach does not require any heuristic search

or computing a score criterion of the global network to perform tie-breaking. However, we should

note that our approach does not solve conflicting edges resulting from the additional orientation

rules (R1-4). In our implementation, whenever a conflict is found along a certain edge, it is left

undirected.

In the experimental validation, we were not able to empirically compare our approach to Edge-

Opt because its publicly available implementation does not support the multivariate Gaussian case.

Nonetheless, we compare our implementation to a variant of itself where a random tie-break is

used to resolve conflicting v-structures and show that the proposed tie-breaking method provides a

significant and consistent improvement in the accuracy of CPDAG orientation. We also compare the

proposed approach to the PC and MaxMin hill climbing algorithms. Moreover, in the Appendix, we

provide a complete proof that the proposed approach recovers the correct CPDAG in the asymptotic

limit.

7. Experiments and Comparison

For comparisons, we restrict our experiments to multivariate Gaussian simulated data and the partial

correlation method is used for independence testing (or dependence measurement) in all algorithms.

All PC algorithm results reported are performed using the publicly available PCAlg tool (Kalisch
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Algorithm 3 : LMM EO(GS, D)

Input: Skeleton: GS, Data: D

1: Q← /0 // /0 is the empty set

2: for all 〈x,w,y〉 where Exy /∈ GS and Ewy,Ewx ∈ GS do

3: CDw+(x,w,y)← min
Z⊆CPx,w∈Z

P(ρxy|Z 6= 0 | ρ̂xy|Z)× min
Z⊆CPy,w∈Z

P(ρxy|Z 6= 0 | ρ̂xy|Z)

4: CDw−(x,w,y)← min
Z⊆CPx,w/∈Z

P(ρxy|Z 6= 0 | ρ̂xy|Z)× min
Z⊆CPy,w/∈Z

P(ρxy|Z 6= 0 | ρ̂xy|Z)

5: CD(x,w,y) =CDw+(x,w,y)−CDw−(x,w,y)
6: if CD(x,w,y)> 0 then

7: Q← Q∪< x,w,y >
8: end if

9: end for

10: while Q is not empty do

11: < x,w,y >← arg max
< j,k,l>∈Q

CD( j,k, l)

12: Q← Q−< x,w,y >
13: if the edges x−w and y−w are not oriented then

14: Orient x−w into x→ w

15: Orient y−w into y→ w

16: end if

17: end while

% Apply the Additional Orientation Rules as Follows:

18: repeat

19: Orient i− j into i→ j whenever any of the following is correct:

20: R1: There exists an arrow k→ i s.t. k and j are not adjacent.

21: R2: There exists a directed path from i to j (i.e., i→{}→ j).

22: R3: There exist two chains i− k→ j and i− l→ j.

23: R4: There exist two chains i− k→ l and k→ l→ j s.t. k and l are adjacent.

24: until no more orientations are found

et al., 2010). The original MaxMin algorithm tool (Aliferis et al., 2003) only supports the discrete

data case. We therefore re-implemented the algorithm to use the partial correlation test to recover

the skeleton. For the CPDAG recovery, we used the publicly available toolkit BNlearn (Scutari,

2010) which implements a variant of MaxMin hill climbing that supports the BIC score criterion

for continuous data, which we used for all MMHC reported experiments. Also, in all experiments,

the hill climbing search was performed with a Tabu search with a list of 100 possible solutions

which is the same setting used by the authors of the algorithm (Tsamardinos et al., 2006).

7.1 Simulating Data

For every experiment, the true model is randomly generated (Kalisch and Bühlmann, 2007) as

follows:

1. Fix an ordering of variables.
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2. Fill the adjacency matrix A with zeros.

3. Randomly fill entries in the lower triangle matrix A with ones by independent realizations

of Bernoulli random variables with a success probability s where 0 < s < 1 (s represents the

level of sparseness of the network)

4. Replace each entry with a 1 in the adjacency matrix by independent realizations of a uniform

random variable in the range [−1,−0.1]∪ [0.1,1].

These steps will result in an adjacency matrix A whose entries are either zero or in the range

[-1,-0.1] or [0.1,1]. Afterward, in the corresponding DAG, if Ai j is not zero, then node j is a parent

of node i with a coefficient Ai j. Using this randomization setting, in the case of p variables, the

expected number of neighbors CP∗i for a node i can be estimated as: E(|CP∗i |) = s× (p−1), while

the expected number of all edges can be estimated as: E(|G|) = s× (p− 1)× p/2. Therefore,

the density of the graph is linearly proportional to s. For the rest of this paper, when the simulated

networks are said to contain X edges, this means s was selected so that the expected number of edges

was X . However, the exact number of edges in each network will vary slightly due to randomization.

In our empirical analysis, we have generated a single set of observational samples from every

simulated network. Once the adjacency matrix of the simulated network is fixed, every observational

sample is recursively generated as follows:

X (1) = ε(1) ∼ N(0,σ2
1).

∀i = 2,3...p : X (i) = ε(i)+
i−1

∑
j=1

Ai j×X ( j) ,s.t. ε(i) ∼ N(0,σ2
i ).

where ε(1),ε(2), ....ε(p) are independent random normal variables representing the marginal noise.

In all reported experiments, the variances of these noise variables are randomly sampled from an

inverse gamma distribution: σ2
i ∼ InvGamma(α = 2,β = 1), ∀i.

7.2 Results and Discussion

To evaluate the proposed algorithm we performed multiple experiments with various settings in an

effort to cover a wide variety of possible cases. In every case, we simulated multiple networks

and carried out a semi-exhaustive evaluation such that, all methods are compared at different levels

of recovery where they are used to recover many solutions of varying sizes and the comparison is

illustrated at each level. To finish all the results presented, we used 5 workstations with 8 cores each

with a total computation time of about 4 weeks. Moreover, for computational reasons and due to

the low statistical power when learning from limited sample data, the individual conditioning sets

were restricted not to contain more than four variables for all methods. The only exception was the

performance evaluation experiment based on large sample data where we let the conditioning sets

contain up to six variables.

For comparison, the receiver operating characteristics curve (ROC) is used to evaluate the accu-

racy of skeleton recovery while the true positive rate (TPR) plots (TPR against number of retrieved

edges) are used to evaluate the accuracy of CPDAG inference. Also, in Section C of the Appendix,

we provide additional illustrations of CPDAG inference comparisons using the structural Hamming
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distance (SHD) metric. Every method was used to recover multiple skeletons or CPDAGs of vary-

ing sizes for the same network and the evaluation plots (ROC, TPR, and SHD curves) of every

method were then generated for every single network. For compact presentation, we only present

the average of these evaluation curves for every set of networks in addition to bar plots of specified

cases to demonstrate the variance of inference accuracy among all networks of the same set. In

the case of PC and MaxMin, for every network, each algorithm was run many times with different

thresholds (α = 10−30, 10−10, 10−6, 10−4, 10−3, 0.003, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5). We

also, in some cases, used additional alpha values greater than 0.5 to recover larger numbers of edges.

In contrast, for all experiments except for computational complexity, LMM was run only once for

every network using Approach 3 described in Section 6.3.2. In the forward selection, LMM was

set to add as many edges as 2.5 times the number of nodes (MaxSize = 2.5×numbero f nodes) and

the order at which edges were removed in the backward elimination was used to rank all selected

edges (MinSize = 0). The choice of 2.5 was mainly to ensure that the number of edges added in the

forward selection is large enough to work well for most cases.

7.2.1 SKELETON RECOVERY

In the first set of experiments, we evaluate LMM for recovering skeletons using 900 networks

divided into 9 groups simulated as follows:

1. Fixed number of nodes p = 200.

2. Three levels of connectivity density: ∼100, ∼200, and ∼400 edges.

3. Three levels of number of observations: 30, 100, and 300 samples.

4. For every configuration (same number of edges and same number of observations), a set of

100 different networks were generated with separate observational data for each.

First, to assess the effect of the new joint dependence criterion and the proposed adaptive re-

duction of independence testing, we compared LMM to two variants of itself LMM-1 and LMM-2.

In all experiments presented, LMM was configured to adaptively reduce the independence testing

as described in Section 6.2 by setting ω to very small value (ω = 10−6). In contrast, LMM-1 and

LMM-2 were configured not to use the adaptive reduction of independence testing by setting ω to

1. Also, LMM-1 was set to use the proposed joint CPPD criterion (Equation 4) while LMM-2 was

set to use the minimum of the one-sided CPPDs from both sides (P̂(Ei j | D)[CPi,CPj ]
= min(P(Ei j |

D)[CPi]
, P(Ei j | D)[CPj ]

)) as a mutual dependence criterion which made it the most similar to the PC

and MaxMin algorithms in assessing edges.

Figure 3, shows an averaged plot of the false positive rate (FPR) and the true positive rate (TPR)

of the three algorithms in recovering the skeletons of four sets of the simulated networks where the

number of edges is ∼100 and ∼400 while the number of observations is 30 and 100 samples. In

addition, Figure 4 shows the bar plots of the area under the ROC (auROC) for the three methods

for skeleton recovery of 9 networks sets when the FPR is restricted to [0-0.06]. Note that, because

these are partial ROC curves, the auROC is normalized by the maximum possible auROC which is

0.06.

Based on both Figures 3 and 4, the proposed joint CPPD criterion (LMM and LMM-1) is shown

to consistently improve the accuracy of skeleton recovery as compared to just taking the minimum of
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Figure 3: Average ROC of skeleton recovery of LMM, LMM-1, and LMM-2 when the number

of true edges is ∼100, and ∼400 and the number of observations is: A) 30 and B) 100

samples. X-Axis is the false positive rate (FPR) and Y-Axis is the average true positive

rate (TPR).
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Figure 4: Bar plots of the auROC of skeleton recovery of LMM, LMM-1, and LMM-2 when the

number of true edges is ∼100, ∼200, and ∼400 and the number of observations is: A)

30 B) 100 and C) 300 Samples. X-Axis is the correct number of edges in the true net-

works and Y-Axis is the area under the partial ROC (auROC) where FPR is constrained

to [0,0.06]. The plotted auROC is also normalized by the maximum possible area under

the partial ROC.

the one-sided CPPDs from both sides of an edge (LMM-2). Also, the proposed adaptive reduction of

independence testing (used in LMM only) is shown to improve the accuracy further, especially when

the number of observations is small and the true graph is not sparse. This is consistent with multiple

testing being a problem when learning from small sample data. Multiple testing is also not expected
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to be a significant issue when recovering sparse networks where the variance of connection density

is small. We also compared the performance of LMM to the PC and MaxMin algorithms. Figure 5

shows the average partial ROC of the three algorithms in recovering the skeletons of four network

sets. Note that FPRs greater than 0.035 are ignored because solutions with more than 0.035 FPR are

unlikely to have any practical use and it also is impractical to run the PC and MaxMin algorithms to

recover denser skeletons since the number of required independence tests grows exponentially with

the size of neighborhood.

In addition, we computed the area under the ROC curve where FPR is bounded to [0-0.035] for

every case. Figure 6 shows the bar plots of the auROC for the three methods for the 9 network sets

where the auROC is normalized by the maximum possible auROC, which is 0.035.
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Figure 5: Average ROC of skeleton recovery of LMM, PC, and MaxMin when the number of true

edges is ∼100, and ∼400 and the number of observations is: A) 30 and B) 100 samples.

X-Axis is the false positive rate (FPR) and Y-Axis is the average true positive rate (TPR).

Based on both Figures 5 and 6, LMM consistently outperforms both algorithms in all cases.

Also, similar to first evaluation, the improvement is less significant when the correct graph is gen-

erally sparse (i.e., 100 edges), since multiple testing is not an issue in very sparse graphs. The bar

plots show the improvement to be consistent and not a result of outliers.

7.2.2 COMPUTATIONAL COMPLEXITY OF SKELETON RECOVERY

To experimentally compare the time complexity of the three algorithms (LMM, PC, and MaxMin)

for skeleton recovery, we perform two types of comparisons. The first aims at evaluating the com-

putational complexity when we have a large sample size, where the three algorithms can recover

skeletons with high accuracy. The second comparison aims at evaluating the computational com-

plexity when the sample size is limited.

For the first evaluation, we simulated 9 sets of networks where every set contains 40 different

networks (see Table 1). Afterward, a set of 10,000 observational samples were generated from every

network.
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Figure 6: Bar plots of the auROC of skeleton recovery of LMM, PC, and MaxMin when the number

of true edges is ∼100, ∼200, and ∼400 and the number of observations is: A) 30 B) 100

and C) 300 samples. X-Axis is the correct number of edges in the true networks and

Y-Axis is the area under the partial ROC (auROC) where FPR is constrained to [0,0.035].
The plotted auROC is also normalized by the maximum possible area under the partial

ROC.

In order to compare complexity when the three methods recover highly accurate skeletons,

we performed a search for the optimal parameters that resulted in the least distance between the

recovered skeletons and the true skeletons as measured by structural hamming distance.

In the case of PC and MaxMin, we ran each algorithm to recover every network using different

values for the threshold of the independence tests (α= 10−4,3×10−4,10−3,3×10−3,0.01,0.03,0.1).

Similarly, we ran LMM multiple times using Approach 1 described in Section 6.3.2 with different

thresholds for the CPPD (Algorithm 1:γ = 0.01,0.03,0.1,0.3). Afterward, for every method and

every network set, the threshold that resulted in the most accurate skeletons was chosen. Note that,

here, we define the distance between two skeleton as the number of operations of adding and delet-

ing edges that are needed to transform one skeleton into the other. This distance is a special case of

the structural Hamming distance (SHD) between two PDAGs defined by Tsamardinos et al. (2006).

Table 1 shows the average SHD and time in seconds when each method is used with the optimal

parameters to recover every set of networks. The table, also, shows the standard deviation of both

SHD and time in small font.

Based on Table 1, in terms of accurate recovery, the three algorithms are shown to perform

equally well when given a large number of samples. On the other hand, in terms of computational

time, both MaxMin and LMM outperform the PC algorithm significantly in all cases. However,

LMM seems to be slightly slower than MaxMin especially when the true graph is sparse. It is im-

portant to note that the proposed relaxation in LMM only works when the observational sample size

is small (see Section 6.2). We should also note that, both LMM and MaxMin used in the experi-

ments presented in this section are implemented in Java while the PC algorithm is implemented in

R which is known to be slower than Java. This partially explains why the PC algorithm was the

slowest performing algorithm in this experiment.
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Average SHD Average Time

Nodes Edges PC MaxMin LMM PC MaxMin LMM

100

100 2±1.2 2.4±1.3 2.1±1.3 3.7±0.9 0.3±0.1 0.8±0.3

200 25±9.4 24±1 26±9 32±8 4.2±2.7 3.2±1.1

300 101±22 92±21 95±22 107±20 20±5 18 ±7

300

300 6.6±1.8 5±1.4 3.4±0.7 24±3.6 1±0.3 3.1±1

600 39±3.5 38±11 31±12 121±19 15±4.1 14±4.3

900 188±31 184±24 186±30 917±91 118±13 113±27

1,000

1,000 19±4 30±5.3 15±3.5 254±7 7±0.5 18±0.6

2,000 64±11 64±13 58±12 612±59 53±10 76±14

3,000 295±31 278±34 269±30 3,235±370 995±146 1,210±201

Table 1: Average execution time in seconds and average SHD of each algorithm when recovering

skeletons of BNs of given sizes. Best results for each network set are in bold face. Each

result is presented as mean ± standard deviation.

Nonetheless, the superior computational advantage of MaxMin is only valid when the sample

size is large. As will be shown in the next experiment, the complexity of MaxMin increases fast

when the given sample size is small due to the correction step of asymmetric connectivity being

deferred to the last phase of the algorithm.

In order to compare the computational complexity of the three algorithms when the sample

size is small, we only consider one set of 40 networks of 300 nodes and ∼600 edges each. We

generated 100 observational samples from every network and every algorithm is used to recover

many solutions of different sizes for every network. We also compare to the unrelaxed version of

LMM (LMM-1) where we disable the adaptive reduction of independence testing (Algorithm 1:

ω = 1). The goal here is to test how computational complexity can grow as we attempt to retrieve

various number of edges. Learning BN from small sample data is approximate in nature. While in

many cases users are interested in a solution with the least SHD, in other cases, users may also be

interested in various levels of recall (true positive rate), which can only be achieved by retrieving

various numbers of edges. Here, we compare the four methods (LMM, LMM-1, PC, and MaxMin)

when used to retrieve skeletons of different sizes up to 1.8 times the size of the true skeleton. This

is done by running every method on every network many times using different thresholds for the

independences tests. Figure 7 shows both the average TPR and the average computation time versus

the number of retrieved edges.

Based on Figure 7, LMM retrieves more accurate skeletons in much less time than all other

methods including LMM-1. By taking advantage of adaptive relaxation of constraints, LMM can

ease the multiple testing problem and at the same time reduce the computational complexity. On

the other hand, the MaxMin algorithm computational time grew fast as we tried to retrieve denser

solutions. To understand this behavior, we debugged the code of MaxMin as it recovers the skele-

ton from small sample data and found that this dramatic increase in computation time is due to

the correction of asymmetric connectivity step being deferred to the last phase of the algorithm

(Tsamardinos et al., 2006). MaxMin works by searching for child and parent variables for every

node separately and at the end, for an edge to be selected, both nodes have to appear as neighbors

to each other. However, in the case of small sample data, the asymmetric connectivity seems to
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Figure 7: Average TPR (A) and computation time (B) when using LMM, LMM-1, PC, and MaxMin

to retrieve varying numbers of edges for 40 networks (each composed of 300 nodes and

∼600 edges) based on limited data (100 samples). X-Axis is the number of retrieved

edges normalized by the true number of edges (X = Number of edges in the correct

network). Time-Axis is log-scaled.

be common and a lot of edges are rejected leading to a small number of recovered edges, even

when every node identified a relatively large number of candidate neighbors. Therefore, to retrieve

a larger number of edges, one will need to use a larger α leading to larger neighbor sets in the first

phase and hence many more independence tests. A similar finding about the effect of symmetry

correction on the computational efficiency of MaxMin has also been reported and discussed by Al-

iferis et al. (2010). However, unlike the suggestion made by Aliferis et al. (2010) which eliminates

the symmetry correction step, all variants of LMM presented in this work avoid the deterioration

of computational requirements without sacrificing the asymptotic correctness of the inference by

performing early correction of symmetric connectivity. For example, when considering LMM-1,

once an edge Exy is added or deleted, both neighbor sets CPx and CPy are updated accordingly and

immediately. This early joint update of neighbor sets informs nodes not to condition on false neigh-

bors early on as the algorithm proceeds. This explains why LMM-1 is faster than MaxMin for dense

solutions, although it does not relax independence testing.

We again note that in addition to this low computational cost, the algorithm offers an ease of

use property where users can make the algorithm retrieve a fixed number of edges or a ranked list

of edges (see Section 6.3.2).

7.2.3 CPDAG RECOVERY

To evaluate the extended LMM for CPDAG recovery, we compared it to the PC and MMHC al-

gorithms by using each method to recover multiple CPDAGs of different sizes for every single

network. Afterward, a plot of the true positive rate (TPR) versus the number of retrieved edges is

generated for each network. When the curves are plotted in conjunction with a curve representing

a hypothetical optimal recovery, the plot becomes a compact representation where one can read the
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TPR, false positives (FP), and false negatives (FN) at every point on the curve. In addition, compar-

ing two methods using the curve of TPR versus the number of retrieved edges has the same semantic

as a ROC curve where higher always means better, in that, at a fixed number of retrieved edges (X-

Axis), higher TPR also means lowers FP and FN. This makes it a more informative representation of

results than the structural Hamming distance plot (SHD) used by other authors (Tsamardinos et al.,

2006). In the Appendix, we provide an illustrative example comparing the two metrics and we also

provide the SHD plots for all experiments.

First, we used all algorithms to recover CPDAGs for two sets of 100 networks each. The first

set is simulated so that every network had ∼100 edges while the second set is simulated so that

every network had ∼300 edges. Figure 8 shows the average TPR of the CPDAGs recovered by

LMM EO, LMM EO-1, MMHC, and PC algorithm for each set separately when given the same

number of training samples (100 samples). LMM EO-1, refers to using LMM EO with a random

tie breaking for conflicting v-structures. The figure shows the average TPR of each algorithm at

different levels of recovery (number of retrieved edges) up to 30-60% more edges than the true

number of edges. In the case of using MMHC for recovering network of ∼300 edges (Figure 8:B),

we were not able to get BNLearn to recover CPDAGs with more than ∼10% edges more than the

true CPDAG due to the deletion of edges performed by hill climbing search to maximize the score.
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Figure 8: Average TPR when recovering CPDAGs of networks of 100 nodes and A) ∼100 or B)

∼300 true edges when the number of samples is 100. X-Axis is the number of retrieved

edges (X = Number of edges in the correct network). Y-Axis is the average true positive

rate (TPR).

As illustrated by the comparison of LMM EO and LMM EO-1 in Figure 8, the proposed ap-

proach for resolving conflicting v-structures consistently improves the accuracy of orienting the

edges as compared to random selection among conflicting v-structure. Also LMM is shown to sig-

nificantly outperform the PC algorithm while being competitive to MMHC in this case. To illustrate

the variance of recovery among all recovered networks, Figure 9 shows the bar plots for the TPR

when recovering networks containing as many edges as 0.7, 1.0, and 1.3 times the number of true

edges in each network. Figure 9 is complementary to Figure 8 where the improvement is shown to

be consistent and not a result of outliers.

In the second set of experiments, we used six sets of networks of sizes 100, 500, and 2500

nodes and two different levels of observations: 100 and 300 samples. All networks are simulated so

1590



SUB-LOCAL LEARNING OF BN USING A JOINT DEPENDENCE CRITERION

LMM_EO LMM_EO−1 MMHC PCAlg

(A) True Edges: 100

# of Retrieved Edges

T
P

R

0.7X 1X 1.3X

0
.2

0
.4

0
.6

(B) True Edges: 300

# of Retrieved Edges

0.7X 1X 1.3X

0
.2

0
.3

5
0
.5

Figure 9: TPR of CPDAGs recovery of networks of 100 nodes and A) ∼100 or B) ∼300 edges.

X-Axis is the number of retrieved edges (X = Number of edges in the correct network).

Y-Axis is the true positive rate (TPR).

that the number of edges is two times the number of nodes in every network. Figure 10 shows the

average TPR for every method for the recovery of the CPDAGs of every set while Figure 11 shows

the corresponding bar plots for the TPR when the number of recovered edges is as many as 0.7 and

1.0 times the number of true edges.

Based on Figures 10 and 11, in terms of accurate recovery, LMM scales well for larger networks,

where at the same level of density and number of observations, LMM has almost the same level of

TPR. In addition, LMM has far more accurate recovery than the PC algorithm for different network

sizes. When compared to MMHC, in the 100 nodes case, LMM seems to have comparable accuracy.

However, in the 500 and 2,500 variables cases, LMM is more accurate. The deterioration of MMHC

could be a result of the local minimum problem, in that, global optimization techniques, such as the

Tabu search with hill climbing, become less effective as the search space grows very large and the

solution becomes prone to converging to a bad local minimum.

Finally, to empirically test the correctness of LMM, we used LMM to recover the CPDAGs of

medium size networks (500 nodes) with two different levels of density (500 and 1000 edges) as the

number of observations becomes large. For every setting, 100 different networks were generated.

Figure 12 shows the average TPR when recovering CPDAGs of different sizes at three different

levels of observations (100, 1,000, and 10,000 samples).

Figure 12 shows that the recovered CPDAGs by LMM converge steadily towards the true

CPDAGs as the number of observations grows large. For example, when the number of observa-

tions increased ten-fold, the difference between the recovered CPDAGs of the accurate size (correct

number of edges) and the true CPDAGs decreased about four-fold each time.

8. Conclusion

In this work, we have presented a new constraint-based algorithm, light mutual min (LMM), for

structural learning of Bayesian networks. When the observational data are limited in size, LMM

improves the assessment of candidate skeleton edges by ranking them based on an estimate of the
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Figure 10: Average TPR when recovering CPDAGs of networks of A) 100, B) 500, and C) 2500

nodes with ∼200, ∼1,000, and ∼5,000 true edges respectively, when the number of

samples is 100 (1st row) and 300 (2nd row). X-Axis is the number of retrieved edges

(X = Number of edges in the correct network). Y-Axis is the average true positive rate

(TPR)

joint conditional posterior that none of the neighboring variables at either sides of an edge can render

the considered two variables conditionally independent. This approach is motivated by the asymp-

totic property, under the faithfulness assumption, that a parent and a child variable cannot be found

independent when conditioning on any neighboring variables on either side of the edge. Therefore,

considering conditional independence tests at both sides of the edge simultaneously provides com-

plementary sources of evidence that can improve the assessment of candidate edges. In addition,

to ease the multiple testing problem in recovering dense areas of the skeleton, LMM employs an

adaptive relaxation of independence testing by, selectively, allowing some nodes not to condition

on some of their neighbors. This relaxation is only performed whenever asymmetric evidence of

conditional dependence is found between a pair of connected variables, where the aim is to reduce

the accidental rejection of true edges connecting high degree nodes due to multiple testing. As the

number of observational samples increases, the asymmetric evidence of dependence is expected to

become less common and therefore the relaxation will be applied less often. This property makes

the proposed technique work adaptively depending on the number of observational samples while at

the same time maintains the asymptotic correctness of the algorithm. Moreover, this relaxation re-
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Figure 11: TPR of CPDAGs recovery of networks of size: A) 100, B) 500, and C) 2500 nodes with

∼200, ∼1,000, and ∼5,000 true edges when number of samples is 100 (1st row) and

300 (2nd row). X-Axis is the number of retrieved edges (X = Number of edges in the

correct network). Y-Axis is the true positive rate (TPR).

sults in a significant reduction in the number of independence tests making LMM a computationally

competitive learning tool for high-dimensional graphs and graphs with non-sparse connectivity.

In addition, we proposed a new approach to recover v-structures in a given skeleton based on the

confidence about the dependence induced by the addition of the common neighbor to conditioning

sets. The advantage of this method is the ability to rank candidate v-structures, providing a tool for

resolving conflicts. When LMM is extended to recover the CPDAG of the equivalence class, the

proposed conflict resolution method improved the accuracy of the recovered CPDAGs.

Appendix A. Proof of Correctness

In this section, we provide proofs of correctness of the proposed methods for the recovery of both the

correct skeleton and CPDAG when given a very large number of observational samples (asymptotic

limit). The provided proofs are similar in style and content to the proofs that were given for the

MaxMin (Tsamardinos et al., 2006) and the PC algorithms (Kalisch and Bühlmann, 2007) with

necessary modifications. First, we have to make the following necessary assumptions:
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Figure 12: Average TPR of the recovered CPDAGs as the number of observations grows large when

recovering networks of 500 nodes and A) ∼500 edges, and B) ∼1000 edges. X-Axis is

the number of retrieved edges (X = Number of edges in the correct network). Y-Axis is

the true positive rate (TPR).

A1: The observational samples are realizations of i.i.d random vectors X1,X2, ...Xn with Xi ∈ ℜp

and they are generated from a DAG G = (V,E) with p nodes and a corresponding probability

distribution Pn.

A2: The distribution Pn is multivariate Gaussian and faithful to the DAG G.

A3: The partial correlation ρi j|Z between two variables i and j when conditioned on a set Z is an

indicator of conditional independence under Pn where

ρi j|Z = 0 i f f i⊥⊥ j|Z.

A3 implies that the partial correlation method is an appropriate way to measure conditional

independence from the given data and it is a necessary assumption for any constraint-based

approach that uses this method for independence testing to be asymptotically correct. Based

on A3 and given that the sample partial correlation ρ̂i j|Z is an asymptotically correct estimator

of ρi j|Z (Hotelling, 1953), the following becomes correct:

lim
n→∞
|ρ̂i j|Z|= 0 i f f i⊥⊥ j|Z.

As a result and by substitution in Equation (2), for all positive and non-infinitesimal π0 and πA

where (π0 +πA = 1), the following also becomes correct:

lim
n→∞

P(ρi j|Z 6= 0|ρ̂i j|Z) =

{
0 i f f i⊥⊥ j|Z;

1 otherwise.
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A.1 Correctness of LMM for Skeleton Recovery

The proof of LMM correctness for skeleton recovery relies on the symmetric dependence between

parent and child variables in the asymptotic limit. The proof is given by Lemma 17 which also

depends on Lemmas 14, 15 and 16 .

Lemma 14 If Ei j is a true edge in the skeleton of a DAG G = (V,E), then the one-sided CPPD

P(Ei j | D)[Z] = 1, ∀Z ⊆V\i, j.

Proof From assumption A1, ∄B⊆V\i, j s.t. i⊥⊥ j | B. Based on this fact and based on assumption

A3, then P(ρi j|B 6= 0|ρ̂i j|B) = 1, ∀B⊆ Z and ∀Z ⊆V\i, j. Therefore, by substitution in Equation (3),

if Ei j is part of the correct skeleton then P(Ei j | D)[Z] = 1, ∀Z ⊆V\i, j.

Lemma 15 If GS is the set of all edges in the skeleton of G, and Ĝ
f
S is the set of all edges recovered

in the forward selection phase of LMM(D,ω,γ), then GS ⊆ Ĝ
f
S ,∀γ < 1.

Proof From Lemma 14, ∀Ei j ∈ GS, P(Ei j|D)[Z] = 1, ∀Z ⊆V\i, j. Therefore, by substitution in Equa-

tion (4), the joint CPPD P(Ei j|D)[CPi,CPj ]
= 1, ∀CPi,CPj ⊆V . As a result, the first phase of LMM will

not exit before all edges in GS are recovered and therefore, GS ⊆ Ĝ
f
S .

Lemma 16 If CP∗i is the set of all parent and child variables of node i in the correct skeleton GS,

and CPi is the set of neighbors of node i recovered in the forward selection phase of LMM(D,ω,γ),
then ∀ω > 0, CP∗i ⊆CPi (assuming γ < 1 and ω is not infinitesimal).

Proof From Lemma 15, all Ei j ∈ GS are correctly recovered in the forward selection. Also, from

Lemma 14, P(Ei j | D)[CPi]
= 1, and P(Ei j | D)[CPj ]

= 1, ∀i, j s.t. Ei j ∈ GS, and hence:

lim
n→∞
|P(Ei j | D)[CPi]

−P(Ei j | D)[CPj ]
|< ω , ∀ω > 0.

As a result, lines 14 and 17 of LMM (Algorithm 1) will always get executed whenever a new edges

is added when given a very large number of training samples. Therefore, after the forward selection,

every node will be aware of all its child and parent variables, and thus CP∗i ⊆CPi, ∀i.

Note that Lemma 16 emphasizes the property that the proposed relaxation of independence test-

ing is adaptive, such that as the sample size of the data increases, the asymmetric one-sided CPPD

among pairs of nodes connected in the true DAG occur less often and absent altogether when the

sample size grows very large.

Lemma 17 If GS is the set of all edges in the skeleton of the graph G, and ĜS is the set of all edges

recovered by LMM(D,ω,γ), then GS = ĜS.

Proof From Lemma 15 and 16, after forward selection, all true edges were correctly recovered

(GS ⊆ Ĝ
f
S), and the neighbor set of every node contains all its parent variables (pa(i) ⊆ CPi, ∀i).
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However, it is also expected that the forward selection might have recovered some false edges

E f alse = Ĝ
f
S −GS.

For every edge Ei j ∈ Ĝ
f
S , since the graph is acyclic, then at least one of either i or j is a non-

descendant of the other. From the local Markov property, a variable is independent from all its non-

descendant variables if its parent variables are known. Therefore, ∀ Ei j ∈ E f alse, since j /∈ pa(i) and

i /∈ pa( j), then either P(Ei j|D)[CPi]
= 0 or P(Ei j|D)[CPj ]

= 0 (or both are zero) and by substitution in

Equation (4):

P(Ei j|D)[CPi,CPj ]
= P(Ei j|D)[CPi]

×P(Ei j|D)[CPj ]
= 0, ∀Ei j ∈ E f alse.

On the other hand, if Ei j ∈ Ĝ
f
S is a correct edge, if i is the descendant of j then j is the parent of i

( not a descendant of i). However, i cannot become independent of j since j will always be excluded

from conditioning sets. Also, under the faithfulness property, i and j cannot be made independent

when conditioning on any set of other variables and as a result:

P(Ei j|D)[CPi,CPj ]
= P(Ei j|D)[CPi]

×P(Ei j|D)[CPj ]
= 1, ∀Ei j ∈ GS.

Based on these conclusions, once the backward elimination starts, all false edges will have a joint

CPPD of zero while all true edges will have a joint CPPD of one and therefore all false edges will

be eliminated and thus: GS = ĜS.

A.2 Correctness of LMM Orientation for CPDAG Recovery

Lemma 18 If CPDAG(G) is the complete partially acyclic graph of the equivalence class of the

correct graph G, and Ĝ is the partially acyclic graph recovered by LMM EO, then CPDAG(G) = Ĝ.

Proof From Lemma 17, in the asymptotic limit, LMM will recover the correct skeleton of G:

skeleton(Ĝ) = skeleton(G)

Also, it follows from Lemma 13 (Section 6.5): for every non-adjacent pair x and y with a common

neighbor w, that w induces dependence whenever added to any set Z that makes x and y independent

if and only if w is a common child of both x and y. Therefore,

min
Z⊆CPx,w∈Z

P(ρxy|Z 6= 0 | ρ̂xy|Z)> min
Z⊆CPx,w/∈Z

P(ρxy|Z 6= 0 | ρ̂xy|Z)

and

min
Z⊆CPy,w∈Z

P(ρxy|Z 6= 0 | ρ̂xy|Z)> min
Z⊆CPy,w/∈Z

P(ρxy|Z 6= 0 | ρ̂xy|Z)

if and only if {x,y} ⊆ pa(w).

By direct substitution in line 5 of Algorithm 3, it follows that CD(x,w,y) > 0 if and only if

x→ w← y is a correct v-structure in the true graph G. Therefore, lines 1-17 of Algorithm 3, will

recover all and only the correct v-structures of the true graph:

vstructures(Ĝ) = vstructures(G).
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The rest of the proof follows from the correctness of the orientation rules (R:1-4) that was provided

by Meek (1995), in that, when the correct skeleton and the correct and complete set of v-structures

are given then, the four rules (Algorithm 3: lines 18-24) will recover the correct CPDAG of G.

Therefore, Ĝ =CPDAG(G).

Appendix B. Effect of Overlapping Neighbor Sets on Ranking Edges

As stated in Section 6.1, the factorization in the right hand side of Equation (4) ignores the possibil-

ity that the two neighbor sets CPi and CPj might be overlapping. For example, if two nodes x and y

found the common neighbor w, who also happen to be the only neighbor of both x and y, to induce

conditional independence with the highest statistical significance at both sides of the edge, the joint

conditional posterior in (4) becomes P(ρxy|w 6= 0|ρ̂xy|w)
2. Since P(ρxy|w 6= 0|ρ̂xy|w) is always less

than one, the joint posterior in this case becomes a lower bound of the posterior that x and y are

not conditionally independent. However, as shown in the following examples, the overlap of neigh-

bor sets is not expected to have a negative effect on the overall ranking of edges. The presented

examples are not a proof of robustness but rather a supportive argument that the proposed ranking

criterion is not expected to be sensitive to the issue of overlapping neighbors sets. To illustrate

why this is the case, we analytically compute the expected rank of multiple edges under different

circumstances while controlling for all other variables by making the following assumptions about

the learning problem:

B1: G is the correct skeleton and the inference is based on finite data D.

B2: At the current iteration of the algorithm, CPx, CPy, CPi, and CPj are the inferred neighbor sets

of x, y ,i , and j respectively. For simplicity and to control for other variables we will also

assume:

(a) All neighbor sets have the same size.

(b) All neighbor sets contain the correct neighbors of each corresponding node.

(c) All conditioning sets are of the same size, or alternatively the effect of the size of the

condition set on the sample partial correlation is negligible.

Again, all of these assumptions aim to control for variables and allow for an analytical solution

for Equation (4) for the purpose of discussion.

B3: In all examples, we are only considering the average case, in that, we are sampling similar

problems an extremely large number of times and we are only computing the average scenario.

In all these problems, the size of the observational data and the structure of the skeleton are

fixed while all other parameters of the simulation are randomized. As a result and based on

Theorem 10, assumption B1, and the properties of partial correlations, it follows that there

exist two constants ρ0 and ρ+
0 such that:

• If DsepG
(x,y|Z), then E(|ρxy|Z|) = ρ0.

• If ¬DsepG
(x,y|Z), then E(|ρxy|Z|) = ρ+

0 .

• 1≥ ρ+
0 > ρ0 ≥ 0.
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These properties of the partial correlations are not new assumptions but rather a consequence of

the assumption that partial correlation can identify conditional independence more accurately

than random when learning from finite sample data. Based on this conclusion and by substitu-

tion in Equations (2) and (3), it follows that there also exist two constants P0 and P
+
0 such that

the following also holds:

• If ∃Z ⊆CPx s.t. DsepG
(x,y|Z), then E(P(Exy|D)[CPx]) = P0.

• If ∄Z ⊆CPx s.t. DsepG
(x,y|Z), then E(P(Exy|D)[CPx]) = P

+
0 .

• 1≥ P
+
0 > P0 ≥ 0.

Under Assumptions B1-3, we now analytically compute the expected rank of two edges (Exy,

Ei j) in different circumstances where we assume two nodes to have full overlap of neighbors and

the other two nodes to have no common neighbors.

Case 1: Exy,Ei j ∈ edges(G) and CPx =CPy while CPj ∩CPi = /0.

Analysis: Since Exy and Ei j are in the true skeleton, there is no set Z that d-separates x and y or i and

j. Using assumption B3 and substitution in Equation (4), the expected joint conditional posterior of

both edges are equal:

E(P(Exy|D)[CPx,CPy]) = E(P(Ei j|D)[CPi,CPj]) = (P+
0 )2.

As seen by this example, having common neighbors did not have negative or positive effect on

ranking a correct edge against another correct edge in the average case.

Case 2: Exy,Ei j /∈ edges(G) and CPx =CPy while CPj ∩CPi = /0.

Analysis: Given that Exy is not part of the correct skeleton, it follows from the faithfulness assump-

tion that there is at least one subset Z in either CPx or CPy that d-separates x and y. Since CPx and

CPy are identical, the d-separation set exists in both CPx and CPy (Tsamardinos and Brown, 2008).

Therefore, using assumption B3 and substituting in Equation (4), the expected joint conditional

posterior of Exy becomes:

E(P(Exy|D)[CPx,CPy]) = (P0)
2.

On the other hand, when assessing the Edge Ei j, there are two possibilities (Tsamardinos and

Brown, 2008):

1. ∃Z1 ⊆CPi s.t. DsepG
(i, j|Z1) and ∃Z2 ⊆CPj s.t. DsepG

(i, j|Z2). Using Assumption B3 and by

substitution in Equation (4), the expected joint conditional posterior of Ei j becomes:

E(P(Ei j|D)[CPi,CPj]) = (P0)
2.

2. There is at least one subset in either CPi or CPj (not both) that d-separates i and j. Using

Assumption B3 and by substitution in Equation (4), the expected joint conditional posterior

of Ei j becomes:

E(P(Ei j|D)[CPi,CPj]) = (P0)× (P+
0 ).
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As illustrated by Case 1 and Case 2, on average, the algorithm is expected to rank correct edges

(using Equation 4) higher than false edges regardless whether there is or there is not overlap among

neighbor sets:

(P+
0 )2 > (P0)× (P+

0 )> (P0)
2.

On the other hand, it is evident from Case 2 that Equation (4) might introduce bias in ranking false

edges among each other in the presence of overlapping neighbor sets. This bias however is not

enough to rank false edges higher than correct edges and this is the most crucial part of the learning

algorithm.

Appendix C. Illustration of the CPDAG Evaluation Metric

Figure 13 shows an illustrative comparison between the structural Hamming distance (SHD) curve

and the TPR curve. In both plots, the X-axis is the number of retrieved edges normalized by the

correct number of edges. Also, all the metrics: true positives (TP), false negatives (FN), false

positives (FP), and SHD are normalized by the number of correct edges. SHD counts the number

of operations (add edge, delete edge, or change orientation) needed to transform a given CPDAG

to the correct CPDAG. TP counts the number of recovered edges that are correct in presence and

orientation. FP counts the number of incorrectly recovered or miss-oriented edges. FN counts the

number of true edges that are either not recovered or miss-oriented.

In the TPR plot, the FN becomes (1-TP) while FP becomes the number of retrieved edges minus

TP, and both of these metrics can be easily observed in the plot as shown in Figure 13:B. In contrast,

it is not trivial to extract such information from the SHD curve.

Note that a mis-oriented edges is counted only once in the SHD metric, while it is counted twice

in the TPR plot, once as a FP (false direction) and another as a FN (missing correct direction).

All presented plots in this paper aim at comparing methods. However, in the case of model

selection, the solution with the least SHD should be the target. Another choice is to seek a CPDAG

with the highest TP and the lowest FP (e.g., highest TP−FP). Also, we note that many authors

usually use the X-axis to represent the threshold used in independence testing. However, in all plots

in this paper, we used the number of retrieved edges as alternative because LMM does not use a

threshold similar to MaxMin or PC algorithm.

Figures 14, 15, and 16 plot the average SHD versus the number of retrieved edges for the same

experimental results plotted by the TPR plots in Figures 8, 10, and 12.
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