
Journal of Machine Learning Research 14 (2013) 3105-3128 Submitted 1/12; Revised 4/13; Published 10/13

Algorithms and Hardness Results for Parallel Large Margin Learning

Philip M. Long PLONG@MICROSOFT.COM

Microsoft

1020 Enterprise Way

Sunnyvale, CA 94089

Rocco A. Servedio ROCCO@CS.COLUMBIA.EDU

Department of Computer Science

Columbia University

1214 Amsterdam Ave., Mail Code: 0401

New York, NY 10027

Editor: Yoav Freund

Abstract

We consider the problem of learning an unknown large-margin halfspace in the context of parallel

computation, giving both positive and negative results.

As our main positive result, we give a parallel algorithm for learning a large-margin half-

space, based on an algorithm of Nesterov’s that performs gradient descent with a momentum term.

We show that this algorithm can learn an unknown γ-margin halfspace over n dimensions using

n · poly(1/γ) processors and running in time Õ(1/γ)+O(logn). In contrast, naive parallel algo-

rithms that learn a γ-margin halfspace in time that depends polylogarithmically on n have an inverse

quadratic running time dependence on the margin parameter γ.

Our negative result deals with boosting, which is a standard approach to learning large-margin

halfspaces. We prove that in the original PAC framework, in which a weak learning algorithm is

provided as an oracle that is called by the booster, boosting cannot be parallelized. More precisely,

we show that, if the algorithm is allowed to call the weak learner multiple times in parallel within

a single boosting stage, this ability does not reduce the overall number of successive stages of

boosting needed for learning by even a single stage. Our proof is information-theoretic and does

not rely on unproven assumptions.

Keywords: PAC learning, parallel learning algorithms, halfspace learning, linear classifiers

1. Introduction

One of the most fundamental problems in machine learning is learning an unknown halfspace from

labeled examples that satisfy a margin constraint, meaning that no example may lie too close to the

separating hyperplane. In this paper we consider large-margin halfspace learning in the PAC (prob-

ably approximately correct) setting of learning from random examples: there is a target halfspace

f (x) = sign(w ·x), where w is an unknown unit vector, and an unknown probability distribution D

over the unit ball Bn = {x ∈Rn : ‖x‖2 ≤ 1} which is guaranteed to have support contained in the set

{x ∈ Bn : |w ·x| ≥ γ} of points that have Euclidean margin at least γ relative to the separating hyper-

plane. (Throughout this paper we refer to such a combination of target halfspace f and distribution

D as a γ-margin halfspace.) The learning algorithm is given access to labeled examples (x, f (x))

c©2013 Philip M. Long and Rocco A. Servedio.

LONG AND SERVEDIO

where each x is independently drawn from D , and it must with high probability output a (1− ε)-
accurate hypothesis, that is, a hypothesis h : Rn→{−1,1} that satisfies Prx∼D [h(x) 6= f (x)]≤ ε.

One of the earliest, and still most important, algorithms in machine learning is the perceptron

algorithm (Block, 1962; Novikoff, 1962; Rosenblatt, 1958) for learning a large-margin halfspace.

The perceptron is an online algorithm but it can be easily transformed to the PAC setting described

above (Vapnik and Chervonenkis, 1974; Littlestone, 1989; Freund and Schapire, 1999); the resulting

PAC algorithms run in poly(n, 1
γ ,

1
ε) time, use O(1

εγ2) labeled examples in Rn, and learn an unknown

n-dimensional γ-margin halfspace to accuracy 1− ε.
A motivating question: achieving perceptron’s performance in parallel? The last few years

have witnessed a resurgence of interest in highly efficient parallel algorithms for a wide range of

computational problems in many areas including machine learning (Workshop, 2009, 2011). So

a natural goal is to develop an efficient parallel algorithm for learning γ-margin halfspaces that

matches the performance of the perceptron algorithm. A well-established theoretical notion of

efficient parallel computation (see, for example, the text by Greenlaw et al. (1995) and the many

references therein) is that an efficient parallel algorithm for a problem with input size N is one that

uses poly(N) processors and runs in parallel time polylog(N). Since the input to the perceptron

algorithm is a sample of poly(1
ε ,

1
γ) labeled examples in Rn, we naturally arrive at the following:

Main Question: Is there a learning algorithm that uses poly(n, 1
γ ,

1
ε) processors and

runs in time poly(logn, log 1
γ , log 1

ε) to learn an unknown n-dimensional γ-margin half-

space to accuracy 1− ε?

Following Vitter and Lin (1992), we use a CRCW PRAM model of parallel computation. This

abstracts away issues like communication and synchronization, allowing us to focus on the most

fundamental issues. Also, as did Vitter and Lin (1992), we require that an efficient parallel learning

algorithm’s hypothesis must be efficiently evaluatable in parallel, since otherwise all the computa-

tion required to run any polynomial-time learning algorithm could be “offloaded” onto evaluating

the hypothesis. Because halfspace learning algorithms may be sensitive to issues of numerical pre-

cision, these are not abstracted away in our model; we assume that numbers are represented as

rationals.

As noted by Freund (1995) (see also Lemma 2 below), the existence of efficient boosting

algorithms such as the algorithms of Freund (1995) and Schapire (1990) implies that any PAC

learning algorithm can be efficiently parallelized in terms of its dependence on the accuracy pa-

rameter ε: more precisely, any PAC learnable class C of functions can be PAC learned to ac-

curacy 1− ε using O(1/ε) processors by an algorithm whose running time dependence on ε is

O(log
(

1
ε

)

· poly(log log(1/ε))), by boosting an algorithm that learns to accuracy (say) 9/10. We

may thus equivalently restate the above question as follows.

Main Question (simplified): Is there a learning algorithm that uses poly(n, 1
γ) proces-

sors and runs in time poly(logn, log 1
γ) to learn an unknown n-dimensional γ-margin

halfspace to accuracy 9/10?

The research reported in this paper is inspired by this question, which we view as a fundamental

open problem about the abilities and limitations of efficient parallel learning algorithms.

3106

PARALLEL LARGE-MARGIN LEARNING

Algorithm No. processors Running time

naive parallelization of perceptron poly(n,1/γ) Õ(1/γ2)+O(logn)

(Servedio, 2003) poly(n,1/γ) Õ(1/γ2)+O(logn)

poly-time linear programming (Blumer et al., 1989) 1 poly(n, log(1/γ))

this paper (algorithm of Section 2) n ·poly(1/γ) Õ(1/γ)+O(logn)

Table 1: Bounds on various parallel algorithms for learning a γ-margin halfspace over Rn.

1.1 Relevant Prior Results

Table 1 summarizes the running time and number of processors used by various parallel algorithms

to learn a γ-margin halfspace over Rn.

The naive parallelization of perceptron in the first line of the table is an algorithm that runs for

O(1/γ2) stages. In each stage it processes all of the O(1/γ2) examples simultaneously in parallel,

identifies one that causes the perceptron algorithm to update its hypothesis vector, and performs this

update. Since the examples are n-dimensional this can be accomplished in O(log(n/γ)) time using

O(n/γ2) processors; the mistake bound of the online perceptron algorithm is 1/γ2, so this gives a

running time bound of Õ(1/γ2) · logn. We do not see how to obtain parallel time bounds better than

O(1/γ2) from recent analyses of other algorithms based on gradient descent (Collins et al., 2002;

Dekel et al., 2011; Bradley et al., 2011), some of which use assumptions incomparable in strength

to the γ-margin condition studied here.

The second line of the table corresponds to a similar naive parallelization of the boosting-based

algorithm of Servedio (2003) that achieves perceptron-like performance for learning a γ-margin

halfspace. This algorithm boosts for O(1/γ2) stages over a O(1/γ2)-size sample. At each stage

of boosting this algorithm computes a real-valued weak hypothesis based on the vector average of

the (normalized) examples weighted according to the current distribution; since the sample size is

O(1/γ2) this can be done in O(log(n/γ)) time using poly(n,1/γ) processors. Since the boosting

algorithm runs for O(1/γ2) stages, the overall running time bound is Õ(1/γ2) · logn. (For both this

algorithm and the perceptron the time bound can be improved to Õ(1/γ2)+O(logn) as claimed in

the table by using an initial random projection step. We show how to do this in Section 2.3.)

The third line of the table, included for comparison, is simply a standard sequential algorithm

for learning a halfspace based on polynomial-time linear programming executed on one processor

(Blumer et al., 1989; Karmarkar, 1984).

In addition to the results summarized in the table, we note that efficient parallel algorithms have

been developed for some simpler PAC learning problems such as learning conjunctions, disjunc-

tions, and symmetric Boolean functions (Vitter and Lin, 1992). Bshouty et al. (1998) gave efficient

parallel PAC learning algorithms for some geometric constant-dimensional concept classes. Collins

et al. (2002) presented a family of boosting-type algorithms that optimize Bregman divergences by

updating a collection of parameters in parallel; however, their analysis does not seem to imply that

the algorithms need fewer than Ω(1/γ2) stages to learn γ-margin halfspaces.

In terms of negative results for parallel learning, Vitter and Lin (1992) showed that (under

a complexity-theoretic assumption) there is no parallel algorithm using poly(n) processors and

polylog(n) time that constructs a halfspace hypothesis that is consistent with a given linearly sep-

arable data set of n-dimensional labeled examples. This does not give a negative answer to the

3107

LONG AND SERVEDIO

main question for several reasons: first, the main question allows any hypothesis representation that

can be efficiently evaluated in parallel, whereas the hardness result requires the hypothesis to be a

halfspace. Second, the main question allows the algorithm to use poly(n,1/γ) processors and to

run in poly(logn, log 1
γ) time, whereas the hardness result of Vitter and Lin (1992) only rules out

algorithms that use poly(n, log 1
γ) processors and run in poly(logn, log log 1

γ) time. Finally, the main

question allows the final hypothesis to err on up to (say) 5% of the points in the data set, whereas

the hardness result of Vitter and Lin (1992) applies only to algorithms whose hypotheses correctly

classify all points in the data set.

Finally, we note that the main question has an affirmative answer if it is restricted so that either

the number of dimensions n or the margin parameter γ is fixed to be a constant (so the resulting

restricted question asks whether there is an algorithm that uses polynomially many processors and

polylogarithmic time in the remaining parameter). If γ is fixed to a constant then either of the first

two entries in Table 1 gives a poly(n)-processor, O(logn)-time algorithm. If n is fixed to a constant

then the efficient parallel algorithm of Alon and Megiddo (1994) for linear programming in constant

dimension can be used to learn a γ-margin halfspace using poly(1/γ) processors in polylog(1/γ)
running time (see also Vitter and Lin, 1992, Theorem 3.4).

1.2 Our Results

We give positive and negative results on learning halfspaces in parallel that are inspired by the main

question stated above.

1.2.1 POSITIVE RESULTS

Our main positive result is a parallel algorithm for learning large-margin halfspaces, based on a

rapidly converging gradient method due to Nesterov (2004), which uses O(n ·poly(1/γ)) processors

to learn γ-margin halfspaces in parallel time Õ(1/γ)+O(logn) (see Table 1). (An earlier version of

this paper (Long and Servedio, 2011) analyzed on algorithm based on interior-point methods from

convex optimization and fast parallel algorithms for linear algebra, showing that it uses poly(n,1/γ)
processors to learn γ-margin halfspaces in parallel time Õ(1/γ)+O(logn).) We are not aware of

prior parallel algorithms that provably learn γ-margin halfspaces running in time polylogarithmic in

n and subquadratic in 1/γ.

We note that simultaneously and independently of the initial conference publication of our work

(Long and Servedio, 2011), Soheili and Peña (2012) proposed a variant of the perceptron algorithm

and shown that it terminates in O
(√

logn

γ

)

iterations rather than the 1/γ2 iterations of the original

perceptron algorithm. Like our algorithm, the Soheili and Peña (2012) algorithm uses ideas of Nes-

terov (2005). Soheili and Peña (2012) do not discuss a parallel implementation of their algorithm,

but since their algorithm performs an n-dimensional matrix-vector multiplication at each iteration,

it appears that a parallel implementation of their algorithm would use Ω(n2) processors and would

have parallel running time at least Ω
(

(logn)3/2

γ

)

(assuming that multiplying a n× n matrix by an

n×1 vector takes parallel time Θ(logn) using n2 processors). In contrast, our algorithm requires a

linear number of processors as a function of n, and has parallel running time Õ(1/γ)+O(logn).1

1. We note also that Soheili and Peña (2012) analyze the number of iterations of their algorithm, and not the computation

time. In particular, they do not deal with finite precision issues, whereas a significant portion of our analysis concerns

3108

PARALLEL LARGE-MARGIN LEARNING

1.2.2 NEGATIVE RESULTS

By modifying our analysis of the algorithm we present, we believe that it may be possible to estab-

lish similar positive results for other formulations of the large-margin learning problem, including

ones (see Shalev-Shwartz and Singer, 2010) that have been tied closely to weak learnability. In

contrast, our main negative result is an information-theoretic argument that suggests that such pos-

itive parallel learning results cannot be obtained by boosting alone. We show that in a framework

where the weak learning algorithm must be invoked as an oracle, boosting cannot be parallelized:

being able to call the weak learner multiple times in parallel within a single boosting stage does not

reduce the overall number of sequential stages of boosting that are required. We prove that any par-

allel booster must perform Ω(log(1/ε)/γ2) sequential stages of boosting a “black-box” γ-advantage

weak learner to learn to accuracy 1− ε in the worst case; this extends an earlier Ω(log(1/ε)/γ2)
lower bound of Freund (1995) for standard (sequential) boosters that can only call the weak learner

once per stage.

2. An Algorithm Based on Nesterov’s Algorithm

In this section we describe and analyze a parallel algorithm for learning a γ-margin halfspace. The

algorithm of this section applies an algorithm of Nesterov (2004) that, roughly speaking, approxi-

mately minimizes a suitably smooth convex function to accuracy ε using O(
√

1/ε) iterative steps

(Nesterov, 2004), each of which can be easily parallelized.

Directly applying the basic Nesterov algorithm gives us an algorithm that uses O(n) processors,

runs in parallel time O(log(n) · (1/γ)), and outputs a halfspace hypothesis that has constant accu-

racy. By combining the basic algorithm with random projection and boosting we get the following

stronger result:

Theorem 1 There is a parallel algorithm with the following performance guarantee: Let f ,D de-

fine an unknown γ-margin halfspace over Bn. The algorithm is given as input ε,δ > 0 and access to

labeled examples (x, f (x)) that are drawn independently from D. It runs in

O(((1/γ)polylog(1/γ)+ log(n)) log(1/ε)poly(log log(1/ε))+ log log(1/δ))

parallel time, uses

n ·poly(1/γ,1/ε, log(1/δ))

processors, and with probability 1−δ it outputs a hypothesis h satisfying Prx∼D [h(x) 6= f (x)]≤ ε.

We assume that the value of γ is “known” to the algorithm, since otherwise the algorithm can

use a standard “guess and check” approach trying γ = 1,1/2,1/4, etc., until it finds a value that

works.

Freund (1995) indicated how to parallelize his boosting-by-filtering algorithm. In Appendix A,

we provide a detailed proof of the following lemma.

Lemma 2 (Freund, 1995) Let D be a distribution over (unlabeled) examples. Let A be a par-

allel learning algorithm, and cδ and cε be absolute positive constants, such that for all D ′ with

such issues, in order to fully establish our claimed bounds on the number of processors and the parallel running time

of our algorithms.

3109

LONG AND SERVEDIO

-4 -2 2 4

2

4

6

8

10

Figure 1: A plot of a loss function φ used in Section 2.

support(D ′)⊆ support(D), given draws (x, f (x)) from D ′, with probability cδ, A outputs a hypothe-

sis with accuracy 1
2
+cε (w.r.t. D ′) using P processors in T time. Then there is a parallel algorithm

B that, given access to independent labeled examples (x, f (x)) drawn from D , with probability

1− δ, constructs a (1− ε)-accurate hypothesis (w.r.t. D) in O(T log(1/ε)poly(log log(1/ε)) +
log log(1/δ)) time using poly(P ,1/ε, log(1/δ)) processors.

In Section 2.1 we describe the basic way that Nesterov’s algorithm can be used to find a half-

space hypothesis that approximately minimizes a smooth loss function over a set of γ-margin labeled

examples. (This section has nothing to do with parallelism.) Then later we explain how this algo-

rithm is used in the larger context of a parallel algorithm for halfspaces.

2.1 The Basic Algorithm

Let S = (x1,y1), . . . ,(xm,ym) be a data set of m examples labeled according to the target γ-margin

halfspace f ; that is, yi = f (xi) for all i.
We will apply Nesterov’s algorithm to minimize a regularized loss as follows.

The loss part. For z ∈ R we define

φ(z) =
√

1+ z2− z.

(See Figure 1 for a plot of φ.) For v ∈ Rn we define

Φ(v) =
1

m

m

∑
t=1

φ(yt(v ·xt)).

The regularization part. We define a regularizer

R(v) = γ2‖v‖2/100

where ‖ · ‖ denotes the 2-norm.

We will apply Nesterov’s iterative algorithm to minimize the following function

Ψ(v) = Φ(v)+R(v).

Let g(v) be the gradient of Ψ at v. We will use the following algorithm, due to Nesterov (2004)

(see Section 2.2.1), which we call ANes. The algorithm takes a single input parameter γ > 0.

3110

PARALLEL LARGE-MARGIN LEARNING

Algorithm ANes:

• Set µ = γ2/50, L = 51/50.

• Initialize v0 = z0 = 0.

• For each k = 0,1, . . . , set

– vk+1 = zk− 1
L

g(zk), and

– zk+1 = vk+1 +
√

L−√µ√
L+
√

µ
(vk+1−vk).

We begin by establishing various bounds on Ψ that Nesterov uses in his analysis of ANes.

Lemma 3 The gradient g of Ψ has a Lipschitz constant at most 51/50.

Proof: We have
∂Ψ

∂vi

=
1

m
∑

t

φ′(yt(v ·xt))ytxt,i + γ2vi/50

and hence, writing g(v) to denote the gradient of Ψ at v, we have

g(v) =
1

m
∑

t

φ′(yt(v ·xt))ytxt + γ2v/50.

Choose r ∈ Rn. Applying the triangle inequality, we have

||g(v)−g(r)|| =

∥

∥

∥

∥

1

m
∑

t

(φ′(yt(v ·xt))−φ′(yt(r ·xt)))ytxt + γ2(v− r)/50

∥

∥

∥

∥

≤ 1

m
∑

t

||(φ′(yt(v ·xt))−φ′(yt(r ·xt)))ytxt ||+ γ2||v− r||/50

≤ 1

m
∑

t

|φ′(yt(v ·xt))−φ′(yt(r ·xt))|+ γ2||v− r||/50,

since each vector xt has length at most 1. Basic calculus gives that φ′′ is always at most 1, and hence

|φ′(yt(v ·xt))−φ′(yt(r ·xt))| ≤ |v ·xt− r ·xt | ≤ ||v− r||,

again since xt has length at most 1. The bound then follows from the fact that γ2 ≤ 1.

We recall the definition of strong convexity (Nesterov, 2004, pp. 63–64): a multivariate function

q is µ-strongly convex if for all v,w and all α ∈ [0,1] it holds that

q(αv+(1−α)w)≤ αq(v)+(1−α)q(w)− µα(1−α)||v−w||2
2

.

(For intuition’s sake, it may be helpful to note that a suitably smooth q is µ-strongly convex if any

restriction of q to a line has second derivative that is always at least µ.) We recall the fact that

strongly convex functions have unique minimizers.

Lemma 4 Ψ is µ-strongly convex.

3111

LONG AND SERVEDIO

Proof: This follows directly from the fact that µ = γ2/50, Φ is convex, and ||v||2 is 2-strongly

convex.

Given the above, the following lemma is an immediate consequence of Theorem 2.2.3 of Nes-

terov’s (2004) book. The lemma upper bounds the difference between Ψ(vk), where vk is the point

computed in the k-th iteration of Nesterov’s algorithm ANes, and the true minimum value of Ψ. A

proof is in Appendix B.

Lemma 5 Let w be the minimizer of Ψ. For each k, we have Ψ(vk)−Ψ(w)≤ 4L(1+µ||w||2/2)

(2
√

L+k
√

µ)2
.

2.2 The Finite Precision Algorithm

The algorithm analyzed in the previous subsection computes real numbers with infinite precision.

Now we will analyze a finite precision variant of the algorithm, which we call ANfp (for “Nesterov

finite precision”).

(We note that d’Aspremont 2008, also analyzed a similar algorithm with an approximate gra-

dient, but we were not able to apply his results in our setting because of differences between his

assumptions and our needs. For example, the algorithm described by d’Aspremont 2008, assumed

that optimization was performed over a compact set C, and periodically projected solutions onto C;

it was not obvious to us how to parallelize this algorithm.)

We begin by writing the algorithm as if it took two parameters, γ and a precision parameter

β > 0. The analysis will show how to set β as a function of γ. To distinguish between ANfp and ANes

we use hats throughout our notation below.

Algorithm ANfp:

• Set µ = γ2/50, L = 51/50.

• Initialize v̂0 = ẑ0 = 0.

• For each k = 0,1, . . . ,

– Let r̂k be such that ||r̂k− 1
L

g(ẑk)|| ≤ β. Set

– v̂k+1 = ẑk− r̂k, and

– ẑk+1 = v̂k+1 +
√

L−√µ√
L+
√

µ
(v̂k+1− v̂k).

We discuss the details of exactly how this finite-precision algorithm is implemented, and the

parallel running time required for such an implementation, at the end of this section.

Our analysis of this algorithm will proceed by quantifying how closely its behavior tracks that

of the infinite-precision algorithm.

Lemma 6 Let v0,v1, ... be the sequence of points computed by the infinite precision version of

Nesterov’s algorithm, and v̂0, v̂1, ... be the corresponding finite-precision sequence. Then for all k,

we have ||vk− v̂k|| ≤ β ·7k.

Proof: Let ŝk = r̂k−g(ẑk). Our proof is by induction, with the additional inductive hypothesis that

||zk− ẑk|| ≤ 3β ·7k.

The base case is trivially true.

3112

PARALLEL LARGE-MARGIN LEARNING

We have

||vk+1− v̂k+1||=
∣

∣

∣

∣

∣

∣

∣

∣

(zk−
1

L
g(zk))− (ẑk− (

1

L
g(ẑk)+ ŝk)

∣

∣

∣

∣

∣

∣

∣

∣

,

and, using the triangle inequality, we get

||vk+1− v̂k+1|| ≤ ||zk− ẑk||+
∣

∣

∣

∣

∣

∣

∣

∣

1

L
g(zk)− (

1

L
g(ẑk)+ ŝk)

∣

∣

∣

∣

∣

∣

∣

∣

≤ 3β ·7k +

∣

∣

∣

∣

∣

∣

∣

∣

1

L
g(zk)− (

1

L
g(ẑk)+ ŝk)

∣

∣

∣

∣

∣

∣

∣

∣

≤ 3β ·7k +
1

L
||g(zk)−g(ẑk)||+ ||ŝk|| (triangle inequality)

≤ 3β ·7k + ||zk− ẑk||+ ||ŝk|| (by Lemma 3)

≤ 3β ·7k +3β ·7k +β (by definition of ŝk)

< β ·7k+1.

Also, we have

||zk+1− ẑk+1|| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

1+
√

µ/L
(vk+1− v̂k+1)−

√
L−√µ√
L+
√

µ
(vk− v̂k)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

1+
√

µ/L
(vk+1− v̂k+1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

√
L−√µ√
L+
√

µ
(vk− v̂k)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ 2||vk+1− v̂k+1||+ ||vk− v̂k||
≤ 2β ·7k+1 +β ·7k

≤ 3β ·7k+1,

completing the proof.

2.3 Application to Learning

Now we are ready to prove Theorem 1. By Lemma 2 it suffices to prove the theorem in the case in

which ε = 7/16 and δ = 1/2.

We may also potentially reduce the number of variables by applying a random projection. We

say that a random projection matrix is a matrix A chosen uniformly from {−1,1}n×d . Given such

an A and a unit vector w ∈ Rn (defining a target halfspace f (x) = sign(w · x)), let w′ denote the

vector (1/
√

d)wA ∈ Rd . After transformation by A the distribution D over Bn is transformed to a

distribution D ′ over Rd in the natural way: a draw x′ from D ′ is obtained by making a draw x from

D and setting x′ = (1/
√

d)xA. We will use the following lemma, which is a slight variant of known

lemmas (Arriaga and Vempala, 2006; Blum, 2006); we prove this exact statement in Appendix C.

Lemma 7 Let f (x) = sign(w ·x) and D define a γ-margin halfspace as described in the introduc-

tion. For d = O((1/γ2) log(1/γ)), a random n×d projection matrix A will with probability 99/100

induce D ′ and w′ as described above such that Prx′∼D ′

[∣

∣

∣

w′
‖w′‖ ·x′

∣

∣

∣
< γ/2 or ‖x′‖2 > 2

]

≤ γ4.

We assume without loss of generality that γ = 1/integer.

3113

LONG AND SERVEDIO

The algorithm first selects an n×d random projection matrix A where d =O(log(1/γ)/γ2). This

defines a transformation ΦA : Bn→Rd as follows: given x ∈ Bn, the vector ΦA(x) ∈Rd is obtained

by

(i) rounding each xi to the nearest integer multiple of 1/(4⌈
√

n/γ⌉); then

(ii) setting x′ =
(

1

2
√

d

)

xA (we scale down by an additional factor of two to get examples that are

contained in the unit ball Bd); and finally

(iii) rounding each x′i to the nearest multiple of 1/(8⌈d/γ⌉).

Given x it is easy to compute ΦA(x) using O(n log(1/γ)/γ2) processors in O(log(n/γ)) time. Let

D ′ denote the distribution over Rd obtained by applying ΦA to D. Across all coordinates D ′ is

supported on rational numbers with the same poly(1/γ) common denominator. By Lemma 7, with

probability 99/100

Pr
x′∼D ′

[

∣

∣x′ · (w′/‖w′‖)
∣

∣< γ′
def
= γ/8 or ‖x′‖2 > 1

]

≤ γ4.

Our algorithm draws c0d examples by sampling from D ′. Applying Lemma 7, we may assume

without loss of generality that our examples have d = O(log(1/γ)/γ2) and that the margin γ′ after

the projection is at least Θ(γ), and that all the coordinates of all the examples have a common

denominator which is at most poly(1/γ). Thus far the algorithm has used O(log(n/γ)) parallel time

and O(n log(1/γ)/γ2) many processors.

Next, the algorithm applies ANfp from the previous section for K stages, where K = ⌈c1/γ′⌉ and

β = c27−K . Here c0, c1, and c2 are absolute positive constants; our analysis will show that there

exist choices of these constants that give Theorem 1.

For our analysis, as before, let w be the minimizer of Ψ, and let u be a unit normal vector for

the target halfspace f (x) = sign(u · x). (We emphasize that Ψ is now defined using the projected

d-dimensional examples and with γ′ in place of γ in the definition of the regularizer R.)

Our first lemma gives an upper bound on the optimal value of the objective function.

Lemma 8 Ψ(w)≤ 0.26.

Proof Since w is the minimizer of Ψ we have Ψ(w)≤Ψ(3u/γ′). In turn Ψ(3u/γ′) is easily seen to

be at most φ(3)+9/100≤ 0.26, since every example has margin at least γ′ with respect to u.

Next, we bound the norm of w.

Lemma 9 ||w||2 ≤ 26/γ′2.

Proof: The definition of Ψ gives

||w||2 ≤ 100Ψ(w)/γ′2

and combining with Lemma 8 gives ||w||2 ≤ 26/γ′2.
Now we can bound the objective function value of vK .

Lemma 10 For c1 a sufficiently large absolute constant, we have Ψ(vK)≤ 2/5.

3114

PARALLEL LARGE-MARGIN LEARNING

Proof: Plugging Lemma 9 into the RHS of Lemma 5 and simplifying, we get

Ψ(vK)−Ψ(w)≤ 751

25(2
√

51+ γ′K)2
.

Applying Lemma 8, we get

Ψ(vK)≤ 0.26+
751

25(2
√

51+ γ′K)2
.

from which the lemma follows.

Now we can bound vK nearly the same way that we bounded w:

Lemma 11 ||vK || ≤ 7/γ′.

Proof: The argument is similar to the proof of Lemma 9, using Lemma 10 in place of Lemma 8.

Now we can bound the value of the objective function of the finite precision algorithm.

Lemma 12 There exist absolute positive constants c1,c2 such that Ψ(v̂K)≤ 3/7.

Proof Because β = c27−⌈c1/γ′⌉, Lemma 6 implies that ||v̂K − vK || ≤ c2. Since φ has a Lipschitz

constant of 2, so does Φ, and consequently we have that

Φ(v̂K)−Φ(vK)≤ 2c2. (1)

Next, since Lemma 11 gives ||vK || ≤ 7/γ′, and ||v̂K−vK || ≤ c2, we have ||v̂K || ≤ 7/γ′+ c2, which

in turn implies

‖v̂K‖2−‖vK‖2 ≤ (7/γ′+ c2)
2− (7/γ′)2 = 14c2/γ′+ c2

2.

and thus

R(v̂K)−R(vK)≤
14c2γ′

100
+

(γ′)2c2
2

100
.

Combining this with (1), we get that for c2 less than a sufficiently small positive absolute constant,

we have Ψ(v̂K)−Ψ(vK)< 3/7−2/5, and combining with Lemma 10 completes the proof.

Finally, we observe that Ψ(v̂k) is an upper bound on the fraction of examples in the sample that

are misclassified by v̂k. Taking c0 sufficiently large and applying standard VC sample complexity

bounds, we have established the (ε,δ) PAC learning properties of the algorithm. (Recall from the

start of this subsection that we have taken ε = 7/16 and δ = 1/2.)

It remains to analyze the parallel time complexity of the algorithm. We have already analyzed

the parallel time complexity of the initial random projection stage, and shown that we may take the

finite-precision iterative algorithm ANfp to run for O(1/γ) stages, so it suffices to analyze the parallel

time complexity of each stage ANfp. We will show that each stage runs in parallel time polylog(1/γ)
and thus establish the theorem.

Recall that we have set β = Θ(7−K) and that K = Θ(1/γ). The invariant we maintain throughout

each iteration k of algorithm ANfp is that each coordinate of v̂k is a poly(K)-bit rational number and

each coordinate of ẑk is a poly(K)-bit rational number. It remains to show that given such values v̂k

and ẑk, in parallel time polylog(1/γ) using log(1/γ) processors,

3115

LONG AND SERVEDIO

1. it is possible to compute each coordinate g(ẑk)i to accuracy 2−100K/
√

d;

2. it is possible to determine a vector r̂k such that ‖r̂k−g(ẑk)‖ ≤ β, and that each coefficient of

the new value v̂k+1 = ẑk− r̂k is again a poly(K)-bit rational number; and

3. it is possible to compute the new value ẑk+1 and that each coordinate of ẑk+1 is again a

poly(K)-bit rational number.

We begin by analyzing the approximate computation of the gradient. Recall that

g(v) =
1

m
∑

t

φ′(yt(v ·xt))ytxt + γ2v/50.

Note that

φ′(z) =
z√

1+ z2
−1.

To analyze the approximation of φ′ we will first need a lemma about approximating the square

root function efficiently in parallel. While related statements are known and our statement below

can be proved using standard techniques, we have included a proof in Appendix D because we do

not know a reference for precisely this statement.

Lemma 13 There is an algorithm Ar that, given an L-bit positive rational number z and an L-bit

positive rational number β as input, outputs Ar(z) for which |Ar(z)−
√

z|≤β in poly(log log(1/β),
logL) parallel time using poly(log(1/β),L) processors.

Armed with the ability to approximate the square root, we can easily approximate φ′.

Lemma 14 There is an algorithm Ap that, given an L-bit positive rational number z, and an

L-bit positive rational number β ≤ 1/4, outputs Ap(z) for which |Ap(z)− φ′(z)| ≤ β in at most

poly(log log(1/β), logL) parallel time using poly(log(1/β),L) processors.

Proof: Assume without loss of generality that β≤ 1/4. Then, because
√

1+ z2 ≥ 1, if an approxi-

mation s of
√

1+ z2 satisfies |s−
√

1+ z2| ≤ β/2L+1, then

1

s
− 1√

1+ z2
≤ β/2L.

Applying Lemma 13 and recalling the well-known fact that there are efficient parallel algorithms

for division (see Beame et al., 1986) completes the proof.

Using this approximation for φ′, and calculating the sums in the straightforward way, we get the

required approximation r̂k. We may assume without loss of generality that each component of r̂k

has been rounded to the nearest multiple of β/2. Since each component of g has size at most 2, and

the denominator of r̂k has O(K) bits, r̂k in total requires at most O(K) bits. We can assume without

loss of generality that γ2/50 is a perfect square, so multiplying the components of a vector by
1−√µ

1+
√

µ

can be accomplished while adding O(log(1/γ)) bits to each of their rational representations. Thus,

a straightforward induction implies that each of the components of each of the denominators of vk

and zk can be written with k log(1/γ)+O(1/γ) = O((1/γ) log(1/γ)) bits.

To bound the numerators of the components of vk and zk, it suffices to bound the norms of vk

and zk. Lemma 11 implies that ||vk|| ≤ 5/γ′ and so Lemma 6 implies ||v̂k|| ≤ 5/γ′+1 which in turn

directly implies ||ẑk|| ≤ 3(5/γ′+1).
Thus, each iteration takes O(polylog(1/γ)) time, and there are a total of O(1/γ) iterations. This

completes the proof of Theorem 1.

3116

PARALLEL LARGE-MARGIN LEARNING

3. Lower Bound for Parallel Boosting in the Oracle Model

Boosting is a widely used method for learning large-margin halfspaces. In this section we consider

the question of whether boosting algorithms can be efficiently parallelized. We work in the original

PAC learning setting (Valiant, 1984; Kearns and Vazirani, 1994; Schapire, 1990) in which a weak

learning algorithm is provided as an oracle that is called by the boosting algorithm, which must

simulate a distribution over labeled examples for the weak learner. Our main result for this setting

is that boosting is inherently sequential; being able to call the weak learner multiple times in parallel

within a single boosting stage does not reduce the overall number of sequential boosting stages that

are required. In fact we show this in a very strong sense, by proving that a boosting algorithm that

runs arbitrarily many copies of the weak learner in parallel in each stage cannot save even one stage

over a sequential booster that runs the weak learner just once in each stage. This lower bound is

unconditional and information-theoretic.

Below we first define the parallel boosting framework and give some examples of parallel boost-

ers. We then state and prove our lower bound on the number of stages required by parallel boosters.

A consequence of our lower bound is that Ω(log(1/ε)/γ2) stages of parallel boosting are required

in order to boost a γ-advantage weak learner to achieve classification accuracy 1− ε no matter how

many copies of the weak learner are used in parallel in each stage.

3.1 Parallel Boosting

Our definition of weak learning is standard in PAC learning, except that for our discussion it suffices

to consider a single target function f : X →{−1,1} over a domain X .

Definition 15 A γ-advantage weak learner L is an algorithm that is given access to a source of inde-

pendent random labeled examples drawn from an (unknown and arbitrary) probability distribution

P over labeled examples {(x, f (x))}x∈X . L must2 return a weak hypothesis h : X → {−1,1} that

satisfies Pr(x, f (x))←P [h(x) = f (x)]≥ 1/2+ γ. Such an h is said to have advantage γ w.r.t. P .

We fix P to henceforth denote the initial distribution over labeled examples; that is, P is a distri-

bution over {(x, f (x))}x∈X where the marginal distribution PX may be an arbitrary distribution over

X .
Intuitively, a boosting algorithm runs the weak learner repeatedly on a sequence of carefully

chosen distributions P1,P2, . . . to obtain weak hypotheses h1,h2, . . . , and combines the weak hy-

potheses to obtain a final hypothesis h that has high accuracy under P . We first give a definition that

captures the idea of a “sequential” (non-parallel) booster, and then extend the definition to parallel

boosters.

3.1.1 SEQUENTIAL BOOSTERS

We give some intuition to motivate our definition. In a normal (sequential) boosting algorithm,

the probability weight that the (t + 1)st distribution Pt+1 puts on a labeled example (x, f (x)) may

depend on the values of all the previous weak hypotheses h1(x), . . . ,ht(x) and on the value of f (x).
No other dependence on x is allowed, since intuitively the only interface that the boosting algorithm

should have with each data point is through its label and the values of the weak hypotheses. We

2. The usual definition of a weak learner would allow L to fail with probability δ. This probability can be made expo-

nentially small by running L multiple times so for simplicity we assume there is no failure probability.

3117

LONG AND SERVEDIO

further observe that since the distribution P is the only source of labeled examples, a booster should

construct the distribution Pt+1 by somehow “filtering” examples drawn from P based on the values

h1(x), . . . ,ht(x), f (x). We thus define a sequential booster as follows:

Definition 16 (Sequential booster) A T -stage sequential boosting algorithm is defined by a se-

quence α1, . . . ,αT of functions αt : {−1,1}t → [0,1] and a (randomized) Boolean function h :

{−1,1}T →{−1,1}. In the t-th stage of boosting, the distribution Pt over labeled examples that is

given to the weak learner by the booster is obtained from P by doing rejection sampling according

to αt . More precisely, a draw from Pt is made as follows: draw (x, f (x)) from P and compute the

value px := αt(h1(x), . . . ,ht−1(x), f (x)). With probability px accept (x, f (x)) as the output of the

draw from Pt , and with the remaining 1− px probability reject this (x, f (x)) and try again. In stage

t the booster gives the weak learner access to Pt as defined above, and the weak learner generates

a hypothesis ht that has advantage at least γ w.r.t. Pt . Together with h1, . . . ,ht−1, this ht enables the

booster to give the weak learner access to Pt+1 in the next stage.

After T stages, weak hypotheses h1, . . . ,hT have been obtained from the weak learner. The final

hypothesis of the booster is H(x) := h(h1(x), . . . ,hT (x)), and its accuracy is

min
h1,...,hT

Pr
(x, f (x))←P

[H(x) = f (x)],

where the min is taken over all sequences h1, . . . ,hT of T weak hypotheses subject to the condition

that each ht has advantage at least γ w.r.t. Pt .

Many PAC-model boosting algorithms in the literature are covered by Definition 16, such as

the original boosting algorithm of Schapire (1990), Boost-by-Majority (Freund, 1995), MadaBoost

(Domingo and Watanabe, 2000), BrownBoost (Freund, 2001), SmoothBoost (Servedio, 2003), Fil-

terBoost (Bradley and Schapire, 2007) and others. All these boosters use Ω(log(1/ε)/γ2) stages

of boosting to achieve 1− ε accuracy, and indeed Freund (1995) has shown that any sequential

booster must run for Ω(log(1/ε)/γ2) stages. More precisely, Freund (1995) modeled the phe-

nomenon of boosting using the majority function to combine weak hypotheses as an interactive

game between a “weightor” and a “chooser” (see Freund, 1995, Section 2). He gave a strategy for

the weightor, which corresponds to a boosting algorithm, and showed that after T stages of boost-

ing this boosting algorithm generates a final hypothesis that is guaranteed to have error at most

vote(γ,T)
def
= ∑

⌊T/2⌋
j=0

(

T
j

)(

1
2
+ γ

) j
(1/2− γ)T− j

(see Freund, 1995, Theorem 2.1). Freund also gives

a matching lower bound by showing (see his Theorem 2.4) that any T -stage sequential booster must

have error at least as large as vote(γ,T), and so consequently any sequential booster that generates

a (1− ε)-accurate final hypothesis must run for Ω(log(1/ε)/γ2) stages. Our Theorem 18 below

extends this lower bound to parallel boosters.

3.1.2 PARALLEL BOOSTING

Parallel boosting is a natural generalization of sequential boosting. In stage t of a parallel booster the

boosting algorithm may simultaneously run the weak learner many times in parallel using different

probability distributions. The distributions that are used in stage t may depend on any of the weak

hypotheses from earlier stages, but may not depend on any of the weak hypotheses generated by

any of the calls to the weak learner in stage t.

3118

PARALLEL LARGE-MARGIN LEARNING

Definition 17 (Parallel booster) A T -stage parallel boosting algorithm with N-fold parallelism

is defined by T N functions {αt,k}t∈[T],k∈[N] and a (randomized) Boolean function h, where αt,k :

{−1,1}(t−1)N+1→ [0,1] and h : {−1,1}TN→{−1,1}. In the t-th stage of boosting the weak learner

is run N times in parallel. For each k ∈ [N], the distribution Pt,k over labeled examples that is given

to the k-th run of the weak learner is as follows: a draw from Pt,k is made by drawing a labeled ex-

ample (x, f (x)) from P , computing the value px := αt,k(h1,1(x), . . . ,ht−1,N(x), f (x)), and accepting

(x, f (x)) as the output of the draw from Pt,k with probability px (and rejecting it and trying again

otherwise). In stage t, for each k ∈ [N] the booster gives the weak learner access to Pt,k as defined

above and the weak learner generates a hypothesis ht,k that has advantage at least γ w.r.t. Pt,k.

Together with the weak hypotheses {hs, j}s∈[t−1], j∈[N] obtained in earlier stages, these ht,k’s enable

the booster to give the weak learner access to each Pt+1,k in the next stage.

After T stages, T N weak hypotheses {ht,k}t∈[T],k∈[N] have been obtained from the weak learner.

The final hypothesis of the booster is H(x) := h(h1,1(x), . . . ,hT,N(x)), and its accuracy is

min
ht,k

Pr
(x, f (x))←P

[H(x) = f (x)],

where the min is taken over all sequences of T N weak hypotheses subject to the condition that each

ht,k has advantage at least γ w.r.t. Pt,k.

The parameter N above corresponds to the number of processors that the parallel booster is

using. Parallel boosting algorithms that call the weak learner different numbers of times at different

stages fit into our definition simply by taking N to be the max number of parallel calls made at

any stage. Several parallel boosting algorithms have been given in the literature; in particular,

all boosters that construct branching program or decision tree hypotheses are of this type. The

number of stages of these boosting algorithms corresponds to the depth of the branching program

or decision tree that is constructed, and the number of nodes at each depth corresponds to the

parallelism parameter. Branching program boosters (Mansour and McAllester, 2002; Kalai and

Servedio, 2005; Long and Servedio, 2005, 2008) all make poly(1/γ) many calls to the weak learner

within each stage and all require Ω(log(1/ε)/γ2) stages, while the earlier decision tree booster

(Kearns and Mansour, 1996) requires Ω(log(1/ε)/γ2) stages but makes 2Ω(log(1/ε)/γ2) parallel calls

to the weak learner in some stages. Our results in the next subsection will imply that any parallel

booster must run for Ω(log(1/ε)/γ2) stages no matter how many parallel calls to the weak learner

are made in each stage.

3.2 The Lower Bound and Its Proof

Our lower bound theorem for parallel boosting is the following:

Theorem 18 Let B be any T -stage parallel boosting algorithm with N-fold parallelism. Then for

any 0 < γ < 1/2, when B is used to boost a γ-advantage weak learner the resulting final hypothesis

may have error as large as vote(γ,T) (see the discussion after Definition 17).

We emphasize that Theorem 18 holds for any γ and any N that may depend on γ in an arbitrary

way.

The theorem is proved as follows: fix any 0 < γ < 1/2 and fix B to be any T -stage parallel

boosting algorithm. We will exhibit a target function f and a distribution P over {(x, f (x))x∈X , and

3119

LONG AND SERVEDIO

describe a strategy that a weak learner W can use to generate weak hypotheses ht,k that all have

advantage at least γ with respect to the distributions Pt,k. We show that with this weak learner W ,

the resulting final hypothesis H that B outputs will have accuracy at most 1−vote(γ,T).
We begin by describing the desired f and P , both of which are fairly simple. The domain X

of f is X = Z×Ω, where Z denotes the set {−1,1} and Ω denotes the set of all infinite sequences

ω = (ω1,ω2, . . .) where each ωi belongs to {−1,1}. The target function f is simply f (z,ω) = z; that

is, f always simply outputs the first coordinate of its input vector. The distribution P = (P X ,PY)
over labeled examples {(x, f (x))}x∈X is defined as follows.3 A draw from P is obtained by drawing

x = (z,ω) from P X and returning (x, f (x)). A draw of x = (z,ω) from P X is obtained by first

choosing a uniform random value in {−1,1} for z, and then choosing ωi ∈ {−1,1} to equal z

with probability 1/2+ γ independently for each i. Note that under P , given the label z = f (x) of a

labeled example (x, f (x)), each coordinate ωi of x is correct in predicting the value of f (x,z) with

probability 1/2+ γ independently of all other ω j’s.

We next describe a way that a weak learner W can generate a γ-advantage weak hypothesis each

time it is invoked by B. Fix any t ∈ [T] and any k ∈ [N], and recall that Pt,k is the distribution over

labeled examples that is used for the k-th call to the weak learner in stage t. When W is invoked

with Pt,k it replies as follows (recall that for x ∈ X we have x = (z,ω) as described above):

(i) If Pr(x, f (x))←Pt,k
[ωt = f (x)] ≥ 1/2+ γ then the weak hypothesis ht,k(x) is the function “ωt ,”

the (t +1)-st coordinate of x. Otherwise,

(ii) the weak hypothesis ht,k(x) is “z,” the first coordinate of x. (Note that since f (x) = z for all x,
this weak hypothesis has zero error.)

It is clear that each weak hypothesis ht,k generated as described above indeed has advantage at

least γ w.r.t. Pt,k, so the above is a legitimate strategy for W . It is also clear that if the weak learner

ever uses option (ii) above at some invocation (t,k) then B may output a zero-error final hypothesis

simply by taking H = ht,k = f (x). On the other hand, the following crucial lemma shows that if

the weak learner never uses option (ii) for any (t,k) then the accuracy of B is upper bounded by

vote(γ,T):

Lemma 19 If W never uses option (ii) then Pr(x, f (x))←P [H(x) 6= f (x)]≥ vote(γ,T).

Proof If the weak learner never uses option (ii) then H depends only on variables

ω1, . . . ,ωT

and hence is a (randomized) Boolean function over these variables. Recall that for (x = (z,ω),
f (x) = z) drawn from P , each coordinate

ω1, . . . ,ωT

independently equals z with probability 1/2+ γ. Hence the optimal (randomized) Boolean function

H over inputs ω1, . . . ,ωT that maximizes the accuracy Pr(x, f (x))←P [H(x) = f (x)] is the (determinis-

tic) function H(x) =Maj(ω1, . . . , ωT) that outputs the majority vote of its input bits. (This can be

3. Note that P X and PY are not independent; indeed, in a draw (x,y= f (x)) from (P X ,PY) the outcome of x completely

determines y.

3120

PARALLEL LARGE-MARGIN LEARNING

easily verified using Bayes’ rule in the usual “Naive Bayes” calculation.) The error rate of this H is

precisely the probability that at most ⌊T/2⌋ “heads” are obtained in T independent (1/2+γ)-biased

coin tosses, which equals vote(γ,T).

Thus to prove Theorem 18 it suffices to prove the following lemma, which we prove by induction

on t:

Lemma 20 W never uses option (ii) (that is, Pr(x, f (x))←Pt,k
[ωt = f (x)]≥ 1/2+ γ always).

Proof Base case (t = 1). For any k ∈ [N], since t = 1 there are no weak hypotheses from previous

stages, so the value of the rejection sampling parameter px is determined by the bit f (x) = z (see

Definition 17). Hence P1,k is a convex combination of two distributions which we call D1 and

D−1. For b ∈ {−1,1}, a draw of (x = (z,ω); f (x) = z) from Db is obtained by setting z = b and

independently setting each coordinate ωi equal to z with probability 1/2+ γ. Thus in the convex

combination P1,k of D1 and D−1, we also have that ω1 equals z (that is, f (x)) with probability

1/2+ γ. So the base case is done.

Inductive step (t > 1). Thanks to the conditional independence of different coordinates ωi given

the value of z in a draw from P , the proof is quite similar to the base case.

Fix any k ∈ [N]. The inductive hypothesis and the weak learner’s strategy together imply that

for each labeled example (x = (z,ω), f (x) = z), since hs,ℓ(x) = ωs for s < t, the rejection sampling

parameter px = αt,k(h1,1(x), . . . ,ht−1,N(x), f (x)) is determined by ω1, . . . ,ωt−1 and z and does not

depend on ωt ,ωt+1, Consequently the distribution Pt,k over labeled examples is some convex

combination of 2t distributions which we denote Db, where b ranges over {−1,1}t corresponding

to conditioning on all possible values for ω1, . . . ,ωt−1,z. For each b=(b1, . . . ,bt)∈{−1,1}t , a draw

of (x=(z,ω); f (x)= z) from Db is obtained by setting z= bt , setting (ω1, . . . ,ωt−1)= (b1, . . . ,bt−1),
and independently setting each other coordinate ω j (j≥ t) equal to z with probability 1/2+γ. In par-

ticular, because ωt is conditionally independent of ω1, ...,ωt−1 given z, Pr(ωt = z|ω1 = b1, ...,ωt−1 =
bt−1) = Pr(ωt = z) = 1/2+ γ. Thus in the convex combination Pt,k of the different Db’s, we also

have that ωt equals z (that is, f (x)) with probability 1/2+ γ. This concludes the proof of the lemma

and the proof of Theorem 18.

4. Conclusion

There are many natural directions for future work on understanding the parallel complexity of learn-

ing large-margin halfspaces. One natural goal, of course, is to give an algorithm that provides an

affirmative answer to the main question. But it is not clear to us that such an algorithm must actually

exist, and so another intriguing direction is to prove negative results giving evidence that parallel

learning of large-margin halfspaces is computationally hard.

As one example of a possible negative result, perhaps it is the case that (assuming P 6= NC)

there is no poly(n)-processor, polylog(n)-time algorithm with the following performance guaran-

tee: given a sample of poly(n) many n-dimensional labeled examples that are consistent with some

1/poly(n)-margin halfspace, the algorithm outputs a consistent halfspace hypothesis. A stronger

result would be that no such algorithm can even output a halfspace hypothesis which is consistent

3121

LONG AND SERVEDIO

with 99% (or 51%) of the labeled examples. Because of the requirement of a halfspace represen-

tation for the hypothesis such results would not directly contradict the main question, but they are

contrary to it in spirit. We view the possibility of establishing such negative results as an interesting

direction worthy of future study.

Acknowledgments

We thank Sasha Rakhlin for telling us about the paper of Soheili and Peña (2012), and anonymous

reviewers for helpful comments.

Appendix A. Proof of Lemma 2

First, let us establish that we can “boost the confidence” efficiently. Suppose we have an algorithm

that achieves accuracy 1− ε in parallel time T ′′ with probability cδ. Then we can run O(log(1/δ))
copies of this algorithm in parallel, then test each of their hypotheses in parallel using O(log(1/δ)/ε)
examples. The tests of individual examples can be done in parallel, and we can compute each

empirical error rate in O(log(1/ε)+ log log(1/δ)) time. Then we can output the hypothesis with the

best accuracy on this additional test data. Finding the best hypothesis takes at most O(log log(1/δ))
parallel time (with polynomially many processors). The total parallel time taken is then O(T ′′+
log(1/ε)+ log log(1/δ)).

So now, we have as a subproblem the problem of achieving accuracy 1−ε with constant proba-

bility, say 1/2.

The theorem statement assumes that we have as a subroutine an algorithm A that achieves con-

stant accuracy with constant probability in time T . Using the above reduction, we can use A to get

an algorithm A′ that achieves constant accuracy with probability 1− c/ log(1/ε) (for a constant c)

in T ′ = O(T + log loglog(1/ε)) time. We will use such an algorithm A′. (Note that the time taken

by A′ is an upper bound on the number of examples needed by A′.)
Algorithm B runs a parallel version of a slight variant of the “boosting-by-filtering” algorithm

due to Freund (1995), using A′ as a weak learner. Algorithm B uses parameters α and T :

• For rounds t = 0, ...,T −1

– draw m = 2T α
ε max{T ′,4ln 32T 2α

ε } examples, call them

St = {(xt,1,yt,1), ...,(xt,m,yt,m)}.

– for each i = 1, ...,m,

∗ let rt,i be the the number of previous base classifiers h0,...,ht−1 that are correct on

(xt,i,yt,i), and

∗ wt,i =
(

T−t−1

⌊ T
2 ⌋−rt,i

)

(1
2
+α)⌊ T

2 ⌋−rt,i(1
2
−α)⌈ T

2 ⌉−t−1+rt,i ,

– let wt,max = maxr

(

T−t−1

⌊ T
2 ⌋−r

)

(1
2
+α)⌊ T

2 ⌋−r(1
2
−α)⌈ T

2 ⌉−t−1+r be the largest possible value

that any wt,i could take,

– apply the rejection method as follows: for each i ∈ St ,

∗ choose ut,i uniformly from [0,1],

3122

PARALLEL LARGE-MARGIN LEARNING

∗ if ut,i ≤ wt,i

wt,max
, set at,i = 1

– if there is a j such that j >
T αwt,max

ε max
{

∑
j
i=1 at,i,4ln

16T 2αwt,max

ε(1−ε)

}

∗ output a hypothesis ht that predicts randomly,

∗ otherwise, pass the examples in St to Algorithm A′, which returns ht .

• Output the classifier obtained by taking a majority vote over h0, ...,hT−1.

The only difference between algorithm B, as described above, and the way the algorithm is

described by Freund (1995) is that, in the above description, a batch of examples is chosen at the

beginning of the round. The number of examples is set using Freund’s upper bound on the number

of examples that can be chosen in a given round (see the displayed equation of the boost-by-majority

paper (Freund, 1995) immediately before (18)). In Freund’s description of this algorithm, once the

condition which causes the algorithm to output a random hypothesis is reached, the algorithm stops

sampling, but, for a parallel version, it is convenient to sample all of the examples for a round in

parallel.

Freund (1995) proves that, if α is a constant depending only on the accuracy of the hypotheses

output by A′, then T = O(log(1/ε)) suffices for algorithm B to output a hypothesis with accuracy

1− ε with probability 1/2. So the parallel time taken is O(log(1/ε)) times the time taken in each

iteration.

Let us now consider the time taken in each iteration. The weights for the various examples can

be computed in parallel. The value of wt,i is a product of O(T) quantities, each of which can be

expressed using T bits, and can therefore be computed in O(poly(logT)) = O(poly(log log(1/ε)))
parallel time, as can wt,max. The rejection step also may be done in O(poly(log log(1/ε))) time in

parallel for each example. To check whether there is a j such that

j >
T αwt,max

ε
max

{

j

∑
i=1

at,i,4ln
16T 2αwt,max

ε(1− ε)

}

,

Algorithm B can compute the prefix sums ∑
j
i=1 at,i, and then test them in parallel. The prefix sums

can be computed in log(T) parallel rounds (each on log(T)-bit numbers), using the standard tech-

nique of placing the values of at,i on the leaves of a binary tree, and working up from the leaves to

the root, computing the sums of subtrees, then making a pass down the tree, passing each node’s

sum to its right child, and using these to compute prefix sums in the obvious way.

Appendix B. Proof of Lemma 5

Algorithm ANes is a special case of the algorithm of (2.2.11) on page 81 of the book by Nesterov

(2004), obtained by setting y0← 0 and x0← 0. The bound of Lemma 5 is a consequence of Theorem

2.2.3 on page 80 of Nesterov’s book. This Theorem applies to all functions f that are µ-strongly

convex, and continuously differentiable with a gradient that is L-Lipschitz (see pages 71, 63 and

20). Lemmas 3 and 4 of this paper imply that Theorem 2.2.3 of Nesterov’s book applies to Ψ.

Plugging directly into Theorem 2.2.3 (in the special case of (2.2.11))

Ψ(vk)−Ψ(w)≤ 4L

(2
√

L+ k
√

µ)2
(Ψ(0)−Ψ(w)+µ||w||2)

which implies the Lemma 5, since Ψ(0)≤ 1 and Ψ(w)≥ 0.

3123

LONG AND SERVEDIO

Appendix C. Proof of Lemma 7

First, we prove

Pr
A
[Pr
x′∼D ′

[

||x′||> 2
]

> γ4/2] < 1/200. (2)

Recall that we sample x′ from D′ by first sampling x from a distribution D over Bn (so that

||x||= 1), and then setting x′ = (1/
√

d)xA, so that (2) is equivalent to

Pr
A
[Pr
x∼D

[

||xA||> 2
√

d
]

> γ4/2] < 1/200.

Corollary 1 of the paper of Arriaga and Vempala (2006) directly implies that, for any x in Bn, we

have

Pr
A
[||xA|| ≥ 2

√
d]≤ 2e−

d
32 ,

so

Ex∈D[Pr
A
[||xA|| ≥ 2

√
d]]≤ 2e−

d
32 ,

which implies

EA[Pr
x∈D

[||xA|| ≥ 2
√

d]]≤ 2e−
d
32 .

Applying Markov’s inequality,

Pr
A
[Pr
x∈D

[||xA|| ≥ 2
√

d]> 400e−
d
32]≤ 1/200.

Setting d = O(log(1/γ)) then suffices to establish (2).

Now, we want to show that d = O((1/γ2) log(1/γ)) suffices to ensure that

Pr
A

[

Pr
x′∼D ′

[∣

∣

∣

∣

w′

‖w′‖ ·x
′
∣

∣

∣

∣

< γ/2

]

> γ4/2

]

≤ 1/200.

As above, Corollary 1 of the paper by Arriaga and Vempala (2006) directly implies that there is

an absolute constant c1 > 0 such that

Pr
A
[||w′||= ||(1/

√
d)wA||> 3/2]≤ 2e−c1d .

Furthermore, for any x ∈ Bn, Corollary 2 of the paper by Arriaga and Vempala (2006) directly

implies that there is an absolute constant c2 > 0 such that

Pr
A
[w′ ·x′ ≤ 3γ/4]≤ 4e−c2γ2d .

Thus,

Pr
A

[

w′

||w′|| ·x
′ ≤ γ/2

]

≤ 2e−c1d +4e−c2γ2d .

Arguing as above, we have

Ex∈D

[

Pr
A

[

w′

||w′|| ·x
′ ≤ γ/2

]]

≤ 2e−c1d +4e−c2γ2d ,

EA

[

Pr
x∈D

[

w′

||w′|| ·x
′ ≤ γ/2

]]

≤ 2e−c1d +4e−c2γ2d ,

Pr
A

[

Pr
x∈D

[

w′

||w′|| ·x
′ ≤ γ/2

]

> 200(2e−c1d +4e−c2γ2d)

]

≤ 1/200,

3124

PARALLEL LARGE-MARGIN LEARNING

from which d = O((1/γ2) log(1/γ)) suffices to get

Pr
A

[

Pr
x∈D

[

w′

||w′|| ·x
′ ≤ γ/2

]

> γ4/2

]

≤ 1/200,

completing the proof.

Appendix D. Proof of Lemma 13

First, Ar finds a rough guess u1 such that

√
z/2≤ u1 ≤

√
z. (3)

This can be done by checking in parallel, for each of θ∈{1/2L,1/2L−1, ...,1/2,1,2, ...,2L}, whether√
z≥ θ, and outputting the largest such θ. This first step takes O(logL) time using O(L) processors.

Then, using u1 as the initial solution, Ar runs Newton’s method to find a root of the function f

defined by f (u) = u2− z, repeatedly

uk+1 =
1

2

(

uk +
z

uk

)

. (4)

As we will see below, this is done for k = 1, . . . ,O(logL+ log log(1/β)). Using the fact that the

initial value u1 is an L-bit rational number, a straightforward analysis using (4) shows that for all

k ≤ O(logL+ log log(1/β)) the number uk is a rational number with poly(L, log(1/β)) bits (if bk

is the number of bits required to represent uk, then bk+1 ≤ 2bk +O(L)). Standard results on the

parallel complexity of integer multiplication thus imply that for k ≤ O(logL+ log log(1/β)) the

exact value of uk can be computed in the parallel time and processor bounds claimed by the Lemma.

To prove the Lemma, then, it suffices to show that taking k = O(logL+ log log(1/β)) gives the

desired accuracy; we do this next.

The Newton iterates defined by (4) satisfy

uk+1−
√

z

uk+1 +
√

z
=

(

uk−
√

z

uk +
√

z

)2

(see Weisstein, 2011), which, using induction, gives

uk+1−
√

z

uk+1 +
√

z
=

(

u1−
√

z

u1 +
√

z

)2k

.

Solving for uk+1 yields

uk+1 =
√

z







1+
(

u1−
√

z

u1+
√

z

)2k

1−
(

u1−
√

z

u1+
√

z

)2k






=
√

z






1+

2
(

u1−
√

z

u1+
√

z

)2k

1−
(

u1−
√

z

u1+
√

z

)2k






.

Thus,

uk+1−
√

z =
2
√

z
(

u1−
√

z

u1+
√

z

)2k

1−
(

u1−
√

z

u1+
√

z

)2k

3125

LONG AND SERVEDIO

and, therefore, to get |uk+1−
√

z| ≤ β, we only need

(

u1−
√

z

u1 +
√

z

)2k

≤min

{

β

4
√

z
,1/2

}

.

Applying (3),

(1/4)2k ≤min

{

β

4
√

z
,1/2

}

also suffices, and, solving for k, this means that

O(log logz+ log log(1/β)) = O(logL+ log log(1/β))

iterations are enough.

References

N. Alon and N. Megiddo. Parallel linear programming in fixed dimension almost surely in constant

time. J. ACM, 41(2):422–434, 1994.

R. I. Arriaga and Santosh Vempala. An algorithmic theory of learning: Robust concepts and random

projection. Machine Learning, 63(2):161–182, 2006.

P. Beame, S.A. Cook, and H.J. Hoover. Log depth circuits for division and related problems. SIAM

J. on Computing, 15(4):994–1003, 1986.

H. Block. The Perceptron: A model for brain functioning. Reviews of Modern Physics, 34:123–135,

1962.

A. Blum. Random Projection, Margins, Kernels, and Feature-Selection. In Subspace, Latent Struc-

ture and Feature Selection, pages 52–68, 2006.

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Learnability and the Vapnik-

Chervonenkis dimension. Journal of the ACM, 36(4):929–965, 1989.

J. Bradley, A. Kyrola, D. Bickson, and C. Guestrin. Parallel coordinate descent for l1-regularized

loss minimization. In Proc. 28th ICML, pages 321–328, 2011.

J. K. Bradley and R. E. Schapire. Filterboost: Regression and classification on large datasets. In

Proc. 21st NIPS, 2007.

N. Bshouty, S. Goldman, and H.D. Mathias. Noise-tolerant parallel learning of geometric concepts.

Inf. and Comput., 147(1):89–110, 1998. ISSN 0890-5401. doi: DOI: 10.1006/inco.1998.2737.

M. Collins, R. E. Schapire, and Y. Singer. Logistic regression, adaboost and bregman distances.

Machine Learning, 48(1-3):253–285, 2002.

A. d’Aspremont. Smooth optimization with approximate gradient. SIAM Journal on Optimization,

19 (3): 1171–1183, 2008.

3126

PARALLEL LARGE-MARGIN LEARNING

O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao. Optimal distributed online prediction. In

Proc. 28th ICML, pages 713–720, 2011.

C. Domingo and O. Watanabe. MadaBoost: A modified version of AdaBoost. In Proc. 13th COLT,

pages 180–189, 2000.

Y. Freund. Boosting a weak learning algorithm by majority. Information and Computation, 121 (2):

256–285, 1995.

Y. Freund. An adaptive version of the boost-by-majority algorithm. Machine Learning, 43(3):293–

318, 2001.

Y. Freund and R. E. Schapire. Large margin classification using the perceptron algorithm. Machine

Learning, 37(3):277–296, 1999.

R. Greenlaw, H.J. Hoover, and W.L. Ruzzo. Limits to Parallel Computation: P-Completeness

Theory. Oxford University Press, New York, 1995.

A. Kalai and R. Servedio. Boosting in the presence of noise. Journal of Computer & System

Sciences, 71(3):266–290, 2005.

N. Karmarkar. A new polynomial time algorithm for linear programming. Combinat., 4:373–395,

1984.

M. Kearns and Y. Mansour. On the boosting ability of top-down decision tree learning algorithms.

In Proc. 28th STOC, pages 459–468, 1996.

M. Kearns and U. Vazirani. An Introduction to Computational Learning Theory. MIT Press, Cam-

bridge, MA, 1994.

N. Littlestone. From online to batch learning. In Proc. 2nd COLT, pages 269–284, 1989.

P. Long and R. Servedio. Martingale boosting. In Proc. 18th COLT, pages 79–94, 2005.

P. Long and R. Servedio. Adaptive martingale boosting. In Proc. 22nd NIPS, pages 977–984, 2008.

P. Long and R. Servedio. Algorithms and hardness results for parallel large margin learning. In

Proc. 25th NIPS, 2011.

Y. Mansour and D. McAllester. Boosting using branching programs. Journal of Computer & System

Sciences, 64(1):103–112, 2002.

Y. Nesterov. Introductory lectures on Convex Optimization. Kluwer, 2004.

Y. Nesterov. Excessive gap technique in nonsmooth convex minimization. SIAM J. Optimization,

16(1):235–249, 2005.

A. Novikoff. On convergence proofs on perceptrons. In Proceedings of the Symposium on Mathe-

matical Theory of Automata, volume XII, pages 615–622, 1962.

F. Rosenblatt. The Perceptron: a probabilistic model for information storage and organization in the

brain. Psychological Review, 65:386–407, 1958.

3127

LONG AND SERVEDIO

R. Schapire. The strength of weak learnability. Machine Learning, 5(2):197–227, 1990.

R. Servedio. Smooth boosting and learning with malicious noise. JMLR, 4:633–648, 2003.

S. Shalev-Shwartz and Y. Singer. On the equivalence of weak learnability and linear separability:

New relaxations and efficient boosting algorithms. Machine Learning, 80(2):141–163, 2010.

N. Soheili and J. Peña. A smooth perceptron algorithm. SIAM J. Optimization, 22(2):728–737,

2012.

L. Valiant. A theory of the learnable. Communications of the ACM, 27 (11): 1134–1142, 1984.

V. N. Vapnik and A. Y. Chervonenkis. Theory of Pattern Recognition. Nauka, 1974. In Russian.

J. S. Vitter and J. Lin. Learning in parallel. Inf. Comput., 96(2):179–202, 1992.

E. W. Weisstein. Newton’s iteration, 2011. http://mathworld.wolfram.com/NewtonsIteration.html.

DIMACS 2011 Workshop. Parallelism: A 2020 Vision. 2011.

NIPS 2009 Workshop. Large-Scale Machine Learning: Parallelism and Massive Datasets. 2009.

3128

