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Abstract

The marginal maximum a posteriori probability (MAP) estimation problem, which calculates the

mode of the marginal posterior distribution of a subset of variables with the remaining variables

marginalized, is an important inference problem in many models, such as those with hidden vari-

ables or uncertain parameters. Unfortunately, marginal MAP can be NP-hard even on trees, and has

attracted less attention in the literature compared to the joint MAP (maximization) and marginal-

ization problems. We derive a general dual representation for marginal MAP that naturally inte-

grates the marginalization and maximization operations into a joint variational optimization prob-

lem, making it possible to easily extend most or all variational-based algorithms to marginal MAP.

In particular, we derive a set of “mixed-product” message passing algorithms for marginal MAP,

whose form is a hybrid of max-product, sum-product and a novel “argmax-product” message up-

dates. We also derive a class of convergent algorithms based on proximal point methods, includ-

ing one that transforms the marginal MAP problem into a sequence of standard marginalization

problems. Theoretically, we provide guarantees under which our algorithms give globally or lo-

cally optimal solutions, and provide novel upper bounds on the optimal objectives. Empirically,

we demonstrate that our algorithms significantly outperform the existing approaches, including a

state-of-the-art algorithm based on local search methods.

Keywords: graphical models, message passing, belief propagation, variational methods, maxi-

mum a posteriori, marginal-MAP, hidden variable models

1. Introduction

Graphical models such as Bayesian networks and Markov random fields provide a powerful frame-

work for reasoning about conditional dependency structures over many variables, and have found

wide application in many areas including error correcting codes, computer vision, and computa-

tional biology (Wainwright and Jordan, 2008; Koller and Friedman, 2009). Given a graphical model,

which may be estimated from empirical data or constructed by domain expertise, the term inference

refers generically to answering probabilistic queries about the model, such as computing marginal

probabilities or maximum a posteriori estimates. Although these inference tasks are NP-hard in the

worst case, recent algorithmic advances, including the development of variational methods and the

family of algorithms collectively called belief propagation, provide approximate or exact solutions

for these problems in many practical circumstances.

In this work we will focus on three common types of inference tasks. The first involves maxi-

mization or max-inference tasks, sometimes called maximum a posteriori (MAP) or most probable
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explanation (MPE) tasks, which look for a mode of the joint probability. The second are sum-

inference tasks, which include calculating the marginal probabilities or the normalization constant

of the distribution (corresponding to the probability of evidence in a Bayesian network). Finally, the

main focus of this work is on marginal MAP, a type of mixed-inference problem that seeks a partial

configuration of variables that maximizes those variables’ marginal probability, with the remaining

variables summed out.1 Marginal MAP plays an essential role in many practical scenarios where

there exist hidden variables or uncertain parameters. For example, a marginal MAP problem can

arise as a MAP problem on models with hidden variables whose predictions are not of interest, or as

a robust optimization variant of MAP with some unknown or noisily observed parameters marginal-

ized w.r.t. a prior distribution. It can be also treated as a special case of the more complicated

frameworks of stochastic programming (Birge and Louveaux, 1997) or decision networks (Howard

and Matheson, 2005; Liu and Ihler, 2012).

These three types of inference tasks are listed in order of increasing difficulty: max-inference

is NP-complete, while sum-inference is #P-complete, and mixed-inference is NPPP-complete (Park

and Darwiche, 2004; De Campos, 2011). Practically speaking, max-inference tasks have a host

of efficient algorithms such as loopy max-product BP, tree-reweighted BP, and dual decomposi-

tion (see, e.g., Koller and Friedman, 2009; Sontag et al., 2011). Sum-inference is more difficult

than max-inference: for example there are models, such as those with binary attractive pairwise po-

tentials, on which sum-inference is #P-complete but max-inference is tractable (Greig et al., 1989;

Jerrum and Sinclair, 1993).

Mixed-inference is even much harder than either max- or sum- inference problems alone:

marginal MAP can be NP-hard even on tree structured graphs, as illustrated in the example by

Koller and Friedman (2009) in Figure 1. The difficulty arises in part because the max and sum

operators do not commute, causing the feasible elimination orders to have much higher induced

width than for sum- or max-inference. Viewed another way, the marginalization step may destroy

the dependency structure of the original graphical model, making the subsequent maximization step

far more challenging. Probably for these reasons, there is much less work on marginal MAP than

that on joint MAP or marginalization, despite its importance to many practical problems. In prac-

tice, it is common to over-use the simpler joint MAP or marginalization even when marginal MAP

would be more appropriate. This may cause serious problems, as we illustrate in Example 1 and our

empirical results in Section 9.

1.1 Contributions

We reformulate the mixed-inference problem to a joint maximization problem as a free energy ob-

jective that extends the well-known log-partition function duality form, making it possible to easily

extend essentially arbitrary variational algorithms to marginal MAP. In particular, we propose a

novel “mixed-product” BP algorithm that is a hybrid of max-product, sum-product, and a special

“argmax-product” message updates, as well as a convergent proximal point algorithm that works

by iteratively solving pure (or annealed) marginalization tasks. We also present junction graph BP

variants of our algorithms, that work on models with higher order cliques. We also discuss mean

field methods and highlight their connection to the expectation-maximization (EM) algorithm. We

give theoretical guarantees on the global and local optimality of our algorithms for cases when the

1. In some literature (e.g., Park and Darwiche, 2004), marginal MAP is simply referred to as MAP, and the joint MAP

problem is called MPE.

3166



VARIATIONAL ALGORITHMS FOR MARGINAL MAP

sum variables form tree structured subgraphs. Our numerical experiments show that our methods

can provide significantly better solutions than existing algorithms, including a similar hybrid mes-

sage passing algorithm by Jiang et al. (2011) and a state-of-the-art algorithm based on local search

methods. A preliminary version of this work has appeared in Liu and Ihler (2011b).

1.2 Related Work

Expectation-maximization (EM) or variational EM provide one straightforward approach for

marginal MAP, by viewing the sum nodes as hidden variables and the max nodes as parameters

to be estimated; however, EM is prone to getting stuck at sub-optimal configurations. We show that

EM can be treated as a special case of our framework when a mean field-like approximation is ap-

plied. Other classical state-of-the-art approaches include local search methods (e.g., Park and Dar-

wiche, 2004), Markov chain Monte Carlo methods (e.g., Doucet et al., 2002; Yuan et al., 2004), and

variational elimination based methods (e.g., Dechter and Rish, 2003; Mauá and de Campos, 2012).

Jiang et al. (2011) recently proposed a hybrid message passing algorithm that has a similar form to

our mixed-product BP algorithm, but without theoretical guarantees; we show in Section 5.3 that

Jiang et al. (2011) can be viewed as an approximation of the marginal MAP problem that exchanges

the order of sum and max operators. Another message-passing-style algorithm was proposed very

recently in Altarelli et al. (2011) for general multi-stage stochastic optimization problems based

on survey propagation, which again does not have optimality guarantees and has a relatively more

complicated form. Finally, Ibrahimi et al. (2011) introduces a robust max-product belief propaga-

tion for solving a related worst-case robust optimization problem, where the hidden variables are

minimized instead of marginalized. To the best of our knowledge, our work is the first general

variational framework for marginal MAP, and provides the first strong optimality guarantees.

We begin in Section 2 by introducing background information on graphical models and vari-

ational inference. We then introduce a novel variational dual representation for marginal MAP in

Section 3, and propose analogues of the Bethe and tree-reweighted approximations for marginal

MAP in Section 4. A class of “mixed-product” message passing algorithms is proposed and ana-

lyzed in Section 5 and convergent alternatives are proposed in Section 6 based on proximal point

methods. We then discuss the EM algorithm and its connection to our framework in Section 7,

and provide an extension of our algorithms to junction graphs in Section 8. Finally, we present

numerical results in Section 9 and conclude the paper in Section 10.

2. Background

We give an overview of different inference problems on graphical models, and introduce the varia-

tional framework as applied to max- and sum- inference problems.

2.1 Graphical Models

Let x= {x1,x2, · · · ,xn} be a random vector in a discrete space X =X1×·· ·×Xn. Let V = {1, · · · ,n}.
For an index set α⊆V , denote by xα the sub-vector {xi : i ∈ α}, and similarly, Xα the cross product

of {Xi : i ∈ α}. A graphical model defines a factorized probability on x,

p(x) =
1

Z(ψ) ∏
α∈I

ψα(xα) or p(x;θ) = exp[∑
α∈I

θα(xα)−Φ(θ)],
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where I is a set of subsets of variable indexes, ψα : Xα → R
+ is called a factor function, and

θα(xα) = logψα(xα). Since the xi are discrete, the functions ψ and θ are tables; by alternatively

viewing θ as a vector, it is interpreted as the natural parameter in an overcomplete, exponential

family representation. Let ψ and θ be the joint vector of all ψα and θα respectively, for example, θ=
{θα(xα) : α ∈ I,xα ∈ Xα}. The normalization constant Z(ψ), called partition function, normalizes

the probability to sum to one, and Φ(θ) := logZ(ψ) is called the log-partition function,

Φ(θ) = log ∑
x∈X

exp[θ(x)],

where we define θ(x) = ∑α∈I θα(xα) to be the joint potential function that maps from X to R. The

factorization structure of p(x) can be represented by an undirected graph G = (V,E), where each

node i ∈V maps to a variable xi, and each edge (i j) ∈ E corresponds to two variables xi and x j that

coappear in some factor function ψα, that is, {i, j} ⊆ α. The set I is then a set of cliques (fully

connected subgraphs) of G. For the purpose of illustration, we mainly restrict our scope on the set

of pairwise models, on which I is the set of nodes and edges, that is, I = E∪V . However, we show

how to extend our algorithms to models with higher order cliques in Section 8.

2.2 Sum-Inference Problems and Variational Approximation

Sum-inference is the task of marginalizing (summing out) variables in the model, for example,

calculating the marginal probabilities of single variables, or the normalization constant Z,

p(xi) = ∑
xV\{i}

exp[θ(x)−Φ(θ)], Φ(θ) = log∑
x

exp[θ(x)].

Unfortunately, the problem is generally #P-complete, and the straightforward calculation requires

summing over an exponential number of terms. Variational methods are a class of approximation al-

gorithms that transform the marginalization problem into a continuous optimization problem, which

is then typically solved approximately.

2.2.1 MARGINAL POLYTOPE

The marginal polytope is a key concept in variational inference. We define the marginal polytope

M to be the set of local marginal probabilities τ = {τα(xα) : α ∈ I} that are extensible to a valid

joint distribution, that is,

M= {τ : ∃ joint distribution q(x), s.t. τα(xα) = ∑
xV\α

q(x) for ∀α ∈ I}.

Denote by Q [τ] the set of joint distributions whose marginals are consistent with τ ∈M; by the

principle of maximum entropy (Jaynes, 1957), there exists a unique distribution in Q [τ] that has

maximum entropy and follows the exponential family form for some θ.2 With an abuse of notation,

we denote these unique global distributions by τ(x), and we do not distinguish τ(x) and τ when it is

clear from the context.

2. In the case that p(x) has zero elements, the maximum entropy distribution is still unique and satisfies the exponential

family form, but the corresponding θ has negative infinite values (Jaynes, 1957).
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2.2.2 LOG-PARTITION FUNCTION DUALITY

A key result to many variational methods is that the log-partition function Φ(θ) is a convex function

of θ and can be rewritten into a convex dual form,

Φ(θ) = max
τ∈M

{

〈θ,τ〉+H(τ)
}

, (1)

where 〈θ,τ〉 = ∑α ∑xα
θα(xα)τα(xα) is the vectorized inner product, and H(τ) is the entropy of the

corresponding global distribution τ(x), that is, H(τ) = −∑x τ(x) logτ(x). The unique maximum τ∗

of (1) exactly equals the marginals of the original distribution p(x;θ), that is, τ∗(x) = p(x;θ). We

call Fsum(τ,θ) = 〈θ,τ〉+H(τ) the sum-inference free energy (although technically the negative free

energy).

The dual form (1) transforms the marginalization problem into a continuous optimization, but

does not make it any easier: the marginal polytope M is defined by an exponential number of linear

constraints, and the entropy term in the objective function is as difficult to calculate as the log-

partition function. However, (1) provides a framework for deriving efficient approximate inference

algorithms by approximating both the marginal polytope and the entropy (Wainwright and Jordan,

2008).

2.2.3 BP-LIKE METHODS

Many approximation methods replace M with the locally consistent polytope L; in pairwise models,

it is the set of singleton and pairwise “pseduo-marginals” {τi(xi) : i ∈V} and {τi j(xi,x j) : (i j) ∈ E}
that are consistent on their intersections, that is,

L= {τi,τi j : ∑
xi

τi j(xi,x j) = τ j(x j), ∑
xi

τi(xi) = 1, τi j(xi,x j)≥ 0}. (2)

Since not all such pseudo-marginals have valid global distributions, it is easy to see that L is an

outer bound of M, that is, M ⊆ L. Note that this means there may not exist a global distribution

τ(x) for τ in L.

The free energy remains intractable (and is not even well-defined) in L. We typically approx-

imate the free energy by a combination of singleton and pairwise entropies, which only requires

knowing τi and τi j. For example, the Bethe free energy approximation (Yedidia et al., 2003) is

H(τ)≈∑
i∈V

Hi(τ)− ∑
(i j)∈E

Ii j(τ), Φ(θ)≈max
τ∈L

{

〈θ,τ〉+ ∑
i∈V

Hi(τ)− ∑
(i j)∈E

Ii j(τ)
}

, (3)

where Hi(τ) is the entropy of τi(xi) and Ii j(τ) the mutual information of xi and x j, that is,

Hi(τ) =−∑
xi

τi(xi) logτi(xi), Ii j(τ) = ∑
xi,x j

τi j(xi,x j) log
τi j(xi,x j)

τi(xi)τ j(x j)
.

We sometimes abbreviate Hi(τ) and Ii j(τ) into Hi and Ii j for convenience. The well-known loopy

belief propagation (BP) algorithm of Pearl (1988) can be interpreted as a fixed point algorithm to

optimize the Bethe free energy in (3) on the locally consistent polytope L (Yedidia et al., 2003).

Unfortunately, the Bethe free energy is a non-concave function of τ, causing (3) to be a non-convex
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optimization. The tree reweighted (TRW) free energy is a convex surrogate of the Bethe free energy

(Wainwright et al., 2005a),

Φ(θ)≈max
τ∈L

{

〈θ,τ〉+ ∑
i∈V

Hi(τ)− ∑
(i j)∈E

ρi jIi j(τ)
}

, (4)

where {ρi j : (i j) ∈ E} is a set of positive edge appearance probabilities obtained from a weighted

collection of spanning trees of G (see Wainwright et al. (2005a) and Section 4.2 for the detailed

definition). The TRW approximation in (4) is a convex optimization problem, and is guaranteed

to give an upper bound of the true log-partition function. A message passing algorithm similar to

loopy BP, called tree reweighted BP, can be derived as a fixed point algorithm for solving the convex

optimization in (4).

2.2.4 MEAN-FIELD-BASED METHODS

Mean-field-based methods are another set of approximate inference algorithms, which work by re-

stricting M to a set of tractable distributions, on which both the marginal polytope and the joint

entropy are tractable. Precisely, let Mm f be a subset of M that corresponds to a set of tractable dis-

tributions, for example, the set of fully factored distributions, Mm f = {τ ∈M : τ(x) = ∏i∈V τi(xi)}.
Note that the joint entropy H(τ) for any τ ∈Mm f decomposes to the sum of singleton entropies

Hi(τ) of the marginal distributions τi(xi). This method then approximates the log-partition function

(1) by

max
τ∈Mm f

{

〈θ,τ〉+ ∑
i∈V

Hi(τ)
}

, (5)

which is guaranteed to give a lower bound of the log-partition function. Unfortunately, mean field

methods usually lead to non-convex optimization problems, because Mm f is often a non-convex set.

In practice, block coordinate descent methods can be adopted to find the local optima of (5).

2.3 Max-Inference Problems

Combinatorial maximization (max-inference), or maximum a posteriori (MAP), problems are the

tasks of finding a mode of the joint probability. That is,

Φ∞(θ) = max
x

θ(x), x∗ = argmax
x

θ(x),

where x∗ is a MAP configuration and Φ∞(θ) the optimal energy value. This problem can be re-

formed into a linear program,

Φ∞(θ) = max
τ∈M
〈θ,τ〉, (6)

which attains its maximum when τ∗(x) = 1(x = x∗), where 1(·) is the Kronecker delta function,

defined as 1(t) = 1 if condition t is true, and zero otherwise. If there are multiple MAP solutions,

say {x∗k : k = 1, . . . ,K}, then any convex combination ∑k ck1(x = x∗k) with ∑k ck = 1,ci ≥ 0 leads

to a maximum of (6).

The problem in (6) remains NP-hard, because the marginal polytope M includes exponentially

many inequality constraints. Most variational methods for MAP (e.g., Wainwright et al., 2005b;

Werner, 2007) can be interpreted as relaxing M to the locally consistent polytop L, yielding a linear

relaxation of the original integer programming problem. Note that (6) differs from (1) only by its

lack of an entropy term; in the next section, we generalize this similarity to marginal MAP.
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max:xB

sum:xA

Marginal MAP:

x∗B = argmax
xB

p(xB)

= argmax
xB

∑
xA

p(x).

Figure 1: An example from Koller and Friedman (2009) in which a marginal MAP query on a

tree requires exponential time complexity. The marginalization over xA destroys the con-

ditional dependency structure in the marginal distribution p(xB), causing an intractable

maximization problem over xB. The exact variable elimination method, which sequen-

tially marginalizes the sum nodes and then maximizes the max nodes, has time complex-

ity of O(exp(n)), where n is the length of the chain.

2.4 Marginal MAP Problems

Marginal MAP is simply a hybrid of the max- and sum- inference tasks. Let A be a subset of

nodes V , and B = V\A be the complement of A. The marginal MAP problem seeks a partial con-

figuration x∗B that has the maximum marginal probability p(xB) = ∑xA
p(x), where A is the set of

sum nodes to be marginalized out, and B the max nodes to be optimized. We call this a type of

“mixed-inference” problem, since it involves more than one type of variable elimination operator.

To facilitate developing our duality results, we formulate marginal MAP in terms of the exponential

family representation,

ΦAB(θ) = max
xB

Q(xB;θ), where Q(xB;θ) = log∑
xA

exp[θ(x)], (7)

where the maximum point x∗B of Q(xB;θ) is the marginal MAP solution. Although similar to max-

and sum-inference, marginal MAP is significantly harder than either of them. A classic example

is shown in Figure 1, where marginal MAP is NP-hard even on a tree structured graph (Koller and

Friedman, 2009). The main difficulty arises because the max and sum operators do not commute,

which restricts feasible elimination orders to those with all the sum nodes eliminated before any max

nodes. In the worst case, marginalizing the sum nodes xA may destroy any conditional independence

among the max nodes xB, making it difficult to represent or optimize Q(xB;θ), even when the sum

part alone is tractable (such as when the nodes in A form a tree).

Despite its computational difficulty, marginal MAP plays an essential role in many practical

scenarios. The marginal MAP configuration x∗B in (7) is Bayes optimal in the sense that it minimizes

the expected error on B, E[1(x∗B = xB)], where E[·] denotes the expectation under distribution p(x;θ).
Here, the variables xA are not included in the error criterion, for example because they are “nuisance”

hidden variables of no direct interest, or unobserved or inaccurately measured model parameters.

In contrast, the joint MAP configuration x∗ minimizes the joint error E[1(x∗ = x)], but gives no

guarantees on the partial error E[1(x∗B = xB)]. In practice, perhaps because of the wide availability

of efficient algorithms for joint MAP, researchers tend to over-use joint MAP even in cases where

marginal MAP would be more appropriate. The following toy example shows that this seemingly

reasonable approach can sometimes cause serious problems.

Example 1 (Weather Dilemma). Denote by xb ∈ {rainy,sunny} the weather condition of Irvine,

and xa ∈ {walk,drive} whether Alice drives or walks to the school depending on the weather con-
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dition. Assume the probabilities of xb and xa are

p(xb) : rainy 0.4

sunny 0.6

p(xa|xb) : walk drive

rainy 1/8 7/8

sunny 1/2 1/2

The task is to calculate the most likely weather condition of Irvine, which is obviously sunny accord-

ing to p(xb). The marginal MAP, x∗b = argmaxxb
p(xb) = sunny, gives the correct answer. However,

the full MAP estimator, [x∗a,x
∗
b] = argmax p(xa,xb) = [drive,rainy], gives answer x∗b = rainy (by

dropping the x∗a component), which is obviously wrong. Paradoxically, if p(xa|xb) is changed (say,

corresponding to a different person), the solution returned by full MAP could be different.

In the above example, since no evidence on xa is observed, the conditional probability p(xa|xb)
does not provide useful information for xb, but instead provides misleading information when it

is incorporated in the full MAP estimator. The marginal MAP, on the other hand, eliminates the

influence of the irrelevant p(xa|xb) by marginalizing (or averaging) xa. In general, the marginal

MAP and full MAP can differ significantly when the uncertainty in the hidden variables changes as

a function of xB.

3. A Dual Representation for Marginal MAP

In this section, we present our main result, a dual representation of the marginal MAP problem

(7). Our dual representation generalizes that of sum-inference in (1) and max-inference in (6), and

provides a unified framework for solving marginal MAP problems.

Theorem 2. The marginal MAP energy ΦAB(θ) in (7) has a dual representation,

ΦAB(θ) = max
τ∈M
{〈θ,τ〉+HA|B(τ)}, (8)

where HA|B(τ) is a conditional entropy, HA|B(τ) = −∑x τ(x) logτ(xA|xB). If Q(xB;θ) has a unique

maximum x∗B, the maximum point τ∗ of (8) is also unique, satisfying τ∗(x) = τ∗(xB)τ
∗(xA|xB), where

τ∗(xB) = 1(xB = x∗B) and τ∗(xA|xB) = p(xA|xB;θ)3.

Proof. For any τ ∈M and its corresponding global distribution τ(x), consider the conditional KL

divergence between τ(xA|xB) and p(xA|xB;θ),

DKL[τ(xA|xB)||p(xA|xB;θ)] = ∑
x

τ(x) log
τ(xA|xB)

p(xA|xB;θ)

=−HA|B(τ)−Eτ[log p(xA|xB;θ)]

=−HA|B(τ)−Eτ[θ(x)]+Eτ[Q(xB;θ)] ≥ 0,

where HA|B(τ) is the conditional entropy on τ(x); the equality on the last line holds because

p(xA|xB;θ) = exp(θ(x)−Q(xB;θ)); the last inequality follows from the nonnegativity of KL diver-

gence, and is tight if and only if τ(xA|xB) = p(xA|xB;θ) for all xA and xB that τ(xB) 6= 0. Therefore,

we have for any τ(x),

ΦAB(θ) = max
xB

Q(xB;θ)≥ Eτ[Q(xB;θ)]≥ Eτ[θ(x)]+HA|B(τ).

3. Since τ(xB) = 0 if xB 6= x∗B, we do not necessarily need to define τ∗(xA|xB) for xB 6= x∗B.
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Problem Type Primal Form Dual Form

Max-Inference logmax
x

exp(θ(x)) max
τ∈M
{〈θ,τ〉}

Sum-Inference log∑
x

exp(θ(x)) max
τ∈M
{〈θ,τ〉+H(τ)}

Marginal MAP logmax
xB

∑
xA

exp(θ(x)) max
τ∈M
{〈θ,τ〉+HA|B(τ)}

Table 1: The primal and dual forms of the three inference types. The dual forms of sum-inference

and max-inference are well known; the form for marginal MAP is a contribution of this

work. Intuitively, the max vs. sum operators in the primal form determine the conditioning

set of the conditional entropy term in the dual form.

It is easy to show that the two inequality signs are tight if and only if τ(x) equals τ∗(x) as defined

above. Substituting Eτ[θ(x)] = 〈θ,τ〉 completes the proof.

Remark 1. If Q(xB;θ) has multiple maxima {x∗kB }, each corresponding to a distribution τ∗k(x) =
1(xB = x∗B)p(xA|xB;θ), then the set of maximum points of (8) is the convex hull of {τ∗k}.

Remark 2. Theorem 2 naturally integrates the marginalization and maximization sub-problems

into one joint optimization problem, providing a novel and efficient treatment for marginal MAP

beyond the traditional approaches that treat the marginalization sub-problem as a sub-routine of

the maximization problem. As we show in Section 5, this enables us to derive efficient “mixed-

product” message passing algorithms that simultaneously takes marginalization and maximization

steps, avoiding expensive and possibly wasteful inner loop steps in the marginalization sub-routine.

Remark 3. Since we have HA|B(τ) = H(τ)−HB(τ) by the entropic chain rule (Cover and Thomas,

2006), the objective function in (8) can be view as a “truncated” free energy,

Fmix(τ,θ) := 〈θ,τ〉+HA|B(τ) = Fsum(τ,θ)−HB(τ),

where the entropy HB(τ) of the max nodes xB are removed from the regular sum-inference free

energy Fsum(τ,θ) = 〈θ,τ〉+H(τ). Theorem 2 generalizes the dual form of both sum-inference (1)

and max-inference (6), since it reduces to those forms when the max set B is empty or all nodes,

respectively. Table 1 shows all three forms together for comparision. Intuitively, since the entropy

HB(τ) is removed from the objective, the optimal marginal τ∗(xB) tends to have lower entropy and

its probability mass concentrates on the optimal configurations {x∗B}. Alternatively, the τ∗(x) can be

interpreted as the marginals obtained by clamping the value of xB at x∗B on the distribution p(x;θ),
that is, τ∗(x) = p(x|xB = x∗B;θ).

Remark 4. Unfortunately, subtracting the HB(τ) term causes some subtle difficulties. First, HB(τ)
(and hence Fmix(τ,θ)) may be intractable to calculate even when the joint entropy H(τ) is tractable,

because the marginal distribution p(xB) = ∑xA
p(x) does not necessarily inherit the conditional de-

pendency structure of the joint distribution. Therefore, the dual optimization in (8) may be in-

tractable even on a tree, reflecting the intrinsic difficulty of marginal MAP compared to full MAP

or marginalization. Interestingly, we show in the sequel that a certificate of optimality can still be

obtained on general tree graphs in some cases.
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Secondly, the conditional entropy HA|B(τ) (and hence Fmix(τ,θ)) is concave, but not strictly con-

cave, with respect to τ. This creates additional difficulty when optimizing (8), since many iterative

optimization algorithms, such as coordinate descent, can lose their typical convergence or optimality

guarantees when the objective function is not strongly convex.

3.1 Smoothed Approximation

To sidestep the issue of non-strictly convexity, we introduce a smoothed approximation of Fmix(τ,θ)
that “adds back” part of the missing HB(τ) term,

Fε
mix(τ,θ) = 〈θ,τ〉+HA|B(τ)+ εHB(τ),

where ε is a small positive constant. Similar smoothing techniques have also been applied to solve

the standard MAP problem; see, for example, Hazan and Shashua (2010); Meshi et al. (2012). We

show in the following theorem that this smoothed dual approximation is closely connected to a

direct approximation in the primal domain.

Theorem 3. Let ε be a positive constant, and Q(xB;θ) as defined in (7). Define

Φε
AB(θ) = log

{

[∑
xB

exp(Q(xB;θ))1/ε]ε
}

,

then we have

Φε
AB(θ) = max

τ∈M

{

〈θ,τ〉+HA|B(τ)+ εHB(τ)
}

.

In addition, we have

lim
ε→0+

Φε
AB(θ) = ΦAB(θ),

where ε→ 0+ denotes approaching zero from the positive side.

Proof. The proof is similar to that of Theorem 2, but exploits the non-negativity of a weighted sum

of two KL divergence terms,

DKL[τ(xA|xB)||p(xA|xB;θ)]+ εDKL[τ(xB)||p(xB)].

The remaining part follows directly from the standard zero temperature limit formula,

lim
ε→0+

[∑
x

f (x)1/ε]ε = max
x

f (x), (9)

where f (x) is any function with positive values.

4. Variational Approximations for Marginal MAP

Theorem 2 transforms the marginal MAP problem into a variational form, but obviously does not

decrease its computational hardness. Fortunately, many well-established variational techniques for

sum- and max-inference can be extended to apply to (8), opening a new door for deriving novel

approximate algorithms for marginal MAP. In the spirit of Wainwright and Jordan (2008), one can

either relax M to a simpler outer bound like L and replace Fmix(τ,θ) by some tractable form to give
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algorithms similar to loopy BP or TRW BP, or restrict M to a tractable subset like Mm f to give

mean-field-like algorithms. In the sequel, we demonstrate several such approximation schemes,

mainly focusing on the BP-like methods with pairwise free energies. We will briefly discuss mean-

field-like methods when we connect to EM in section 7, and derive an extension to junction graphs

that exploits higher order approximations in Section 8. Our framework can be easily adopted to

take advantage of other, more advanced variational techniques, like those using higher order cliques

(e.g., Yedidia et al., 2005; Globerson and Jaakkola, 2007; Liu and Ihler, 2011a; Hazan et al., 2012)

or more advanced optimization methods like dual decomposition (Sontag et al., 2011) or alternating

direction method of multipliers (Boyd et al., 2010).

We start by characterizing the graph structure on which marginal MAP is tractable.

Definition 4.1. We call G an A-B tree if there exists a partial order on the node set V = A∪B,

satisfying

1) Tree-order. For any i ∈ V , there is at most one other node j ∈ V (called its parent), such that

j ≺ i and (i j) ∈ E;

2) A-B Consistency. For any a ∈ A and b ∈ B, we have b≺ a.

We call such a partial order an A-B tree-order of G.

For further notation, let GA = (A,EA) be the subgraph induced by nodes in A, that is, EA =
{(i j) ∈ E : i ∈ A, j ∈ A}, and similarly for GB = (B,EB). Let ∂AB = {(i j) ∈ E : i ∈ A, j ∈ B} be the

edges that join sets A and B.

Obviously, marginal MAP on an A-B tree can be tractably solved by sequentially eliminating

the variables along the A-B tree-order (see, e.g., Koller and Friedman, 2009). We show that its dual

optimization is also tractable in this case.

Lemma 4. If G is an A-B tree, then

1) The locally consistent polytope equals the marginal polytope, that is, M= L.

2) The conditional entropy has a pairwise decomposition,

HA|B(τ) = ∑
i∈A

Hi(τ) − ∑
(i j)∈EA∪∂AB

Ii j(τ). (10)

Proof. 1) The fact that M = L on trees is a standard result; see Wainwright and Jordan (2008) for

details.

2) Because G is an A-B tree, both p(x) and p(xB) have tree structured conditional dependency. We

then have (see, e.g., Wainwright and Jordan, 2008) that

H(τ) = ∑
i∈V

Hi(τ)− ∑
(i j)∈E

Ii j(τ), and HB(τ) = ∑
i∈B

Hi(τ)− ∑
(i j)∈EB

Ii j(τ).

Equation (10) follows by using the entropic chain rule HA|B(τ) = H(τ)−HB(τ).
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4.1 Bethe-like Free Energy

Lemma 4 suggests that the free energy of A-B trees can be decomposed into singleton and pairwise

terms that are easy to deal with. This is not true for general graphs, but motivates a “Bethe” like

approximation,

Φbethe(θ) = max
τ∈L

Fbethe(τ,θ), Fbethe(τ,θ) = 〈θ,τ〉 + ∑
i∈A

Hi(τ) − ∑
(i j)∈EA∪∂AB

Ii j(τ), (11)

where Fbethe(τ,θ) is a “truncated” Bethe free energy, whose entropy and mutual information terms

that involve only max nodes are truncated. If G is an A-B tree, Φbethe equals the true ΦAB, giving an

intuitive justification. In the sequel we give more general theoretical conditions under which this ap-

proximation gives the exact solution, and we find empirically that it usually gives surprisingly good

solutions in practice. Similar to the regular Bethe approximation, (11) leads to a nonconvex opti-

mization, and we will derive both message passing algorithms and provably convergent algorithms

to solve it.

4.2 Tree-reweighted Free Energy

Following the idea of TRW belief propagation (Wainwright et al., 2005a), we construct an approxi-

mation of marginal MAP using a convex combination of A-B subtrees (subgraphs of G that are A-B

trees). Let TAB be a collection of A-B subtrees of G. We assign with each T ∈ TAB a weight wT

satisfying wT ≥ 0 and ∑T∈TAB
wT = 1. For each A-B sub-tree T = (V,ET ), define

HA|B(τ ; T ) = ∑
i∈A

Hi(τ) − ∑
(i j)∈ET \EB

Ii j(τ).

As shown in Wainwright and Jordan (2008), the HA|B(τ ; T ) is always a concave function of τ on

L, and HA|B(τ) ≤ HA|B(τ ; T ) for all τ ∈ M and T ∈ TAB. More generally, we have HA|B(τ) ≤

∑T∈TAB
wT HA|B(τ ; T ), which can be transformed to

HA|B(τ)≤∑
i∈A

Hi(τ) − ∑
(i j)∈EA∪∂AB

ρi jIi j(τ), (12)

where ρi j =∑T :(i j)∈ET
wT are the edge appearance probabilities as defined in Wainwright and Jordan

(2008). Replacing M with L and HA|B(τ) with the bound in (12) leads to a TRW-like approximation

of marginal MAP,

Φtrw(θ) = max
τ∈L

Ftrw(τ,θ), Ftrw(τ,θ) = 〈θ,τ〉 + ∑
i∈A

Hi(τ) − ∑
(i j)∈EA∪∂AB

ρi jIi j(τ). (13)

Since L is an outer bound of M, and Ftrw is a concave upper bound of the true free energy, we can

guarantee that Φtrw(θ) is always an upper bound of ΦAB(θ). To our knowledge, this provides the

first known convex relaxation for upper bounding marginal MAP. One can also optimize the weights

{wT : T ∈ TAB} to get the tightest upper bound using methods similar to those used for regular TRW

BP (see Wainwright et al., 2005a).

4.3 Global Optimality Guarantees

We show the global optimality guarantees of the above approximations under some circumstances.

In this section, we always assume GA is a tree, and hence the objective function is tractable to
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calculate for a given xB. However, the optimization component remains intractable in this case,

because the marginalization step destroys the decomposition structure of the objective function (see

Figure 1). It is thus nontrivial to see how the Bethe and TRW approximations behave in this case.

In general, suppose we approximate ΦAB(θ) using the following pairwise approximation,

Φtree(θ) = max
τ∈L

{

〈θ,τ〉 + ∑
i∈A

Hi(τ)− ∑
(i j)∈EA

Ii j(τ)− ∑
(i j)∈∂AB

ρi jIi j(τ)
}

, (14)

where the weights on the sum part, {ρi j : (i j) ∈ EA}, have been fixed to be ones. This choice

makes sure that the sum part is “intact” in the approximation, while the weights on the crossing

edges, ρAB = {ρi j : (i j) ∈ ∂AB}, can take arbitrary values, corresponding to different free energy

approximation methods. If ρi j = 1 for ∀(i j) ∈ ∂AB, it is the Bethe free energy; it will correspond to

the TRW free energy if {ρi j} are taken to be a set of edge appearance probabilities (which in general

have values less than one). The edge appearance probabilities of A-B trees are more restrictive than

for the standard trees used in TRW BP. For example, if the max part of a A-B sub-tree is a connected

tree, then it can include at most one crossing edge, so in this case ρAB should satisfy ∑(i j)∈∂AB
ρi j = 1,

ρi j ≥ 0. Interestingly, we will show in Section 7 that if ρi j→+∞ for ∀(i j)∈ ∂AB, then Equation (14)

is closely related to an EM algorithm.

Theorem 5. Suppose the sum part GA is a tree, and we approximate ΦAB(θ) using Φtree(θ) defined

in (14). Assume that (14) is globally optimized.

(i) We have Φtree(θ)≥ΦAB(θ). If there exists x∗B such that Q(x∗B;θ)=Φtree(θ), we have Φtree(θ)=
ΦAB(θ), and x∗B is a globally optimal marginal MAP solution.

(ii) Suppose τ∗ is a global maximum of (14), and {τ∗i (xi) : i ∈ B} have integral values, that is,

τ∗i (xi) = 0 or 1, then {x∗i = argmaxxi
τ∗i (xi) : i ∈ B} is a globally optimal solution of the

marginal MAP problem (7).

Proof (sketch). (See appendix for the complete proof.) The fact that the sum part GA is a tree

guarantees the marginalization is exact. Showing (14) is a relaxation of the maximization problem

and applying standard relaxation arguments completes the proof.

Remark. Theorem 5 works for arbitrary values of ρAB, and suggests a fundamental tradeoff of

hardness as ρAB takes on different values. On the one hand, the value of ρAB controls the concavity

of the objective function in (14) and hence the difficulty of finding a global optimum; small enough

ρAB (as in TRW) can ensure that (14) is a convex optimization, while larger ρAB (as in Bethe or

EM) causes (14) to become non-convex, making it difficult to apply Thoerem 5. On the other hand,

the value of ρAB also controls how likely the solution is to be integral—larger ρi j emphasizes the

mutual information terms, forcing the solution towards integral points. Thus the solution of the

TRW free energy is less likely to be integral than the Bethe free energy, causing a difficulty in

applying Theorem 5 to TRW solutions as well. The TRW approximation (∑i j ρi j = 1) and EM

(ρi j → +∞; see Section 7) reflect two extrema of this tradeoff between concavity and integrality,

respectively, while the Bethe approximation (ρi j = 1) appears to represent a reasonable compromise

that often gives excellent performance in practice. In Section 5.2, we give a different set of local

optimality guarantees that are derived from a reparameterization perspective.
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5. Message Passing Algorithms for Marginal MAP

We now derive message-passing-style algorithms to optimize the “truncated” Bethe or TRW free

energies in (11) and (13). Instead of optimizing the truncated free energies directly, we leverage the

results of Theorem 3 and consider their “annealed” versions,

max
τ∈L

{

〈θ,τ〉+ ĤA|B(τ)+ εĤB(τ)
}

,

where ε is a positive annealing coefficient (or temperature), and the ĤA|B(τ) and ĤB(τ) are the

generic pairwise approximations of HA|B(τ) and HB(τ), respectively. That is,

ĤA|B(τ) = ∑
i∈A

Hi(τ) − ∑
(i j)∈EA∪∂AB

ρi jIi j(τ), and ĤB(τ) = ∑
i∈B

Hi(τ) − ∑
(i j)∈EB

ρi jIi j(τ), (15)

where different values of pairwise weights {ρi j} correspond to either the Bethe approximation or

the TRW approximation. This yields a generic pairwise free energy optimization problem,

max
τ∈L

{

〈θ,τ〉+ ∑
i∈V

wiHi(τ)− ∑
(i j)∈E

wi jIi j(τ)
}

, (16)

where the weights {wi,wi j} are determined by the temperature ε and {ρi j} via

wi =

{

1 ∀i ∈ A

ε ∀i ∈ B,
wi j =

{

ρi j ∀(i j) ∈ EA∪∂AB

ερi j ∀(i j) ∈ EB.
(17)

The general framework in (16) provides a unified treatment for approximating sum-inference, max-

inference and mixed, marginal MAP problems simply by taking different weights. Specifically,

1. If wi = 1 for all i ∈V , Equation (16) corresponds to the sum-inference problem and the sum-

product BP objectives and algorithms.

2. If wi→ 0+ for all i ∈V (and the corresponding wi j→ 0+), Equation (16) corresponds to the

max-inference problem and the max-product linear programming objective and algorithms.

3. If wi = 1 for ∀i ∈ A and wi = 0 for ∀i ∈ B (and the corresponding wi j → 0+), Equation (16)

corresponds to the marginal MAP problem; in the sequel, we derive “mixed-product” BP

algorithms.

Note the different roles of the singleton and pairwise weights: the singleton weights {wi : i ∈ V}
define the type of inference problem, while the pairwise weights {wi j : (i j) ∈ E} determine the

approximation method (e.g., Bethe vs. TRW).

We now derive a message passing algorithm for solving the generic problem (16), using a La-

grange multiplier method similar to Yedidia et al. (2005) or Wainwright et al. (2005a).

Proposition 6. Assuming wi and wi j are strictly positive, the stationary points of (16) satisfy the

fixed point condition of the following message passing update,

Message Update: mi→ j(x j)←
[

∑
xi

(ψi(xi)m∼i(xi))
1

wi

(

ψi j(xi,x j)

m j→i(xi)

)
1

wi j ]wi j , (18)

Marginal Decoding:

τi(xi) ∝
[

ψi(xi)m∼i(xi)
]

1
wi , τi j(xi,x j) ∝ τi(xi)τ j(x j)

[

ψi j(xi,x j)

mi→ j(x j)m j→i(xi)

]
1

wi j

, (19)
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Algorithm 1 Annealed BP for Marginal MAP

Define the pairwise weights {ρi j : (i j) ∈ E}, for example, ρi j = 1 for Bethe or valid appearance

probabilities for TRW. Initialize the messages {mi→ j : (i j) ∈ E}.
for iteration t do

1. Update ε by ε = 1/t, and correspondingly the weights {wi,wi j} by (17).

2. Perform the message passing update in (18) for all edges (i j) ∈ E.

end for

Calculate the singleton beliefs bi(xi) and decode the solution x∗B,

x∗i = argmax
xi

bi(xi), ∀i ∈ B, where bi(xi) ∝ ψi(xi)m∼i(xi).

where m∼i(xi) := ∏
k∈∂i

mk→i(xi) is the product of messages sent into node i, and ∂i is the set of

neighboring nodes of i.

Proof (sketch). (See appendix for the complete proof.) Note that (19) is simply the KKT condition

of (16), with the log of the message logmi→ j being the Lagrange multipliers. Plugging (19) into the

local consistency constraints of L in (2) gives (18).

The above message update is mostly similar to TRW-BP of Wainwright et al. (2005a), except

that it incorporates general singleton weights wi. The marginal MAP problem can be solved by

running (18) with {wi,wi j} defined by (17) and a scheme for choosing the temperature ε, either

directly set to be a small constant, or gradually decreased (or annealed) to zero through iterations,

for example, by ε = 1/t where t is the iteration. Algorithm 1 describes the details for the annealing

method.

5.1 Mixed-Product Belief Propagation

Directly taking ε→ 0+ in message update (18), we can get an interesting “mixed-product” BP algo-

rithm that is a hybrid of the max-product and sum-product message updates, with a novel “argmax-

product” message update that is specific to marginal MAP problems. This algorithm is listed in

Algorithm 2, and described by the following proposition:

Proposition 7. As ε approaches zero from the positive side, that is, ε→ 0+, the message update

(18) reduces to the update in (20)-(22) in Algorithm 2.

Proof. For messages from i ∈ A to j ∈ A∪B, we have wi = 1, wi j = ρi j; the result is obvious.

For messages from i ∈ B to j ∈ B, we have wi = ε, wi j = ερi j. The result follows from the zero

temperature limit formula in (9), by letting f (xi) = (ψi(xi)m∼i(xi))
ρi j(

ψi j(xi,x j)
m j→i(xi)

).

For messages from i ∈ B to j ∈ A, we have wi = ε, wi j = ρi j. One can show that

lim
ε→0+

[ ψi(xi)m∼i(xi)

maxxi
ψi(xi)m∼i(xi)

]1/ε
= 1(xi ∈ X ∗i ),

where X ∗i = argmaxxi
ψi(xi)m∼i(xi). Plugging this into (18) and dropping the constant term, we get

the message update in (22).
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Algorithm 2 Mixed-product Belief Propagation for Marginal MAP

Define the pairwise weights {ρi j : (i j) ∈ E} and initialize messages {mi→ j : (i j) ∈ E} as in Al-

gorithm 1.

for iteration t do

for edge (i j) ∈ E do

Perform different message updates depending on the node type of the source and destination,

A→ A∪B:

(sum-product)
mi→ j(x j)←

[

∑
xi

(ψi(xi)m∼i(xi))(
ψi j(xi,x j)

m j→i(xi)
)1/ρi j

]ρi j , (20)

B→ B:

(max-product)
mi→ j(x j)←max

xi

(ψi(xi)m∼i(xi))
ρi j(

ψi j(xi,x j)

m j→i(xi)
), (21)

B→ A:

(argmax-product)
mi→ j(x j)←

[

∑
xi∈X ∗i

(ψi(xi)m∼i(xi))(
ψi j(xi,x j)

m j→i(xi)
)1/ρi j

]ρi j , (22)

where the set X ∗i = argmax
xi

ψi(xi)m∼i(xi) and m∼i(xi) = ∏
k∈∂i

mki(xi).

end for

end for

Calculate the singleton beliefs bi(xi) and decode the solution x∗B,

x∗i = argmax
xi

bi(xi), ∀i ∈ B, where bi(xi) ∝ ψi(xi)m∼i(xi).

Algorithm 2 has an intuitive interpretation: the sum-product and max-product messages in

(20) and (21) correspond to the marginalization and maximization steps, respectively. The spe-

cial “argmax-product” messages in (22) serves to synchronize the sum-product and max-product

messages—it restricts the max nodes to the currently decoded local marginal MAP solutions X ∗i =
argmaxψi(xi)m∼i(xi), and passes the posterior beliefs back to the sum part. Note that the summa-

tion notation in (22) can be ignored if X ∗i has only a single optimal state.

One critical feature of our mixed-product BP is that it takes simultaneous movements on the

marginalization and maximization sub-problems in a parallel fashion, and is computationally much

more efficient than the traditional methods that require fully solving a marginalization sub-problem

before taking each maximization step. This advantage is inherited from our general variational

framework, which naturally integrates the marginalization and maximization sub-problems into a

joint optimization problem.

Interestingly, Algorithm 2 also bears similarity to a recent hybrid message passing method of

Jiang et al. (2011), which differs from Algorithm 2 only in replacing the special argmax-product

messages (22) with regular max-product messages. We make a detailed comparison of these two

algorithms in Section 5.3, and show that it is in fact the argmax-product messages (22) that lends

our algorithm several appealing optimality guarantees.
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5.2 Reparameterization Interpretation and Local Optimality Guarantees

An important interpretation of the sum-product and max-product BP is the reparameterization view-

point (Wainwright et al., 2003; Weiss et al., 2007): Message passing updates can be viewed as mov-

ing probability mass between local pseudo-marginals (or beliefs), in a way that leaves their product

a reparameterization of the original distribution, while ensuring some consistency conditions at the

fixed points. Such viewpoints are theoretically important, because they are useful for proving op-

timality guarantees for the BP algorithms. In this section, we show that the mixed-product BP in

Algorithm 2 has a similar reparameterization interpretation, based on which we establish a local

optimality guarantee for mixed-product BP.

To start, we define a set of “mixed-beliefs” as

bi(xi) ∝ ψi(xi)m∼i(xi), bi j(xi j) ∝ bi(xi)b j(x j)

[

ψi j(xi,x j)

mi→ j(x j)m j→i(xi)

]1/ρi j

. (23)

The marginal MAP solution should be decoded from x∗i ∈ argmaxxi
bi(xi),∀i ∈ B, as is typical in

max-product BP. Note that the above mixed-beliefs {bi,bi j} are different from the local marginals

{τi,τi j} defined in (19), but are rather softened versions of {τi,τi j}.Their relationship is explicitly

clarified in the following.

Proposition 8. The {τi,τi j} in (19) and the {bi,bi j} in (23) are associated via,

{

bi ∝ τi ∀i ∈ A,

bi ∝ (τi)
ε ∀i ∈ B

{

bi j ∝ bib j(
τi j

τiτ j
) ∀(i j) ∈ EA∪∂AB

bi j ∝ bib j(
τi j

τiτ j
)ε ∀(i j) ∈ EB.

Proof. Result follows from the simple algebraic transformation between (19) and (23).

Therefore, as ε→ 0+, the τi (= b
1/ε
i ) for i ∈ B should concentrate their mass on a deterministic

configuration, but bi may continue to have soft values.

We now show that the mixed-beliefs {bi,bi j} have a reparameterization interpretation.

Theorem 9. At the fixed point of mixed-product BP in Algorithm 2 , the mixed-beliefs defined in

(23) satisfy

Reparameterization:

p(x) ∝ ∏
i∈V

bi(xi) ∏
(i j)∈E

[ bi j(xi,x j)

bi(xi)b j(x j)

]ρi j . (24)

Mixed-consistency:

(a) ∑
xi

bi j(xi,x j) = b j(x j), ∀i ∈ A, j ∈ A∪B, (25)

(b) max
xi

bi j(xi,x j) = b j(x j), ∀i ∈ B, j ∈ B, (26)

(c) ∑
xi∈argmaxbi

bi j(xi,x j) = b j(x j), ∀i ∈ B, j ∈ A. (27)

Proof. Directly substitute the definition (23) into the message update (20)-(22).
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The three mixed-consistency constraints exactly map to the three types of message updates in

Algorithm 2. Constraint (a) and (b) enforces the regular sum- and max- consistency of the sum- and

max- product messages in (20) and (21), respectively. Constraint (c) corresponds to the argmax-

product message update in (22): it enforces the marginals to be consistent after xi is assigned to the

currently decoded solution, xi = argmaxxi
bi(xi) = argmaxxi ∑x j

bi j(xi,x j), corresponding to solving

a local marginal MAP problem on bi j(xi,x j). It turns out that this special constraint is a crucial

ingredient of mixed-product BP, enabling us to prove guarantees on the strong local optimality of

the solution.

Some notation is required. Suppose C is a subset of max nodes in B. Let GC∪A = (C∪A,EC∪A)
be the subgraph of G induced by nodes C∪A, where EC∪A = {(i j) ∈ E : i, j ∈C∪A}. We call GC∪A

a semi-A-B subtree of G if the edges in EC∪A\EB form an A-B tree. In other words, GC∪A is a semi-

A-B tree if it is an A-B tree when ignoring any edges entirely within the max set B. See Figure 2 for

examples of semi A-B trees.

Following Weiss et al. (2007), we say that a set of weights {ρi j} is provably convex if there

exist positive constants κi and κi→ j, such that κi +∑i′∈∂i
κi′→i = 1 and κi→ j + κ j→i = ρi j. Weiss

et al. (2007) shows that if {ρi j} is provably convex, then H(τ) = ∑i Hi(τ)−∑i j ρi jIi j(τ) is a concave

function of τ in the locally consistent polytope L.

Theorem 10. Suppose C is a subset of B such that GC∪A is a semi-A-B tree, and the weights {ρi j}
satisfy

1. ρi j = 1 for (i j) ∈ EA;

2. 0≤ ρi j ≤ 1 for (i j) ∈ EC∪A∩∂AB;

3. {ρi j : (i j) ∈ EC∪A∩EB} is provably convex.

At the fixed point of mixed-product BP in Algorithm 2, if the mixed-beliefs on the max nodes

{bi,bi j : i, j ∈ B} defined in (23) all have unique maxima, then there exists a B-configuration x∗B
satisfying x∗i = argmaxbi for ∀i ∈ B and (x∗i ,x

∗
j) = argmaxbi j for ∀(i j) ∈ EB, and x∗B is locally op-

timal in the sense that Q(x∗B;θ) is not smaller than any B-configuration that differs from x∗B only on

C, that is, Q(x∗B;θ) = maxxC
Q([xC,x

∗
B\C];θ).

Proof (sketch). (See appendix for the complete proof.) The mixed-consistency constraint (c) in (27)

and the fact that GC∪A is a semi-A-B tree enables the summation part to be eliminated away. The

remaining part only involves the max nodes, and the method in Weiss et al. (2007) for analyzing

standard MAP can be applied.

Remark. The proof of Theorem 10 relies on transforming the marginal MAP problem to a

standard MAP problem by eliminating the summation part. Therefore, variants of Theorem 10

may be derived using other global optimality conditions of convexified belief propagation or linear

programming algorithms for MAP, such as those in Werner (2007, 2010); Wainwright et al. (2005b).

We leave this to future work.

For GC∪A to be a semi A-B tree, the sum part GA must be a tree, which Theorem 10 assumes

implicitly. For the hidden Markov chain in Figure 1, Theorem 10 implies only the local optimality

up to Hamming distance one (or coordinate-wise optimality), because any semi A-B subtree of G

in Figure 1 can contain at most one max node. However, Theorem 10 is in general much stronger,

especially when the sum part is not fully connected, or when the max part has interior regions

disconnected from the sum part. As examples, see Figure 2(b)-(c).
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(a) (b) (c)

Figure 2: Examples of semi A-B trees. The shaded nodes represent sum nodes, while the unshaded

are max nodes. In each graph, a semi A-B tree is labeled by red bold lines. Under the

conditions of Theorem 10, the fixed point of mixed-product BP is locally optimal up to

jointly perturbing all the max nodes in any semi-A-B subtree of G.

5.3 The Importance of the Argmax-product Message Updates

Jiang et al. (2011) proposed a similar hybrid message passing algorithm, repeated here as Algo-

rithm 3, which differs from our mixed-product BP only in replacing our argmax-product message

update (22) with the usual max-product message update (21). We show in this section that this very

difference gives Algorithm 3 very different properties, and fewer optimality guarantees, than our

mixed-product BP.

Algorithm 3 Hybrid Message Passing by Jiang et al. (2011)

1. Message Update:

A→ A∪B:

(sum-product)
mi→ j(x j)←

[

∑
xi

(ψi(xi)m∼i(xi))(
ψi j(xi,x j)

m j→i(xi)
)1/ρi j

]ρi j ,

A→ A∪B:

(max-product)
mi→ j(x j)←max

xi

(ψi(xi)m∼i(xi))
ρi j(

ψi j(xi,x j)

m j→i(xi)
).

2. Decoding: x∗i = argmaxxi
bi(xi) for ∀i ∈ B, where bi(xi) ∝ ψi(xi)m∼i(xi).

Similar to our mixed-product BP, Algorithm 3 also satisfies the reparameterization property in

(24) (with beliefs {bi,bi j} defined by (23)); it also satisfies a set of similar, but crucially different,

consistency conditions at its fixed points,

∑
xi

bi j(xi,x j) = b j(x j), ∀i ∈ A, j ∈ A∪B,

max
xi

bi j(xi,x j) = b j(x j), ∀i ∈ B, j ∈ A∪B,

which exactly map to the max- and sum- product message updates in Algorithm 3.

Despite its striking similarity, Algorithm 3 has very different properties, and does not share the

appealing variational interpretation and optimality guarantees that we have demonstrated for mixed-

product BP. First, it is unclear whether Algorithm 3 can be interpreted as a fixed point algorithm

for maximizing our, or a similar, variational objective function. Second, it does not inherit the

same optimality guarantees in Theorem 10, despite its similar reparameterization and consistency

conditions. These disadvantages are caused by the miss of the special argmax-product message

update and its associated mixed-consistency condition in (27), which was a critical ingredient of the

proof of Theorem 10.

3183



LIU AND IHLER

More detailed insights into Algorithm 3 and mixed-product BP can be obtained by considering

the special case when the full graph G is an undirected tree. We show that in this case, Algorithm 3

can be viewed as optimizing a set of approximate objective functions, obtained by rearranging

the max and sum operators into orders that require less computational cost, while mixed-product

BP attempts to maximize the exact objective function by message updates that effectively perform

some “asynchronous” coordinate descent steps. In the sequel, we use an illustrative toy example to

explain the main ideas.

Example 2. Consider a marginal MAP problem on a four node chain-structured graphical model

x3− x1− x2− x4, where the sum and max sets are A = {1,2} and B = {3,4}, respectively. We

analyze how Algorithm 3 and mixed-product BP in Algorithm 2 perform on this toy example, when

both taking Bethe weights (ρi j = 1 for (i j) ∈ E).

Algorithm 3 (Jiang et al. 2011). Since G is a tree, one can show that Algorithm 3 (with Bethe

weights) terminates after a full forward and backward iteration (e.g., messages passed along x3→
x1 → x2 → x4 and then x4 → x2 → x1 → x3). By tracking the messages, one can write its final

decoded solution in a closed form,

x∗3 = argmax
x3

∑
x1

∑
x2

max
x4

[exp(θ(x))], x∗4 = argmax
x4

∑
x2

∑
x1

max
x3

[exp(θ(x))],

On the other hand, the true marginal MAP solution is given by,

x∗3 = argmax
x3

max
x4

∑
x1

∑
x2

[exp(θ(x))], x∗4 = argmax
x4

max
x3

∑
x2

∑
x1

[exp(θ(x))].

Here, Algorithm 3 approximates the exact marginal MAP problem by rearranging the max and sum

operators into an elimination order that makes the calculation easier. A similar property holds for

the general case when G is undirected tree: Algorithm 3 (with Bethe weights) terminates in a finite

number of steps, and its output solution x∗i effectively maximizes an approximate objective func-

tion obtained by reordering the max and sum operators along a tree-order (see Definition 4.1) that is

rooted at node i. The performance of the algorithm should be related to the error caused by exchang-

ing the order of max and sum operators. However, exact optimality guarantees are likely difficult

to show because it maximizes an inexact objective function. In addition, since each component x∗i
uses a different order of arrangement, and hence maximizes a different surrogate objective function,

it is unclear whether the joint B-configuration x∗B = {x∗i : i ∈ B} given by Algorithm 3 maximizes a

single consistent objective function.

Algorithm 2 (mixed-product). On the other hand, the mixed-product belief propagation in Algo-

rithm 2 may not terminate in a finite number of steps, nor does it necessarily yield a closed form

solution when G is an undirected tree. However, Algorithm 2 proceeds in an attempt to optimize

the exact objective function. In this toy example, we can show that the true solution is guaranteed

to be a fixed point of Algorithm 2. Let b3(x3) be the mixed-belief on x3 at the current iteration, and

x∗3 = argmaxx3
b3(x3) its unique maxima. After a message sequence passed from x3 to x4, one can

show that b4(x4) and x∗4 update to

x∗4 = argmax
x4

b4(x4), b4(x4) = ∑
x2

∑
x1

exp(θ([x∗3,x¬3])) = exp(Q([x∗3,x4];θ)),

where we maximize the exact objective function Q([x3,x4];θ) with fixed x3 = x∗3. Therefore, on this

toy example, one sweep (x3→ x4 or x4→ x3) of Algorithm 2 is effectively performing a coordinate
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Algorithm 4 Proximal Point Algorithm for Marginal MAP (Exact)

Initialize local marginals τ0.

for iteration t do

θt+1 = θ+λt logτt
B, (28)

τt+1 = argmax
τ∈M
{〈τ,θt+1〉+HA|B(τ)+λtHB(τ)}, (29)

end for

Decoding: x∗i = argmax
xi

τi(xi) for ∀i ∈ B.

descent step, which monotonically improves the true objective function towards a local maximum.

In more general models, Algorithm 2 differs from sequential coordinate descent, and does not guar-

antee monotonic convergence. But, it can be viewed as a “parallel” version of coordinate descent,

which ensures the stronger local optimality guarantees shown in Theorem 10.

6. Convergent Algorithms by Proximal Point Methods

An obvious disadvantage of mixed-product BP is its lack of convergence guarantees, even when

G is an undirected tree. In this section, we apply a proximal point approach (e.g., Martinet, 1970;

Rockafellar, 1976) to derive convergent algorithms that directly optimize our free energy objectives,

which take the form of transforming marginal MAP into a sequence of pure (or annealed) sum-

inference tasks. Similar methods have been applied to standard sum-inference (Yuille, 2002) and

max-inference (Ravikumar et al., 2010).

For the purpose of illustration, we first consider the problem of maximizing the exact marginal

MAP free energy, Fmix(τ,θ) = 〈τ,θ〉+HA|B(τ). The proximal point algorithm works by iteratively

optimizing a smoothed problem,

τt+1 = argmin
τ∈M

{−Fmix(τ,θ)+λtD(τ||τt)},

where τt is the solution at iteration t, and λt is a positive coefficient. Here, D(·||·) is a distance,

called the proximal function, which forces τt+1 to be close to τt ; typical choices of D(·||·) are Eu-

clidean or Bregman distances or ψ-divergences (e.g., Teboulle, 1992; Iusem and Teboulle, 1993).

Proximal algorithms have nice convergence guarantees: the objective series { f (τt)} is guaranteed

to be non-increasing at each iteration, and {τt} converges to an optimal solution, under some reg-

ularity conditions. See, for example, Rockafellar (1976); Tseng and Bertsekas (1993); Iusem and

Teboulle (1993). The proximal algorithm is closely related to the majorize-minimize (MM) algo-

rithm (Hunter and Lange, 2004) and the convex-concave procedure (Yuille, 2002).

For our purpose, we take D(·||·) to be a KL divergence between distributions on the max nodes,

D(τ||τt) = KL(τB(xB)||τ
t
B(xB)) = ∑

xB

τB(xB) log
τB(xB)

τt
B(xB)

.

In this case, the proximal point algorithm reduces to Algorithm 4, which iteratively solves a

smoothed free energy objective, with natural parameter θt updated at each iteration. Intuitively,

the proximal inner loop (28)-(29) essentially “adds back” the truncated entropy term HB(τ), while
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canceling its effect by adjusting θ in the opposite direction. Typical choices of λt include λt = 1

(constant) and λt = 1/t (harmonic). Note that the proximal approach is distinct from an annealing

method, which would require that the annealing coefficient vanish to zero. Interestingly, if we take

λt = 1, then the inner maximization problem (29) reduces to the standard log-partition function du-

ality (1), corresponding to a pure marginalization task. This has the interpretation of transforming

the marginal MAP problem into a sequence of standard sum-inference problems.

In practice we approximate HA|B(τ) and HB(τ) by pairwise entropy decomposition ĤA|B(τ) and

ĤB(τ) in (15), respectively. If ĤB(τ) is provably convex in the sense of Weiss et al. (2007), that is,

there exist positive constants {κi,κi→ j} satisfying ρi = κi +∑k∈∂i
κk→i and ρi j = κi→ j + κ j→i for

i, j ∈ B. Then the resulting approximate algorithm can be interpreted as a proximal algorithm that

maximizes F̂mix(τ,θ) with proximal function as

Dpair(τ||τ
t) = ∑

i∈B

κiKL[τi(xi)||τ
0
i (xi)] + ∑

(i j)∈EB

κi→ jKL[(τi j(xi|x j)||τ
0
i j(xi|x j)].

In this case, Algorithm 4 is still a valid proximal algorithm and inherits its convergence guarantees.

In practice one uses approximations that are not provably convex. An interesting special case is

when both HA|B(τ) and HB(τ) are approximated by a Bethe approximation. This has the effect that

the optimization (29) can be solved using standard belief propagation. Although the Bethe form for

HA|B(τ) and HB(τ) is provably convex only in some special cases, such as when G is tree structured,

we find in practice that this approximation gives very accurate solutions, even on general loopy

graphs where its convergence is no longer theoretically guaranteed.

The global convergence guarantees of the proximal point algorithm may also fail if the inner up-

date (29) is not solved exactly. It should also be possible to develop globally convergent algorithms

without inner loops using the techniques that have been developed for full marginalization or MAP

problems (e.g., Meltzer et al., 2009; Hazan and Shashua, 2010; Jojic et al., 2010; Savchynskyy et al.,

2010), but we leave this to future work.

7. Connections to EM

A natural algorithm for solving the marginal MAP problem is to use the expectation-maximization

(EM) algorithm, by treating xA as the hidden variables and xB as the “parameters” to be maximized.

In this section, we show that the EM algorithm can be seen as a coordinate ascent algorithm on a

mean field variant of our framework.

We start by introducing a “non-convex” generalization of Theorem 2.

Corollary 11. Let Mo be the subset of the marginal polytope M corresponding to the distributions

in which xB are clamped to some deterministic values, that is,

M
o = {τ ∈M : ∃x∗B ∈ XB, such that τ(xB) = 1(xB = x∗B)}.

Then the dual optimization (8) remains exact if the marginal polytope M is replaced by any N

satisfying M
o ⊆ N⊆M, that is,

ΦAB = max
τ∈N
{〈θ,τ〉+HA|B(τ)}.

Proof. For an arbitrary marginal MAP solution x∗B, the τ∗ with τ∗(x)= p(x|xB = x∗B;θ) is an optimum

of (8) and satisfies τ∗ ∈M
o. Therefore, restricting the optimization on M

o (or any N) does not

change the maximum value of the objective function.
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Remark. Among all N satisfying M
o ⊆ N ⊆M, the marginal polytope M is the smallest (and the

unique) convex set that includes Mo, that is, it is the convex hull of Mo.

To connect to EM, we define M
×, the set of distributions in which xA and xB are independent,

that is, M×= {τ∈M : τ(x) = τ(xA)τ(xB)}. Since Mo⊂M
×⊂M, the dual optimization (8) remains

exact when restricted to M
×, that is,

ΦAB(θ) = max
τ∈M×
{〈θ,τ〉+HA|B(τ)}= max

τ∈M×
{〈θ,τ〉+HA(τ)},

where the second equality holds because HA|B(τ) = HA(τ) for τ ∈M
×.

Although M
× is no longer a convex set, it is natural to consider a coordinate update that alter-

nately optimizes τ(xA) and τ(xB),

Updating sum part : τt+1
A ← argmax

τA∈MA

{〈Eτt
B
(θ),τA〉+HA(τA)},

Updating max part : τt+1
B ← argmax

τB∈MB

〈Eτt+1
A
(θ),τB〉,

(30)

where MA and MB are the marginal polytopes over xA and xB, respectively. Note that the sum and

max step each happen to be the dual of a sum-inference and max-inference problem, respectively. If

we go back to the primal, and update the primal configuration xB instead of τB, (30) can be rewritten

into

E step : τt+1
A (xA)← p(xA|x

t
B;θ),

M step : xt+1
B ← argmax

xB

Eτt+1
A
(θ),

which is exactly the EM update, viewing xB as parameters and xA as hidden variables. Similar con-

nections between EM and the coordinate ascent method on variational objectives has been discussed

in Neal and Hinton (1998) and Wainwright and Jordan (2008).

When the E-step or M-step are intractable, one can insert various approximations. In particular,

approximating MA by a mean-field inner bound M
m f
A leads to variational EM. An interesting obser-

vation is obtained by using a Bethe approximation (3) to solve the E-step and a linear relaxation to

solve the M-step; in this case, the EM-like update is equivalent to solving

max
τ∈L×

{

〈θ,τ〉+∑
i∈A

Hi(τ) − ∑
(i j)∈EA

Ii j(τ)
}

, (31)

where L
× is the subset of L in which τi j(xi,x j) = τi(xi)τ j(x j) for (i j) ∈ ∂AB. Equivalently, L× is

the subset of L in which Ii j(τ) = 0 for (i j) ∈ ∂AB. Therefore, (31) can be treated as a special case

of (14) by taking ρi j→+∞, forcing the solution τ∗ to fall into L
×. As we discussed in Section 4.3,

EM represents an extreme of the tradeoff between convexity and integrality implied by Theorem 5,

which strongly encourages vertex solutions by sacrificing convexity, and hence is likely to become

stuck in local optima.

8. Junction Graph Belief Propagation for Marginal MAP

In the above, we have restricted the discussion to pairwise models and pairwise entropy approxi-

mations, mainly for the purpose of clarity. In this section, we extend our algorithms to leverage
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higher order cliques, based on the junction graph representation (Mateescu et al., 2010; Koller and

Friedman, 2009). Other higher order methods, like generalized BP (Yedidia et al., 2005) or their

convex variants (Wainwright et al., 2005a; Wiegerinck, 2005), can be derived similarly.

For notation, a cluster graph is a graph of subsets of variables (called clusters). Formally, it

is a triple (G ,C ,S), where G = (V ,E) is an undirected graph, with each node k ∈ V associated

with a cluster ck ∈ C , and each edge (kl) ∈ E with a subset skl ∈ S (called separators) satisfying

skl ⊆ ck∩cl . We assume that C subsumes the index set I , that is, for any α∈ I , we can assign it with

a ck ∈ C , denoted c[α], such that α⊆ ck. In this case, we can reparameterize θ = {θα : α ∈ I} into

θ= {θck
: k∈V } by taking θck

= ∑
α : c[α]=ck

θα, without changing the distribution. Therefore, we simply

assume C = I in this paper without loss of generality. A cluster graph is called a junction graph if it

satisfies the running intersection property—for each i ∈V , the induced sub-graph consisting of the

clusters and separators that include i is a connected tree. A junction graph is a junction tree if G is

a tree.

To approximate the variational dual form, we first replace M with a higher order locally con-

sistent polytope L(G), which is the set of local marginals τ = {τck
,τskl

: k ∈ V ,(kl) ∈ E} that are

consistent on the intersections of the clusters and separators, that is,

L(G) = {τ : ∑
xck\skl

τck
(xck

) = τ(xskl
),τck

(xck
)≥ 0, for ∀ k ∈ V ,(kl) ∈ E}.

Clearly, we have M ⊆ L(G) and that L(G) is tighter than the pairwise polytope L we used previ-

ously.

We then approximate the joint entropy term by a linear combination of the entropies over the

clusters and separators,

H(τ)≈ ∑
k∈V

Hck
(τ)− ∑

(kl)∈E

Hskl
(τ),

where Hck
(τ) and Hskl

(τ) are the entropy of the local marginals τck
and τskl

, respectively. Further,

we approximate HB(τ) by a slightly more restrictive entropy decomposition,

HB(τ)≈ ∑
k∈V

Hπk
(τ),

where {πk : k ∈V } is a non-overlapping partition of the max nodes B satisfying πk ⊆ ck for ∀k ∈V .

In other words, π represents an assignment of each max node xb ∈ B into a cluster k with xb ∈ πk.

Let B be the set of clusters k ∈ V for which πk 6= /0, and call B the max-clusters; correspondingly,

call A = V \B the sum-clusters. See Figure 3 for an example.

Overall, the marginal MAP dual form in (8) is approximated by

max
τ∈L(G)

{

〈θ,τ〉+ ∑
k∈A

Hck
(τ)+ ∑

k∈B

Hck|πk
(τ)− ∑

(kl)∈E

Hskl
(τ)

}

(32)

where Hck|πk
(τ) = Hck

(τ)−Hπk
(τ). Optimizing (32) using a method similar to the derivation of

mixed-product BP in Algorithm 2, we obtain a “mixed-product” junction graph belief propagation,

given in Algorithm 5.

Similarly to our mixed-product BP in Algorithm 2, Algorithm 5 also admits an intuitive repa-

rameterization interpretation and a strong local optimality guarantee. Algorithm 5 can be seen as
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Figure 3: (a) An example of marginal MAP problem, where d,c,e are sum nodes (shaded) and

a,b, f are max nodes. (b) A junction graph of (a). Selecting a partitioning of max nodes,

πbde = πbe f = /0, πabc = {a,b}, and πbe f = { f}, results in {bde},{bce} being sum clusters

(shaded) and {abc},{be f} being max clusters.

Algorithm 5 Mixed-product Junction Graph BP

1. Passing messages between clusters on the junction graph until convergence:

A → A ∪B:

(sum-product)
mk→l(xskl

) ∝ ∑
xck\skl

ψck
(xck

)m∼k\l(xck
),

B → A ∪B:

(argmax-product)
mk→l(xskl

) ∝ ∑
xck\skl

(ψck
(xck

)m∼k\l(xck
)) ·1[xπk

∈ X ∗πk
],

where X ∗πk
= argmax

xπk

∑
xck\πk

bk(xck
),

bk(xck
) = ψck

(xck
) ∏
k′∈N (k)

mk′→k(xsk′k
) and m∼k\l(xck

) = ∏
k′∈N (k)\{l}

mk′→k(xsk′k
).

2. Decoding: x∗πk
= argmax

xπk

∑
xck\πk

bk(xck
) for ∀k ∈ B .

a special case of a more general junction graph BP algorithm derived in Liu and Ihler (2012) for

solving maximum expected utility tasks in decision networks. For more details, we refer the reader

to that work.

9. Experiments

We illustrate our algorithms on both simulated models and more realistic diagnostic Bayesian net-

works taken from the UAI08 inference challenge. We show that our Bethe approximation algorithms

perform best among all the tested algorithms, including Jiang et al. (2011)’s hybrid message passing

and a state-of-the-art local search algorithm (Park and Darwiche, 2004).

We implement our mixed-product BP in Algorithm 2 with Bethe weights (mix-product

(Bethe)), the regular sum-product BP (sum-product), max-product BP (max-product) and Jiang

et al. (2011)’s hybrid message passing (with Bethe weights) in Algorithm 3 (Jiang’s method),
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where the solutions are all extracted by maximizing the singleton marginals of the max nodes. For

all these algorithms, we run a maximum of 50 iterations; in case they fail to converge, we run 100

additional iterations with a damping coefficient of 0.1. We initialize all these algorithms with 5 ran-

dom initializations and pick the best solution; for mix-product (Bethe) and Jiang’s method,

we run an additional trial initialized using the sum-product messages, which was reported to perform

well in Park and Darwiche (2004) and Jiang et al. (2011). We also run the proximal point version

of mixed-product BP with Bethe weights (Proximal (Bethe) ), which is Algorithm 4 with both

HA|B(τ) and HB(τ) approximated by Bethe approximations.

We also implement the TRW approximation, but only using the convergent proximal point al-

gorithm, because the TRW upper bounds are valid only when the algorithms converge. The TRW

weights of ĤA|B are constructed by first (randomly) selecting spanning trees of GA, and then aug-

menting each spanning tree with one uniformly selected edge in ∂AB; the TRW weights of ĤB(τ)
are constructed to be provably convex, using the method of TRW-S in Kolmogorov (2006). We run

all the proximal point algorithms for a maximum of 100 iterations, with a maximum of 5 iterations

of weighted message passing updates (18)-(19) for the inner loops (with 5 additional damping with

0.1 damping coefficient).

In addition, we compare our algorithms with SamIam, which is a state-of-the-art implementation

of the local search algorithm for marginal MAP (Park and Darwiche, 2004); we use its default

Taboo search method with a maximum of 500 searching steps, and report the best results among 5

trials with random initializations, and one additional trial initialized by its default method (which

sequentially initializes xi by maximizing p(xi|xpai
) along some predefined order).

We also implement an EM algorithm, whose expectation and maximization steps are approxi-

mated by sum-product and max-product BP, respectively. We run EM with 5 random initializations

and one initialization by sum-product marginals, and pick the best solution.

9.1 Simulated Models

We consider pairwise models over discrete random variables taking values in {−1,0,+1}n,

p(x) ∝ exp
[

∑
i

θi(xi)+ ∑
(i j)∈E

θi j(xi,x j)
]

.

The value tables of θi and θi j are randomly generated from normal distribution, θi(k) ∼
Normal(0,0.01), θi j(k, l) ∼ Normal(0,σ2), where σ controls the strength of coupling. Our results

are averaged on 1000 randomly generated sets of parameters.

We consider different choices of graph structures and max / sum node patterns:

1. Hidden Markov chain with 20 nodes, as shown in Figure 1.

2. Latent tree models. We generate random trees of size 50, by finding the minimum spanning

trees of random symmetric matrices with elements drawn from Uniform([0,1]). We take the

leaf nodes to be max nodes, and the non-leaf nodes to be sum nodes. See Figure 5(a) for a

typical example.

3. 10×10 Grid with max and sum nodes distributed in two opposite chess board patterns shown

in Figure 6(a) and Figure 7(a), respectively. In Figure 6(a), the sum part is a loopy graph, and

the max part is a (fully disconnected) tree; in Figure 7(a), the max and sum parts are flipped.
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The results on the hidden Markov chain are shown in Figure 4, where we plot in panel (a)

different algorithms’ percentages of obtaining the globally optimal solutions among 1000 random

trials, and in panel (b) their relative energy errors defined by Q(x̂B;θ)−Q(x∗B;θ), where x̂B is the

solution returned by the algorithms, and x∗B is the true optimum.

The results of the latent tree models and the two types of 2D grids are shown in Figure 5, Figure 6

and Figure 7, respectively. Since the globally optimal solution x∗B is not tractable to calculate in these

cases, we report the approximate relative error defined by Q(x̂B;θ)−Q(x̃B;θ), where x̃B is the best

solution we found across all algorithms.

9.2 Diagnostic Bayesian Networks

We also test our algorithms on two diagnostic Bayesian networks taken from the UAI08 Inference

Challenge, where we construct marginal MAP problems by randomly selecting varying percentages

of nodes to be max nodes. Since these models are not pairwise, we implement the junction graph

versions of mix-product (Bethe) and proximal (Bethe) shown in Section 8. Figure 8 shows

the approximate relative errors of our algorithms and local search (SamIam) as the percentage

of the max nodes varies.

9.3 Insights

Across all the experiments, we find that mix-product (Bethe), proximal (Bethe) and local

search (SamIam) significantly outperform all the other algorithms, while proximal (Bethe)

outperforms the two others in some circumstances. In the hidden Markov chain example in Fig-

ure 4, these three algorithms almost always (with probability ≥ 99%) find the globally optimal

solutions. However, the performance of SamIam tends to degenerate when the max part has loopy

dependency structures (see Figure 7), or when the number of max nodes is large (see Figure 8),

both of which make it difficult to explore the solution space by local search. On the other hand,

mix-product (Bethe) tends to degenerate as the coupling strength σ increases (see Figure 7),

probably because its convergence gets worse as σ increases.

We note that our TRW approximation gives much less accurate solutions than the other algo-

rithms, but is able to provide an upper bound on the optimal energy. Similar phenomena have been

observed for TRW-BP in standard max- and sum- inference.

The hybrid message passing of Jiang et al. (2011) is significantly worse than mix-product

(Bethe), proximal (Bethe) and local search (SamIam), but is otherwise the best among the

remaining algorithms. EM performs similarly to (or sometimes worse than) Jiang’s method.

The regular max-product BP and sum-product BP are among the worst of the tested algorithms,

indicating the danger of approximating mixed-inference by pure max- or sum- inference. Interest-

ingly, the performances of max-product BP and sum-product BP have opposite trends: In Figure 4,

Figure 5 and Figure 6, where the max parts are fully disconnected and the sum parts are connected

and loopy, max-product BP usually performs worse than sum-product BP, but gets better as the cou-

pling strength σ increases; sum-product BP, on the other hand, tends to degenerate as σ increases.

In Figure 7, where the max / sum pattern is reversed (resulting in a larger, loopier max subgraph),

max-product BP performs better than sum-product BP.
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Figure 4: Results on the hidden Markov chain in Figure 1 (best viewed in color). (a) different al-

gorithms’ probabilities of obtaining the globally optimal solution among 1000 random

trials. Mix-product (Bethe), Proximal (Bethe) and Local Search (SamIam) al-

most always (with probability ≥ 99%) find the optimal solution. (b) The relative energy

errors of the different algorithms, and the upper bounds obtained by Proximal (TRW) as

a function of coupling strength σ.
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Figure 5: (a) A typical latent tree model, whose leaf nodes are taken to be max nodes (white) and

non-leaf nodes to be sum nodes (shaded). (b) The approximate relative energy errors of

different algorithms, and the upper bound obtained by Proximal (TRW) as a function of

coupling strength σ.

10. Conclusion and Further Directions

We have presented a general variational framework for solving marginal MAP problems approx-

imately, opening new doors for developing efficient algorithms. In particular, we show that our

proposed “mixed-product” BP admits appealing theoretical properties and performs well in prac-

tice.

Potential future directions include improving the performance of the truncated TRW approxi-

mation by optimizing weights, deriving optimality conditions that may be applicable even when the

sum component does not form a tree, studying the convergent properties of mixed-product BP, and

leveraging our results to learn hidden variable models for data.
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Figure 6: (a) A marginal MAP problem defined on a 10× 10 Ising grid, with shaded sum nodes

and unshaded max nodes; note that the sum part is a loopy graph, while max part is fully

disconnected. (b) The approximate relative errors of different algorithms and the upper

bound obtained by Proximal (TRW) as a function of coupling strength σ.
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Figure 7: (a) A marginal MAP problem defined on a 10× 10 Ising grid, but with max / sum part

exactly opposite to that in Figure 6; note that the max part is loopy, while the sum part is

fully disconnected in this case. (b) The approximate relative errors of different algorithms

and the upper bound obtained by Proximal (TRW) as a function of coupling strength σ.
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(a) The structure of Diagnostic BN-2, with 50% randomly selected sum nodes shaded.

0.2 0.4 0.6 0.8
-10

-5

0
x 10

-3

Ao
p
ro

xi
ma

te
 R

e
la

ti
ve

 E
rr

o
r

Percentage of Max Nodes
0.2 0.4 0.6 0.8

-0.03

-0.02

-0.01

0

Re
la

ti
ve

 E
rr

o
r

Percentage of Max Nodes

(b) Diagnostic BN-1 (c) Diagnostic BN-2

  

Proximal (Bethe)

Mix-product (Bethe)

Local Search (SamIam)

Figure 8: The results on two diagnostic Bayesian networks (BNs) in the UAI08 inference challenge.

(a) The Diagnostic BN-2 network. (b)-(c) The performances of algorithms on the two

BNs as a function of the percentage of max nodes. The local search method tends to

degenerate when the number of max nodes is large, making it difficult to search over the

solution space. Results are averaged over 100 random trials.

Appendix A. Proof of Proposition 6

Proof. The Lagrangian of (16) with the local consistency constraint of L in (2) is

〈θ,τ〉+ ∑
i∈V

[wiHi(τ)+λ0
i ∑

xi

τi(xi)]− ∑
(i j)∈E

[wi jIi j(τ)+∑
x j

λi→ j(x j)∑
xi

(τi j(xi,x j)− τ j(x j))],

where {λ0
i : i ∈V} and {λ j→i(xi) : (i j) ∈ E,xi ∈ Xi} are the Lagrange multipliers. Recall that

〈θ,τ〉= ∑
i∈V

θi(xi)τi(xi)+ ∑
(i j)∈E

θi j(xi,x j)τi j(xi,x j),

Hi(τ) =−∑
xi

τi(xi) logτi(xi),

Ii j(τ) = ∑
xi,x j

τi j(xi,x j) log
τi j(xi,x j)

∑xi
τi j(xi,x j)∑x j

τi j(xi,x j)
.

Taking the derivative of the Lagrangian w.r.t. τi(xi) and τi j(xi,x j), we have

θi(xi)−wi logτi(xi)+ ∑
j∈∂i

λ j→i(xi) = const, (33)

θi j(xi,x j)−wi j log
τi j(xi,x j)

τi(xi)τ j(x j)
+λi→ j(x j)+λ j→i(xi) = const, (34)

where we used the local consistency condition that ∑x j
τi j(xi,x j) = τi(xi). By defining mi→ j(x j) =

exp(λi→ j(x j)), we obtain (19) directly from (33)-(34).

Plugging (19) into the constraint that ∑x j
τi j(xi,x j) = τi(xi) gives (18).
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Appendix B. Proof of Theorem 5

Proof. (i). For τ ∈M
o, the objective function in (14) equals

Ftree(τ,θ) = 〈θ,τ〉 + ∑
i∈V

Hi(τ)− ∑
(i j)∈EA

Ii j(τ)− ∑
(i j)∈∂AB

ρi jIi j(τ)

= 〈θ,τ〉 + ∑
i∈V

Hi(τ)− ∑
(i j)∈EA

Ii j(τ) (35)

= 〈θ,τ〉 +HA|B(τ) (36)

= Fmix(τ,θ),

where the equality in (35) is because Ii j(τ) = 0 if ∀(i j) ∈ ∂AB, and the equality in (36) is because

the sum part GA is a tree and we have the tree decomposition HA|B = ∑i∈V Hi(τ)−∑(i j)∈EA
Ii j(τ).

Therefore we have

Φtree(θ) = max
τ∈L

Ftree(τ,θ)≥ max
τ∈Mo

Ftree(τ,θ) = max
τ∈Mo

Fmix(τ,θ) = ΦAB(θ), (37)

where the inequality is because M
o ⊂M⊂ L.

If there exists x∗B such that Q(x∗B;θ) = Φtree(θ), then we have

Q(x∗B;θ) = Φtree(θ)≥ΦAB(θ) = max
xB

Q(xB;θ).

This proves that x∗B is a globally optimal marginal MAP solution.

(ii). Because τ∗i (xi) for ∀i ∈ B are deterministic, and the sum part GA is a tree, we have that τ∗ ∈
M

o. Therefore the inequality in (37) is tight, and we can conclude the proof by using Corollary 11.

Appendix C. Proof of Theorem 10

Proof. By Theorem 9, the beliefs {bi,bi j} should satisfy the reparameterization property in (24)

and the consistency conditions in (25)-(27). Without loss of generality, we assume {bi,bi j} are

normalized such that ∑xi
bi(xi) = 1 for i ∈ A and maxxi

bi(xi) = 1 for i ∈ B.

I) For simplicity, we first prove the case of C = B, when G = GC∪A itself is a semi A-B tree, and

the theorem implies that x∗B is a global optimum. By the reparameterization condition, we have

p(x) = p̂B(xB) p̂A|B(x),

where

p̂B(xB) = ∏
i∈B

bi(xi) ∏
(i j)∈EB

[

bi j(xi,x j)

bi(xi)b j(x j)

]ρi j

, (38)

p̂A|B(x) = ∏
i∈A

bi(xi) ∏
(i j)∈EA

[

bi j(xi,x j)

bi(xi)b j(x j)

]ρi j

∏
(i j)∈∂AB

[

bi j(xi,x j)

bi(xi)b j(x j)

]ρi j

. (39)

Note we have

p(xB) = ∑
xA

p(x) = ∑
xA

p̂B(xB) p̂A|B(x) = p̂B(xB)∑
xA

p̂A|B(x).
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We just need to show that x∗B maximizes p̂B(xB) and ∑xA
p̂A|B(x), respectively.

First, since p̂B(xB) involves only the max nodes, a standard MAP analysis applies. Because the

max part of the beliefs, {bi,bi j : (i j) ∈ EB}, satisfy the standard max-consistency conditions, and

the corresponding TRW weights {ρi j : (i j) ∈ EB} are provably convex by assumption, we establish

that x∗B is the MAP solution of p̂B(xB) by Theorem 1 of Weiss et al. (2007).

Secondly, to show that x∗B also maximizes p̂A|B(x) requires the combination of the mixed-

consistency and sum-consistency conditions. Since G is a semi A-B tree, we denote by πi the

unique parent node of i (πi = /0 if i is a root). In addition, let ∂A be the subset of A whose parent

nodes are in B, that is, ∂A = {i ∈ A : πi ∈ B}. Equation (39) can be reformed into

p̂A|B(x) = ∏
i∈A\∂A

bi,πi
(xi,xπi

)

bπi
(xπi

) ∏
i∈∂A

[

bi,πi
(xi,xπi

)

bπi
(xπi

)

]ρi,πi
[

bi(xi)

]1−ρi,πi

,

where we used the fact that ρi j = 1 for (i j) ∈ EA. Therefore, we have for any xB ∈ XB,

∑
xA

p̂A|B(x) = ∑
xA

{

∏
i∈A\∂A

bi,πi
(xi,xπi

)

bπi
(xπi

) ∏
i∈∂A

[

bi,πi
(xi,xπi

)

bπi
(xπi

)

]ρi,πi
[

bi(xi)

]1−ρi,πi
}

= ∏
i∈∂A

∑
xi

[

bi,πi
(xi,xπi

)

bπi
(xπi

)

]ρi,πi
[

bi(xi)

]1−ρi,πi

(40)

≤ ∏
i∈∂A

[

∑
xi

bi,πi
(xi,xπi

)

bπi
(xπi

)

]ρi,πi
[

∑
xi

bi(xi)

]1−ρi,πi

(41)

= 1, (42)

where the equality in (40) eliminates (by summation) all the interior nodes in A. The inequality in

(41) follows from Hölder’s inequality. Finally, the equality in (42) holds because all the sum part of

beliefs {bi,bi j : (i j) ∈ EA} satisfies the sum-consistency (25).

On the other hand, for any (i,πi)∈ ∂AB, because x∗πi
= argmaxxπi

bπi
(xπi

), we have bi,πi
(xi,x

∗
πi
) =

bi(xi) by the mixed-consistency condition (27). Therefore,

∑
xA

p̂A|B([xA,x
∗
B]) = ∏

i∈∂A

∑
xi

[

bi,πi
(xi,x

∗
πi
)

bπi
(x∗πi

)

]ρi,πi
[

bi(xi)

]1−ρi,πi

= ∏
i∈∂A

[

1

bπi
(x∗πi

)

]ρi,πi

∑
xi

bi(xi)

= 1. (43)

Combining (42) and (43), we have ∑xA
p̂A|B(x) ≤ ∑xA

p̂A|B([xA,x
∗
B]) = 1 for any xB ∈ XB, that is, x∗B

maximizes ∑xA
p̂A|B(x). This finishes the proof for the case C = B.

II) In the case of C 6= B, let D = B\C. We decompose p(x) into

p(x) = p̂B([xC,xD]) p̂A|C([xA,xC])r̂AD([xA,xD])
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where p̂B(xB) and p̂A|B(x) are defined similarly to (38) and (39),

p̂B(xB) = ∏
i∈B

bi(xi) ∏
(i j)∈EB

[

bi j(xi,x j)

bi(xi)b j(x j)

]ρi j

,

p̂A|C([xA,xC]) = ∏
i∈A

bi(xi) ∏
(i j)∈EA

[

bi j(xi,x j)

bi(xi)b j(x j)

]ρi j

∏
(i j)∈∂AC

[

bi j(xi,x j)

bi(xi)b j(x j)

]ρi j

,

where πi is the parent node of i in the semi A-B tree GA∪C and ∂AC is set of edges across A and C,

that is, ∂AC = {(i j) ∈ E : i ∈ A, j ∈C}. The term r̂AD(x) is defined as

r̂AD([xA,xD]) = ∏
(i j)∈∂AD

[

bi j(xi,x j)

bi(xi)b j(x j)

]ρi j

,

where similarly ∂AD is the set of edges across A and D.

Because x∗j = argmaxx j
b j(x j) for j ∈D, we have bi j(xi,x

∗
j) = bi(xi) for (i j) ∈ ∂AD, j ∈D by the

mixed-consistency condition in (27). Therefore, one can show that r̂AD([xA,x
∗
D]) = 1, and hence

p([xA,xC,x
∗
D]) = p̂B([xC,x

∗
D]) p̂A|C([xA,xC]).

The remainder of the proof is similar to that for the case C =B: by the analysis in Weiss et al. (2007),

it follows that x∗C ∈ argmaxxC
p([xC,x

∗
D]), and we have previously shown that

x∗C ∈ argmaxxC
∑xA

p̂A|C([xA,xC]). This establishes that x∗C maximizes

∑
xA

p([xA,xC,x
∗
D]) = p([xC,x

∗
D])∑

xA

p̂A|C([xA,xC]),

which concludes the proof.
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