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Abstract

Hard and soft classifiers are two important groups of techniques for classification problems. Lo-

gistic regression and Support Vector Machines are typical examples of soft and hard classifiers

respectively. The essential difference between these two groups is whether one needs to estimate

the class conditional probability for the classification task or not. In particular, soft classifiers pre-

dict the label based on the obtained class conditional probabilities, while hard classifiers bypass the

estimation of probabilities and focus on the decision boundary. In practice, for the goal of accurate

classification, it is unclear which one to use in a given situation. To tackle this problem, the Large-

margin Unified Machine (LUM) was recently proposed as a unified family to embrace both groups.

The LUM family enables one to study the behavior change from soft to hard binary classifiers. For

multicategory cases, however, the concept of soft and hard classification becomes less clear. In that

case, class probability estimation becomes more involved as it requires estimation of a probability

vector. In this paper, we propose a new Multicategory LUM (MLUM) framework to investigate

the behavior of soft versus hard classification under multicategory settings. Our theoretical and

numerical results help to shed some light on the nature of multicategory classification and its tran-

sition behavior from soft to hard classifiers. The numerical results suggest that the proposed tuned

MLUM yields very competitive performance.

Keywords: hard classification, large-margin, soft classification, support vector machine

1. Introduction

Classification problems are commonly seen in practice. When one faces a classification task, there

are many possible techniques to choose from. To list a few, logistic regression and Fisher linear dis-

criminant analysis (LDA) are classical classification methods. The Support Vector Machine (SVM,

Boser et al., 1992; Cortes and Vapnik, 1995; Wahba, 1999) and Boosting (Freund and Schapire,

1997) are more recent machine learning based large-margin classification tools. Despite some

known properties of these methods, a practitioner often needs to face one natural question: which

method should one choose to solve the classification problem in hand?
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Wahba (2002) discussed the concept of soft versus hard classification. Soft classifiers estimate

the class conditional probabilities and make the decision rule based on the obtained probabilities.

Typical examples include logistic regression and LDA. Hard classifiers, on the other hand, focus on

estimating the decision boundary without probability estimation. One typical example of hard clas-

sifiers is the SVM, which is a well known hard classifier without strong distributional assumptions.

Another example of hard classifiers is ψ−learning (Shen et al., 2003). When class probability esti-

mation is necessary, one can perform multiple weighted learning for probability estimation of hard

classifiers (Wang et al., 2008). For a given problem, the choice between hard and soft classifiers can

be difficult. Recently, Liu et al. (2011) proposed a family of large-margin classifiers, namely, the

Large-margin Unified Machine (LUM). The LUM family is a rich group of classifiers in the sense

that it connects hard and soft classifiers in one spectrum. It provides a natural platform for compar-

isons between soft and hard classifiers. More importantly, it enables us to observe the performance

transition from soft to hard classification.

The existing development on the LUM is limited to the binary case. For multicategory problems,

further development is necessary. In particular, probability estimation becomes more challenging

as one needs to estimate a probability vector. Furthermore, multicategory consistency is much more

involved, especially for hard classifiers. For instance, there are a lot of developments on multicate-

gory SVMs in the literature (Vapnik, 1998; Weston and Watkins, 1999; Crammer et al., 2001; Lee

et al., 2004; Wang and Shen, 2007; Liu and Yuan, 2011). Most of them are not consistent when there

is no dominating class, that is, the maximum class probability is less than 0.5 (Tewari and Bartlett,

2007; Liu, 2007). Recently, Liu and Yuan (2011) proposed a group of consistent multicategory

piecewise linear hinge loss functions, namely a family of reinforced hinge loss functions, which

covers the loss by Lee et al. (2004) as a special case. For probability estimation, there are several

existing multicategory soft classifiers, such as Adaboost in Boosting (Freund and Schapire, 1997;

Zou et al., 2008; Zhu et al., 2009), logistic regression (Lin et al., 2000), proximal SVMs (Tang and

Zhang, 2006), and multicategory composite least squares classifiers (Park et al., 2010).

We propose a new group of Multicategory Large-margin Unified Machines (MLUMs) in this

paper. Similar to the binary case, the MLUM is a broad family that embraces many of the afore-

mentioned classifiers as special cases. It helps to shed some light on the choice between multicat-

egory soft and hard classifiers, and provide some insights on the behavior change from soft to hard

classification methods. Our theoretical studies show that the MLUM is always Fisher consistent,

and is able to provide class conditional probability estimation. Moreover, we extend the excess risk

concept discussed in Bartlett et al. (2006) to the multicategory case and study its convergence rate.

We also propose an efficient tuning procedure for the MLUM family. Our numerical results show

that the behaviors of different classifiers vary from setting to setting. In particular, we have the

following observations.

• Soft classifiers tend to give more accurate classification results by estimating the conditional

class probability when the true probability functions are relatively smooth.

• Hard classifiers bypass the probability estimation and may work better when estimation of

the underlying probability functions is challenging, such as the step function.

• When the data are noisy with outliers, soft classifiers tend to be very sensitive and unstable.

A MLUM member, in-between hard and soft classifiers, tends to work the best. This was not

observed in the binary case (Liu et al., 2011).
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Although our observations may not hold for all classification problems, it can help us to understand

the classification behaviors better. Furthermore, our numerical results suggest that the performance

of the proposed tuned MLUM is very competitive.

The rest of this paper is organized as follows. In Section 2, we give some motivation and intro-

duce the MLUM family. Section 3 explores some statistical properties of the MLUM family. Section

4 addresses the computational aspect of the MLUM. In Section 5, we demonstrate the numerical

performance of MLUM via several simulated examples. Section 6 discusses some benchmark ex-

amples and one gene expression data set. Some discussion is provided in Section 7. The technical

proofs are collected in the appendix.

2. Methodology

In this section, we first introduce the background of binary classification, then discuss different

ways of generalization to multicategory problems. The notion of soft and hard classification is first

reviewed in the binary classification context. Then we propose a MLUM framework which helps us

to understand soft versus hard classification in the multicategory setting.

2.1 Background on Binary Classification

With a training data set given, one main goal of classification is to build a classifier for us to predict

the class label y using the input vector x. Here we assume that the training data are i.i.d. samples

from an unknown underlying distribution D(x,y). In binary classification with y ∈ {±1}, we want

to estimate a function f (x) : Rd → R and use sign
(

f (x)
)

as the classification rule. Because of the

sign rule and the class labels {±1}, the quantity y f (x) indicates whether the classification of a point

(x,y), sign( f ), is correct or not. In particular, we have correct classification if and only if y f (x)> 0.

This quantity y f (x) is known as the functional margin in the large-margin classification literature.

Using the functional margin, the theoretical 0− 1 loss can be directly written as L
(

y f (x)
)

=
I
(

y f (x)≤ 0
)

. Our goal is to find a classification function f such that the expected loss of f , denoted

by

R
(

f (·)
)

= EX,Y L
(

Y f (X)
)

, (1)

is as small as possible. The infimum of R
(

f (·)
)

, denoted by R∗, is called the Bayes error. In practice,

given a training sample (x1,y1), . . . ,(xn,yn) independently drawn from D, we want to find a function

f in a functional space H that minimizes the empirical loss

min
f∈H

1

n

n

∑
i=1

L
(

yi f (xi)
)

, (2)

which can be considered as an empirical approximation to the expected loss (1).

Due to the non-convexity and discontinuity of the 0−1 loss function L, the minimization of the

empirical loss (2) is typically NP-hard and difficult to implement in practice. Many surrogate loss

functions have been proposed to alleviate this problem. Furthermore, regularization is often used as

well to avoid overfitting. In particular, one can replace the 0−1 loss L with a surrogate loss V , and

solve the following optimization problem

min
f∈H

1

n

n

∑
i=1

V
(

yi f (xi)
)

+λJ( f ), (3)
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where J( f ) is a regularization function of f that helps to prevent overfitting, and λ is the tuning

parameter that balances the loss function term and the regularization term. Different loss functions

correspond to different classification methods. To list a few, AdaBoost employs the exponential

loss V = exp(−y f ) (Friedman et al., 2000), SVM (Boser et al., 1992) uses the hinge loss V =
[1− y f ]+, and logistic regression (Lin et al., 2000; Zhu and Hastie, 2005) uses the deviance loss

V = log
(

1+ exp(−y f )
)

. Different methods can be roughly grouped into two categories, namely,

soft and hard classifiers. In practice, it is unclear which one to use for a particular problem. To

answer this question, Liu et al. (2011) proposed to use the LUM loss function ℓ(·) for V in (3),

where

ℓ(u) =

{

1−u if u < c
1+c

,
1

1+c

(

a
(1+c)u−c+a

)a
if u ≥ c

1+c
,

with c ≥ 0 and a > 0 being parameters of the LUM family. See Figure 1 for the shape of ℓ(u) with

a few values of a and c (Liu et al., 2011). Note that the LUM family includes the SVM hinge loss

with c → ∞, and the Distance Weighted Discrimination (DWD, Marron et al., 2007) with c = 1 and

a = 1, as special cases. The parameter c is an index of soft versus hard classifiers. In particular,

c = 0 corresponds to a typical soft classifier, and c → ∞ corresponds to the SVM, a typical hard

classifier. Consequently, the LUM connects soft and hard classifiers as a family, and enables one to

thoroughly investigate the transition behavior in this spectrum.
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Figure 1: Plots of several LUM loss functions. On the left panel, we have a = 1 and c = 0,1,5,∞,

and on the right panel we have c = 0 and a = 1,5,10,∞.

So far, our focus has been on binary methods. In the next section, we briefly introduce some

existing methods for multicategory classification problems.
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2.2 Existing Multicategory Classification Methods

To solve a multicategory problem, a natural and direct way is to implement multiple binary clas-

sifiers. For example, one can implement the one-versus-one or one-versus-rest methods. Consider

a k−category classification problem with the label y ∈ {1,2, . . . ,k}. The one-versus-one approach

applies a given binary classifier to a problem of j1 versus j2 for all possible j1, j2 ∈ {1,2, . . . ,k}.

Overall,
k(k−1)

2
binary classifiers are performed, followed by a majority vote step. In particular,

one counts the number of votes for each class obtained from the binary classifiers and classifies the

point into the class with the maximum number of votes. When there is a tie for the maximum votes

among the classes, one can combine the binary probability information to assign labels, if the binary

classification probability estimation is available (Wu et al., 2004). If a hard classifier is used for the

one-versus-one approach, then the label is randomly chosen among the classes with equal maxi-

mum votes. This can be suboptimal. Furthermore, when k is large, the number of binary classifiers

needed can be large as well. In addition, some class sizes can be very small. Another similar tech-

nique is the one-versus-rest approach. In particular, it relabels the data in the class j as the positive

class and the rest as the negative class, for j ∈ {1,2, . . . ,k}, and performs a sequence of k binary

classification problems. The one-versus-rest approach may have inconsistency for some classifiers

such as SVMs (Liu and Yuan, 2011). Hence, it is desirable to have a simultaneous multicategory

classifier that considers k classes altogether.

The idea of simultaneous multicategory classifiers is as follows. Consider a k−category clas-

sification problem. Given an input vector x, we would like to predict its corresponding label

y ∈ {1,2, . . . ,k}. Instead of using a one-dimensional classification function f (x) as in the binary

case, now we employ a k−dimensional function vector f(x) =
(

f1(x), . . . , fk(x)
)

, and predict the

class label y of x using argmax j=1,...,k f j(x). Similar as in (3), we are interested in solving the

following optimization problem

min
f∈H

1

n

n

∑
i=1

V
(

f(xi),yi

)

+λJ(f), (4)

with V being a loss function for a multicategory problem, and J(f) being a regularization term

defined for the multicategory problems. To reduce the dimension of the problem and to obtain good

theoretical properties, a sum-to-zero constraint, ∑k
j=1 f j(x) = 0, is commonly used. As a result,

this formulation is equivalent to the binary problem with k = 2. With the argmax prediction rule, a

sensible loss function V should encourage fy to be the maximum among { f j; j = 1, . . . ,k}.

For soft classification in multiclass problems, Zhu and Hastie (2005) used the generalized lo-

gistic loss V = − fy(x)+ log(e f1(x)+ · · ·+ e fk(x)). Tang and Zhang (2006) employed the squared

loss V = (z− f)T (z− f), where z = − 1
k−1

(1,1, . . . ,1)T + k
k−1

ey, and e j is the vector with 1 at the

jth element and 0 elsewhere. Zhu et al. (2009) extended the Adaboost to a multicategory learning

method with the exponential loss V = exp(− 1
k
zT f). In the literature of hard classifiers, there are

several ways to extend the binary hinge loss of the SVM to the simultaneous multicategory case.

Here we list several commonly used versions with the sum-to-zero constraint:

Loss 1 (Naive hinge loss) [1− fy(x)]+;

Loss 2 (Vapnik, 1998) ∑ j 6=y[1−
(

fy(x)− f j(x)
)

]+;

Loss 3 (Crammer et al., 2001; Liu et al., 2005) ∑ j 6=y[1−min j

(

fy(x)− f j(x)
)

]+;
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Loss 4 (Lee et al., 2004) ∑ j 6=y[1+ f j(x)]+.

Losses 1, 2 and 3 are known to be inconsistent (Lee et al., 2004; Liu, 2007; Tewari and Bartlett,

2007). In contrast, Loss 4 is Fisher consistent. Recently, Liu and Yuan (2011) proposed the Rein-

forced Multicategory Support Vector Machine (RMSVM), which employs a convex combination of

the naive hinge loss and Loss 4 by Lee et al. (2004) as follows,

V (f(x),y) = γ[(k−1)− fy(x)]++(1− γ)∑
j 6=y

[1+ f j(x)]+, (5)

subject to ∑k
j=1 f j(x) = 0. Interestingly, the reinforced hinge loss function is Fisher consistent

when 0 ≤ γ ≤ 1/2, and includes Loss 4 in Lee et al. (2004) as a special case with γ = 0. Liu and

Yuan (2011) showed that the loss function (4) with γ = 1/2 yields the best overall classification

performance, among γ ∈ [0,0.5]. Inspired by the RMSVM loss formulation, we propose to extend

the LUM family to the MLUM in an analogous way, as discussed in the next section.

Next we examine the sum-to-zero constraint ∑k
j=1 f j(x) = 0 for different multicategory losses.

In linear learning, we assume that f j(x) = xT β j + b j; j = 1, . . . ,k, and the L2 penalty is J(f) =
1
2 ∑k

j=1 ‖β j‖2. In kernel learning, we have f j = g j,H + b j and g j,H ; j = 1, . . . ,k belong to some

Reproducing Kernel Hilbert Space (RKHS) H , while b j’s are constants. The L2 penalty for kernel

learning is J(f) = 1
2 ∑k

j=1 ‖g j,H ‖2
H

, where ‖ · ‖H is the norm in H introduced by its corresponding

kernel. See, for example, Aronszajn (1950) and Wahba (1999) for more details about RKHS. Notice

that in both cases, the intercepts b j; j = 1, . . . ,k are not penalized. Thus, if we add a constant to

all b j; f = 1, . . . ,k, the prediction on any new instance does not change. Hence, the sum-to-zero

constraint helps to obtain unique solutions. The next proposition shows that, if the loss function

depends on f only through its element-wise differences fi − f j; i 6= j as in Losses 2 and 3, then

without the sum-to-zero constraint, the solutions {β̂ j} in linear learning or {ĝ j,H } in kernel learning

automatically sum to zero, under the L2 penalty. Note that this phenomenon for the SVM was

previously noted by Wu and Liu (2007).

Proposition 1: Suppose the loss function V (f,y) depends on f only through fi − f j; i 6= j, then the

solution to (4), using the L2 penalty without the sum-to-zero constraint, satisfies that ∑k
j=1 β̂ j = 0

for linear learning, and ∑k
j=1 ĝ j,H = 0 for RKHS learning.

Notice that the condition in Proposition 1 is satisfied by MSVM Losses 2 and 3 mentioned

above. For other loss functions such as Losses 1 and 4, the result does not hold. However, for those

loss functions, the sum-to-zero constraint is more essential for theoretical properties such as Fisher

consistency. This constraint was also used in many other simultaneous multicategory classification

papers, for example, Tang and Zhang (2006), Wang and Shen (2007), and Zhu et al. (2009).

2.3 MLUM Family

Soft and hard classifiers have been both studied in the literature of simultaneous multicategory

classification. Which one to use in practice remains to be a challenging question. The LUM family

is a broad family which embraces both soft and hard classifiers in binary cases, yet no such a

convenient platform is available in the multicategory framework. In this paper, we propose a new

family of MLUMs to study multicategory problems. In particular, we make use of the idea of

reinforced multicategory hinge loss by Liu and Yuan (2011), and propose the following MLUM
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loss family,

V (f,y) = γℓ
(

fy(x)
)

+(1− γ)∑
j 6=y

ℓ
(

− f j(x)
)

, (6)

under the constraint ∑k
j=1 f j(x) = 0, where ℓ(u) : R → R is the LUM loss function, and γ ∈ [0,1].

When k = 2, the MLUM reduces to the binary LUM loss.

The main motivation to use the MLUM loss function (6) is based on the argmax rule for mul-

ticategory classification. For a given data point (x,y), in order to obtain a correct classification

decision rule, we need to have the corresponding fy(x) to be the maximum among f(x). To that end,

the first term in (6) encourages fy(x) to be large, and the second term encourages f j(x), j 6= y, to be

small. Consequently, both terms in (6) try to make fy big.

To further comprehend the MLUM family, we rewrite (6) using the multiple comparison vector

representation proposed by Liu and Shen (2006). In particular, we define the comparison vector

g
(

f(x),y
)

=
(

fy(x)− f1(x), . . . , fy(x)− fy−1(x), fy(x)− fy+1(x), . . . , fy(x)− fk(x)
)

. Then by the

argmax classification rule, a data point (x,y) is misclassified if and only if ming
(

f(x),y
)

≤ 0. Let

u = g
(

f(x),y
)

, then the 0− 1 loss can be written as I{min j u j ≤ 0}, and the MLUM loss can be

expressed as

V (f,y) = γℓ(
k−1

∑
j=1

u j/k)+(1− γ)
k−1

∑
j=1

ℓ(−
k−1

∑
i=1

ui/k+u j). (7)

Figure 2 shows the plot of (7) with γ = 0,0.5,1 and c = 0,a = 1 (soft classifier), and the 0−1 loss

with k = 3, for comparison. We can see that as γ changes, the shape of the MLUM loss functions

varies a lot, although they are all convex upper envelopes of the 0−1 loss. Moreover, as γ increases,

the value of the loss function increases when u1 and u2 are both negative, and decreases when just

one of them is negative.

In the next section, we explore some statistical properties of the MLUM family, which can help

us understand the MLUM better with respect to the parameters involved in (6).

3. Statistical Properties

In this section, we study statistical properties of the MLUM family. We first study its consistency

in Section 3.1, and then derive the formula for class probability estimation in Section 3.2. In Sec-

tion 3.3, we extend the notion of the excess V -risk, as defined in Bartlett et al. (2006) and Zhang

(2004a), from the binary case to the multicategory one. We show that the convergence rate of the

excess V -risk depends on the size of the functional space, as well as the convergence rate of the

estimated classification function to its theoretical minimizer within the functional space.

3.1 Fisher Consistency

As different loss functions yield different methods, it is essential to study the properties of these

loss functions. One important concept is the Fisher consistency (Zhang, 2004b; Bartlett et al., 2006),

defined as follows. For a binary classification problem with the corresponding classification function

f , a loss function V (·) is Fisher consistent if and only if sign
(

f ∗(x)
)

= sign
(

p(x)− 1
2

)

, where

f ∗(x) = arginf f E[V
(

Y f (X)
)

|X = x] and p(x) = p(Y = 1|X = x). Based on the definition, Fisher
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Figure 2: Plots of the 0−1 loss function (top left panel) and MLUM loss functions with γ = 0 (top

right), γ = 0.5 (bottom left), γ = 1 (bottom right), for c = 0, a = 1 and k = 3.

consistency essentially ensures the corresponding decision boundary induced by f ∗ is identical to

the Bayes boundary {x : p(x) = 1/2}.

In the multicategory classification literature, to tackle the Fisher consistency problem, we need

the following definitions.

Definition 1 (Expected V−loss): Define the expected V−loss as

EX,YV (f,y) = EX

[

k

∑
j=1

V
(

f(X), j
)

Pj(X)|X = x
]

,

where P(x) =
(

P1(x), . . . ,Pk(x)
)

is the class conditional probability.
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Definition 2 (Conditional V−loss): For any x, define the conditional V−loss as

S(f,x) =
k

∑
j=1

V
(

f(x), j
)

Pj(x). (8)

Because of the argmax rule, Fisher consistency means that for any given P(x), the minimizer

f∗(x) =
(

f ∗1 (x), . . . , f ∗k (x)
)

of S(f,x) is such that argmax j Pj(x) = argmax j f ∗j (x). Furthermore, if

argmax j Pj(x) is unique, then so is argmax j f ∗j (x). Next we show that the MLUM loss function is

always Fisher consistent with a finite c and for any γ ∈ [0,1], a > 0. To that end, we need to show

that, if P1 is the unique maximum among {P1, . . . ,Pk}, then f ∗1 > max{ f ∗2 , . . . , f ∗k }. The next lemma

assures that in the MLUM family, f ∗1 is the maximum among { f ∗1 , . . . , f ∗k } (not necessarily unique),

even with c = ∞.

Lemma 1 In the MLUM family with c ∈ [0,∞], a > 0 and γ ∈ [0,1], suppose for i, j ∈ {1, . . . ,k}, we

have Pi > Pj, then f ∗i ≥ f ∗j .

Clearly the above lemma is not sufficient for Fisher consistency, because the uniqueness of f ∗1 is

not guaranteed. Liu and Yuan (2011) showed that if we replace ℓ(·) in (6) with the hinge loss with

some minor modifications as in (5), the Fisher consistency will fail when γ > 1/2. The deficiency of

the hinge loss is due to its non-differentiability at the point 1, which then assures f ∗j ≤ 1; j = 1, . . . ,k.

Because the LUM loss ℓ is always differentiable with finite c, Fisher consistency of the MLUM is

guaranteed, as in the following theorem.

Theorem 2 The MLUM loss function (6) with any a > 0, γ ∈ [0,1] and c ∈ [0,∞), is Fisher consis-

tent.

As a remark, we note that the proof of the preceding theorem can shed some light on why the

RMSVM is not Fisher consistent when γ > 1/2. Since the hinge loss is not differentiable at 1, the

maximal possible value of f ∗j ; j = 1, . . . ,k in the RMSVM is 1. When P1 > P2 ≥ P3 · · · ≥ Pk, we

may have f ∗1 = f ∗2 = 1. Thus the loss can be inconsistent. See Remark 3 in the appendix for more

discussions.

3.2 Probability Estimation

Class conditional probability estimation is very important in many applications. It is common to use

the relationship between f∗ and the class probability P for estimation of the latter using f̂n, where f̂n

is the empirical solution to (4) with V being the proposed MLUM loss. In this section we convert

the minimizer f∗ into the class conditional probability estimation. When an estimated f̂n is obtained,

one can use the formula to obtain the estimated probability P̂. The following theorem gives the

probability estimation formula for the MLUM family with any finite c.

Theorem 3 Let Ê( j) = [γℓ′( f̂ j)+(1−γ)ℓ′(− f̂ j)] and F̂( j) = (1−γ)ℓ′(− f̂ j); j = 1, . . . ,k, where f̂ j

is the jth element of f̂n. Then the probability estimation of P̂j for the MLUM can be expressed as

P̂j =
1

Ê( j)







F̂( j)+
1

∑k
i=1

1

Ê(i)

(

1−
k

∑
i=1

F̂(i)

Ê(i)

)







; j = 1, . . . ,k. (9)
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Note that the class probability estimation requires that P̂j ∈ [0,1] for j = 1, . . . ,k and ∑k
j=1 P̂j = 1.

One can check that the requirement of the estimated probabilities summing to one is satisfied in (9).

For γ = 1, F( j) = 0, and one can directly verify the estimated P̂i using (9) is proper. However,

with γ 6= 1, P̂j in (9) may be outside of [0,1]. To ensure a proper estimation in the sense of each

0 ≤ P̂j ≤ 1 and ∑k
j=1 P̂j = 1, we apply a scaled probability estimates using the following formula

P̂scaled
j =

P̂j −mini=1,...,k P̂i

∑k
m=1(P̂m −mini=1,...,k P̂i)

.

A similar strategy was previously used in Park et al. (2010). Note that besides this one, other scaling

strategies can be used as well.

In the binary case, the LUM provides class conditional probability estimation with any finite

c. In particular, with the classification function f , p(x) does not have a one-to-one relationship

with f ∗(x) when p(x) = 1/2 and c > 0. In that case, all values of f ∗(x) ∈ [− c
1+c

, c
1+c

] correspond

to p(x) = 1/2. Figure 3 displays the relationship between p(x) and f ∗(x) with a = 1 and c ∈
{0,1,∞}. As shown in Figure 3, when c > 0, the flat region of p(x) makes the estimation of class

conditional probability more difficult (Liu et al., 2011). However, the LUM is still able to provide

probability estimation for any finite c, although as c increases, the probability information becomes

less complete. When c → ∞, the LUM reduces to the standard SVM, which cannot provide any

detailed information about probability, due to its minimizer f ∗(x) = sign
(

p(x)−1/2
)

.

−3 −2 −1 0 1 2 3

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

a=1

f*

p

c=0

c=1
c=∞

Figure 3: Plot of the correspondence between f ∗(x) and p(x) with a = 1, c ∈ {0,1,∞}.

A similar pattern exists in the MLUM case. In multicategory problems, the conditional proba-

bility becomes a vector, and this makes the transition behavior of probability estimation from soft

to hard classification more complex. In particular, we need to generalize the flat region in Figure 3
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to the multicategory setting. From (9), we can see that for any given f̂n = ( f̂1, . . . , f̂k), the esti-

mated probability depends entirely on Ê( j) and F̂( j); j = 1, . . . ,k. Note that the LUM loss has the

derivative

ℓ′(u) =

{

−1 if u < c
1+c

,

−
(

a
(1+c)u−c+a

)(a+1)
if u ≥ c

1+c
.

When f̂i ∈ [− c
1+c

, c
1+c

], f̂ j ∈ [− c
1+c

, c
1+c

], one can see that Ê(i) = Ê( j), F̂(i) = F̂( j), and conse-

quently we have P̂i = P̂j. This implies that for any obtained f̂n, if the classification signal is weak

such that both f̂i and f̂ j fall into [− c
1+c

, c
1+c

], then we are not able to tell the difference between the

two classes in terms of conditional probabilities. Moreover, if f̂ j ∈ [− c
1+c

, c
1+c

] for all j ∈ {1, . . . ,k},

then P̂j = 1/k for all j using (9). In that case, the estimated probability cannot help us to identify

the max probability class.

To further illustrate the relationship between f̂n and P̂, we use Figure 4 to display the relationship

between ( f̂1, f̂2) and P̂1 for k = 3, γ = 1, a = 1 and c = 0,2,5 and ∞. When c > 0, the flat region

of P̂ makes the estimation of the conditional probability more difficult. As c increases, [− c
1+c

, c
1+c

]
becomes wider, and the function becomes closer to a step function. Eventually, when c → ∞, the

method reduces to the RMSVM whose classification function f can only produce classification

boundary without containing any further probability information. Therefore, similar to the binary

case, the MLUM can provide class probability estimation for any finite c, although the estimation

deteriorates as c increases.

3.3 Asymptotic Properties

For binary problems, Zhang (2004a) and Bartlett et al. (2006) investigated the effect of employing

the surrogate loss in place of the 0−1 loss, in terms of classification performance. They considered

the excess risk and the excess V−risk, defined as follows. The excess risk is the difference between

the expected 0− 1 loss for f and its theoretical infimum. It can be written as R
(

f (·)
)

−R∗, where

R
(

f (·)
)

and R∗ are defined in Section 2.1. Similarly, the excess V−risk can be written as Q
(

f (·)
)

−
Q∗, where Q

(

f (·)
)

= EX,YV
(

f (X),Y
)

is the expected loss using V as the loss function, and Q∗ =
minQ

(

f (·)
)

.

Typically we are interested in the convergence of the excess risk. Steinwart and Scovel (2007)

studied the convergence rate of the Gaussian kernel binary SVM problem. For problems with gen-

eral loss functions in the binary case, Zhang (2004a) and Bartlett et al. (2006) showed that if the

excess V -risk converges to 0, so does the excess risk, under some mild assumptions. Zhang (2004b)

further studied the relationship between the two excess risks in multicategory problems. In partic-

ular, the convergence rates of the two excess risks are well studied in Wang and Shen (2007), in

the setting of L1 penalized multicategory SVM with linear learning. In this section, we employ the

generalization of the excess V -risk from binary to multicategory cases as in Zhang (2004b), and

explore the explicit form for MLUM. Moreover, we study the relationship between the convergence

rate of the classification function f̂n and that of the excess V -risk, as well as the size of the functional

space.

Recall that we can rewrite Q
(

f(·)
)

as EXS(f,x). Consider the MLUM case with S(f,x) =

∑k
j=1

[

γℓ
(

f j(x)
)

+(1−γ)∑i6= j ℓ
(

− fi(x)
)]

Pj(x). It can be verified that S(f,x)=∑k
j=1 Pj(x) [γℓ

(

f j(x)
)

−
(1 − γ)ℓ

(

− f j(x)
)

] + (1 − γ)∑k
j=1 ℓ

(

− f j(x)
)

. For brevity, let Q(P, f) = ∑k
j=1 Pj [γℓ( f j)− (1 −
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Figure 4: Visualization of the relationship between f ∗1 , f ∗2 and P1, with γ = 1, a = 1, and c ∈
{0,2,5,∞}. The plots show the transition of the MLUM from soft classification (top

left panel) to hard classification (bottom right panel).

γ)ℓ(− f j)]+ (1− γ)∑k
j=1 ℓ(− f j). Note that Q(P, f) does not involve x. For any given P, let f∗ℓ(P) =

arginff∈Rk Q(P, f), where Rk is the k−dimensional real space. Define Q∗(P) = Q
(

P, f∗ℓ(P)
)

to be the

optimum value for any given P, and ∆Q(P, f) = Q(P, f)−Q∗(P). The excess V−risk is equivalent

to ∆Q
(

f(·)
)

= EX∆Q
(

P(X), f(X)
)

. Zhang (2004a) and Bartlett et al. (2006) showed that in binary

problems, one can bound the excess risk by some transformation of ∆Q
(

f(·)
)

. A similar result for

multicategory problems is obtained in Zhang (2004b). To study the functional form of ∆Q
(

f(·)
)

in binary problems, Zhang (2004a) proposed to use the Bregman divergence. Here we extend the

results in Zhang (2004a) to the multicategory version.
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The Bregman divergence of a convex function g(·) is defined as

dg( f1, f2) = g( f2)−g( f1)−g′( f1)( f2 − f1).

Here g′(·) is a subgradient of the convex function g(·). In Theorem 2.2 of Zhang (2004a), it was

shown that in the binary case, if g is differentiable, ∆Q(P, f ) = Pdg

(

f ∗g (P), f
)

+ (1 − P)dg

(

−
f ∗g (P),− f

)

. For the MLUM family, we have the following result, which is a generalization of

the binary formula.

Theorem 4 ∆Q(P, f) = ∑k
j=1

[

Pjγdℓ( f ∗j , f j)+(1−Pj)(1− γ)dℓ(− f ∗j ,− f j)
]

.

Theorem 4 can be used to establish the connection of the convergence rate of the classification

function and that of the excess V−risk. Suppose the classification function f varies in a certain space

H. We can decompose the excess V−risk as ∆Q(f̂n) = [∆Q(f̂n)−∆Q(fH)]+ [∆Q(fH)], where fH is

the function that achieves the minimal of ∆Q(f) : f ∈ H pointwisely. We may refer to the first term in

the previous display as the V−estimation error and the second term as the V−approximation error.

When H is rich enough, so that

arginf
f∈H

EX,Y

(

V
(

f(X),Y
)

)

= arginf
f∈Rk

EX,Y

(

V
(

f(X),Y
)

)

= f∗, (10)

the estimator f̂n will converge to f∗ as the sample size n grows, under some mild conditions. In

this case the V−approximation error is zero. We can explore how the convergence rate of f̂n affects

the convergence rate of the excess V−risk, which is essentially the V−estimation error. First we

introduce some definitions and assumptions. Recall that a, c and γ are parameters in the MLUM

loss function (6).

Let µ(·) be the regular Lebesgue measure. For any fixed a, c and γ, the distribution D(X,Y )
naturally defines k probability measures on the real line: τ j(B) = P( f ∗j ∈ B); j = 1, . . . ,k, where B

is any Borel measurable set.

Assumption A: For any c ≥ 0, a > 0 and γ ∈ [0,1], τ j ≪ µ; j = 1, . . . ,k. Namely, every measure τ j

is absolutely continuous with respect to the Lebesgue measure µ.

Assumption B: For any c ≥ 0, a > 0 and γ ∈ [0,1], nq
(

f̂n(x,y)− f∗(x,y)
)

→ T(c,a,γ,x,y) in dis-

tribution, where T(c,a,γ,x,y) = (T1, . . . ,Tk)
T is a multivariate random variable, whose distribution

depends on c, a, γ, and varies among different (x,y); q > 0 is a constant. Furthermore, suppose that

for fixed c, a, and γ,
∫

X,Y |sup1≤ j≤k Tj|2dD(X,Y )< ∞.

Now we are in the position to introduce the following theorem.

Theorem 5 In the MLUM family with the underlying distribution D, suppose Assumptions A and B

are satisfied, and (10) holds. Then for any fixed c, a, and γ,

∆Q(f̂n) = O(n−2q).

Note that Assumption A can be verified if there is no probability mass point in the distribution

D. Under Assumption A, the expected loss Q
(

f(·)
)

has bounded second order derivative for a fixed

c almost surely. Hence under some conditions, q = 1/2 for regular finite dimensional problems,
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and f̂n is root n−consistent. For example, in the literature of sieve estimation with linear learning,

a finite dimensional problem enjoys the root n−consistency of β̂ (Shen and Wong, 1994), with a

proper choice of the regularization term. In this case, the integrability in Assumption B can be

satisfied if X is bounded. From Theorem 5, we can conclude that the excess V−risk is n−consistent

for any a, c and γ, when the function space is large enough.

Remark 1. Assumption A ensures that there is no probability mass point where the LUM loss

function ℓ(·) is not twice differentiable. Without Assumption A we are not even guaranteed to

have convergence for any suitable transformation of f̂n − f∗. The square integrable requirement of

Assumption B is essential in the sense that it prevents the distribution of T from diverging with large

probability when (X,Y ) varies.

Remark 2. The potential problem of non-unique f∗ does not affect the result of Theorem 5. Because

S in (8) is convex, any partial derivative of S with respect to f j is non-decreasing. Suppose there is

a flat region [h1,h2] of value 0 in the derivative function. Then f ∗j must be within [h1,h2] and the

second order partial derivative with respect to f j is 0 in (h1,h2). Because the MLUM loss function

is continuously differentiable, either the first order derivative is not differentiable on the boundary

of (h1,h2), which we assume probability 0, or it is differentiable with derivative 0. Note that if the

first order derivative of a convex function ψ(·) is 0 within (h1,h2), then for any t1, t2 ∈ (h1,h2), and

any other t3, dψ(t1, t3) = dψ(t2, t3). This means that the choice of f ∗j is not essential, as long as the

empirical minimizer f̂ j approaches [h1,h2].

The situation when the V−approximation error vanishes is rare. When the V−approximation

error is nonzero, in other words,

inf
f∈H

EX,Y

(

V
(

f(X),Y
)

)

> inf
f∈Rk

EX,Y

(

V
(

f(X),Y
)

)

, (11)

Theorem 5 is not applicable, because the excess V−risk does not converge to 0 anymore. Then we

are interested in the convergence rate of the V−estimation error, ∆Q(f̂n)−∆Q(fH). First, we need

to modify Assumption B as follows.

Assumption B’: For any c ≥ 0, a > 0 and γ ∈ [0,1], nq
(

f̂n(x,y)− f∗(x,y)
)

→ T(c,a,γ,x,y) in distri-

bution, where T(c,a,γ,x,y) = (T1, . . . ,Tk)
T is a multivariate random variable, whose distribution de-

pends on c, a, γ, and varies among different (x,y); q > 0 is a constant. Furthermore, suppose that for

fixed c, a, and γ,
∫

X,Y |sup1≤i≤k Ti|dD(X,Y )< ∞, and
∫

X,Y |sup1≤i≤k f ∗i |+ |sup1≤i≤k f H
i |dD(X,Y )<

∞.

Theorem 6 In the MLUM family with the underlying distribution D, suppose Assumptions A and

B’ are satisfied, and (11) holds. Then for any fixed c, a, and γ,

∆Q(f̂n)−∆Q(fH) = O(n−q).

From Theorem 6, we can see that when the theoretical minimizer does not belong to the function

class H, the convergence rate of the excess V -risk is the same as f̂n. When q = 1/2 under some mild

conditions, the excess V -risk is also root n-consistent.
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4. Computational Algorithm

In this section, we discuss how to implement (4) with the MLUM family. The MLUM loss (6)

is convex and first-order differentiable, and one can apply standard tools to solve the optimization

problem, for example, the OPTIM function in R. Here we propose to use the well-known cyclic

coordinate descent algorithm (Tseng, 2001; Friedman et al., 2010).

Next we present the coordinate descent algorithm to solve the following MLUM optimization

problem

min
f

1

n

n

∑
i=1

[

γℓ
(

fy(xi)
)

+(1− γ)∑
j 6=y

ℓ
(

− f j(xi)
)]

+λJ(f)

subject to
k

∑
j=1

f j(x) = 0.

We choose the first (k−1)th elements of f as free parameters, and let ∑k
j=1 f j(x) = 0 for all x. For

simplicity we focus on the linear learning with f j(x) = xT β j + b j, j = 1, . . . ,k, and the L2 penalty

with J(f) = 1
2 ∑k

j=1 ‖β j‖2. Extensions to kernel learning and other convex and separable types of

regularization term are relatively straightforward and are not included here.

We now describe the coordinate descent algorithm in detail. Denote the solution at the mth

step by Ξ(m) = (β
(m)
1 , . . . ,β

(m)
k )T and b = (b

(m)
1 , . . . ,b

(m)
k )T . At the (m+ 1)th step, define f̃i, j,−p =

(xT
i β

(m+1)
1 +b

(m+1)
1 , . . . ,xT

i β
(m+1)
j−1 +b

(m+1)
j−1 ,Wi,1, . . . ,x

T
i β

(m)
k−1+b

(m)
k−1,Wi,2)

T for i= 1, . . . ,n, j = 1, . . . ,k−
1 and p = 1, . . . ,d, where d is the dimension of the problem. Here Wi,1 = ∑q<p xiqΞ

(m+1)
j,q +

∑q>p xiqβ
(m)
j,q + b

(m)
j , and Wi,2 is determined by other components such that the component sum of

f̃i, j,−p is 0. Set

Ξ
(m+1)
j,p = argmin

z

λ

2

(

z2 +[
p−1

∑
s=1

Ξ
(m+1)
j,s + z+

d

∑
s=p+1

Ξ
(m)
j,s ]

2
)

+
1

n

n

∑
i=1

V (f̃i, j,−p + xi, jz,yi). (12)

The optimization of (12) involves a one-dimensional update and can be solved efficiently. Once we

finish updating the entire jth row of Ξ(m+1), we update the intercept b j using a similar idea as (12)

without the regularization term. We continue the iteration until convergence.

The above coordinate descent method can be summarized as the following pseudo-code.

Step 1 Start with β j = (0, . . . ,0)T and b j = 0, for all j = 1, . . . ,k. We keep βk = −β1 −β2 −·· ·−
βk−1 and bk =−b1 −b2 −·· ·−bk−1.

Step 2 At the beginning of the mth loop, suppose we have (β1, . . . ,βk) and (b1, . . . ,bk) as the inter-

mediate results.

2.1 Update, in orders, the elements of β1.

2.2 After the entire vector β1 has been updated, update the intercept b1.

2.3 Update the vectors β2, . . . ,βk−1 and the intercepts b2, . . . ,bk−1, in the same manner as

above.

Step 3 Repeat Step 2 until convergence.

1363



ZHANG AND LIU

5. Simulated Examples

In this section, we use six simulated examples to demonstrate the numerical performance of the

MLUM family. Our unified algorithm, discussed in Section 4, greatly facilitates a systematic explo-

ration and comparison of different types of classifiers. The MLUM also provides class conditional

probability estimation as a by-product. The simulated examples we consider here are different sce-

narios in which the behavior of different classifiers varies from one to another. Since we know the

underlying data generation schemes for simulated examples, the results can shed some light on the

behavior of MLUM and offer some insights on the choice of methods in different situations.

We divide this section into four subsections. Section 5.1 contains two examples in which the

hard classifier works the best. Section 5.2 consists of two examples that favor the soft classifier.

Section 5.3 includes two examples where the MLUM with c = 1, corresponding to a new multicat-

egory DWD, can outperform both hard and soft classifiers, which was not observed in the binary

LUM case in Liu et al. (2011). Note that this multicategory DWD is different from the version pro-

posed in Huang et al. (2013). Section 5.4 provides some summary on the effect of hard versus soft

classifiers and gives some insight on the choice of classification methods. For each simulation, we

apply the linear learning with the L2 penalty, and the corresponding tuning parameter λ is selected

by minimizing the classification error over a separate tuning set using a grid search.

In practice, a systematic tuning procedure for selection of the optimal (a,c,γ) is needed. The

three-dimensional tuning can be very time consuming, and we suggest a fast and effective tuning

procedure for the MLUM family. Similar to the binary case, the choice of a in the MLUM loss has

little impact on the performance of the classifiers, so we fix a at 1. Interestingly, we find that the

behavior of MLUM with c= 1 can outperform the hard (c→∞) and soft (c= 0) classifiers in certain

cases. Based on our numerical experience, we suggest to choose γ from {0,0.25,0.5,0.75,1}.

In particular, we propose to tune the MLUM with c ∈ {0,1,1000} and γ ∈ {0,0.25,0.5,0.75,1},

holding a fixed at 1. We call this procedure the “tuned MLUM”.

For each example, we evaluate both classification performance and probability estimation. We

use the test error to measure classification accuracy, on a test set with size 106. To explore the

effect of different c independently, we let c vary in {0,1,10,100,1000}, and let the tuning procedure

automatically choose the best γ from {0,0.25,0.5,0.75,1}. We call this procedure “tuned γ, fixed c”.

Similarly, with γ varying in {0,0.1,0.2, . . . ,0.9,1}, we select the best c from {0,1,1000}, and call

the resulting classifier “tuned c, fixed γ”, to observe the effect of γ. For comparison, we also include

the results of Losses 1-4 mentioned in Section 2.2, RMSVM, Multicategory Penalized Logistic

Regression (MPLR), along with the tuned MLUM, in Table 7. Here for the MPLR, we replace the

loss function ℓ by the logistic loss V ( f ,y) = log(1+ e−y f ), while keeping the convex combination

so that the classifier is tuned with different γ values. We would like to point out that this MPLR

is new and we refer it as the “tuned MPLR”, analogous to the tuned MLUM. Note that in most

examples, the tuned MLUM performs better than the other methods, and is recommended.

We conduct 1000 replications for each simulation, and report the average test errors. For prob-

ability estimation, we use the criterion of the mean absolute error (MAE), EX|p(X)− p̂(X)|. The

MLUMs with c ∈ {0,1,1000} and γ ∈ {0,0.25,0.5,0.75,1} are fit to explore the pattern of proba-

bility estimation accuracy. Through 1000 replicates, MAEs with their standard errors are reported.

As the number of covariates for Examples 1, 2, 4 and 5 is 2, we plot the corresponding marginal

distributions of x for typical training samples in Figure 5.
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Figure 5: Plots of typical samples for Examples 1(a), 2(b), 4(c) and 5(d) respectively.

5.1 Hard Classification Better

In this section, we generate the data such that the underlying probability functions are step functions.

In this case, estimation of the conditional probability function is challenging, and we expect hard

classifiers to perform better than the soft ones, because the former bypasses probability estimation.

Example 1: We generate two dimensional data uniformly on [−1,1]2, with four classes. Conditional

on X1 and X2, the class output is generated as follows. Let Y = 1 if X1 > 0.2 and X2 > 0.2, Y = 2 if

X1 <−0.2 and X2 > 0.2, Y = 3 if X1 <−0.2 and X2 <−0.2 and Y = 4 if X1 > 0.2 and X2 <−0.2.

When X1 > 0.2 and X2 ∈ [−0.2,0.2], P(Y = 1) = P(Y = 4) = 1/2. Similarly, when X1 <−0.2 and

X2 ∈ [−0.2,0.2], P(Y = 2) = P(Y = 3) = 1/2, and when X2 > 0.2 and X1 ∈ [−0.2,0.2], P(Y = 1) =
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P(Y = 2) = 1/2, and when X2 <−0.2 and X1 ∈ [−0.2,0.2], P(Y = 2) = P(Y = 4) = 1/2. When the

data points fall in [−0.2,0.2]2, the probabilities of being in four classes are equal. In this example

we use 80 data points for training and another 80 for tuning.

This is a multicategory generalization of Example 2 in Liu et al. (2011). The underlying con-

ditional class probability function of this example is a step function. Thus class probabilities are

difficult to estimate in this case, and the classification accuracy of soft classifiers may be sacrificed

by probability estimation.

The test errors of this example are reported in Figure 6. As we expect, hard classifiers outper-

form soft ones. With tuned C, MLUM with γ > 0.5 works better than those with γ ≤ 0.5. We would

like to point out that, with finite c, the classification performance of MLUM differs from RMSVM,

because the MLUM with finite c is always Fisher consistent, while the RMSVM does not guarantee

consistency for γ > 0.5. Also, the tuned MLUM is more flexible and achieves the best classifica-

tion accuracy. The MAEs are reported in Table 1, and the soft classifier gives the best probability

estimation.
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Figure 6: Classification error rates in Example 1. The left panel shows that the hard classifier

performs better than the other ones in this example. The right panel shows that the test

error is minimized with γ around 0.7.

Example 2: We generate a three-class problem in this example, and X is two dimensional. The first

class is uniformly distributed in the square x1 ∈ [0,1],x2 ∈ [0,3], the second class is uniform from

x1 ∈ [1,2],x2 ∈ [0,3], and the third class is uniform from x1 ∈ [2,3],x2 ∈ [0,3]. There are 60 training

data points and 60 tuning ones, respectively.
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MAE γ = 0 γ = 0.25 γ = 0.5 γ = 0.75 γ = 1

c = 0 0.1226 0.1208 0.1165 0.1050 0.0491

(0.005844) (0.001845) (0.002189) (0.003622) (0.009019)

c = 1 0.1422 0.1368 0.1328 0.1215 0.0935

(0.005240) (0.003535) (0.005132) (0.003987) (0.004582)

c = 1000 0.1424 0.1387 0.1372 0.1321 0.1267

(0.002661) (0.005278) (0.001347) (0.004159) (0.008138)

Table 1: The MAEs for different c and γ in Example 1.

We report the classification errors in Figure 7, and the MAEs in Table 2. Based on the results,

both test errors and MAEs suggest that the hard classifier performs significantly better than the

others. Interestingly, the soft classifier gives worse probability estimation than hard classifiers in

this example. Here the parameter γ = 0.5 works better than other values, which is consistent with

the findings in Liu and Yuan (2011).
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(b) The test error of Example 2 with γ in

{0,0.1, . . . ,0.9,1} and c tuned.

Figure 7: Classification error rates in Example 2. The hard classifier works the best, as is suggested

by the left panel. The right panel shows that γ = 0.5 is optimal.

5.2 Soft Classification Better

In this section we generate the data so that the conditional probability function is smooth and rela-

tively easy to estimate. In such cases the accurate probability estimation may help the soft classifier

to build more accurate classification boundaries.
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MAE γ = 0 γ = 0.25 γ = 0.5 γ = 0.75 γ = 1

c = 0 0.2113 0.1969 0.1933 0.1887 0.1892

(0.006877) (0.006228) (0.004803) (0.001011) (0.009567)

c = 1 0.1790 0.1734 0.1662 0.1693 0.1674

(0.001738) (0.005951) (0.003742) (0.006418) (0.003838)

c = 1000 0.1551 0.1523 0.1469 0.1430 0.1422

(0.002738) (0.007453) (0.007681) (0.001394) (0.008392)

Table 2: The MAEs for different c and γ in Example 2.

Example 3: This example involves a three-dimensional feature space with eight classes. In partic-

ular,

P(Y = j) = 1/8,P(X|Y = j)∼ N(µ j,0.5
2I2); j = 1, . . . ,8,

where the means µ j = (1,1,1)T , (1,1,−1)T , (1,−1,1)T , (1,−1,−1)T , (−1,1,1)T , (−1,1,−1)T ,

(−1,−1,1)T , (−1,−1,−1)T , for j = 1, . . . ,8, respectively. Because the number of classes is large,

we generate 160 observations for training, and another 160 for tuning.

The classification performance is reported in Figure 8, and the MAEs are reported in Table 3.

This is a case in which the soft classifier works the best both in terms of classification accuracy as

well as probability estimation.
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(a) The test error of Example 3 with c in

{0,1,10,100,1000} and γ tuned.
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(b) The test error of Example 3 with γ in

{0,0.1, . . . ,0.9,1} and c tuned.

Figure 8: Classification error rates in Example 3. The left panel shows that this is an example

in which soft classifier works the best. The right panel illustrates that the test error is

minimized with γ = 0.9.
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MAE γ = 0 γ = 0.25 γ = 0.5 γ = 0.75 γ = 1

c = 0 0.2362 0.2183 0.1956 0.1617 0.0887

(0.005048) (0.008325) (0.007328) (0.004206) (0.000884)

c = 1 0.2629 0.2438 0.2230 0.1785 0.0867

(0.003554) (0.003873) (0.006405) (0.001282) (0.000671)

c = 1000 0.2867 0.2540 0.2432 0.1990 0.1073

(0.003513) (0.001959) (0.007493) (0.002192) (0.000560)

Table 3: The MAEs for different c and γ in Example 3.

Example 4: In this example we have 2 covariates, and the number of classes is 20. Each marginal

distribution of X|Y = j; j = 1, . . . ,20 follows a N(µ j,σ
2I2) distribution. Here we choose µ j such

that µ j; j = 1, . . . ,20 are evenly spaced on the unit circle. We choose σ such that the Bayes error is

0.1, and we use 400 training data points and another 400 for tuning.

The test errors are reported in Figure 9, and the MAEs in Table 4. In this example, the soft

classifier significantly dominates the others in terms of prediction accuracy. The tuned MLUM

method always chooses c = 0 throughout the 1000 simulations. The MLUM family yields the best

accuracy with γ approximately 0.7. The MAEs for different c and γ do not differ much, possibly

due to the large number of classes.
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(b) The test error of Example 4 with γ in

{0,0.1, . . . ,0.9,1} and c tuned.

Figure 9: Classification error rates in Example 4. The left panel shows the soft classifier works rea-

sonably well in this example. When other choices of c fail, tuned MLUM automatically

selects c = 0 and thus keeps a good performance. In the right panel, when γ = 0.7, the

classifier has a minimum error rate.
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MAE γ = 0 γ = 0.25 γ = 0.5 γ = 0.75 γ = 1

c = 0 0.0801 0.0799 0.0812 0.0813 0.0806

(0.001627) (0.009215) (0.001278) (0.006627) (0.007840)

c = 1 0.0832 0.0836 0.0829 0.0834 0.0822

(0.007646) (0.006726) (0.001157) (0.008513) (0.006180)

c = 1000 0.0829 0.0831 0.0821 0.0819 0.0816

(0.008364) (0.001699) (0.002103) (0.003235) (0.002697)

Table 4: The MAEs for different c and γ in Example 4.

5.3 MLUM with c = 1 Better

Liu et al. (2011) showed that among many examples, the classifier that works the best in the LUM

family appears to be either soft or hard classifiers. In the MLUM family, however, we observe that

the MLUM with c = 1 (a new multicategory DWD) can sometimes yield the best performance in

terms of classification accuracy. In particular, we explore the effect of outliers in Examples 5 and 6.

In these two examples, we add a small percentage of noisy data into the originally clean data sets,

and observe that soft classifiers can be very sensitive to outliers in terms of classification accuracy,

while MLUMs with c ≥ 1 appear to be quite robust.

Example 5: In this example, there are 95% data points from a six-class distribution with

P(Y = j) = 1/6,P(X|Y = j)∼ N(µ j,0.5
2I2); j = 1, . . . ,6,

where µ j = (1,
√

3)T , (2,0)T , (1,−
√

3)T , (−1,−
√

3)T , (−2,0)T , (−1,
√

3)T , for j = 1, . . . ,6,

respectively. The rest 5% instances are outliers, which are uniformly distributed on the circle

x2
1 + x2

2 = 36 with their labels randomly chosen. We generate independent training and tuning sets,

both of size 100.

From the test errors in Figure 10, we see that MLUM with c = 0 is less stable than the other

c values, and the best classifier is c = 1. From the MAEs in Table 5, we see that the probability

estimation with c = 1 is more accurate than the others.

MAE γ = 0 γ = 0.25 γ = 0.5 γ = 0.75 γ = 1

c = 0 0.2328 0.2321 0.2300 0.2292 0.2303

(0.003625) (0.006968) (0.009631) (0.005956) (0.014856)

c = 1 0.2312 0.2307 0.2266 0.2241 0.2257

(0.010180) (0.004729) (0.007306) (0.004518) (0.001417)

c = 1000 0.2432 0.2416 0.2397 0.2397 0.2399

(0.005403) (0.004657) (0.011136) (0.014401) (0.006237)

Table 5: The MAEs for different c and γ in Example 5.

Example 6: In this example, we add noisy observations to the data in Example 4. As the classifica-

tion boundary is very sensitive to the outliers, we only have 1% noisy instances, whose distribution

is the same as that of Example 5. Compared to Figure 9, Figure 11 shows that c = 0 is more sen-

sitive to noise than the other c values, while c = 1 is the most robust one. Table 6 shows that the

probability estimation with c = 1 is the best, as in Example 5.
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(b) The test error of Example 5 with γ in

{0,0.1, . . . ,0.9,1} and c tuned.

Figure 10: Classification error rates in Example 5. As in Example 5, the prediction accuracy with

c = 1 is the highest. The MLUM with γ = 0.8 works better than the others.

MAE γ = 0 γ = 0.25 γ = 0.5 γ = 0.75 γ = 1

c = 0 0.1294 0.1267 0.1245 0.1258 0.1267

(0.007833) (0.004012) (0.009447) (0.005301) (0.006370)

c = 1 0.1198 0.1135 0.1131 0.1142 0.1155

(0.004456) (0.010214) (0.010776) (0.007559) (0.003054)

c = 1000 0.1326 0.1299 0.1276 0.1268 0.1270

(0.003148) (0.002562) (0.004809) (0.004215) (0.003149)

Table 6: The MAEs for different c and γ in Example 6.

5.4 Summary of Simulation Results

Our simulated examples provide some insights on hard versus soft classification methods, and sug-

gest that no single classifier works universally the best in all cases. Varying from soft to hard, the

patterns of classification performance can differ significantly, for different settings. Our simulation

studies showed different cases in which hard (c = ∞), soft (c = 0) and in-between (c = 1) classifiers

work the best, respectively.

When the underlying conditional probability function is a step function, probability estimation

can be a difficult problem for soft classifiers, and the prediction accuracy may be compromised.

In Examples 1 and 2, we see that the hard classification method performs better than the others,

because it directly focuses on the boundary estimation while bypassing the probability estimation.

This finding is consistent with the binary case in Liu et al. (2011).
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Figure 11: Classification error rates in Example 6. In contrast to Example 4, with noisy points in

the data set, c = 0 performs worse than the other c values. The right panel suggests that

the MLUM works well with γ around 0.6.

In contrast to Examples 1 and 2, for Examples 3 and 4, the underlying conditional probability

functions are relatively smooth. Soft classifiers with c = 0 can build more accurate classification

boundaries through estimation of the probability functions. This is also observed in the binary case

in Liu et al. (2011).

One new observation is that the MLUM with c = 1 may work the best in some situations. This

was not reported in the binary LUM cases (Liu et al., 2011). Interestingly, the soft classifier is

quite vulnerable to potential outliers in the data. In Example 5, we add 5% outliers to the clean

samples, and the soft classifier performs the worst among the others. In Example 4 we see that

soft classifier outperforms the other methods by around 10% in terms of classification accuracy.

However in Example 6 when we add only 1% outliers to the data, the classification accuracy of

the soft classifier is reduced by over 40% while those of the others are just around 15 − 20%.

This indicates that trying to estimate class conditional probabilities when data contain outliers may

severely reduce the accuracy of the classification boundary estimation.

Another observation is that in the simulated data sets, the optimal γ is always in or close to the

recommended set {0,0.25,0.5,0.75,1}. Therefore the tuned MLUM procedure is sufficient enough

to avoid tuning on the entire interval γ ∈ [0,1]. When it is uncertain about which classifier to use, we

propose to apply our tuned MLUM method. As shown in the simulation studies, the tuned MLUM

automatically selects the near optimal classifier from a rich family, and has advantages in terms of

classification accuracy. Lastly, Table 7 reports comparisons of five MSVM methods, as discussed in

Section 2.2, and MPLR, with our proposed tuned MLUM. The results show that the tuned MLUM

delivers the most accurate classifier in most cases.

1372



MULTICATEGORY LARGE-MARGIN UNIFIED MACHINES

MSVM 1 MSVM 2 MSVM 3 MSVM 4 RMSVM MPLR MLUM

Ex 1 0.2062 0.2077 0.2019 0.2123 0.2057 0.2113 0.2021

Ex 2 0.1223 0.1475 0.1361 0.1246 0.1190 0.2377 0.1147

Ex 3 0.0716 0.0716 0.0719 0.0717 0.0715 0.0706 0.0701

Ex 4 0.2411 0.2439 0.2338 0.2410 0.2411 0.1419 0.1335

Ex 5 0.3519 0.3568 0.3638 0.3697 0.3329 0.3719 0.3145

Ex 6 0.4528 0.4237 0.4497 0.4611 0.4323 0.5321 0.4134

Table 7: The classification error rates for all simulated examples, for MSVMs with Losses 1-4

defined in Section 2.2, the RMSVM, the tuned MPLR, and the tuned MLUM.

6. Real Data Examples

This section empirically tests the performance of the MLUM family, on two types of data sets.

The first type of data examples includes several benchmark data sets available on the UCI machine

learning website. The second one is a recent microarray gene expression data set in cancer research.

For all the real data sets, we apply the MLUM family in the same way as in the simulation part, and

we repeat the procedures 1000 times to evaluate the performance.

6.1 Benchmark Data

We consider seven benchmark data sets in this section: Breast Tissue (Breast), Dermatology, Image

Segmentation (Image), Iris, Vehicle Silhouettes (Vehicle), Vertebral Column (Vertebral) and Wine.

In each case, we perform a four-fold cross validation on roughly 4/5 of the data set, and test the

performance on the remaining 1/5. For Iris and Image data, we apply linear learning. For the

Vehicle data set, we apply the second order polynomial kernel learning. The Gaussian kernel is

used for the Breast, Dermatology, Wine and Vertebral data sets, with the σ parameter value being

the median of all pairwise distances between one category and the other. For all data sets, we

standardize the attributes before further analysis.

For illustration, we summarize the data sets in Table 8. As we observed in the simulation

studies that potential outliers may decrease the accuracy of soft classifiers, we perform Principal

Component Analysis (PCA) on each data set and examine if there are any obvious potential outliers

on the PCA projected plots. From the results of the real examples, we observe that soft classifiers

tend to have relatively worse performance on data sets with potential outliers. For demonstration,

we report the PCA plots for the Iris and Vehicle data in Figure 12. The Iris data set doesn’t appear

to have any obvious outliers and the soft classifier works very well there. In the Vehicle data, there

appears to have several potential outliers, and the soft classifier turns out to be the worst in terms of

classification accuracy.

Breast: The data set contains 10 variables and 22, 21, 14, 15, 16 and 18 instances for the following

6 breast diseases respectively: carcinoma, fibro-adenoma, mastopathy, glandular, connective, and

adipose. The classification errors in Figure 13 suggest that hard classification works better, and

γ = 1 would be the best choice when c is tuned. The tuned MLUM performs slightly worse than the

RMSVM, but the difference is not large.
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Name n d k Kernel Outlier Best c

Breast 106 10 6 Gaussian Yes 1000

Dermatology 366 34 6 Gaussian No 1000

Image 210 19 7 Linear Yes 1

Iris 150 4 3 Linear No 100

Vehicle 946 18 4 2nd poly. Yes 1000

Vertebral 310 6 3 Gaussian Yes 1

Wine 178 13 3 Gaussian No 0

Table 8: Summary of the benchmark data sets in Section 6.1.
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(b) PCA plot for the Vehicle data, PC1 vs PC3.

Figure 12: PCA projection plots for Iris (left panel) and Vehicle (right panel) data. The plots indi-

cate the Iris data appear to be quite clean, while there may exist some outliers for the

Vehicle data.

Dermatology: There are 6 classes in the Dermatology data set, namely, psoriasis, seboreic dermati-

tis, lichen planus, pityriasis rosea, cronic dermatitis and pityriasis rubra pilaris, with 112, 61, 72,

49, 52 and 20 instances respectively. There are 34 covariates measured for each observation. The

classification results are reported in Figure 14. With c → ∞, the classification accuracy is the best.

In addition, γ = 0.2 performs better than other values.

Image: In the Image data set, there are 7 classes available with 30 observations in each group. The

class names are brickface, cement, foliage, grass, path, sky and window. There are 19 covariates in

the data set. We report the test errors in Figure 15. In this case, c = 1 performs the best, and γ = 0.9
is the optimal choice when c is tuned.

Iris: There are three classes in the Iris data set, namely, Iris-setosa, Iris-versicolor and Iris-virginica.

Within each class the number of observations is 50. There are four covariates. The test errors are

reported in Figure 16. In this example, the DWD (c = 1) performs the worst among all classifiers,
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(b) The test error of Breast data with γ in

{0,0.1, . . . ,0.9,1} and c tuned.

Figure 13: Classification error rates in the Breast data. The hard classification method dominates

the others in terms of classification accuracy, as shown in the left panel. The right panel

suggests that the classification error is the best when c is tuned with γ = 1.

in contrast to the simulated Example 1 where the DWD dominates. Interestingly, hard and soft

classifiers perform similarly in terms of classification accuracy. For the effect of γ, the MLUM

family with γ = 1 appears to work the best.

Vehicle: The Vehicle data set contains 4 classes of observations, namely, bus, opel, saab and

van. There are 218,212,217,199 instances in the four groups, respectively. There are 18 variables

associated with the data. The test errors in Figure 17 show that the hard classifier performs better

than the other methods, and when c is automatically chosen, γ = 0.8 dominates other values.

Vertebral: The three classes involved in the Vertebral data set are normal, disk hernia and spondilo-

lysthesis. The numbers of instances are 100, 60 and 150, respectively. Six covariates are present in

the data set. Figure 18 illustrates the MLUM performs quite consistently for c ≥ 1, with the best

classifier being the MLUM with c = 1. In terms of the behavior of γ, the optimal choice is γ = 0.9.

Wine: The wine data set measures 3 classes (59, 71 and 48 each) of wine with 13 attributes. In

Figure 19, we see that soft classifier has the most accurate prediction result, and γ = 0 is the best

choice when c is tuned.

6.2 Glioblastoma Multiforme Cancer Data

In this section we apply the MLUM family to a cancer data set and explore its performance. The

data set was previoulsy used by Verhaak et al. (2010). They investigated Glioblastoma Multiforme

(GBM) cancer on the genetic data of patients from The Cancer Genome Atlas Research Network.

There are 356 observations in the data set, which consists four classes, namely, Proneural, Neural,

Classical and Mesenchymal. The numbers of patients in each class are 97, 56, 92 and 111, respec-
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Figure 14: Classification error rates in the Dermatology data. The hard classifier works the best, as

shown in the left panel. The right panel shows that when c is tuned, γ = 0.2 works better

than the others.

tively. There are 23285 genes in the data set. In each replication, the numbers of observations in

the train, tune and test data are chosen to be roughly the same. To reduce computational cost, for

each replication we pick 500 genes which have the largest median absolute deviation values in the

training data set.

To visualize the data, we plot the first two projected principal component directions of the data

in Figure 20. From Figure 20, we can see the classes Proneural and Mesenchymal are relatively

far from each other, and Classical and Neural are in between. Biologically, Neural and Proneural

are more similar to each other than the other classes. We report the MLUM results in Figure 21.

From the plots, we can see that the MLUM with γ = 0.75 performs uniformly the best in terms of

classification accuracy, and hard classifiers dominate the rest.

Lastly, we report the comparison of the tuned MLUM versus other methods in Table 9. Overall,

the tuned MLUM performs the best, as in the simulated examples.

7. Discussion

Multicategory classification is commonly seen in practice. In this paper, we generalize the binary

LUM family to the simultaneous multicategory classifiers, namely, the MLUM family. The MLUM

is very general and it includes many popular multicategory classification methods as special cases.

In particular, the MLUM family includes both soft and hard classifiers, and provides a platform

to explore the transition behavior from soft to hard classification problems. In theoretical studies,

we show that the MLUM is always Fisher consistent for any finite c, and can provide class con-
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Figure 15: Classification error rates in the Image data. Left panel shows that c = 1 performs the

best on the Image data. The right panel shows γ = 0.9 dominates other values.

MSVM 1 MSVM 2 MSVM 3 MSVM 4 RMSVM MPLR MLUM

Breast 0.4497 0.4531 0.4391 0.4623 0.4331 0.4951 0.4377

Dermatology 0.0907 0.1496 0.1053 0.1398 0.1048 0.1688 0.0713

Image 0.1985 0.2083 0.1999 0.2255 0.2100 0.1978 0.1892

Iris 0.1557 0.1647 0.1487 0.1480 0.1605 0.1498 0.1443

Vehicle 0.2519 0.2535 0.2489 0.2598 0.2419 0.2680 0.2331

Vertebral 0.1741 0.1931 0.1860 0.1951 0.1856 0.3359 0.1766

Wine 0.0437 0.0743 0.0507 0.0670 0.0891 0.0348 0.0361

GBM 0.2291 0.2478 0.2351 0.2478 0.2394 0.2340 0.2287

Table 9: The classification error rates for all real data examples, for MSVMs with Losses 1-4 de-

fined in Section 2.2, the RMSVM, the tuned MPLR and the tuned MLUM.

ditional probability estimation. We explore some asymptotic behavior of the MLUM family, and

demonstrate that the convergence rate of the excess V−risk is closely related to the convergence

rate of the classification function f̂, as well as the size of the function class space. The numerical

examples show that hard and soft classifiers behave quite differently in various settings, and they

help to shed some light on the choice between the two. In particular, the numerical results suggest

that the underlying probability function and potential outliers may have a significant effect on the

performance of soft, hard and in-between classifiers. Furthermore, for practical applications, we

propose an automatic tuning procedure for the MLUM. We numerically demonstrate that the tuned

MLUM outperforms several other multicategory techniques and should be a competitive addition to

the existing classification toolbox.
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Figure 16: Classification error rates in the Iris data. The left panel shows the test error of soft and

hard classifiers are roughly comparable, while c = 1 (DWD) is the worst. The right

panel indicates γ = 1 is the optimal choice, if c is tuned.
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Appendix A. Proof of Proposition 1

For brevity we only prove the kernel learning case, and the proof for the linear learning is analogous.

By representer theorem, we have that g j,H can be written as g j,H (x) = ∑n
i=1 αi, jK(xi,x), where

K(·, ·) is the associated reproducing kernel, and xi; i = 1, . . . ,n are the training data points. With the

kernel learning, the penalty becomes 1
2 ∑k

j=1 αT
j Kα j, where α j = (α1, j, . . . ,αn, j)

T ; j = 1, . . . ,k, and

with a little abuse of notation, K is the gram matrix with the (i, j)th element Ki, j = K(xi,x j). One

can verify that the sum-to-zero constraint here is equivalent to that ∑k
j=1 αi, j = 0, for all i.

Because the loss V depends on f only through fi − f j, it suffices to prove that for a given solu-

tion α̂ j = (α̂1, j, . . . , α̂n, j); j = 1, . . . ,k such that ∑k
j=1 α̂i, j = 0 for all i, ∑k

j=1 α̂T
j Kα̂ j < ∑k

j=1(α̂ j −
z)T K(α̂ j − z). Here z is any fixed vector of length n that is not 0. To this end, we see that

∑k
j=1 α̂T

j Kα̂ j −∑k
j=1(α̂ j − z)T K(α̂ j − z) can be simplified as 2(α̂T

1 + · · ·+ α̂T
k )Kz− kzT Kz. Note

that α̂T
1 + · · ·+ α̂T

k = 0, and K is positive definite, so that 2(α̂T
1 + · · ·+ α̂T

k )Kz−kzT Kz < 0, and this

completes the proof.

1378



MULTICATEGORY LARGE-MARGIN UNIFIED MACHINES

0
.2

2
5

0
.2

3
5

0
.2

4
5

c

E
rr

o
r

0 1 10 100 1000

tuned γ, fixed c

tuned MLUM

(a) The test error of Vehicle data with c in

{0,1,10,100,1000} and γ tuned.

0
.2

4
0

.2
6

0
.2

8
0

.3
0

γ

E
rr

o
r

0 0.2 0.4 0.6 0.8 1

tuned c, fixed γ

tuned MLUM

(b) The test error of Vehicle data with γ in

{0,0.1, . . . ,0.9,1} and c tuned.

Figure 17: Classification error rates in the Vehicle data. The hard classifier works better than the

other ones, as shown in the left panel. The right panel suggests the best γ is 0.8. Note

that the test error significantly increases when γ moves from 0.9 to 1.

Appendix B. Proof of Lemma 1

We prove by contradiction. Without loss of generality, assume that P1 > P2, and f ∗1 < f ∗2 . Now let

f = ( f ∗2 , f ∗1 , f ∗3 , . . . , f ∗k ), and we want to show that S(f,x) < S(f∗,x). One can verify that S(f,x)−
S(f∗,x) = (P2−P1)

(

γδ++(1−γ)δ−
)

, where δ+ = ℓ( f ∗1 )−ℓ( f ∗2 ) and δ− = ℓ(− f ∗2 )−ℓ(− f ∗1 ). Since

the ℓ function is monotonely decreasing, and for u < 0 the monotonicity is strict, both δ+ and δ−

are non-negative, with at least one of them being non-zero. Thus S(f,x)< S(f∗,x), and f∗ is not the

minimizer of S.

Appendix C. Proof of Theorem 2

Assume, without loss of generality, that P1 > P2 > · · · > Pk, and we need to show that f ∗1 > f ∗2 ≥
·· · ≥ f ∗k . We prove by contradiction. Because of Lemma 1, f ∗1 ≥ f ∗2 . Suppose f ∗1 = f ∗2 , and let

f = ( f ∗1 + ε, f ∗2 − ε, f ∗3 , . . . , f ∗k ), where ε > 0 is sufficiently small. We show that S(f,x) < S(f∗,x).
For simplicity in notation, let f = f ∗1 = f ∗2 . After some calculation we have

S(f,x)−S(f∗,x) = (1− γ)[δ1 −δ2]+P1

[

γ(−δ4)+(1− γ)(−δ1)
]

+P2

[

γ(δ3)+(1− γ)(δ2)
]

(13)
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Figure 18: Classification error rates in the Vertebral data. In the left panel, we can see the MLUM

classifiers work roughly the same for c ≥ 1, with c = 1 being the optimal. The best γ is

0.9, as is suggested by the right panel.

where















δ1 = ℓ(− f − ε)− ℓ(− f ),
δ2 = ℓ(− f )− ℓ(− f + ε),
δ3 = ℓ( f − ε)− ℓ( f ),
δ4 = ℓ( f )− ℓ( f + ε).

Since ℓ(·) is differentiable, we may rewrite the above equations as:















δ1 =−εℓ′(− f )+o(ε),
δ2 =−εℓ′(− f )+o(ε),
δ3 =−εℓ′( f )+o(ε),
δ4 =−εℓ′( f )+o(ε).

and so (13) becomes ε(P1 −P2)[γℓ
′( f )+ (1− γ)ℓ′(− f )]+o(ε). Because ℓ(·) is convex and strictly

monotonely decreasing, ℓ′(·)< 0, thus S(f,x)−S(f∗,x)< 0.

Remark 3. The reason why the hinge loss is not Fisher consistent when γ > 1/2 becomes more

clear from the proof of Theorem 2. For the hinge loss, we should replace the derivatives with the

corresponding left/right derivatives in the previous argument. When f = 1, δ4 = 0, |P1(1− γ)δ1|
does not necessarily dominate P2

[

γ(δ3)+ (1− γ)(δ2)
]

with γ > 1/2. By allowing differentiability

in the loss function, we overcome the disadvantage of non-Fisher consistency.
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Figure 19: Classification error rates in the Wine data. The left panel suggests that soft classification

method performs better in terms of classification accuracy than the others. With γ = 0,

the MLUM method works the best than the other γ values, which is shown in the right

panel.

Appendix D. Proof of Theorem 3

Due to the constraint ∑k
j=1 f j = 0, the degree of freedom for S in (8) is only k−1. Rewrite S as

S = (1− γ)
k

∑
j=1

ℓ(− f j)+
k

∑
j=1

Pj

[

γℓ( f j)− (1− γ)ℓ(− f j)
]

.

Let the first k−1 components of f be the free parameters. Take partial derivative of S with respect

to f1, . . . , fk−1, and we have

0 =
∂S

∂ f j

|f=f∗ =−F∗( j)+F∗(k)+PjE
∗( j)−PkE∗(k); j = 1, . . . ,k−1,

where E∗ and F∗ are defined in an obvious manner. Let Pk−1 = (P1, . . . ,Pk−1)
T , we can rewrite the

above equations as MPk−1−b= 0k−1, or MPk−1 = b where b=
(

[(1−γ)ℓ′(− f ∗1 )+γℓ′( f ∗k )], . . . , [(1−
γ)ℓ′(− f ∗k−1)+ γℓ′( f ∗k )]

)T
and M = diag

(

E∗(1), . . . ,E∗(k− 1)
)

+E∗(k)Jk−1. Here Jk−1 is the k− 1

by k−1 matrix with every element being 1. Since E(·)< 0, 1+E∗(k)∑
k−1
j=1 E∗( j)> 0, and we apply

the Sherman-Morrison formula (which guarantees the invertibility of M), to obtain Pk−1 = M−1b.

Let Pk = 1−∑k−1
j=1 Pj. The equations (9) follow after some simplification and substituting f̂ for f∗.

Note that from the form of (9), we conclude the choice of the free parameters in f is not essential.
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Figure 20: PCA plot of the GBM data, PC 1 vs PC 2.

Appendix E. Proof of Theorem 4

By definition,

∆Q(P, f) = Q(P, f)−Q∗(P).

We can rewrite the RHS of the display as

(1− γ)
k

∑
j=1

ℓ(− f j)+
k

∑
j=1

Pj[γℓ( f j)− (1− γ)ℓ(− f j)]

−(1− γ)
k

∑
j=1

ℓ(− f ∗j )−
k

∑
j=1

Pj[γℓ( f ∗j )− (1− γ)ℓ(− f ∗j )].

With adding and subtracting, rearrange to obtain that the above display is equivalent to

(1− γ)
k

∑
j=1

[ℓ(− f j)− ℓ(− f ∗j )− ℓ′(− f ∗j )(− f j + f ∗j )]+(1− γ)
k

∑
j=1

ℓ′(− f ∗j )(− f j + f ∗j )

+
k

∑
j=1

Pj[γ{ℓ( f j)− ℓ( f ∗j )− ℓ′( f ∗j )( f j − f ∗j )}− (1− γ){ℓ(− f j)− ℓ(− f ∗j )− ℓ′(− f ∗j )(− f j + f ∗j )}]

+
k

∑
j=1

Pj[γℓ
′( f ∗j )( f j − f ∗j )− (1− γ)ℓ(− f ∗j )(− f j + f ∗j )].
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Figure 21: For the GBM data, hard classifier works the best, as shown in the left panel. The right

panel illustrates that the optimal choice of γ is 0.8.

In combination with the Bregman divergence, observe that the above is essentially RHS of Theo-

rem 4 plus (1− γ)∑k
j=1 ℓ

′(− f ∗j )(− f j + f ∗j )+∑k
j=1 Pj[γℓ

′( f ∗j )( f j − f ∗j )− (1− γ)ℓ(− f ∗j )(− f j + f ∗j )],
so it suffices to show the latter, denoted by W , equals 0.

Using the same notation as in Theorem3, we have

W =
k

∑
j=1

[Pjγℓ
′( f ∗j )( f j − f ∗j )+(1−Pj)(1− γ)ℓ′(− f ∗j )(− f j + f ∗j )]

=
k

∑
j=1

[−F∗( j)+PjE
∗( j)]( f j − f ∗j ).

Because of the sum-to-zero constraint, the above display is equivalent to

W =
k−1

∑
j=1

[−F∗( j)+F∗(k)+PjE
∗( j)−PkE∗(k)]( f j − f ∗j ).

Note that −F∗( j)+F∗(k)+PjE
∗( j)−PkE∗(k) is just the jth element of ▽Q∗(P)|f=f∗ , choosing

the first k− 1 elements in f as free parameters and taking partial derivatives. Thus W = 0, and the

desired result follows.
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Appendix F. Proof of Theorem 5

Expand the Bregman divergence in Theorem 4 into the Taylor series form:

∆Q(P, f) =
k

∑
i=1

[

Piγ[
ℓ(2)( f ∗i )

2
( f̂i − f ∗i )

2 +o(( f̂i − f ∗i )
2)]

+(1−Pi)(1− γ)[
ℓ(2)(− f ∗i )

2
( f̂i − f ∗i )

2 +o(( f̂i − f ∗i )
2)]

]

.

Note that the second order derivative of ℓ is bounded for every a and finite c. Because τi ≪ µ, i =
1, . . . ,k, we can multiply both sides by n2q, and take expectation to obtain

n2q∆Q(f̂n) = O
(

∫
X,Y

| sup
1≤ j≤k

Tj|2dD(X,Y )
)

.

Because of Assumption B, the RHS is bounded, and the desired result follows.

Appendix G. Proof of Theorem 6

Note that ( f̂i − f ∗i )
2 − ( f H

i − f ∗i )
2 = ( f̂i − f H

i )( f̂i + f H
i −2 f ∗i ). ( f̂i − f H

i ) is nq consistent, and | f̂i +
f H
i −2 f ∗i | ≤ | f̂i − f H

i |+2(| f H
i |+ | f ∗i |)→ 2(| f H

i |+ | f ∗i |). The rest of the proof is analogous to that

of Theorem 5.
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