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Abstract

We propose a novel local isometry based dimensionality reduction method from the perspective of

vector fields, which is called parallel vector field embedding (PFE). We first give a discussion on

local isometry and global isometry to show the intrinsic connection between parallel vector fields

and isometry. The problem of finding an isometry turns out to be equivalent to finding orthonormal

parallel vector fields on the data manifold. Therefore, we first find orthonormal parallel vector fields

by solving a variational problem on the manifold. Then each embedding function can be obtained

by requiring its gradient field to be as close to the corresponding parallel vector field as possible.

Theoretical results show that our method can precisely recover the manifold if it is isometric to a

connected open subset of Euclidean space. Both synthetic and real data examples demonstrate the

effectiveness of our method even if there is heavy noise and high curvature.
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1. Introduction

In many data analysis tasks, one is often confronted with very high dimensional data. There is

a strong intuition that the data may have a lower dimensional intrinsic representation. Various re-

searchers have considered the case when the data is sampled from a submanifold embedded in much

higher dimensional Euclidean space. Consequently, estimating and extracting the low dimensional

manifold structure, or specifically the intrinsic topological and geometrical properties of the data

manifold, become a crucial problem. These problems are often referred to as manifold learning

(Belkin and Niyogi, 2007).

The most natural technique to exact low dimensional manifold structure with given finite sam-

ples is dimensionality reduction. The early work for dimensionality reduction includes principal

component analysis (PCA, Jolliffe, 1989), multidimensional scaling (MDS, Cox and Cox, 1994)

and linear discriminant analysis (LDA, Duda et al., 2000). PCA is probably the most popular di-

mensionality reduction methods. Given a data set, PCA finds the directions along which the data
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has maximum variance. However, these linear methods may fail to recover the intrinsic manifold

structure when the data manifold is not a low dimensional subspace or an affine manifold.

There are various works on nonlinear dimensionality reduction in the last decade. The typical

work includes isomap (Tenenbaum et al., 2000), locally linear embedding (LLE, Roweis and Saul,

2000), Laplacian eigenmaps (LE, Belkin and Niyogi, 2001), Hessian eigenmaps (HLLE, Donoho

and Grimes, 2003) and diffusion maps (Coifman and Lafon, 2006; Lafon and Lee, 2006; Nadler

et al., 2006). Isomap generalizes MDS to the nonlinear manifold case which tries to preserve pair-

wise geodesic distances on the data manifold. Diffusion maps tries to preserve another meaningful

distance, that is, diffusion distance on the manifold. Isomap is an instance of global isometry based

dimensionality reduction techniques, which tries to preserve the distance function or the metric of

the manifold globally. One limitation of Isomap is that it requires the manifold to be geodesically

convex. HLLE is based on local isometry criterion, which successfully overcomes this problem.

Laplacian operator and Hessian operator are two of the most important differential operators in

manifold learning. Intuitively, Laplacian measures the smoothness of the functions, while Hessian

measures how a function changes the metric of the manifold. However, the Laplacian based meth-

ods like LLE and LE mainly focus on the smoothness of the embedding function, which may not be

an isometry. The major difficulty in Hessian based methods is that they have to estimate the second

order derivative of embedding functions, and consequently they have strong requirement on data

samples.

One natural nonlinear extension of PCA is kernel principal component analysis (kernel PCA,

Schölkopf et al., 1998). Interestingly, Ham et al. (2004) showed that Isomap, LLE and LE are all

special cases of kernel PCA with specific kernels. Recently, Maximum Variance Unfolding (MVU,

Weinberger et al., 2004) is proposed to learn a kernel matrix that preserves pairwise distances on

the manifold. MVU can be thought of as an instance of local isometry with additional consideration

that the distances between two points that are not neighbors are maximized.

Tangent space based methods have also received considerable interest recently, such as local

tangent space alignment (LTSA, Zhang and Zha, 2004), manifold charting (Brand, 2003), Rieman-

nian Manifold Learning (RML, Lin and Zha, 2008) and locally smooth manifold learning (LSML,

Dollár et al., 2007). These methods try to find coordinates representation for curved manifolds.

LTSA tries to construct a global coordinate via local tangent space alignment. Manifold charting

has a similar strategy, which tries to expand the manifold by splicing local charts. RML uses normal

coordinate to unfold the manifold, which aims to preserve the metric of the manifold. LSML tries

to learn smooth tangent spaces of the manifold by proposing a smoothness regularization term of

tangent spaces. Vector diffusion maps (VDM, Singer and Wu, 2011) is a much recent work which

considers the tangent spaces structure of the manifold to define and preserve the vector diffusion

distance.

In this paper, we propose a novel dimensionality reduction method, called parallel vector field

embedding (PFE), from the perspective of vector fields. The theory of vector fields is a basic tool for

discovering the geometry and topology of the manifold. We first give a discussion on local isometry

and global isometry to show the intrinsic connection between parallel vector fields and isometry.

The problem of finding an isometry turns out to be equivalent to finding orthonormal parallel vector

fields on the data manifold. Therefore, we first find orthonormal parallel vector fields by minimizing

the covariant derivative of a vector field. We then find an embedding function whose gradient field

is as close to the parallel field as possible. In this way, the obtained embedding function would vary

linearly along the geodesics of the manifold. Naturally, the corresponding embedding consisted
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of embedding functions preserves the metric of the manifold. As pointed out by Goldberg et al.

(2008), almost all spectral methods including LLE, LE, LTSA and HLLE use global normalization

for embedding, which sacrifices isometry. PFE overcomes this problem by normalizing vector fields

locally. Our theoretical study shows that, if the manifold is isometric to a connected open subset of

Euclidean space, our method can faithfully recover the metric structure of the manifold.

The organization of the paper is as follows: In the next section, we provide a description of the

dimensionality reduction problem from the perspectives of isometry and vector fields. In Section 3,

we introduce our proposed Parallel Field Embedding algorithm. The extensive experimental results

on both synthetic and real data sets are presented in Section 4. Finally, we provide some concluding

remarks and suggestions for future work in Section 5.

2. Dimensionality Reduction from Geometric Perspective

Let (M ,g) be a d-dimensional Riemannian manifold embedded in a much higher dimensional Eu-

clidean space Rm, where g is a Riemannian metric on M . A Riemannian metric is a Euclidean inner

product gp on each of the tangent space TpM , where p is a point on the manifold M . In addition

we assume that gp varies smoothly (Petersen, 1998). This means that for any two smooth vector

fields X ,Y the inner product gp(Xp,Yp) should be a smooth function of p. The subscript p will be

suppressed when it is not needed. Thus we might write g(X ,Y ) or gp(X ,Y ) with the understanding

that this is to be evaluated at each p where X and Y are defined. Generally we use the induced

metric for M . That is, the inner product defined in the tangent space of M is the same as that in

the ambient space R
m, that is, g(u,v) = 〈u,v〉 where 〈·, ·〉 denote the canonical inner product in R

m.

In the problem of dimensionality reduction, one tries to find a smooth map: F : M → R
d , which

preserves the topological and geometrical properties of M .

However, for some kinds of manifolds, it is impossible to preserve all the geometrical and

topological properties. For example, consider a two-dimensional sphere, there is no such map that

maps the sphere to a plane without breaking the topology of the sphere. Thus, there should be some

assumptions of the data manifold. In this paper, we consider a relatively general assumption that

the manifold M is diffeomorphic to an open subset of the Euclidean space R
d . In other words, we

assume that there exists a topology preserving map from M to R
d .

Definition 1 (Diffeomorphism, Lee, 2003) A diffeomorphism between manifolds M and N is a

smooth map F : M → N that has a smooth inverse. We say M and N are diffeomorphic if there

exists a diffeomorphism between them.

For example, there is a diffeomorphism between a semi-sphere and a subset of R2. However, there

is no diffeomorphism between a sphere and any subset of R
2. In this paper, we only consider

manifolds that are diffeomorphic to an open connected subset of Euclidean space like semi-sphere,

swiss roll, swiss roll with hole, and so on.

2.1 Local Isometry and Global Isometry

With the assumption that the manifold is diffeomorphic to an open subset of Rd , the goal of dimen-

sionality reduction is to preserve the intrinsic geometry of the manifold as much as possible. Ideally,

one hopes to preserve the metric of the manifold, or intuitively the pairwise distance between data

points. This leads to the concept of isometry. Here we consider two kinds of isometry, that are,
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local isometry and global isometry.1 In the following we give the definitions and properties of local

isometry and global isometry.

Definition 2 (Local Isometry, Lee, 2003) Let (M ,g) and (N ,h) be two Riemannian manifolds,

where g and h are metrics on them. For a map between manifolds F : M → N , F is called local

isometry if h(dFp(v),dFp(v)) = g(v,v) for all p ∈ M ,v ∈ TpM . Here dF is the differential of F.

dF is also known as pushforward and denoted as F∗ in many texts. For a fixed point p ∈ M , dF is a

linear map between TpM and the corresponding tangent space TF(p)N . According to the definition,

dF preserves the norm of tangent vectors. Moreover, we have the following theorem:

Theorem 1 (Petersen, 1998) Let F : M → N be a local isometry, then

1. F maps geodesics to geodesics.

2. F is distance decreasing.

3. if F is also a bijection, then it is distance preserving.

Intuitively, local isometry preserves the metric of the manifold locally. If the local isometry F is

also a diffeomorphism, then it becomes global isometry.

Definition 3 (Global Isometry, Lee, 2003) A map F : M → N is called global isometry between

manifolds if it is a diffeomorphism and also a local isometry.

If F is a global isometry, then its inverse F−1 is also a global isometry. We have the following

proposition.

Proposition 1 A global isometry preserves geodesics. If F : M → N is a global isometry, then for

any two points p,q ∈ M , we have d(p,q) = d(F(p),F(q)), where d(·, ·) denotes geodesic distance

between two points.

Proof For any two points p,q ∈ M , we have d(p,q)≥ d(F(p),F(q)) according to the third state-

ment of Theorem 1. Since F−1 : N →M is also a global isometry, we have d(p,q)≤ d(F(p),F(q)).
Thus d(p,q) = d(F(p),F(q)).

Clearly, we hope the map F is a global isometry. This is because that, although local isometry maps

geodesics to geodesics, the shortest geodesic between two points on M may not be the shortest

geodesic on N . Please see Figure 1 as an illustrative example. Clearly the map F is a local isome-

try. However, consider two points p and q on M , we have d(p,q)> d(F(p),F(q)). Therefore F is

not a global isometry.

It is usually very difficult to find a global isometry. Isomap is designed to find the global isom-

etry. However, it is known that the computational cost is very expensive since pairwise distances

have to be estimated. Also, it has been shown that Isomap cannot handle geodesically non-convex

manifolds where in that case the geodesic distances cannot be accurately estimated. On the other

hand, based on our assumption that the manifold M is diffeomorphic to an open subset of Rd , it

suffices to find a local isometry which is also a diffeomorphism, according to Definition 3.

1. In many differential geometry textbooks, global isometry is often referred to as isometry or Riemannian isometry.
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Figure 1: Local isometry but not global isometry. F is a map from M to N . Clearly F is a local

isometry. However, due to the overlap, it is not a global isometry.

2.2 Gradient Fields and Local Isometry

Our analysis has shown that finding a global isometry is equivalent to finding a local isometry which

is also a diffeomorphism. Given a map F = ( f1, . . . , fd) : M → R
d , there is a deep connection

between local isometry and the differential dF = (d f1, . . . ,d fd). For a function f on the manifold

f : M → R, we will not strictly distinguish between its differential d f and its gradient field ∇ f

in this paper. Actually, they are dual 1-form which is uniquely determined by each other once the

metric of the manifold is given. For the relationship between local isometry and differential, we

have the following proposition:

Proposition 2 Consider a map F : M ⊂ R
m → R

d . Let fi, i = 1, . . . ,d denote the component of

F which maps the manifold to R, that is, F = ( f1, . . . , fd). The following three statements are

equivalent:

1. F is a local isometry.

2. dFp is an orthogonal transformation for all p ∈ M .

3. 〈d fi,d f j〉p = δi j, i, j = 1, ...,d, ∀p ∈ M .

Proof 2 ⇔ 3 is trivial by the definition of orthogonal transformation. 2 ⇒ 1 is obvious. Next

we prove 1 ⇒ 2. Since we use the induced metric for the manifold M , the computation of inner

product in tangent space is the same as the standard inner product in Euclidean space. We have

g(u,v) = 〈u,v〉,∀u,v ∈ TpM . According to Definition 2, we have 〈u,u〉 = 〈dFp(u),dFp(u)〉,∀p ∈
M ,u ∈ TpM . For arbitrary vectors u and v ∈ TpM , then we have

〈dFp(u+ v),dFp(u+ v)〉= 〈u+ v,u+ v〉.

By expanding both side and notice that 〈dFp(u),dFp(u)〉= 〈u,u〉 and 〈dFp(v),dFp(v)〉= 〈v,v〉, we

have 〈dFp(u),dFp(v)〉= 〈u,v〉 which implies that dF is an orthogonal transformation.
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(a) R
2 (b) Swiss Roll (c) Swiss Roll

Figure 2: Examples of parallel fields. The parallel fields on Euclidean space are all constant vector

fields.

This proposition indicates that finding a local isometry F is equivalent to finding d orthonormal dif-

ferentials d fi, i = 1, ...,d, or gradient fields ∇ fi, i = 1, ...,d since we have 〈∇ fi,∇ f j〉= 〈d fi,d f j〉=
δi j.

3. Parallel Field Embedding

In this section, we introduce our parallel field embedding (PFE) algorithm for dimensionality re-

duction.

Our goal is to find a map F = ( f1, . . . , fd) : M ⊂ R
m → R

d which preserves the metric of the

manifold. According to Proposition 2, its differential (or gradient fields) should be orthonormal. In

the next subsection, we show that if such differential exists, then each d fi (or ∇ fi) has to be parallel,

that is ∇d fi = 0 (or ∇∇ fi = 0). Naturally, we propose a vector field based method for solving this

problem. We first try to find orthonormal parallel vector fields on the manifold. Then we try to

reconstruct the map whose gradient fields can best approximate the parallel fields. In Theorem 2,

we show that if the manifold can be isometrically embedded into the Euclidean space, then there

exist orthonormal parallel fields and each parallel field is exactly a gradient field. Therefore, in such

cases our proposed approach can find the optimal embedding which is a global isometry.

3.1 Parallel Vector Fields

In this subsection, we will show the properties of parallel fields. We will also discuss the relationship

among local isometry, global isometry and parallel fields.

Definition 4 (Parallel Field, Petersen, 1998) A vector field X on manifold M is a parallel vector

field (or parallel field) if

∇X ≡ 0,

where ∇ is the covariant derivative on the manifold M .

Figure 2 shows some examples of parallel fields on Euclidean space and Swiss Roll. Given a point

p on the manifold and a vector vp on the tangent space TpM , then ∇vp
X is a vector at point p which

measures how the vector field X changes along the direction vp at point p. Since p is arbitrary, given
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a vector field Y , then ∇Y X is a vector field which measures how the vector field X changes along

the vector field Y on the manifold. Since ∇X : Y 7→ ∇Y X is a map which maps a vector field Y to

another vector field ∇Y X , ∇X ≡ 0 also means that for any vector field Y on the manifold, we have

∇Y X = 0 and vice versa. For parallel fields, we also have the following proposition:

Proposition 3 Let V and W be parallel fields on M associated with the metric g. We define a

function h : M → R as follows:

h(p) = gp(V,W ),

where gp represents the inner product at p. Then h(p) = constant, ∀p ∈ M .

Proof Since V and W are parallel fields, we have ∇V = ∇W = 0 or ∇YV = ∇YW = 0 for any vector

field Y .

We first show that a vector field is a derivation. For simplicity, let vp be a tangent vector at

point p on Euclidean space Rm. Then vp defines the directional derivative in the direction vp at p as

follows:

vp f = Dv f (p) =
d

dt
|t=0 f (p+ tv).

For tangent vectors on a general manifold, we define them as derivations which satisfies the Leib-

niz’s rule, that is, vp( f g) = f (p)vpg+ g(p)vp f . If p varies, then all these vps constitute a vector

field. Since for each point p, vp is a derivation at p. Then the vector field is a derivation on the

manifold. Let X be an arbitrary smooth vector field, then we apply it to the function h and we have

X(h) = Xg(V,W )

= g(∇XV,W )+g(V,∇XW )

= 0+0 = 0.

The second equation is due to the property of the covariant derivative. Since the above equation

holds for arbitrary X , we have h(p) = gp(V,W ) = constant.

Corollary 1 Let V and W be parallel fields on M associated with the metric g, then
∫

M g(V,W )dx=
0 if and only if ∀ p ∈ M , gp(V,W ) = 0.

Proof From Proposition 3, we see that g(V,W ) = constant. Thus,
∫

M g(V,W )dx = vol(M )g(V,W ).
Since vol(M )> 0,

∫
M g(V,W )dx = 0 if and only if g(V,W ) = 0 or ∀p ∈ M , gp(V,W ) = 0.

This corollary tells us if we want to check the orthogonality of the parallel fields at every point,

it suffices to compute the integral of the inner product of the parallel fields. This is much more

convenient for finding orthogonal parallel fields.

Also we have the following corollary:

Corollary 2 Let V be a parallel vector field on M , then ∀p ∈ M ,‖Vp‖= constant where Vp repre-

sents the vector at p of the vector field V .

Proof Let W =V in Proposition 3, then ∀p ∈ M , we have ‖Vp‖2 = gp(V,V ) = constant.

Since every tangent vector of a parallel field has a constant length, we can perform normalization
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of the parallel field simply as dividing every tangent vector of the parallel field by a same length.

According to these results, finding orthonormal parallel fields becomes much easier: we first find

orthogonal parallel fields on the manifold one by one by requiring that the integral of the inner

product of two parallel fields is zero. We then normalize the vectors of parallel fields to be unit

norm.

Before presenting our main result, we still need to introduce some concepts and properties on

the relationship between isometry and parallel fields. We begin with the properties of the differential

of a map. We have the following lemma.

Lemma 1 (Please see Lemma 3.5 in Lee, 2003) Let F : M → N and let p ∈ M .

1. dF : TpM → TF(p)N is linear.

2. If F is a diffeomorphism, then dF : TpM → TF(p)N is an isomorphism.

This lemma shows that locally dF is an isomorphism if it is a diffeomorphism. Next, we show that

a parallel field is uniquely determined locally.

Proposition 4 Let M be an open connected manifold. For a given p ∈ M , a parallel field X is

uniquely determined by the vector Xp, where Xp denotes the value of the vector field X on the point

p.

Proof The equation ∇X ≡ 0 is linear in X , so the space of parallel fields is a vector space. There-

fore, it suffices to show that X ≡ 0 provided Xp = 0. According to Proposition. 3, a parallel field has

constant length. Thus for any point q ∈ M , we have ‖Xq‖2 = ‖Xp‖2 = 0.

Next we show that the differential of an isometry preserves covariant derivative.

Lemma 2 (Please see the exercise (2) in Chapter 3 of Petersen, 1998) If F : M → N is a global

isometry, then we have dF(∇XY ) = ∇dF(X)dF(Y ) for all vector fields X and Y .

More importantly, we show that an isometry preserves parallelism, that is, its differential carries a

parallel vector field to another parallel vector field.

Proposition 5 If F : M → N is a global isometry, then

1. dF maps parallel fields to parallel fields.

2. dF is an isometric isomorphism on the space of parallel fields.

Proof Let Y be a parallel field on M , we show that dF(Y ) is also a parallel field. It suffices to show

that ∇ZdF(Y ) = 0 for arbitrary Z on N . According to Lemma 2, for any p ∈ M and any vector

field X on M , we have ∇dF(X)dF(Y ) = dF(∇XY ) = 0 hold at p. Since X is arbitrary and dF is an

isomorphism (Lemma. 1) at p, then dF(X)p can be an arbitrary vector at p. Since p is also arbitrary,

then all these tangent vectors dF(X)p constitute an arbitrary vector field. Thus ∇ZdF(Y ) = 0 holds

for arbitrary vector field Z which proves the first statement.

For the second statement, since parallel fields are determined locally (Proposition 4), we only

have to show that dF is an isometrically isomorphism locally. Firstly, F is diffeomorphism. Ac-

cording to Lemma 1, dF is a local isomorphism. Secondly, according to the Definition 2, dF is a
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local isometry. Combining these two facts, dF is an isometric isomorphism on the space of parallel

fields.

Now we show that the gradient fields of a local isometry are also parallel fields.

Proposition 6 If F = ( f1, . . . , fd) : M → R
d is a local isometry, then each d fi is parallel, that is,

∇d fi = 0, i = 1, . . . ,d.

Proof According to the property of local isometry, for very point p ∈ M , there is a neighborhood

U ⊂ M of p such that F |U : U → F(U) is a global isometry of U onto an open subset F(U) of

R
d (please see Lee, 2003, pg. 187). Since F(U) is an open subset of R

d , we can choose an

orthonormal basis ∂i, i = 1, . . . ,d for F(U). Since F−1|U is also a global isometry, thus dF−1(∂i)
is an orthonormal basis of U . It can be seen as 〈dF−1(∂i),dF−1(∂ j)〉 = 〈∂i,∂ j〉 = δi j. The first

equation is due to the definition of isometry. Since F |U is a global isometry, dF |U is orthonormal

with respect to these coordinates. Thus we can rewrite F |U as F(x) = Ox+b, where x ∈U , O is an

orthonormal matrix and b ∈ R
d . Note that dF = (d f1, . . . ,d fd), thus d fi has constant coefficients

and we have ∇d fi = 0 at each local neighborhood. Since we can choose arbitrary p, ∇d fi ≡ 0 holds

on the whole manifold.

This proposition tells us that the gradient field of a local isometry is also a parallel field. Since it is

usually not easy to find a global isometry directly, in this paper, we try to find a set of orthonormal

parallel fields first, and then find an embedding function whose gradient field is equal to the parallel

field. Our main theorem will show that such an embedding is a global isometry.

3.2 Objective Function

As stated before, we first try to find vector fields which are as parallel as possible on the manifold.

Let V be a smooth vector field on M . By definition, the covariant derivative of V should be zero.

That is, ∇V ≡ 0. Naturally, we define our objective function as follows:

E(V ) =
∫

M
‖∇V‖2

HSdx, s.t.,
∫

M
‖V‖2 = 1, (1)

where ‖ · ‖HS denotes Hilbert-Schmidt tensor norm (see Defant and Floret, 1993). The constraint

removes arbitrary scale of the vector field. Once we obtain the first parallel vector field V1, by using

orthogonality constraint
∫

M g(V1,V2) = 0, we can find the second vector field V2, and so on. After

finding d orthogonal vector fields V1, . . . ,Vd , we normalize the vector fields at each point:

‖Vi|x‖= 1,∀x ∈ M , (2)

where Vi|x ∈ TxM denote the vector at x of the vector field Vi.

E(V ) enforce the vector fields to be parallel. The norm of the tangent vector ‖Vi|x‖ represents the

scale of the map at x, thus the normalization ‖Vi|x‖ removes the scale locally. This is quite different

from traditional manifold learning algorithms. Traditional methods remove the scale by normalizing

the norm of embedding function which is a global normalization. As pointed out by Goldberg et al.

(2008), the embedding functions obtained by these traditional methods are not isometry. As we

discussed in Section 2, the gradient fields of the isometry have to be orthonormal parallel fields.

However, traditional manifold learning methods may not satisfy this requirement, which will be

shown in our experiments.
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Figure 3: Covariant derivative demonstration. Let V,Y be two vector fields on manifold M . Given

a point x ∈ M , let ∇YV |x denote the tangent vector at x of the vector field ∇YV , we

show how to compute the vector ∇YV |x. Let γ(t) be a curve on M : γ : I → M which

satisfies γ(0) = x and γ′(0) =Yx. Then the covariant derivative along the direction
dγ(t)

dt
|t=0

can be computed by projecting dV
dt
|t=0 to the tangent space TxM at x. In other words,

∇γ′(0)V |x = Px(
dV
dt
|t=0), where Px : v ∈ R

m → Px(v) ∈ TxM is the projection matrix. It is

not difficult to check that the computation of ∇YV |x is independent to the choice of the

curve γ.

In the following we provide some explanation of our objective function. ∇V is the covariant

derivative of V that measures the change of the vector field V . If ∇V vanishes, V is a parallel vector

field which we are looking for. Formally, ∇V is a (1,1)-tensor which maps a vector field Y to

another vector field ∇YV and satisfies ∇αYV = α∇YV for any function α. For a fixed point x ∈ M ,

let ∇V |x denote the tensor value at x of the tensor field ∇V . It is a linear map on the tangent space

TxM . We show what ∇V |x is when given an orthonormal basis. Let ∂1, . . . ,∂d be an orthonormal

basis of TxM , then the element of ∇V |x would be gx(∇∂i
V,∂ j) where gx(·, ·) denote the inner product

at point x. By the definition of Hilbert-Schmidt tensor norm (see Defant and Floret, 1993), we have

‖∇V |x‖2
HS =

d

∑
i=1

d

∑
j=1

(gx(∇∂i
V,∂ j))

2

=
d

∑
i=1

gx(∇∂i
V,∇∂i

V ). (3)

The second equation uses the fact gx(∇∂i
V,∇∂i

V ) = ∑d
j=1(gx(∇∂i

V,∂ j))
2. It is important to point

out that the Hilbert-Schmidt norm ‖∇V‖HS is independent to the choice of the basis of tangent

space. Thus our objective function E(V ) is well defined. According to the above equations, the

computation of ‖∇V‖HS depends on the computation of the norm of covariant derivative ∇∂i
V .

Next we show the geometrical meaning of covariant derivative. For a given direction Yx at x ∈ M ,
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Figure 4: An example of a vector field but not a gradient field. This vector field has loops, thus it

cannot be a gradient field for any function.

let ∇YV |x denote the vector at x of vector field ∇YV . Then ∇YV |x is also a vector at x which is

demonstrated in Figure 3.

After finding the parallel vector fields Vi on M , the embedding function can be obtained by

minimizing the following objective function:

Φ( f ) =
∫

M
‖∇ f −V‖2dx. (4)

The solution of Φ( f ) is not unique, but differs with a constant function.

In the following, we show that if the manifold is flat and diffeomorphic to an open connected

subset of Euclidean space Rd , then our method can successfully recover the metric of the manifold.

Theorem 2 Let M be a d-dimensional Riemannian manifold embedded in R
m. If there exist a

global isometry ϕ : M → D ⊂ R
d , where D is an open connected subset of Rd , then there is an

orthonormal basis {Vi}d
i=1 of the parallel fields on M , and embedding function fi : M → R whose

gradient field satisfies ∇ fi =Vi, i = 1, . . . ,d. Moreover, F = ( f1, . . . , fd) is a global isometry.

Proof In Euclidean space, if a vector field is written in Cartesian coordinates, then it is parallel if

and only if it has constant coefficients (Petersen, 1998). Consider a parallel field on D. Since D is

open connected, this parallel field is globally constant. Thus the space of parallel fields on D is a d

dimensional linear space.

According to Proposition 5, we know that a global isometry preserves parallelism, that is, its

differential carries a parallel vector field to another parallel vector field. Thus for a global isometry

ϕ, dϕ maps parallel fields to parallel fields and dϕ is an isometric isomorphism, so is dϕ−1. Thus

the space of parallel fields on M is isomorphic to the space of parallel fields on D. Therefore there

exists an orthonormal basis {Vi}d
i=1 of the space of the parallel fields on M . Next we show Vi is
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also a gradient field. We first map Vi to D using dϕ. Clearly, dϕ(Vi) is a parallel field. Note that

a parallel field in Euclidean space has constant coefficients in Cartesian coordinates. We can write

dϕ(Vi) in Cartesian coordinates ∂ j, j = 1, . . . ,d as follows:

dϕ(Vi) = ∑
j

c
j
i ∂ j,

where c
j
i are constant. Since dϕ is an isometric isomorphism, we can rewrite it as follows:

Vi = ∑
j

c
j
i dϕ−1(∂ j).

Here dϕ−1(∂ j) actually is an orthonormal basis of M . Since c
j
i are constant, each Vi is a gradient

field for some linear function with respect to the coordinates of dϕ−1(∂ j). Let fi be a linear function

such that ∇ fi = Vi, i = 1, . . . ,d. It is worth noting that such a linear function fi is not unique but

only differs a constant. Then these { fi|i = 1, . . . ,d} constitutes a map F , F = ( f1, . . . , fd) : M →R
d ,

which maps the manifold M to R
d .

Next we show that such F is a global isometry on M . Firstly, F is a local isometry. According

to the construction of F , the differential of F dF = (d f1, . . . ,d fd) = (V1, . . . ,Vd) is orthonormal.

Thus F is a local isometry according to Proposition 2. Secondly, F is a differmorphism. Clearly

the map F restricted on the manifold M , F : M → F(M ), is surjective. Next we show F is also

injective. If not, assume there exist two distinct points p and q such that F(p) = F(q). Then we

have fi(p) = fi(q), i = 1, . . . ,d. Since fi is linear with respect to the coordinates of dϕ−1(∂ j). We

rewrite fi as follows:

fi(p) =
d

∑
j=1

c
j
i z j(p)+ εi,

where z j, j = 1, . . . ,d represent coordinate functions. Since c
j
i are constant, we have z j(p) = z j(q)

for j = 1, . . . ,d. Since z j are coordinates, we have p = q which contradicts to the assumption that p

and q are distinct points. So far, we have proved F is a homeomorphism. Since each fi is a linear

function, F is clearly smooth. According to the Proposition 5.7 of Lee (2003), F−1 is also smooth,

so F is a diffeomorphism. Since F is a local isometry and a diffeomorphism, it is a global isometry.

When there exists a global isometry, by optimizing our objective functions Equation (1), Equa-

tion (2) and Equation (4), Theorem 2 shows that our obtained gradient fields ∇ fi must be parallel.

Moreover, the obtained map F = ( f1, . . . , fd) is a global isometry. It might be worth noting that

there are two variations in finding the global isometry. The first variation is the choice of the or-

thonormal basis of parallel fields. The second variation is the constant added to each embedding

function. Thus the space of global isometry on M is actually O(d)×R
d . The first part is the space

of orthonormal basis of parallel fields and the second part is the space of constants. Geometrically,

the first part represents a rotation of the map and the second part represents a translation of the map.

When there is no isometry between the manifold M and R
d , our approach can still find a

reasonably good embedding function. For example, if the curvature of the manifold is not very

high, by minimizing Equation (1), we can still find vector fields are nearly parallel. Consequently,

the embedding would be nearly isometric. Please see our experimental results for details. However,
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when the curvature of the manifold is extremely high, as shown in Figure 4, the obtained vector

fields may have loops or singular points and is no longer a gradient field. The resulting embedding

may cause overlap. It would be important to note that, in such cases, the isometric embedding or

nearly isometric embedding does not exist.

3.3 Implementation

In real problems, the manifold M is usually unknown. In this subsection, we discuss how to find

the isometric embedding function F from random points.

The implementation includes two steps, first we estimate parallel vector fields on manifold

from random points, and then we reconstruct embedding functions by requiring that the gradient

fields are as close to the parallel fields as possible. The parallel vector fields are computed one by

one under orthogonality constraint. These two steps are described in subsections 3.3.1 and 3.3.2,

respectively. After finding d orthonormal vector fields and the corresponding embedding function

fi, the final map F is given by F = ( f1, . . . , fd). We discuss how to perform out-of-sample extension

in subsection 3.3.3. The detailed algorithmic procedure is presented in subsection 3.3.4.

Given xi ∈ M ⊂ R
m, i = 1, ...,n, we aim to find a lower dimensional Euclidean representation

of the data such that the geometrical and topological properties can be preserved. We first construct

a nearest neighbor graph by either ε-neighborhood or k nearest neighbors. Let xi ∼ x j denote that

xi is the neighbor of x j or x j is the neighbor of xi. Let N(i) denote the index set of the neighbors of

xi, that is, N(i) =
{

j|x j ∼ xi

}

. For each point xi, we estimate its tangent space Txi
M by performing

principal component analysis on the neighborhood N(i). We choose the largest d eigenvectors as

the bases since Txi
M is d dimensional. Let Ti ∈ R

m×d be the matrix whose columns constitute a

orthonormal basis for Txi
M . It is easy to show Pi = TiT

T
i is the unique orthogonal projection from

R
m onto the tangent space Txi

M (Golub and Loan, 1996). That is, for any vector a ∈ R
m, we have

Pia ∈ Txi
M and (a−Pia)⊥ Pia.

3.3.1 PARALLEL VECTOR FIELD ESTIMATION

Let V be a vector field on manifold. For each point xi, let Vxi
denote the value of the vector field V

at xi and ∇V |xi
denote the value of ∇V at xi. According to the definition of vector fields, Vxi

should

be a tangent vector in the tangent space Txi
M . Thus it can be represented by local coordinates of

the tangent space,

Vxi
= Tivi, (5)

where vi ∈ R
d . We define V =

(

vT
1 , . . . ,v

T
n

)T ∈ R
dn. That is, V is a dn-dimensional big column

vector which concatenates all the vi’s. By discretizing the objective function (1), the parallel field V

can be obtained by solving the following optimization problem:

min
V

E(V) =
n

∑
i=1

‖∇V |xi
‖2

HS,

s.t. ‖V‖= 1.

(6)

In the following we discuss, for a given point xi, how to approximate ‖∇V |xi
‖HS.

Let γ(t) be the geodesic connecting xi and x j which satisfies γ(0) = xi and γ(di j) = x j, where

di j is the geodesic distance of xi and x j. Let ei j = γ′(0). Since γ is a geodesic, ei j ∈ Txi
M is a unit
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vector. Then the covariant derivative of vector field V along ei j is given by (please see Figure 3)

∇ei j
V = Pi(

dV

dt
|t=0)

= Pi lim
t→0

V (γ(t))−V (γ(0))

t

= Pi

(Vx j
−Vxi

)

di j

≈ √
wi j(PiVx j

−Vxi
),

where di j ≈ 1/
√

wi j approximates the geodesic distance di j of xi and x j. There are several ways to

define the weights wi j. Since for neighboring points, Euclidean distance is a good approximation

to the geodesic distance, we can define the Euclidean weights as wi j =
1

‖xi−x j‖2 . If the data are

uniformly sampled from the manifold, then wi j would be almost constant. So in practice, 0− 1

weights is also widely used which is defined as follows:

wi j =

{

1, if xi ∼ x j

0, otherwise.

Since we do not know ∇∂i
V for a given basis ∂i, ‖∇V‖2

HS can not be computed according to

Equation (3). We define a (0,2) symmetric tensor α as α(X ,Y ) = g(∇XV,∇YV ), where X and Y are

vector fields on manifold. We have

Trace(α) =
d

∑
i=1

g(∇∂iV,∇∂i
V )

= ‖∇V‖2
HS,

where ∂1, . . . ,∂d is an orthonormal basis on tangent space. For the trace of α, we have the following

geometric interpretation (see the exercise 1.12 in Chow et al., 2006):

Trace(α) =
1

ωd

∫
Sd−1

α(X ,X)dδ(X),

where Sd−1 is the unit (d−1)-sphere, dωd is its volume, and dδ is its volume form. Thus for a given

point xi, we can approximate ‖∇V |xi
‖HS by the following

‖∇V |xi
‖2

HS = Trace(α)xi

=
1

ωd

∫
Sd−1

α(X ,X)|xi
dδ(X)

≈ ∑
j∈N(i)

‖∇ei j
V‖2

= ∑
j∈N(i)

wi j

∥

∥PiVx j
−Vxi

∥

∥

2
. (7)

For the third equation, the integral on the left hand side is approximated by the discrete summation

on nearest neighbors. It might be worth noting that we implicitly assume that the nearest neighbors
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are uniformly sampled. If the sampling is not uniform, then one should use weighted summation to

approximate the integral.

Combining Equation (5), the optimization problem Equation (6) reduces to:

min
V

E(V) = ∑
i∼ j

wi j

∥

∥PiTjv j −Tivi

∥

∥

2
,

s.t. ‖V‖= 1.

We first optimize E(V) to find parallel vector fields on manifold, and then re-normalize the vector

fields locally.

We will now switch to Lagrangian formulation of the problem. The Lagrangian is as follows:

L = E(V)−λ(VT
V−1).

By matrix calculus, we have

∂E(V)

∂vi

= −2 ∑
j∈N(i)

wi j(T
T

i (PiTjv j −Tivi)−T T
i Pj(PjTivi −Tjv j))

= 2 ∑
j∈N(i)

wi j((T
T

i TjT
T
j Ti + Id)vi −2T T

i Tjv j)

= 2 ∑
j∈N(i)

wi j((Qi jQ
T
i j + Id)vi −2Qi jv j),

where Qi j = T T
i Tj. Then we have

∂E(V)

∂V
= 2BV,B =







B11 · · · B1n

...
. . .

...

Bn1 · · · Bnn






,

where B is a dn×dn sparse block matrix. If we index each d×d block by Bi j, then for i = 1, . . . ,n,

we have

Bii = ∑
j∈N(i)

wi j(Qi jQ
T
i j + I), (8)

Bi j =

{

−2wi jQi j, if xi ∼ x j

0, otherwise.
(9)

Requiring that the gradient of L vanish gives the following eigenvector problem:

BV= λV.

In order to find multiple parallel fields, we just use the eigenvectors corresponding to the small-

est eigenvalues of the matrix B. Recall Corollary 1 tells us that if we want to check the orthogonality

of two parallel fields at every point, it suffices to compute the integral of the inner product of them
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which can be discretely approximated as 〈Vi,V j〉. Since the matrix B is symmetric, its eigenvectors

are mutually orthogonal and, thus, 〈Vi,V j〉= 0.

Recall Corollary 2 tells us for any point p ∈ M , the tangent vector Vp of a parallel field V has a

constant length. In our objective function (6), we only need to add a global normalization constraint

‖V‖ = 1 for the sake of simplicity. After finding d vector fields Vj, j = 1, . . . ,d, we can further

ensure local normalization as follows:

‖Vj|xi
‖= 1,∀i = 1, . . . ,n, j = 1, . . . ,d.

3.3.2 EMBEDDING

Once the parallel vector fields Vi are obtained, the embedding functions fi : M → R can be con-

structed by requiring their gradient fields to be as close to Vi as possible. Recall that, if the manifold

is isometric to Euclidean space, then the vector field computed via Equation (1) is also a gradient

field. However, if the manifold is not isometric to Euclidean space, V may not be a gradient field.

In this case, we try to find the optimal embedding function f in a least-square sense. This can be

achieved by solving the following minimization problem:

Φ( f ) =
∫

M
‖∇ f −V‖2dx.

In order to discretize the above objective function, we first discuss the Taylor expansion of f on the

manifold.

Let expx denote the exponential map at x. The exponential map expx : TxM → M maps the

tangent space TxM to the manifold M . Let a ∈ TxM be a tangent vector. Then there is a unique

geodesic γa satisfying γa(0)= x with initial tangent vector γ′a(0)= a. The corresponding exponential

map is defined by expx(ta) = γa(t), t ∈ [0,1]. Locally, the exponential map is a diffeomorphism.

Note that f ◦ expx : TxM → R is a smooth function on TxM . Then the following Taylor expan-

sion of f holds:

f (expx(a))≈ f (x)+ 〈∇ f (x),a〉, (10)

where a ∈ TxM is a sufficiently small tangent vector. In discrete case, let expxi
denote the exponen-

tial map at xi. Since expxi
is a diffeomorphism, there exists a tangent vector ai j ∈ Txi

M such that

expxi
(ai j) = x j. We approximate ai j by projecting the vector x j − xi to the tangent space, that is,

ai j ≈ Pi(x j − xi). Therefore, Equation (10) can be rewritten as follows:

f (x j) = f (xi)+ 〈∇ f (xi),Pi(x j − xi)〉. (11)

Since f is unknown, ∇ f is also unknown. In the following, we discuss how to compute ‖∇ f (xi)−
Vxi

‖ discretely. We first show that the vector norm can be computed by an integral on a unit sphere,

where the unit sphere can be discretely approximated by a neighborhood.

Let e be a unit vector on tangent space TxM , then we have (see the exercise 1.12 in Chow et al.,

2006)
1

ωd

∫
Sd−1

〈X ,e〉2dδ(X) = 1,

where Sd−1 is the unit (d −1)-sphere, dωd its volume, and dδ its volume form. Let ∂i, i = 1, . . . ,d,

be an orthonormal basis on TxM . Then for any vector b ∈ TxM , it can be written as b = ∑d
i=1 bi∂i.
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Furthermore, we have

‖b‖2 =
d

∑
i=1

(bi)2

=
d

∑
i=1

(bi)2 1

ωd

∫
Sd−1

〈X ,∂i〉2dδ(X)

=
1

ωd

∫
Sd−1

〈X ,b〉2dδ(X).

From Equation (11), we see that

〈∇ f (xi),Pi(x j − xi)〉= f (x j)− f (xi).

Thus, we have

‖∇ f (xi)−Vxi
‖2

=
1

ωd

∫
Sd−1

〈X ,∇ f (xi)−Vxi
〉2dδ(X)

≈ ∑
j∈N(i)

〈ei j,∇ f (xi)−Vxi
〉2

= ∑
j∈N(i)

1

d2
i j

〈ai j,∇ f (xi)−Vxi
〉2

≈ ∑
j∈N(i)

wi j〈Pi(x j − xi),∇ f (xi)−Vxi
〉2

= ∑
j∈N(i)

wi j

(

(Pi(x j − xi))
TVxi

− f (x j)+ f (xi)
)2
,

where ei j is a unit vector and wi j is the weight, and both of which are the same in Section 3.3.1. In

the second equation, the integral is approximated by the discrete summation on nearest neighbors

which is the same in Equation (7). In the fourth equation, the vector ai j is approximated by the

projection vector Pi(x j − xi). Recall that In Section 3.3.1 di j is approximated by 1√
wi j

and we have

‖ai j‖= di j. Next we show these two approximations are coincide as long as wi j = O( 1
‖x j−xi‖2 ). Let

us take the Euclidean weight wi j =
1

‖x j−xi‖2 as an example. We have

lim
x j→xi

‖Pi(x j − xi)‖2

‖x j − xi‖2
= lim

θ→0
cos(θ)2 = 1,

where θ is the angle between vector Pi(x j − xi) and vector x j − xi.

Let yi = f (xi) and y=(y1, . . . ,yn)
T . The objective function Φ( f ) can be discretely approximated

by Φ(y) as follows:

Φ(y) = ∑
i∼ j

wi j

(

(Pi(x j − xi))
TVxi

− y j + yi

)2
.

By setting ∂Ψ(y)/∂y = 0, we get

−∑
i∼ j

wi jsi j(x j − xi)
T PiVxi

+

(

∑
i∼ j

wi jsi js
T
i j

)

y = 0,
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where si j is an all-zero vector except the i-th element being −1 and the j-th element being 1. Let

L = ∑i∼ j wi jsi js
T
i j and c = ∑i∼ j wi jsi j(x j −xi)

T PiVxi
. Then we can rewrite the above linear system as

follows

Ly = c. (12)

Algorithm 1 PFE (Parallel Field Embedding)

Input: Data sample X = (x1, . . . ,xn) ∈ R
m×n

Output: Y = (y1, . . . ,yn) ∈ R
d×n

for i = 1 to n do

Compute tangent spaces Txi
M

end for

Construct matrix B according to Equation (8), Equation (9)

Find the smallest d eigenvalues λ1, . . . ,λd and the associated eigenvectors V1, . . . ,Vd of B

for l = 1 to d do

Construct vector field Vl from local representations Vl

Normalize Vl(xi) to unit-norm for each xi

end for

Solve linear system LY = c

return Y

It is easy to verify that L is a graph Laplacian matrix (Chung, 1997) and its rank is n−1. Thus,

the solution of Equation (12) is not unique. If y∗ is an optimal solution, y∗ + constant is also an

optimal solution. By fixing y1 = 0 in Equation (12), we get a unique solution of y. This is consistent

with the continuous case. If f is an optimal solution of Equation (4), then f + const is also an

optimal solution.

3.3.3 OUT-OF-SAMPLE EXTENSION

Most nonlinear manifold learning algorithms do not have straightforward extension for out-of-

sample examples. Some efforts (Bengio et al., 2003) are made to generalize existing nonlinear

manifold learning algorithms to novel points. We will show that our PFE algorithm has a natural

out-of-sample extension.

Given n training points x1, . . . ,xn and n′ new points xn+1, . . . ,xn+n′ . Our task is to estimate the

embedding results of the new points. For each new point x j, we first find its k nearest points in the

whole data set. Then we compute its tangent space Tx j
M by performing PCA on its neighborhood.

We choose the largest d eigenvectors as the bases of Tx j
M . Let Tj ∈ R

m×d be the matrix whose

columns constitute a orthonormal basis for Tx j
M . For each vector Vx j

, it can be represented by local

coordinates of the tangent space. That is, Vx j
= Tjv j.

Since ∂E/∂V= 2BV and B is a symmetric matrix, we have

E(V ) = V
T BV. (13)

Let V = (VT
o ,V

T
n ) =

(

vT
1 , . . . ,v

T
n ,v

T
n+1, . . . ,vn+n′

)T
, where Vo denotes the tangent vectors on the

original training points and Vn denotes the tangent vectors on new points. Then Equation (13) can
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be written as

E(V) = V
T BV=

[

V
T
o V

T
n

]

[

Boo Bon

Bno Bnn

][

Vo

Vn

]

.

Requiring ∂E(V)/∂Vn = 0, we obtain the following linear system:

BnnVn =−BnoVo.

After solving this linear system, we get the optimal Vn. Actually, one can compute fn in the same

way, where fn denotes the function values on new points. We first construct the Laplacian matrix

involving all points, including both new and old ones. Then taking derivatives with respect to fn,

we obtain the following linear system:

Lnn fn =−Lno fo,

where fo denotes the function values on old points, and Lnn and Lno are block matrices which are

defined in the same way as Bnn and Bno. Note that the procedure described above involves only

local computation on each neighborhood of new samples and solving two sparse linear systems.

Therefore our out-of-sample extension algorithm is quite efficient.

3.3.4 ALGORITHM

The PFE algorithm consists of three steps, which is summarized in Algorithm 1.

3.4 Related Work and Discussion

In this section, we would like to discuss the relationship between our work and related work which

are based on Laplacian, Hessian and connection Laplacian operators.

The approximation of the Laplacian operator using the graph Laplacian Chung (1997) has en-

joyed a great success in the last decade. Several theoretical results (Belkin and Niyogi, 2005; Hein

et al., 2005) also showed the consistency of the approximation. One of the most important features

of the graph Laplacian is that it is coordinate free. That is, the definition of the graph Laplacian

does not depend on any special coordinate systems. The Laplacian operator based methods are mo-

tivated by the smoothness criterion, that is, the norm of the gradient
∫

M ‖∇ f‖ should be small. In

the continuous case, with appropriate boundary conditions we have

∫
M
‖∇ f‖2 =

∫
M

f L( f )dx. (14)

Most of previous work focuses on approximating the continuous Laplacian operator. Next we show

our method provides a direct way to approximate the integral on the left hand side of Equation (14).

First note that

‖∇ f‖2 =
1

ωd

∫
Sd−1

〈X ,b〉2dδ(X).

From Equation (11), we see that

〈∇ f (xi),Pi(x j − xi)〉= f (x j)− f (xi).
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Therefore we have

‖∇ f (xi)‖2 =
1

ωd

∫
Sd−1

〈X ,∇ f (xi)〉2dδ(X)

≈ ∑
j∈N(i)

〈ei j,∇ f (xi)〉2

= ∑
j∈N(i)

1

d2
i j

〈ai j,∇ f (xi)〉2

≈ ∑
j∈N(i)

wi j〈Pi(x j − xi),∇ f (xi)〉2

= ∑
j∈N(i)

wi j ( f (xi)− f (x j))
2 .

It can be seen that this result is consistent with traditional graph Laplacian methods.

Our method is also closely related to the approximation of Hessian operator. Note that if we

replace V by ∇ f in Equation (1), E(V ) becomes Hessian functional (Donoho and Grimes, 2003).

It is evident by noticing that Hess f = ∇∇ f . The estimation of Hessian operator is very difficult

and challenging. Previous approaches (Donoho and Grimes, 2003; Kim et al., 2009) first estimate

normal coordinates on the tangent space, and then estimate the first order derivative of the function

at each point, which turns out to be a matrix pseudo-inversion problem. One major limitation of this

is that when the number of nearest neighbors k is larger than d+ d(d+1)
2

, where d is the dimension of

the manifold, the estimation will be inaccurate and unstable (Kim et al., 2009). This is contradictory

to the asymptotic case, since it is not desirable that k is bounded by a finite number when the data is

sufficiently dense. In contrast, we directly estimate the norm of the second order derivative instead

of trying to estimate its coefficients, which turns out to be an integral problem over the nearest

neighbors. We only need to do simple matrix multiplications to approximate the integral at each

point, but do not have to solve matrix inversion problems. Therefore, asymptotically, we would

expect our method to be much more accurate and robust for the approximation of the norm of the

second order derivative.

The most related work is the Vector Diffusion Maps (VDM, Singer and Wu, 2011) as we both

focus on vector fields rather than embedding functions. VDM is based on the heat kernel for vec-

tor fields rather than for functions over the data. It first constructs the heat kernel and orthogonal

transformations from the weighted graph. Then VDM defines an embedding of the data via full

spectral decomposition of the heat kernel. VDM tries to preserve the newly defined vector diffu-

sion distance for the data when doing embedding. Singer and Wu (2011) also provided theoretical

analysis that the construction for the kernel essentially defines the discrete type of the connection

Laplacian operator and they proved the consistency of such an approximation. We first show that

the objective function of finding parallel vector fields of PFE is the same as VDM. According to

the Bochner technique (please see Section 3.2 in Chapter 7 of Petersen, 1998), with appropriate

boundary conditions we have ∫
M
‖∇V‖2

HS =
∫

M
〈∇∗∇V,V 〉, (15)

where ∇∗∇ is the connection Laplacian operator. VDM approximated the connection Laplacian

operator by generalizing the graph Laplacian operator. We propose to directly approximate the

integral on the left hand side of Equation (15). The approximations of PFE and VDM share several
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similar important features but also differ in several aspects. Firstly, we use the same way to represent

vector fields by using local coordinates of tangent spaces. Intuitively, this is the most natural way

to represent vector fields as long as the data are embedded in Euclidean space, or in other words the

data has features. It would be very interesting to consider the problem of how to represent vector

fields on the graph data, that is, the data that do not have features. Secondly, the approximation of

the covariant derivative is similar but different. The idea of computing the covariant derivative is to

find a way to compute the difference between vectors on different tangent spaces. VDM proposed

an intrinsic way to compute covariant derivative using the concept of parallel transport. They first

transported the vectors to the same tangent space using the parallel transport, and then compute

the difference of vectors on the tangent space. The way of finding the parallel transport between

two points is to compute the orthogonal transformation between two corresponding tangent spaces.

It turns out that computing the parallel transport is a singular value decomposition problem for

each edge of the nearest neighbor graph. Our approach first computes the directional derivative

using the (parallel) transport of vectors on Euclidean space, then projects the directional derivative

to the corresponding tangent space. The main computational cost is the projection which is the

multiplication of matrices with vectors. In continuous cases, they are two different ways to define

the covariant derivative. Thirdly, the discrete type connection Laplacian operators (matrix D−1S− I

in VDM and matrix B in PFE) are different. The difference is that the transformation matrix Oi j

in VDM is orthogonal but the transformation matrix Qi j in PFE is not. It is because that we use

different ways to approximate the covariant derivative. It might be also worth noting that if we use

the orthogonal transformation matrix to compute the covariant derivative, the resulted connection

Laplacian matrix followed by our discrete approximation methods would be the same as VDM.

Overall, VDM uses vector fields to define the vector diffusion distance, while PFE uses vector fields

to find the isometry. Although the procedures of computing vector fields are similar, the motivation

and objective are different.

4. Experiments

In this section, we evaluate our algorithm on several synthetic manifold examples and two real data

sets.

4.1 Topology

In this example, we study the effectiveness of different manifold learning algorithms for isometric

embedding. The data set contains 2000 points sampled from a swiss roll with a hole, which is a 2D

manifold embedded in R
3. The swiss roll is a highly nonlinear manifold. Classical linear algorithms

like PCA cannot preserve the manifold structure. On the other hand, the swiss roll is a flat mani-

fold with zero-curvature everywhere and thus can be isometrically embedded in R
2. We compare

our algorithm with several state-of-the-art nonlinear dimensionality reduction algorithms: Isomap,

Laplacian Eigenmaps (LE), Locally Linear Embedding (LLE), Hessian Eigenmaps (HLLE), and

Maximum Variance Unfolding (MVU).

In all of our experiments, we use a binary-weighted k nearest neighbor graph for each algorithm

that needs to construct a graph. Since the manifold learning algorithms usually rely heavily on

the choice of the number of nearest neighbors for graph construction, we run each algorithm with

the number of nearest neighbors (k) varying in {4, 5, . . . , 20} and show the best results of each

algorithm according to the R-score (to be introduced shortly).
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Figure 5: Isometric embedding of 2000 points on a Swiss Roll with a hole. The number of nearest

neighbors (k) is set to the best among {4, 5, . . . , 20} for each algorithm when constructing

the neighborhood graph. (a)-(f) show the embedding results of various algorithms. (g)-(h)

visualize the two vector fields obtained by our algorithm.
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Figure 6: 2000 points are randomly sampled from the Swiss roll with noise. The black points are

used for visualization of the gradient field.
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The embedding results for all algorithms are shown in Figure 5. Both LE and LLE fail to recover

the intrinsic rectangular shape of the original manifold. Isomap performs well at the two ends of

the swiss roll but generate a big distorted hole in the middle. This is due to the fact that Isomap

can not handle non-convex data. MVU also roughly preserved the overall rectangular shape, but it

still generates distortions around the hole. Both HLLE and PFE give very good results. However,

it would be important to note that our PFE algorithm generates an isometric embedding while the

result of HLLE fail to preserve the scale of the coordinates. In order to measure the faithfulness

of the embedding in a quantitative way, we employ the normalized R-score (Goldberg and Ritov,

2009):

R(X ,Y ) =
1

n

n

∑
i=1

G(Xi,Yi)/‖HXi‖2
F .

Here G(Xi,Yi) is the (normalized) Procrustes statistic (Sibson, 1978) which measures the distance

between two configurations of points (the original data Xi and the embedded Yi). H = I − 1
k
11T is

the centering matrix. A local isometry preserving embedding is considered faithful and thus would

get a low R-score. We also report a variant Rc-score (Goldberg and Ritov, 2009)

Rc(X ,Y ) =
1

n

n

∑
i=1

Gc(Xi,Yi)/‖HXi‖2
F ,

where Gc(Xi,Yi) allows not only rotation and translation, but also rescaling when measuring the

distance between two configurations of points. This score can be used to measure conformal map.

Please refer to Goldberg and Ritov (2009) for the details of R-score and Rc-score.

We give the measures of R-score and Rc-score for each algorithm in Figure 5. As can be seen,

PFE outperforms all the other algorithms by achieving the minimum R-score and Rc-score. For R-

score, except for PFE, Isomap and MVU, all the other three algorithms give excessively high value

because their normalization significantly change the scale of the original coordinates. These three

algorithm also performs worse than MVU, Isomap and especially PFE in terms of Rc-score.

4.2 Noise

In this example, we compare the performance of different algorithms on noisy data. 2000 points

are randomly sampled from the swiss roll without hole, as shown in Fig 6. Then we add random

Gaussian noises N (0,σ2) to each dimension. For each given σ2, we repeat our experiment 10 times

with random noise and the average and standard deviation of the Rc-scores are recorded for each

algorithm. The results are shown in Figure 7(a). As can be seen, our PFE method consistently

outperforms other algorithms and is relatively stable even under heavy noise. Isomap performs the

second best. It also achieves very small standard deviation under small noises, but it becomes very

unstable when σ ≥ 0.5.

Figure 7(b) shows the sample points when σ = 0.65 and Figure 7(c)∼(h) show the embedding

results of different algorithms. As can be seen, under such heavy noise, Isomap, LE, and LLE distort

the original Swiss roll. HLLE can expand the manifold correctly to some extent, but there is overlap

at the top. MVU unfolds the manifold correctly, but does not preserve the isometry well. Our PFE

algorithm can successfully recover the intrinsic structure of the manifold.

Note that, algorithms other than PFE do not calculate vector fields explicitly. However, once the

embedding result is obtained, we can reversely estimate the gradient field at each point xi, which is
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Figure 7: Swiss roll with noise. (a) shows the Rc-scores of the five algorithms. (b) shows the

2000 random points sampled from the swiss roll with noise (σ = 0.65). (c∼h) show the

embedding results of the six algorithms.

denoted as ∇ f (xi), by minimizing the following objective function at the local neighborhood of xi :

∑
j∼i

( f (x j)− f (xi)− (Pi(x j − xi)) ·∇ f (xi))
2.

Figure 8 shows the gradient fields obtained by various algorithms. For the purpose of better visual-

ization, we only show the gradient field at part of the Swiss roll (i.e., the black points in Figure 6).
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Figure 8: The gradient fields obtained by the six algorithms for the Swiss roll. For the sake of better

visualization, only part of the gradient fields is shown.
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Figure 9: Embedding results of Gaussian. (a∼f) show the embedding results of the six algorithms.

As can be seen, even with noise, our PFE algorithm can accurately find two orthogonal smooth

vector fields.

4.3 Curvature

Our PFE algorithm tries to find an isometric embedding. When the underlying manifold cannot be

isometrically embedded in R
d , PFE seeks for a least square approximation. The data set used in

this experiment is a Gaussian surface. Note that, there is no isometric map from this surface to R
2.

The embedding results of the six algorithms are shown in Figure 9. As can be seen, except PFE

and LLE, for all the other four algorithms, there is big distortion or overlap. LLE still produces

small distortions at the center of the embedding. Moreover, PFE has the advantage over LLE that it

optimally preserves the global isometry, and therefore achieving much smaller R-score. Even when

measured by the Rc score, PFE outperforms LLE and all the other algorithms.

4.4 Sampling Rate

In this subsection, we test the robustness of our algorithm with respect to the density of data points.

Specifically, we use the swiss roll with a hole manifold, and test our algorithm under different

sampling rates. As shown in Figure 10(a), we run our algorithm on a data set with the number of

data points varying from 200 to 1500 and report the corresponding R-score.

As can be seen, our algorithm produces near-optimal results when the number of points reaches

700. The R-score keeps increasing when the sampling rate reduces. This agrees with the com-

mon sense that it is difficult to analyze a small number of samples. However, the R-score does

not increase too much even with small sampling rate. As we visualized in Figure 10(b) and (c),
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Figure 10: Robustness with respect to the sampling rate. (a) shows the R-score achieved by PFE

on the swiss roll with hole data set, with respect to different numbers of samples (i.e.,

different sampling rates). (b) and (c) give the visualization of the embedding obtained

from 200 samples and 300 samples, respectively.

although the result of 200 points is distorted and overlapped, the result of 300 points is good. This

demonstrates the robustness of our algorithm with respect to different sampling rates.

4.5 Face Manifold

We consider the application of our algorithm on a real-world face data set. The data set2 contains

698 64× 64 gray-scale face images. So each face image is represented as a point in the 4096-

dimensional Euclidean space. However, the intrinsic dimensionality may be very low, because the

face images are rendered with variations on two pose parameters (up-down and left-right) and one

lighting condition parameter. By applying our PFE algorithm, the face images are embedded in a

two-dimensional space as shown in Figure 11. We show some representative images selected along

the boundary of the embedding. As can be seen, the new coordinates can accurately reflect the face

variations.

4.6 Classification after Embedding

In many scenarios, calculating the low-dimensional embedding of the data manifold is not the fi-

nal step. So another popular evaluation of dimensionality reduction algorithms is to measure the

performance of general machine learning algorithms on the low-dimensional representation. In this

subsection, we compare the dimensionality reduction algorithms by evaluating the accuracy of 1NN

classification on the low-dimensional data.

Specifically, we work with the CMU PIE face data set (Sim et al., 2003). This data set contains

68 subjects with 41,368 face images as a whole. The face images were captured by 13 synchronized

cameras and 21 flashes, under varying pose, illumination and expression. We use the frontal pose

(C27) subset with varying lighting and illumination in this experiment. Each face image is of the size

32×32, and we simply work with the raw pixel features without preprocessing. For each algorithm,

we calculate the low-dimensional embedding, and then run face recognition with simple Nearest-

neighbor classifier. The classification results for 2, 3, 4 and 5 training labels for each person3 are

2. It is available online from http://isomap.stanford.edu/face_data.mat.Z.

3. Labels are randomly chosen and 10 repetitions are run to calculate the averaged performance.
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Figure 11: Face manifold embedding. A face data set of 698 images is embedded in the 2-

dimensional Euclidean space. Some representative face images are selected along the

boundary.

shown in Figure 12. We also show the baseline performance, which corresponds to classification in

the original feature space without dimensionality reduction.

As we can see, PFE performs best around dimension 250. It is interesting to see that PFE does

not outperform other algorithm when the dimension is very low. But a significant performance gap

over other algorithms as well as the baseline can be observed when comparing the peak performance.

4.7 Out-of-Sample Extension

In this experiment, we evaluate the effectiveness of our PFE algorithm for out-of-sample extension.

The data set used here is the face data set used in Section 4.5. Specifically, we leave 4 points

(corresponding to 4 different poses) out and compute the embedding of the remaining 694 points.

The embedding result is shown in Figure 13, which looks almost identical to the previous result

in Figure 11. Then we compute the embedding of the 4 testing points by using our out-of-sample

extension algorithm. The 4 testing points associated with their face images are shown in Figure 13.

As can be seen, these testing samples optimally find their coordinates which reflect their intrinsic

property, that is, pose variation. Note beside poses, there is one extra degree of freedom (light

condition) in this data set. By embedding the data points in a plane, we ignore the factor of light

condition.
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Figure 12: Classification after embedding. Baseline shows the performance without dimensionality

reduction.

We also demonstrate the performance of out-of-sample extension by using synthetic data. Specif-

ically, 300 points are uniformly sampled from the swiss roll and embedded in a two-dimensional

space by using our PFE algorithm. Then we randomly sample 5000 other points from the same

manifold and embed them by using our out-of-sample extension algorithm. The 300 training points

and the final embedding results of all samples are shown in Figure 14(a) and Figure 14(b), respec-

tively. As can be seen, our algorithm can find a faithful embedding for both training and testing

points.

5. Conclusion

We have introduced a novel local isometry based dimensionality reduction method from the perspec-

tive of vector field. Learning on manifold has three most important aspects: geometry, topology and

functions on the manifold. Interestingly, there is strong connection between these three aspects and

the vector fields on the manifold. In this paper, we are particularly interested in the connection be-

tween the geometry and the vector fields on the manifold. A variational method is proposed to find

vector fields as parallel as possible on the manifold. The property of such vector field reflects the in-
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Figure 13: Out-of-sample extension for the face data set. As can be seen, these four testing sam-

ples optimally find their coordinates which reflect their intrinsic property, that is, pose

variation.
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Figure 14: Out-of-sample extension on the Swiss Roll. (a) shows the 300 uniformly sampled train-

ing points. (b) shows the embedding results of both the 300 training points and the 5000

testing points. Both R-score and Rc-score equal to 0.00 in this experiment.
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trinsic geometry and topology of the manifold. If the manifold is isometric to Euclidean space, then

the obtained vector field is parallel. If the manifold has high curvature or complex topology, then

the obtained vector field may be twisted and may have loops or singular points. These properties

can be used to study the intrinsic structure of the manifold.

Parallel fields play a central role for finding an isometry. Moreover, parallel fields provide a

natural parametric representation of the manifold. Besides dimensionality reduction, they are also

useful for other learning problems on the manifold. For example, we can perform classification and

regression on the manifold by requiring that the function varies smoothly along the vector fields.
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