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Abstract

In this paper, we study the problem of learning from weakly labeled data, where labels of the

training examples are incomplete. This includes, for example, (i) semi-supervised learning where

labels are partially known; (ii) multi-instance learning where labels are implicitly known; and (iii)

clustering where labels are completely unknown. Unlike supervised learning, learning with weak

labels involves a difficult Mixed-Integer Programming (MIP) problem. Therefore, it can suffer

from poor scalability and may also get stuck in local minimum. In this paper, we focus on SVMs

and propose the WELLSVM via a novel label generation strategy. This leads to a convex relaxation

of the original MIP, which is at least as tight as existing convex Semi-Definite Programming (SDP)

relaxations. Moreover, the WELLSVM can be solved via a sequence of SVM subproblems that are

much more scalable than previous convex SDP relaxations. Experiments on three weakly labeled

learning tasks, namely, (i) semi-supervised learning; (ii) multi-instance learning for locating regions

of interest in content-based information retrieval; and (iii) clustering, clearly demonstrate improved

performance, and WELLSVM is also readily applicable on large data sets.

Keywords: weakly labeled data, semi-supervised learning, multi-instance learning, clustering,

cutting plane, convex relaxation

1. Introduction

Obtaining labeled data is expensive and difficult. For example, in scientific applications, obtain-

ing the labels involves repeated experiments that may be hazardous; in drug prediction, deriving

active molecules of a new drug involves expensive expertise that may not even be available. On

the other hand, weakly labeled data, where the labels are incomplete, are often ubiquitous in many
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applications. Therefore, exploiting weakly labeled training data may help improve performance

and discover the underlying structure of the data. Indeed, this has been regarded as one of the most

challenging tasks in machine learning research (Mitchell, 2006).

Many weak-label learning problems have been proposed. In the following, we summarize sev-

eral major learning paradigms with weakly labeled data:

• Labels are partially known. A representative example is semi-supervised learning (SSL)

(Chapelle et al., 2006b; Zhu, 2006; Zhou and Li, 2010), where most of the training examples

are unlabeled and only a few are labeled. SSL improves generalization performance by using

the unlabeled examples that are often abundant. In the past decade, SSL has attracted much

attention and achieved successful results in diverse applications such as text categorization,

image retrieval, and medical diagnosis.

• Labels are implicitly known. Multi-instance learning (MIL) (Dietterich et al., 1997) is the

most prominent example in this category. In MIL, training examples are called bags, each

of which contains multiple instances. Many real-world objects can be naturally described by

multiple instances. For example, an image (bag) usually contains multiple semantic regions,

and each region is an instance. Instead of describing an object as a single instance, the multi-

instance representation can help separate different semantics within the object. MIL has been

successfully applied to diverse domains such as image classification, text categorization, and

web mining. The relationship between multi-instance learning and semi-supervised learning

has also been discussed in Zhou and Xu (2007).

In traditional MIL, a bag is labeled positive when it contains at least one positive instance,

and is labeled negative otherwise. Although the bag labels are often available, the instance

labels are only implicitly known. It is worth noting that identification of the key (or positive)

instances from the positive bags can be very useful in many real-world applications. For

example, in content-based information retrieval (CBIR), the explicit identification of regions

of interest (ROI) can help the user to recognize images that he/she wants quickly (especially

when the system returns a large number of images). Similarly, to detect suspect areas in

some medical and military applications, a quick scanning of a huge number of images is

required. Again, it is very desirable if ROIs can be identified. Besides providing an accurate

and efficient prediction, the identification of key instances is also useful in understanding

ambiguous objects (Li et al., 2012).

• Labels are totally unknown. This becomes unsupervised learning (Jain and Dubes, 1988),

which aims at discovering the underlying structure (or concepts/labels) of the data and group-

ing similar examples together. Clustering is valuable in data analysis, and is widely used in

various domains including information retrieval, computer version, and bioinformatics.

• There are other kinds of weak-label learning problems. For instances, Angluin and Laird

(1988) and references therein studied noisy-tolerant problems where the label information is

noisy; Sheng et al. (2008) and references therein considered learning from multiple annotation

results by different experts in which all the experts are imperfect; Sun et al. (2010) and Bucak

et al. (2011) considered weakly labeled data in the context of multi-label learning, whereas

Yang et al. (2013) considered weakly labeled data in the context of multi-instance multi-label

learning (Zhou et al., 2012).
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Unlike supervised learning where the training labels are complete, weak-label learning needs

to infer the integer-valued labels of the training examples, resulting in a difficult mixed-integer

programming (MIP). To solve this problem, many algorithms have been proposed, including global

optimization (Chapelle et al., 2008; Sindhwani et al., 2006) and convex SDP relaxations (Xu et al.,

2005; Xu and Schuurmans, 2005; De Bie and Cristianini, 2006; Guo, 2009). Empirical studies have

demonstrated their promising performance on small data sets. Although SDP convex relaxations can

reduce the training time complexity of global optimization methods from exponential to polynomial,

they still cannot handle medium-sized data sets having thousands of examples. Recently, several

algorithms resort to using non-convex optimization techniques (such as alternating optimization

methods (Andrews et al., 2003; Zhang et al., 2007; Li et al., 2009b) and constrained convex-concave

procedure (Collobert et al., 2006; Cheung and Kwok, 2006; Zhao et al., 2008). Although these

approaches are often efficient, they can only obtain locally optimal solutions and can easily get

stuck in local minima. Therefore, it is desirable to develop a scalable yet convex optimization

method for learning with large-scale weakly labeled data. Moreover, unlike several scalable graph-

based methods proposed for the transductive setup (Subramanya and Bilmes, 2009; Zhang et al.,

2009a; Vapnik, 1998), here we are more interested in inductive learning methods.

In this paper, we will focus on the binary support vector machines (SVM). Extending our prelim-

inary works in Li et al. (2009a,c), we propose a convex weakly labeled SVM (denoted WELLSVM

(WEakly LabeLed SVM)) via a novel “label generation” strategy. Instead of obtaining a label re-

lation matrix via SDP, WELLSVM maximizes the margin by generating the most violated label

vectors iteratively, and then combines them via efficient multiple kernel learning techniques. The

whole procedure can be formulated as a convex relaxation of the original MIP problem. Further-

more, it can be shown that the learned linear combination of label vector outer-products is in the

convex hull of the label space. Since the convex hull is the smallest convex set containing the

target non-convex set (Boyd and Vandenberghe, 2004), our formulation is at least as tight as the

convex SDP relaxations proposed in Xu et al. (2005), De Bie and Cristianini (2006) and Xu and

Schuurmans (2005). Moreover, WELLSVM involves a series of SVM subproblems, which can be

readily solved in a scalable and efficient manner via state-of-the-art SVM software such as LIBSVM

(Fan et al., 2005), SVM-perf (Joachims, 2006), LIBLINEAR (Hsieh et al., 2008) and CVM (Tsang

et al., 2006). Therefore, WELLSVM scales much better than existing SDP approaches or even some

non-convex approaches. Experiments on three common weak-label learning tasks (semi-supervised

learning, multi-instance learning, and clustering) validate the effectiveness and scalability of the

proposed WELLSVM.

The rest of this paper is organized as follows. Section 2 briefly introduces large margin weak-

label learning. Section 3 presents the proposed WELLSVM and analyzes its time complexity. Sec-

tion 4 presents detailed formulations on three weak-label learning problems. Section 5 shows some

comprehensive experimental results and the last section concludes.

In the following, M ≻ 0 (resp. M � 0) denotes that the matrix M is symmetric and positive

definite (pd) (resp. positive semidefinite (psd)). The transpose of vector / matrix (in both the input

and feature spaces) is denoted by the superscript ′, and 0,1 ∈ R
n denote the zero vector and the

vector of all ones, respectively. The inequality v = [v1, . . . ,vk]
′ ≥ 0 means that vi ≥ 0 for i = 1, . . . ,k.

Similarly, M≥ 0 means that all elements in the matrix M are nonnegative.
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2. Large-Margin Weak-Label Learning

We commence with the simpler supervised learning scenario. Given a set of labeled examples

D = {xi,yi}N
i=1 where xi ∈ X is the input and yi ∈ {±1} is the output, we aim to find a decision

function f : X →{±1} such that the following structural risk functional is minimized:

min
f

Ω( f )+C ℓ f (D). (1)

Here, Ω is a regularizer related to large margin on f , ℓ f (D) is the empirical loss on D , and C is a

regularization parameter that trades off the empirical risk and model complexity. Both Ω and ℓ f (·)
are problem-dependent. In particular, when ℓ f (·) is the hinge loss (or its variants), the obtained f is

a large margin classifier. It is notable that both Ω and L f (·) are usually convex. Thus, Equation (1)

is a convex problem whose globally optimal solution can be efficiently obtained via various convex

optimization techniques.

In weak-label learning, labels are not available on all N training examples, and so also need

to be learned. Let ŷ = [ŷ1, · · · , ŷN ]
′ ∈ {±1}N be the vector of (known and unknown) labels on all

the training examples. The basic idea of large-margin weak-label learning is that the structural risk

functional in Equation (1) is minimized w.r.t. both the labeling1 ŷ and decision function f . Hence,

Equation (1) is extended to

min
ŷ∈B

min
f

Ω( f )+C ℓ f ({xi, ŷi}N
i=1), (2)

where B is a set of candidate label assignments obtained from some domain knowledge. For exam-

ple, when the positive and negative examples are known to be approximately balanced, we can set

B = {ŷ : −β≤ ∑N
i=1 ŷi ≤ β} where β is a small constant controlling the class imbalance.

2.1 State-of-The-Art Approaches

As Equation (2) involves optimizing the integer variables ŷ, it is no longer a convex optimization

problem but a mixed-integer program. This can easily suffer from the local minimum problem.

Recently, a lot of efforts have been devoted to solve this problem. They can be grouped into three

categories. The first strategy optimizes Equation (2) via variants of non-convex optimization. Exam-

ples include alternating optimization (Zhang et al., 2009b; Li et al., 2009b; Andrews et al., 2003),

in which we alternatively optimize variable ŷ (or f ) by keeping the other variable f (or ŷ) con-

stant; constrained convex-concave procedure (CCCP) (also known as DC programming) (Horst and

Thoai, 1999; Zhao et al., 2008; Collobert et al., 2006; Cheung and Kwok, 2006), in which the non-

convex objective function or constraint is decomposed as a difference of two convex functions; local

combinatorial search (Joachims, 1999), in which the labels of two examples in opposite classes are

sequentially switched. These approaches are often computationally efficient. However, since they

are based on non-convex optimization, they may inevitably get stuck in local minima.

The second strategy obtains the globally optimal solution of Equation (2) via global optimiza-

tion. Examples include branch-and-bound (Chapelle et al., 2008) and deterministic annealing (Sind-

hwani et al., 2006). Since they aim at obtaining the globally optimal (instead of the locally optimal)

solution, excellent performance can be expected (Chapelle et al., 2008). However, their worst-case

1. To simplify notations, we write minŷ∈B , though indeed one only needs to minimize w.r.t. the unknown labels in ŷ.
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computational costs can scale exponentially as the data set size. Hence, these approaches can only

be applied to small data sets with just hundreds of training examples.

The third strategy is based on convex relaxations. The original non-convex problem is first

relaxed to a convex problem, whose globally optimal solution can be efficiently obtained. This

is then rounded to recover an approximate solution of the original problem. If the relaxation is

tight, the approximate solution obtained is close to the global optimum of the original problem

and good performance can be expected. Moreover, the involved convex programming solver has

a time complexity substantially lower than that for global optimization. A prominent example of

convex relaxation is the use of semidefinite programming (SDP) techniques (Xu et al., 2005; Xu

and Schuurmans, 2005; De Bie and Cristianini, 2006; Guo, 2009), in which a positive semidefinite

matrix is used to approximate the matrix of label outer-products. The time complexity of this SDP-

based strategy is O(N6.5) (Lobo et al., 1998; Nesterov and Nemirovskii, 1987), where N is the data

set size, and can be further reduced to O(N4.5) (Zhang et al., 2009b; Valizadegan and Jin, 2007).

However, this is still expensive for medium-sized data sets with several thousands of examples.

To summarize, existing weak-label learning approaches are not scalable or can be sensitive to

initialization. In this paper, we propose the WELLSVM algorithm to address these two issues.

3. WELLSVM

In this section, we first introduce the SVM dual which will be used as a basic reformulation of our

proposal, and then we present the general formulation of WELLSVM. Detailed formulations on

three common weak-label learning tasks will be presented in Section 4.

3.1 Duals in Large Margin Classifiers

In large margin classifiers, the inner minimization problem of Equation (2) is often cast in the dual

form. For example, for the standard SVM without offset, we have Ω = 1
2
‖w‖2 and ℓ f (D) is the

summed hinge loss. The inner minimization problem is then

min
w,ξ

1

2
||w||22 +C

N

∑
i=1

ξi

s.t. ŷiw
′φ(xi)≥ 1−ξi, ξi ≥ 0, i = 1 . . . ,N,

where φ(xi) is the feature map induced by kernel κ, and its dual is

max
α

α′1− 1

2
α′
(

K⊙ ŷŷ′
)

α

s.t. C1≥ α≥ 0,

where α ∈ R
N is the dual variable, K ∈ R

N×N is the kernel matrix defined on the N samples, and

⊙ is the element-wise product. For more details on the duals of large margin classifiers, interested

readers are referred to Schölkopf and Smola (2002) and Cristianini et al. (2002).

In this paper, we make the following assumption on this dual.

Assumption 1 The dual of the inner minimization of Equation (2) can be written as: maxα∈A G(α, ŷ),
where α = [α1, . . . ,αN ]

′ contains the dual variables and

• A is a convex set;
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• G(α, ŷ) is a concave function in α for any fixed ŷ;

• gy(α) = −G(α,y) is λ-strongly convex and M-Lipschitz. In other words, ∇2gy(α)−λI � 0,

where I is the identity matrix, and ‖gy(α)−gy(ᾱ)‖ ≤M‖α− ᾱ‖, ∀y ∈ B, α, ᾱ ∈ A;

• ∀ŷ ∈ B , lb≤maxα∈A G(α, ŷ)≤ ub, where lb and ub are polynomial in N;

• G(α, ŷ) can be rewritten as Ḡ(α,M), where M is a psd matrix, and Ḡ is concave in α and

linear in M.

With this assumption, Equation (2) can be written as

min
ŷ∈B

max
α∈A

G(α, ŷ), (3)

Assume that the kernel matrix K is pd (i.e., the smallest eigenvalue λmin > 0) and all its en-

tries are bounded (|Ki j| ≤ υ for some υ). It is easy to see that the following SVM variants satisfy

Assumption 1.

• Standard SVM without offset: We have

A = {α |C1≥ α≥ 0},

G(α, ŷ) = α′1− 1

2
α′
(

K⊙ ŷŷ′
)

α,

∇2gy(α) = K⊙yy′ � λmin(I⊙yy′) = λminI,

‖gy(α)−gy(ᾱ)‖ ≤ (1+CυN)
√

N‖α− ᾱ‖,
0 ≤ max

α∈A
G(α, ŷ)≤CN,

Ḡ(α,Mŷ) = α′1− 1

2
α′
(

K⊙Mŷ

)

α, where Mŷ = ŷŷ′.

• ν-SVM (Schölkopf and Smola, 2002): We have

A = {α | α≥ 0,α′1 = 1},

G(α, ŷ) = −1

2
α′
(

(K+
1

C
I)⊙ ŷŷ′

)

α,

∇2gy(α) =

(

K+
1

C
I

)

⊙yy′ �
(

λmin +
1

C

)

(

I⊙yy′
)

=

(

λmin +
1

C

)

I,

‖gy(α)−gy(ᾱ)‖ ≤
(

υ+
1

C

)

N
√

N‖α− ᾱ‖,

−1

2

(

υ+
1

C

)

≤ max
α∈A

G(α, ŷ)≤ 0,

Ḡ(α,Mŷ) = −1

2
α′
(

(K+
1

C
I)⊙Mŷ

)

α.
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3.2 WELLSVM

Interchanging the order of maxα∈A and minŷ∈B in Equation (3), we obtain the proposed WELLSVM:

(WELLSVM) max
α∈A

min
ŷ∈B

G(α, ŷ). (4)

Using the minimax theorem (Kim and Boyd, 2008), the optimal objective of Equation (3) upper-

bounds that of Equation (4). Moreover, Equation (4) can be transformed as

max
α∈A

{

maxθ θ (5)

s.t. G(α, ŷt)≥ θ, ∀ŷt ∈ B
}

,

from which we obtain the following Proposition.

Proposition 1 The objective of WELLSVM can be rewritten as the following optimization prob-

lem:

min
µ∈M

max
α∈A

∑
t:ŷt∈B

µtG(α, ŷt), (6)

where µ is the vector of µt’s, M is the simplex {µ | ∑t µt = 1,µt ≥ 0}, and ŷt ∈ B .

Proof For the inner optimization in Equation (5), let µt ≥ 0 be the dual variable for each constraint.

Its Lagrangian can be obtained as

θ+ ∑
t:ŷt∈B

µt

(

G(α, ŷt)−θ
)

.

Setting the derivative w.r.t. θ to zero, we have ∑t µt = 1. We can then replace the inner optimization

subproblem with its dual and Equation (5) becomes:

max
α∈A

min
µ∈M

∑
t:ŷt∈B

µtG(α, ŷt) = min
µ∈M

max
α∈A

∑
t:ŷt∈B

µtG(α, ŷt).

Here, we use the fact that the objective function is convex in µ and concave in α.

Recall that G(α, ŷ) is concave in α. Thus, the constraints in Equation (5) are convex. It is

evident that the objective in Equation (5) is linear in both α and θ. Therefore, Equation (5) is a

convex problem. In other words, WELLSVM is a convex relaxation of Equation (2).

3.3 Tighter than SDP Relaxations

In this section, we compare our minimax relaxation with SDP relaxations. It is notable that the

SVM without offset is always employed by previous SDP relaxations (Xu et al., 2005; Xu and

Schuurmans, 2005; De Bie and Cristianini, 2006).

Recall the symbols in Section 3.1. Define

Y0 =
{

M |M = Mŷ, ŷ ∈ B
}

.
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The original mixed-integer program in Equation (3) is the same as

min
M∈Y0

max
α∈A

Ḡ(α,M). (7)

Define Y1 =
{

M |M = ∑t:ŷt∈B µtMŷt
, µ ∈M

}

. Our minimax relaxation in Equation (6) can be

written as

min
µ∈M

max
α∈A

∑
t:ŷt∈B

µtḠ(α,Mŷt
) = min

µ∈M
max
α∈A

Ḡ

(

α, ∑
t:ŷt∈B

µtMŷt

)

= min
M∈Y1

max
α∈A

Ḡ(α,M). (8)

On the other hand, the SDP relaxations in Xu et al. (2005); Xu and Schuurmans (2005) and De Bie

and Cristianini (2006) are of the form

min
M∈Y2

max
α∈A

Ḡ(α,M),

where Y2 =
{

M |M� 0,M∈MB

}

, and MB is a convex set related to B . For example, in the context

of clustering, Xu et al. (2005) used B = {ŷ|−β≤ 1′ŷ≤ β}, where β is a parameter controlling the

class imbalance, and MB is defined as

M
clustering

B
=

{

M = [mi j] | −1≤ mi j ≤ 1;mii = 1,mi j = m ji,

mik ≥ mi j +m jk−1,m jk ≥−mi j−mik−1,

−β≤
N

∑
i=1

mi j ≤ β, ∀i, j,k = 1, . . . ,N
}

.

It is easy to verify that Y0 ⊆ Y2 and Y2 is convex. Similarly, in semi-supervised learning, Xu and

Schuurmans (2005) and De Bie and Cristianini (2006) defined MB as a subset2 of M
clustering

B
. Again,

Y0 ⊆ Y2 and Y2 is convex.

Theorem 1 The relaxation of WELLSVM is at least as tight as the SDP relaxations in Xu et al.

(2005); Xu and Schuurmans (2005) and De Bie and Cristianini (2006).

Proof Note that Y1 is the convex hull of Y0, that is, the smallest convex set containing Y0 (Boyd and

Vandenberghe, 2004). Therefore, Equation (8) gives the tightest convex relaxation of Equation (7),

that is, Y1 ⊆ Y2. In other words, our relaxation is at least as tight as SDP relaxations.

3.4 Cutting Plane Algorithm by Label Generation

It appears that existing convex optimization techniques can be readily used to solve the convex prob-

lem in Equation (6), or equivalently Equation (5). However, note that there can be an exponential

number of constraints in Equation (5), and so a direct optimization is computationally intractable.

2. For a more precise definition, interested readers are referred to Xu and Schuurmans (2005) and De Bie and Cristianini

(2006).
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Algorithm 1 Cutting plane algorithm for WELLSVM.

1: Initialize ŷ and C = /0.

2: repeat

3: Update C ←{ŷ}⋃C .

4: Obtain the optimal α from Equation (9).

5: Generate a violated ŷ.

6: until G(α, ŷ) > miny∈C G(α,y)− ε (where ε is a small constant) or the decrease of objective

value is smaller than a threshold.

Fortunately, typically not all these constraints are active at optimality, and including only a subset

of them can lead to a very good approximation of the original optimization problem. Therefore, we

can apply the cutting plane method (Kelley, 1960).

The cutting plane algorithm is described in Algorithm 1. First, we initialize a label vector ŷ and

the working set C to {ŷ}, and obtain α from

min
µ∈M

max
α∈A

∑
t:ŷt∈C

µtG(α, ŷt) (9)

via standard supervised learning methods. Then, a violated label vector ŷ in Equation (5) is gener-

ated and added to C . The process is repeated until the termination criterion is met. Since the size

of the working set C is often much smaller than that of B , one can use existing convex optimization

techniques to obtain α from Equation (9).

For the non-convex optimization methods reviewed in Section 2.1, a new label assignment for

the unlabeled data is also generated in each iteration. However, they are very different from our

proposal. First, those algorithms do not take the previous label assignments into account, while,

as will be seen in Section 4.1.2, our WELLSVM aims to learn a combination of previous label

assignments. Moreover, they update the label assignment to approach a locally optimal solution,

while our WELLSVM aims to obtain a tight convex relaxation solution.

3.5 Computational Complexity

The key to analyzing the running time of Algorithm 1 is its convergence rate, and we have the

following Theorem.

Theorem 2 Let p(t) be the optimal objective value of Equation (9) at the t-th iteration. Then,

p(t+1) ≤ p(t)−η, (10)

where η =
(

−c+
√

c2+4ε
2

)2

, and c = M
√

2/λ.

Proof is in Appendix A. From Theorem 2, we can obtain the following convergence rate.

Proposition 2 Algorithm 1 converges in no more than
p(1)−p∗

η iterations, where p∗ is the optimal

objective value of WELLSVM.
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According to Assumption 1, we have p∗=minŷ∈B maxα∈A G(α, ŷ)≥ lb and p(1)=maxα∈A G(α, ŷ)≤
ub. Moreover, recall that lb and ub are polynomial in N. Thus, Proposition 2 shows that with the

use of the cutting plane algorithm, the number of active constraints only scales polynomially in N.

In particular, as discussed in Section 3.1, for the ν-SVM, lb =− 1
2
(υ+ 1

C
) and ub = 0, both of which

are unrelated to N. Thus, the number of active constraints only scales as O(1).

Proposition 2 can be further refined by taking the search effort of a violated label into account.

The proof is similar to that of Theorem 2.

Proposition 3 Let εr ≥ ε, ∀r = 1,2, . . ., be the magnitude of the violation of a violated label in the

r-th iteration, that is, εr = miny∈Cr
G(α,y)−G(α, ŷr), where Cr and ŷr denote the set of violated

labels and the violated label obtained in the r-th iteration, respectively. Let ηr =
(

−c+
√

c2+4εr

2

)2

.

Then, Algorithm 1 converges in no more than R iterations where ∑R
r=1 ηr ≥ p(1)− p∗.

Hence, the more effort is spent on finding a violated label, the faster is the convergence. This

represents a trade-off between the convergence rate and cost in each iteration.

We will show in Section 4 that step 4 of Algorithm 1 can be addressed via multiple kernel

learning techniques which only involve a series of SVM subproblems that can be solved efficiently

by state-of-the-art SVM software such as LIBSVM (Fan et al., 2005) and LIBLINEAR (Hsieh et al.,

2008), while step 5 can be efficiently addressed by sorting. Therefore, the total time complexity of

WELLSVM scales as the existing SVM solvers, and is significantly faster than SDP relaxations.

4. Three Weak-Label Learning Problems

In this section, we present the detailed formulations of WELLSVM on three common weak-label

learning tasks, namely, semi-supervised learning (Section 4.1), multi-instance learning (Section

4.2), and clustering (Section 4.3).

4.1 Semi-Supervised Learning

In semi-supervised learning, not all the training labels are known. Let DL = {xi,yi}l
i=1 and DU =

{x j}N
j=l+1 be the sets of labeled and unlabeled examples, respectively, and L = {1, . . . , l} (resp.

U = {l +1, . . . ,N}) be the index set of the labeled (resp. unlabeled) examples. In semi-supervised

learning, unlabeled data are typically much more abundant than labeled data, that is, N − l ≫ l.

Hence, one can obtain a trivially “optimal” solution with infinite margin by assigning all the unla-

beled examples to the same label. To prevent such a useless solution, Joachims (1999) introduced

the balance constraint
1′ŷU

N− l
=

1′yL

l
,

where ŷ = [ŷ1, · · · , ŷN ]
′ is the vector of learned labels on both labeled and unlabeled examples,

yL = [y1, . . . ,yl]
′, and ŷU = [ŷl+1, . . . , ŷN ]

′. Let Ω = 1
2
‖w‖2 and ℓ f (D) be the sum of hinge loss

values on both labeled and unlabeled data, Equation (2) leads to

min
ŷ∈B

min
w,ξ

1

2
||w||22 +C1

l

∑
i=1

ξi +C2

N

∑
i=l+1

ξi

s.t. ŷiw
′φ(xi)≥ 1−ξi, ξi ≥ 0, i = 1 . . . ,N,
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where B = {ŷ | ŷ = [ŷL ; ŷU ], ŷL = yL , ŷU ∈ {±1}N−l;
1′ŷU

N−l
= 1′yL

l
}, and C1,C2 trade off model com-

plexity and empirical losses on the labeled and unlabeled data, respectively. The inner minimization

problem can be rewritten in its dual, as:

minŷ∈B maxα∈A G(α, ŷ) := 1′α− 1

2
α′
(

K⊙ ŷŷ′
)

α, (11)

where α = [α1, . . . ,αN ]
′ is the vector of dual variables, and A = {α

∣

∣C1 ≥ αi ≥ 0,C2 ≥ α j ≥ 0, i ∈
L , j ∈U}.

Using Proposition 1, we have

min
µ∈M

max
α∈A

1′α− 1

2
α′
(

∑
t:ŷt∈B

µtK⊙ ŷt ŷ
′
t

)

α, (12)

which is a convex relaxation of Equation (11). Note that G(α, ŷ) can be rewritten as Ḡ(α,My) =

1′α− 1
2
α′
(

K⊙My

)

α, where Ḡ is concave in α and linear in My. Hence, according to Theorem

1, WELLSVM is at least as tight as the SDP relaxations in Xu and Schuurmans (2005) and De Bie

and Cristianini (2006).

Notice the similarity with standard SVM, which involves a single kernel matrix K⊙ ŷŷ′. Hence,

Equation (12) can be regarded as multiple kernel learning (MKL) (Lanckriet et al., 2004), where

the target kernel matrix is a convex combination of |B| base kernel matrices {K⊙ ŷt ŷ
′
t}t:ŷt∈B , each

of which is constructed from a feasible label vector ŷt ∈ B .

4.1.1 ALGORITHM

From Section 3, the cutting plane algorithm is used to solve Equation (12). There are two important

issues that have to be addressed in the use of cutting plane algorithms. First, how to efficiently

solve the MKL optimization problem? Second, how to efficiently find a violated ŷ? These will be

addressed in Sections 4.1.2 and 4.1.3, respectively.

4.1.2 MULTIPLE LABEL-KERNEL LEARNING

In recent years, a lot of efforts have been devoted on efficient MKL approaches. Lanckriet et al.

(2004) first proposed the use of quadratically constrained quadratic programming (QCQP) in MKL.

Bach et al. (2004) showed that an approximate solution can be efficiently obtained by using se-

quential minimization optimization (SMO) (Platt, 1999). Recently, Sonnenburg et al. (2006) pro-

posed a semi-infinite linear programming (SILP) formulation which allows MKL to be iteratively

solved with standard SVM solver and linear programming. Rakotomamonjy et al. (2008) proposed

a weighted 2-norm regularization with additional constraints on the kernel weights to encourage

a sparse kernel combination. Xu et al. (2009) proposed the use of the extended level method to

improve its convergence, which is further refined by the MKLGL algorithm (Xu et al., 2010). Ex-

tension to nonlinear MKL combinations is also studied recently in Kloft et al. (2009).

Unlike standard MKL problems which try to find the optimal kernel function/matrix for a given

set of labels, here, we have to find the optimal label kernel matrix. In this paper, we use an adaptation

of the MKLGL algorithm (Xu et al., 2010) to solve this multiple label-kernel learning (MLKL)

problem. More specifically, suppose that the current working set is C = {ŷ1, . . . , ŷT}. Note that the

feature map corresponding to the base kernel matrix K⊙ ŷt ŷ
′
t is xi 7→ ŷtiφ(xi). The MKL problem
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in Equation (12) thus corresponds to the following primal optimization problem:

min
µ∈M ,W=[w1,...,wT ],ξ

1

2

T

∑
t=1

1

µt

||wt ||2 +C1

l

∑
i=1

ξi +C2

N

∑
i=l+1

ξi (13)

s.t.
T

∑
t=1

ŷtiw
′
tφ(xi)≥ 1−ξi, ξi ≥ 0, i = 1, . . . ,N.

It is easy to verify that its dual can be written as

min
µ∈M

max
α∈A

1′α− 1
2
α′
(

∑T
t=1 µtK⊙ ŷt ŷ

′
t

)

α,

which is the same as Equation (12). Following MKLGL, we can solve Equation (12) (or, equiva-

lently, Equation (13)) by iterating the following two steps until convergence.

1. Fix the mixing coefficients µ of the base kernel matrices and solve Equation (13). By setting

w̃ = [ w1√
µ1
, . . . , wT√

µT
]′, x̃i = [

√
µ1φ(xi),

√
µ2ŷ1iŷ2iφ(xi), . . . ,

√
µT ŷ1iŷTiφ(xi)]

′ and ỹ = ŷ1, Equa-

tion (13) can be rewritten as

min
w̃,ξ

1

2
||w̃||2 +C1

l

∑
i=1

ξi +C2

N

∑
i=l+1

ξi

s.t. ỹiw̃
′x̃i ≥ 1−ξi, ξi ≥ 0, i = 1, . . . ,N,

which is similar to the primal of the standard SVM and can be efficiently handled by state-of-

the-art SVM solvers.

2. Fix wt’s and update µ in closed-form, as

µt =
‖wt‖

∑T
t ′=1 ‖wt ′‖

, t = 1, . . . ,T.

In our experiments, this always converges in fewer than 100 iterations. With the use of warm-

start, even faster convergence can be expected.

4.1.3 FINDING A VIOLATED LABEL ASSIGNMENT

The following optimization problem corresponds to finding the most violated ŷ

min
ŷ∈B

G(α, ŷ) = 1′α− 1

2
α′
(

K⊙ ŷŷ′
)

α. (14)

The first term in the objective does not relate to ŷ, so Equation (14) is rewritten as

max
ŷ∈B

1

2
α′
(

K⊙ ŷŷ′
)

α.

However, this is a concave QP and cannot be solved efficiently. Note that while the use of the most

violated constraint may lead to faster convergence, the cutting plane algorithm only requires the
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addition of a violated constraint at each iteration (Kelley, 1960; Tsochantaridis et al., 2006). Hence,

we propose in the following a simple and efficient method for finding a violated label assignment.

Consider the following equivalent problem:

max
ŷ∈B

ŷ′Hŷ, (15)

where H = K⊙ (αα′) is a psd matrix. Let ȳ ∈ C be the following suboptimal solution of Equa-

tion (15)

ȳ = argmaxŷ∈C ŷ′Hŷ.

Consider an optimal solution of the following optimization problem

y∗ = argmaxŷ∈B ŷ′Hȳ. (16)

We have the following proposition.

Proposition 4 y∗ is a violated label assignment if ȳ′Hy∗ 6= ȳ′Hȳ.

Proof From ŷ′Hy∗ 6= ȳ′Hȳ, we have y∗ 6= ȳ. Suppose that (y∗)′Hy∗ ≤ ȳ′Hȳ, then (y∗)′Hy∗+
ȳ′Hȳ− 2(y∗)′Hȳ ≤ 2ȳ′Hȳ− 2(y∗)′Hȳ < 0 which contradicts with (y∗)′Hy∗+ ȳ′Hȳ− 2(y∗)′Hȳ =
(y∗− ȳ)′H(y∗− ȳ)≥ 0. So, (y∗)′Hy∗ > ȳ′Hȳ which indicates y∗ is a violated label assignment.

As for solving Equation (16), it is a integer linear program for ŷ. We can rewrite this as

max
ŷ

r′ŷ = r′L ŷL + r′U ŷU (17)

s.t. ŷL = yL , ŷU ∈ {±1}N−l,
1′ŷU

N− l
=

1′yL

l
,

where r = Hȳ. Since ŷL is constant, we have the following proposition.

Proposition 5 At optimality, ŷi ≥ ŷ j if ri > r j, i, j ∈U.

Proof Assume, to the contrary, that the optimal ŷ does not have the same sorted order as r. Then,

there are two label vectors ŷi and ŷ j, with ri > r j but ŷi < ŷ j. Then riŷi + r jŷ j < riŷ j + r jŷi as

(ri− r j)(ŷi− ŷ j)< 0. Thus, ŷ is not optimal, a contradiction.

Thus, with Proposition 5, we can solve Equation (17) by first sorting in ascending order. The

label assignment of ŷi’s aligns with the sorted values of ri’s for i ∈ U. To satisfy the balance

constraint
1′ŷU

N−l
= 1′yL

l
, the first

⌈

1
2

(

(N− l)(1− 1
l
1′yL)

)⌉

of ŷi’s are assigned −1, while the last

(N − l)−
⌈

1
2

(

(N− l)(1− 1
l
1′yL)

)⌉

of them are assigned 1. Therefore, the label assignment in

problem Equation (17) can be determined exactly and efficiently by sorting.

To find a violated label, we first get the ȳ ∈ C , which takes O(N2) (resp. O(N)) time when

a nonlinear (resp. linear)3 kernel is used; next we obtain the y∗ in Equation (16), which takes

3. When the linear kernel is used, Equation (15) can be rewritten as max
ŷ∈C

(α⊙ ŷ)′X′X(α⊙ ŷ), where X = [x1, . . . ,xN ].

Hence, one can first compute o = X(α⊙ ŷ) and then compute o′o. This takes a total of O(N) time. A similar trick

can be used in checking if y∗ is a violated label assignment.
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O(N logN) time; and finally check if y∗ is a violated label assignment using Proposition 4, which

takes O(N2) (resp. O(N)) time for a nonlinear (resp. linear) kernel. In total, this takes O(N2) (resp.

O(N logN)) time for nonlinear (resp. linear) kernel. Therefore, our proposal is computationally

efficient.

Finally, after finishing the training process, we use f (x) = ∑T
t=1 w′tφ(x) as the prediction func-

tion. Algorithm 2 summarizes the pseudocode of WELLSVM for semi-supervised learning.

Algorithm 2 WELLSVM for semi-supervised learning.

1: Initialize ŷ and C = /0.

2: repeat

3: Update C ←{y∗}⋃C .

4: Obtain the optimal {µ,W} or α from Equation (13).

5: Find the optimal solution y∗ of Equation (16).

6: until G(α,y∗)> miny∈C G(α,y)−ε or the decrease of objective value is smaller than a thresh-

old.

7: Output f (x) = ∑T
t=1 w′tφ(x) as our prediction function.

4.2 Multi-Instance Learning

In this section, we consider the second weakly labeled learning problem, namely, multi-instance

learning (MIL), where examples are bags containing multiple instances. More formally, we have a

data set D = {Bi,yi}m
i=1, where Bi = {xi,1, . . . ,xi,mi

} is the input bag, yi ∈ {±1} is the output and

m is the number of bags. Without loss of generality, we assume that the positive bags are ordered

before the negative bags, that is, yi = 1 for all 1 ≤ i ≤ p and −1 otherwise. Here, p and m− p are

the numbers of positive and negative bags, respectively. In traditional MIL, a bag is labeled positive

if it contains at least one key (or positive) instance, and negative otherwise. Thus, we only have the

bag labels available, while the instance labels are only implicitly known.

Identification of the key instances from positive bags can be very useful in CBIR. Specifically, in

CBIR, the whole image (bag) can be represented by multiple semantic regions (instances). Explicit

identification of the regions of interest (ROIs) can help the user in recognizing images he/she wants

quickly especially when the system returns a large amount of images. Consequently, the problem

of determining whether a region is ROI can be posed as finding the key instances in MIL.

Traditional MIL implies that the label of a bag is determined by its most representative key

instance, that is, f (Bi) = max{ f (xi,1), · · · , f (xi,mi
)}. Let Ω = 1

2
‖w‖2

2 and ℓ f (D) be the sum of hinge

losses on the bags, Equation (2) then leads to the MI-SVM proposed in Andrews et al. (2003):

min
w,ξ

1

2
||w||22 +C1

p

∑
i=1

ξi +C2

m

∑
i=p+1

ξi (18)

s.t. yi max
1≤ j≤mi

w′φ(xi, j)≥ 1−ξi, ξi ≥ 0, i = 1, . . . ,m.

Here, C1 and C2 trade off the model complexity and empirical losses on the positive and negative

bags, respectively.

For a positive bag Bi, we use the binary vector di = [di,1, · · · ,di,mi
]′ ∈ {0,1}mi to indicate which

instance in Bi is its key instance. Following the traditional MIL setup, we assume that each pos-
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itive bag has only one key instance,4 and so ∑
mi

j=1 di, j = 1. In the following, let s = [d1; . . . ;dp],
and ∆ be its domain. Moreover, note that max1≤ j≤mi

w′φ(xi, j) in Equation (18) can be written as

maxdi ∑
mi

j=1 di, jw
′φ(xi, j).

For a negative bag Bi, all its instances are negative and the corresponding constraint Equa-

tion (18) can be replaced by −w′φ(xi, j) ≥ 1− ξi for every instance xi, j in Bi. Moreover, we

relax the problem by allowing the slack variables ξi’s to be different for different instances in

Bi. This leads to a set of slack variables {ξs(i, j)}i=p+1,...,m; j=1,...,mi
, where the indexing function

s(i, j) = Ji−1− Jp + j + p ranges from p+ 1 to q = N− Jp + p and Ji = ∑i
t=1 mt (J0 is set to 0).

Combining all these together, Equation (18) can be rewritten as

min
s∈∆

min
w,ξ

1

2
||w||22 +C1

p

∑
i=1

ξi +C2

m

∑
i=p+1

mi

∑
j=1

ξs(i, j)

s.t.
mi

∑
j=1

w′di, jφ(xi, j)≥ 1−ξi, ξi ≥ 0, i = 1, . . . , p,

−w′φ(xi, j)≥ 1−ξs(i, j), ξs(i, j) ≥ 0, i = p+1, . . . ,m, j = 1, . . . ,mi.

The inner minimization problem is usually written in its dual, as

max
α∈A

G(α,s) = 1′α− 1
2
(α⊙ ŷ)′

(

Ks
)

(α⊙ ŷ), (19)

where α = [α1, . . . ,αq]
′ ∈ R

q is the vector of dual variables, A = {α | C1 ≥ αi ≥ 0,C2 ≥ α j ≥
0, i = 1, . . . , p; j = p+1, . . . ,q}, ŷ = [1p,−1q−p] ∈ R

q, Ks ∈ R
q×q is the kernel matrix where Ks

i j =
(ψs

i )
′(ψs

j) with

ψs
i =

{

∑
mi

j=1 di, jφ(xi, j) i = 1, . . . , p,

φ(xs(i, j)) i = p+1, . . . ,m; j = 1, . . . ,mi.
(20)

Thus, Equation (19) is a mixed-integer programming problem. With Proposition 1, we have

min
µ∈M

max
α∈A

1′α− 1

2
(α⊙ ŷ)′ ∑

t:st∈∆

(

µtK
st

)

(α⊙ ŷ), (21)

which is a convex relaxation of Equation (19).

4.2.1 ALGORITHM

Similar to semi-supervised learning, the cutting plane algorithm is used for solving Equation (21).

Recall that there are two issues in the use of cutting-plane algorithms, namely, efficient multiple

label-kernel learning and the finding of a violated label assignment. For the first issue, suppose

that the current C is {s1, . . . ,sT}, the MKL problem in Equation (21) corresponds to the following

4. Sometimes, one can allow for more than one key instances in a positive bag (Wang et al., 2008; Xu and Frank, 2004;

Zhou and Zhang, 2007; Zhou et al., 2012). The proposed method can be extended to this case by setting ∑
mi

j=1 di, j = v,

where v is the known number of key instances.
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primal problem:

min
µ∈M ,W=[w1;...;wT ],ξ

1

2

T

∑
t=1

1

µt

||wt ||2 +C1

p

∑
i=1

ξi +C2

m

∑
i=p+1

mi

∑
j=1

ξs(i, j) (22)

s.t.
T

∑
t=1

(

mi

∑
j=1

w′td
t
i, jφ(xi, j)

)

≥ 1−ξi, ξi ≥ 0, i = 1, . . . , p,

−
T

∑
t=1

w′tφ(xs(i, j))≥ 1−ξs(i, j), ξs(i, j) ≥ 0, i = p+1, . . . ,m; j = 1, . . . ,mi.

Therefore, we can still apply the MKLGL algorithm to solve MKL problem in Equation (21) effi-

ciently. As for the second issue, one needs to solve the following problem:

min
s∈∆

1′α− 1

2
(α⊙ ŷ)′Ks(α⊙ ŷ),

which is equivalent to

max
s∈∆

∑
q

i, j=1
αiα jŷiŷ j(ψ

s
i )
′(ψs

j).

According to the definition of ψ in Equation (20), this can be rewritten as

max
s∈∆

∥

∥

∥

∥

∥

p

∑
i=1

αi

mi

∑
j=1

di, jφ(xi, j)−
m

∑
i=p+1

mi

∑
j=1

αs(i, j)φ(xs(i, j))

∥

∥

∥

∥

∥

2

,

which can be reformulated as

max
s∈∆

s′Hs+ τ′s, (23)

where H∈RJp×Jp and τ∈RJp . Let v(i, j) = Ji−1+ j, i∈ 1, . . . , p, j ∈ 1, . . . ,mi, we have Hv(i, j),v(î, ĵ) =

αiαîφ(xi, j)
′φ(xî, ĵ) and τv(i, j) =−2αiφ(xi, j)

′(∑m
i=p+1 ∑

mi

j=1 αs(i, j)φ(xs(i, j))). It is easy to verify that H

is psd.

Equation (23) is also a concave QP whose globally optimal solution, or equivalently the most

violated s, is intractable in general. In the following, we adapt a variant of the simple yet efficient

method proposed in Section 4.1.3 to find a violated s. Let s̄ ∈ C , where C = {s1, . . . ,sT}, be the

following suboptimal solution of Equation (23): s̄ = argmaxs∈C s′Hs+ τ′s. Let s∗ be an optimal

solution of the following optimization problem

s∗ = argmaxs∈∆ s′Hs̄+
τ′s
2
. (24)

Proposition 6 s∗ is a violated label assignment when (s∗)′Hs̄+ τ′s∗
2

> s̄′Hs̄+ τ′ s̄
2

.

Proof From (s∗)′Hs̄+ τ′s∗
2

> s̄′Hs̄+ τ′ s̄
2

, we have s∗ 6= s̄. Suppose that (s∗)′Hs∗+ τ′s∗ ≤ s̄′Hs̄+ τ′s̄.

Then
(

(s∗)′Hs∗+ τ′s∗
)

+
(

s̄′Hs̄+ τ′s̄
)

−
[

2(s∗)′Hs̄+ τ′s̄+ τ′s∗
]

≤ 2
[

s̄′Hs̄+ τ′s̄− (s∗)′Hs̄− τ′s̄
2
− τ′s∗

2

]

< 0,
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which contradicts
(

(s∗)′Hs∗+ τ′s∗
)

+
(

s̄′Hs̄+ τ′s̄
)

−
[

2(s∗)′Hs̄+ τ′s̄+ τ′s∗
]

= (s∗− s̄)′H(s∗− s̄)

≥ 0.

So (s∗)′Hs∗+ τ′(s∗)> s̄′Hs̄+ τ′s̄, which indicates that s∗ is a violated label assignment.

Similar to Equation (16), Equation (24) is also a linear integer program but with different con-

straints. We now show that the optimal s∗ in Equation (24) can still be solved via sorting. Notice

that Equation (24) can be reformulated as

max
s

r′s (25)

s.t. 1′di = 1,di ∈ {0,1}mi , i = 1, . . . , p,

where r = Hs̄+ τ
2
. As can be seen, di’s are decoupled in both the objective and constraints of Equa-

tion (25). Therefore, one can obtain its optimal solution by solving the p subproblems individually

max
di

mi

∑
j=1

rJi−1+ jdi, j

s.t. 1′di = 1,di ∈ {0,1}mi .

It is evident that the optimal di can be obtained by assigning di,î = 1, where î is the index of the

largest element among [rJi−1+1, . . . ,rJi−1+mi
], and the rest to zero. Similar to semi-supervised learn-

ing, the complexity to find a violated s scales as O(N2) (resp. O(N logN)) when the nonlinear (resp.

linear) kernel is used, and so is computationally efficient.

On prediction, each instance x can be treated as a bag, and its output from the WELLSVM

is given by f (x) = ∑T
t=1 w′tφ(x). Algorithm 3 summarizes the pseudo codes of WELLSVM for

multi-instance learning.

Algorithm 3 WELLSVM for multi-instance learning.

1: Initialize s∗ and C = /0.

2: repeat

3: Update C ←{s∗}⋃C .

4: Obtain the optimal {µ,W} or α from Equation (22).

5: Find the optimal solution s∗ of Equation (24).

6: until G(α,s∗)>mins∈C G(α,s)−ε or the decrease of objective value is smaller than a threshold.

7: Output f (x) = ∑T
t=1 w′tφ(x) as the prediction function.

4.3 Clustering

In this section, we consider the third weakly labeled learning task, namely, clustering, where all the

class labels are unknown. Similar to semi-supervised learning, one can obtain a trivially “optimal”

solution with infinite margin by assigning all patterns to the same cluster. To prevent such a useless

solution, Xu et al. (2005) introduced a class balance constraint

−β≤ 1′ŷ≤ β,
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where ŷ = [ŷ1, . . . , ŷN ]
′ is the vector of unknown labels, and β≥ 0 is a user-defined constant control-

ling the class imbalance.

Let Ω( f ) = 1
2
‖w‖2

2 and ℓ f (D) be the sum of hinge losses on the individual examples. Equa-

tion (2) then leads to

min
ŷ∈B

min
w,ξ

1

2
||w||22 +C

N

∑
i=1

ξi (26)

s.t ŷiw
′φ(xi)≥ 1−ξi, ξi ≥ 0, i = 1 . . . ,N,

where B = {ŷ | ŷi ∈ {+1,−1}, i = 1, . . . ,N;−β ≤ 1′ŷ ≤ β}. The inner minimization problem is

usually rewritten in its dual

min
ŷ∈B

max
α

N

∑
i=1

αi−
1

2

N

∑
i, j=1

αiα j

(

ŷiŷ jφ(xi)
′φ(x j)

)

(27)

s.t. C ≥ αi ≥ 0, i = 1 . . . ,N,

where αi is the dual variable for each inequality constraint in Equation (26). Let α = [α1, · · · ,αN ]
′

be the vector of dual variables, and A = {α
∣

∣C1≥ α≥ 0}. Then Equation (27) can be rewritten in

matrix form as

minŷ∈B maxα∈A G(α, ŷ) := 1′α− 1

2
α′
(

K⊙ ŷŷ′
)

α. (28)

This, however, is still a mixed integer programming problem.

With Proposition 1, we have

min
µ∈M

max
α∈A

1′α− 1

2
α′
(

∑
t:ŷt∈B

µtK⊙ ŷt ŷ
′
t

)

α (29)

as a convex relaxation of Equation (28). Note that G(α, ŷ) can be reformulated by Ḡ(α,My) =

1′α− 1
2
α′
(

K⊙My

)

α, where Ḡ is concave in α and linear in My. Hence, according to Theorem 1,

WELLSVM is at least as tight as the SDP relaxation in Xu et al. (2005).

4.3.1 ALGORITHM

The cutting plane algorithm can still be applied for clustering. Similar to semi-supervised learning,

the MKL can be formulated as the following primal problem:

min
µ∈M ,W=[w1;...;wT ],ξ

1

2

T

∑
t=1

1

µt

||wt ||2 +C
N

∑
i=1

ξi (30)

s.t.
T

∑
t=1

ŷtiw
′
tφ(xi)≥ 1−ξi, ξi ≥ 0, i = 1, . . . ,N,

and its dual is

min
µ∈M

max
α∈A

1′α− 1
2
α′
(

∑T
t=1 µtK⊙ ŷt ŷ

′
t

)

α,
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which is the same as Equation (29). Therefore, MKLGL algorithm can still be applied for solving

the MKL problem in Equation (29) efficiently.

As for finding a violated label assignment, let ȳ ∈ C be

ȳ = argmaxŷ∈C ŷ′Hŷ,

where H = K⊙ (αα′) is a positive semidefinite matrix. Consider an optimal solution of the follow-

ing optimization problem

y∗ = argmaxŷ∈B ŷ′Hȳ. (31)

With Proposition 4, we obtain that y∗ is a violated label assignment if ȳ′Hy∗ ≥ ȳ′Hȳ.

Note that Equation (31) is a linear program for ŷ and can be formulated as

max
ŷ

r′ŷ (32)

s.t. −β≤ ŷ′1≤ β, ŷ ∈ {−1,+1}N ,

where r = Hȳ. From Proposition 5, we can solve Equation (32) by first sorting ri’s in ascending

order. The label assignment of ŷi’s aligns with the sorted values of ri’s. To satisfy the balance

constraint −β≤ 1′ŷ≤ β, the first
N−β

2
of ŷi’s are assigned −1, the last

N−β
2

of them are assigned 1,

and the rest ŷi’s are assigned −1 (resp. 1) if the corresponded ri’s are negative (resp. non-negative).

It is easy to verify that such an assignment satisfies the balance constraint and the objective r′ŷ is

maximized. Similar to semi-supervised learning, the complexity to find a violated label scales as

O(N2) (resp. O(N logN)) when the nonlinear (resp. linear) kernel is used, and so is computationally

efficient. Finally, we use f (x) = ∑T
t=1 w′tx as the prediction function. Algorithm 4 summarizes the

pseudo codes of WELLSVM for clustering.

Algorithm 4 WELLSVM for clustering.

1: Initialize ŷ and C = /0.

2: repeat

3: Update C ←{y∗}⋃C .

4: Obtain the optimal {µ,W} or α from Equation (30).

5: Find the optimal solution y∗ of Equation (31).

6: until G(α,y∗)> miny∈C G(α,y)− ε or the decrease of objective value is smaller than a thresh-

old.

7: Output f (x) = ∑T
t=1 w′tφ(x) as the prediction function.

5. Experiments

In this section, comprehensive evaluations are performed to verify the effectiveness of the proposed

WELLSVM. Experiments are conducted on all the three aforementioned weakly labeled learning

tasks: semi-supervised learning (Section 5.1), multi-instance learning (Section 5.2) and clustering

(Section 5.3). For nonlinear kernel, the WELLSVM adapts ν-SVM with square hinge loss (Tsang

et al., 2006) and is implemented using the LIBSVM (Fan et al., 2005); For linear kernel, it adapts

standard SVM without offset and is implemented using the LIBLINEAR (Hsieh et al., 2008). Exper-

iments are run on a 3.20GHz Intel Xeon(R)2 Duo PC running Windows 7 with 8GB main memory.
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For all the other methods that will be used for comparison, the default stopping criteria in the corre-

sponding packages are used. For the WELLSVM, both the ε and stopping threshold in Algorithm 1

are set to 10−3.

5.1 Semi-Supervised Learning

We first evaluate the WELLSVM on semi-supervised learning with a large collection of real-world

data sets. 16 UCI data sets, which cover a wide range of properties, and 2 large-scale data sets5 are

used. Table 1 shows some statistics of these data sets.

Data # Instances # Features Data # Instances # Features

1 Echocardiogram 132 8 10 Clean1 476 166

2 House 232 16 11 Isolet 600 51

3 Heart 270 9 12 Australian 690 42

4 Heart-stalog 270 13 13 Diabetes 768 8

5 Haberman 306 14 14 German 1,000 59

6 LiveDiscorders 345 6 15 Krvskp 3,196 36

7 Spectf 349 44 16 Sick 3,772 31

8 Ionosphere 351 34 17 real-sim 72,309 20,958

9 House-votes 435 16 18 rcv1 677,399 47,236

Table 1: Data sets used in the experiments.

5.1.1 SMALL-SCALE EXPERIMENTS

For each UCI data set, 75% of the examples are randomly chosen for training, and the rest for

testing. We investigate the performance of each approach with varying amount of labeled data

(namely, 5%, 10% and 15% of all the labeled data). The whole setup is repeated 30 times and the

average accuracies (with standard deviations) on the test set are reported.

We compare WELLSVM with 1) the standard SVM (using labeled data only), and three state-of-

the-art semi-supervised SVMs (S3VMs), namely 2) Transductive SVM (TSVM)6 (Joachims, 1999);

3) Laplacian SVM (LapSVM)7 (Belkin et al., 2006); and 4) UniverSVM (USVM)8 (Collobert et al.,

2006). Note that TSVM and USVM adopt the same objective as WELLSVM, but with differ-

ent optimization strategies (local search and constrained convex-concave procedure, respectively).

LapSVM is another S3VM based on the manifold assumption (Belkin et al., 2006). The SDP-based

S3VMs (Xu and Schuurmans, 2005; De Bie and Cristianini, 2006) are not compared, as they do not

converge after 3 hours on even the smallest data set (Echocardiogram).

Parameters of the different methods are set as follows. C1 is fixed at 1 and C2 is selected in

the range {0.001,0.005,0.01,0.05,0.1,0.5,1}. The linear and Gaussian kernels are used for all

SVMs, where the width σ of the Gaussian kernel k(x, x̂) = exp(−||x− x̂||2/2σ2) is picked from

{0.25
√

γ,0.5
√

γ ,
√

γ,2
√

γ,4
√

γ}, with γ being the average distance between all instance pairs. The

5. Data sets can be found at http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/binary.html.

6. Transductive SVM can be found at http://svmlight.joachims.org/.

7. Laplacian SVM can be found at http://manifold.cs.uchicago.edu/manifold_regularization/software.

html.

8. UniverSVM can be found at http://mloss.org/software/view/19/.
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Data SVM TSVM LapSVM USVM WELLSVM

Echocardiogram 0.80 ± 0.07 (2.5) 0.74 ± 0.08 (4) 0.64 ± 0.22 (5) 0.81 ± 0.06 (1) 0.80 ± 0.07 (2.5)

House 0.90 ± 0.04 (3) 0.90 ± 0.05 (3) 0.90 ± 0.04 (3) 0.90 ± 0.03 (3) 0.90 ± 0.04 (3)

Heart 0.70 ± 0.08 (5) 0.75 ± 0.08 (3) 0.73 ± 0.09 (4) 0.76 ± 0.07 (2) 0.77 ± 0.08 (1)

Heart-statlog 0.73 ± 0.10 (4.5) 0.75 ± 0.10 (1.5) 0.74 ± 0.11 (3) 0.75 ± 0.12 (1.5) 0.73 ± 0.12 (4.5)

Haberman 0.65 ± 0.07 (3) 0.61 ± 0.06 (4) 0.57 ± 0.11 (5) 0.75 ± 0.05 (1.5) 0.75 ± 0.05 (1.5)

LiverDisorders 0.56 ± 0.05 (2) 0.55 ± 0.05 (3.5) 0.55 ± 0.05 (3.5) 0.59 ± 0.05 (1) 0.53 ± 0.07 (5)

Spectf 0.73 ± 0.05 (2) 0.68 ± 0.10 (4) 0.61 ± 0.08 (5) 0.74 ± 0.05 (1) 0.70 ± 0.07 (3)

Ionosphere 0.67 ± 0.06 (4) 0.82 ± 0.11 (1) 0.65 ± 0.05 (5) 0.77 ± 0.07 (2) 0.70 ± 0.08 (3)

House-votes 0.88 ± 0.03 (3) 0.89 ± 0.05 (1.5) 0.87 ± 0.03 (4) 0.83 ± 0.03 (5) 0.89 ± 0.03 (1.5)

Clean1 0.58 ± 0.06 (4) 0.60 ± 0.08 (3) 0.54 ± 0.05 (5) 0.65 ± 0.05 (1) 0.63 ± 0.07 (2)

Isolet 0.97 ± 0.02 (3) 0.99 ± 0.01 (1) 0.97 ± 0.02 (3) 0.70 ± 0.09 (5) 0.97 ± 0.02 (3)

Australian 0.79 ± 0.05 (4) 0.82 ± 0.07 (1) 0.78 ± 0.08 (5) 0.80 ± 0.05 (3) 0.81 ± 0.04 (2)

Diabetes 0.67 ± 0.04 (4) 0.67 ± 0.04 (4) 0.67 ± 0.04 (4) 0.70 ± 0.03 (1) 0.69 ± 0.03 (2)

German 0.70 ± 0.03 (2) 0.69 ± 0.03 (4) 0.62 ± 0.05 (5) 0.70 ± 0.02 (2) 0.70 ± 0.02 (2)

Krvskp 0.91 ± 0.02 (3.5) 0.92 ± 0.03 (1.5) 0.80 ± 0.02 (5) 0.91 ± 0.03 (3.5) 0.92 ± 0.02 (1.5)

Sick 0.94 ± 0.01 (2) 0.89 ± 0.01 (5) 0.90 ± 0.02 (4) 0.94 ± 0.01 (2) 0.94 ± 0.01 (2)

SVM: win/tie/loss 5/7/4 8/7/1 2/9/5 3/6/7

ave. acc. 0.763 0.767 0.723 0.770 0.778

ave. rank 3.2188 2.8125 4.2813 2.2188 2.4688

Table 2: Accuracies on the various data sets with 5% labeled examples. The best performance on

each data set is bolded. The win/tie/loss counts (paired t-test at 95% significance level) are

listed. The method with the largest number of (#wins - #losses) against SVM as well as

the best average accuracy is also highlighted. Number in parentheses denotes the ranking

(computed as in Demsar 2006) of each method on the data set.

initial label assignment of WELLSVM is obtained from the predictions of a standard SVM. For

LapSVM, the number of nearest neighbors in the underlying data graph is selected from {3,5,7,9}.
All parameters are determined by using the five-fold cross-validated accuracy.

Table 2 shows the results on the UCI data sets with 5% labeled examples. As can be seen,

WELLSVM obtains highly competitive performance with the other methods, and achieves the best

improvement against SVM in terms of both the counts of (#wins−#loses) as well as average accu-

racy. The Friedman test (Demsar, 2006) shows that both WELLSVM and USVM perform signifi-

cantly better than SVM at the 90% confidence level, while TSVM and LapSVM do not.

As can be seen, there are cases where unlabeled data cannot help for TSVM, USVM and

WELLSVM. Besides the local minimum problem, another possible reason may be that there are

multiple large margin separators coinciding well with labeled data and the labeled examples are

too few to provide a reliable selection for these separators (Li and Zhou, 2011). Moreover, overall,

LapSVM cannot obtain good performance, which may be due to that the manifold assumption does

not hold on these data (Chapelle et al., 2006b).

Tables 3 and 4 show the results on the UCI data sets with 10% and 15% labeled examples,

respectively. As can be seen, as the number of labeled examples increases, SVM gets much better

performance. As a result, both TSVM and USVM cannot beat the SVM. On the other hand, the

Friedman test shows that WELLSVM still performs significantly better than SVM with 10% labeled

examples at the 90% confidence level. With 15% labeled examples, no S3VM performs significantly

better than SVM.

Figure 1 compares the average CPU time of WELLSVM with the other S3VMs different num-

bers of labeled examples. As can be seen, TSVM is the slowest while USVM is the most efficient.
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Data SVM TSVM LapSVM USVM WELLSVM

Echocardiogram 0.81 ± 0.05 (2.5) 0.76 ± 0.12 (4) 0.69 ± 0.14 (5) 0.82 ± 0.05 (1) 0.81 ± 0.05 (2.5)

House 0.90 ± 0.04 (2.5) 0.92 ± 0.05 (1) 0.89 ± 0.04 (4) 0.83 ± 0.03 (5) 0.90 ± 0.04 (2.5)

Heart 0.76 ± 0.05 (3.5) 0.75 ± 0.05 (5) 0.76 ± 0.06 (3.5) 0.78 ± 0.05 (1.5) 0.78 ± 0.04 (1.5)

Heart-statlog 0.79 ± 0.03 (4) 0.74 ± 0.05 (5) 0.80 ± 0.04 (2.5) 0.80 ± 0.04 (2.5) 0.81 ± 0.04 (1)

Haberman 0.75 ± 0.04 (2) 0.60 ± 0.07 (4.5) 0.60 ± 0.07 (4.5) 0.75 ± 0.04 (2) 0.75 ± 0.04 (2)

LiverDisorders 0.59 ± 0.06 (1) 0.57 ± 0.05 (2.5) 0.55 ± 0.06 (4) 0.53 ± 0.06 (5) 0.57 ± 0.05 (2.5)

Spectf 0.74 ± 0.05 (2) 0.76 ± 0.06 (1) 0.64 ± 0.06 (5) 0.72 ± 0.06 (3.5) 0.72 ± 0.07 (3.5)

Ionosphere 0.78 ± 0.07 (4) 0.90 ± 0.04 (1) 0.66 ± 0.06 (5) 0.88 ± 0.05 (2) 0.82 ± 0.05 (3)

House-votes 0.92 ± 0.03 (1.5) 0.91 ± 0.03 (3.5) 0.88 ± 0.04 (5) 0.91 ± 0.03 (3.5) 0.92 ± 0.03 (1.5)

Clean1 0.69 ± 0.05 (3.5) 0.71 ± 0.05 (2) 0.63 ± 0.07 (5) 0.72 ± 0.05 (1) 0.69 ± 0.04 (3.5)

Isolet 0.99 ± 0.01 (2.5) 1.00 ± 0.01 (1) 0.96 ± 0.02 (4) 0.52 ± 0.03 (5) 0.99 ± 0.01 (2.5)

Australian 0.81 ± 0.03 (5) 0.84 ± 0.03 (1.5) 0.82 ± 0.04 (4) 0.84 ± 0.03 (1.5) 0.83 ± 0.03 (3)

Diabetes 0.70 ± 0.03 (4.5) 0.70 ± 0.05 (4.5) 0.71 ± 0.04 (3) 0.72 ± 0.03 (2) 0.74 ± 0.03 (1)

German 0.67 ± 0.03 (3.5) 0.67 ± 0.03 (3.5) 0.66 ± 0.04 (5) 0.70 ± 0.02 (1.5) 0.70 ± 0.02 (1.5)

Krvskp 0.93 ± 0.01 (3) 0.93 ± 0.01 (3) 0.86 ± 0.04 (5) 0.93 ± 0.01 (3) 0.94 ± 0.01 (1)

Sick 0.93 ± 0.01 (2) 0.89 ± 0.01 (5) 0.92 ± 0.01 (4) 0.93 ± 0.01 (2) 0.93 ± 0.01 (2)

SVM: win/tie/loss 5/8/3 10/5/1 5/6/5 0/9/7

avg. acc. 0.799 0.789 0.753 0.774 0.807

avg. rank 2.9375 3.0000 4.2813 2.6250 2.1563

Table 3: Accuracies on the various data sets with 10% labeled examples.

Data SVM TSVM LapSVM USVM WELLSVM

echocardiogram 0.83 ± 0.04 (2.5) 0.76 ± 0.07 (4) 0.75 ± 0.08 (5) 0.85 ± 0 (1) 0.83 ± 0.04 (2.5)

house 0.92 ± 0.04 (2.5) 0.94 ± 0.04 (1) 0.83 ± 0.11 (5) 0.91 ± 0.04 (4) 0.92 ± 0.03 (2.5)

heart 0.78 ± 0.06 (3) 0.78 ± 0.05 (3) 0.79 ± 0.05 (1) 0.78 ± 0.07 (3) 0.78 ± 0.06 (3)

heart-statlog 0.76 ± 0.06 (2) 0.74 ± 0.06 (4) 0.79 ± 0.05 (1) 0.73 ± 0.07 (5) 0.75 ± 0.06 (3)

haberman 0.72 ± 0.03 (3) 0.62 ± 0.07 (5) 0.63 ± 0.11 (4) 0.74 ± 0 (1.5) 0.74 ± 0 (1.5)

liverDisorders 0.61 ± 0.05 (1) 0.54 ± 0.06 (4) 0.53 ± 0.07 (5) 0.58 ± 0 (2) 0.56 ± 0.06 (3)

spectf 0.77 ± 0.03 (2) 0.79 ± 0.04 (1) 0.6 ± 0.1 (5) 0.74 ± 0 (4) 0.75 ± 0.06 (3)

ionosphere 0.76 ± 0.04 (5) 0.9 ± 0.04 (1) 0.83 ± 0.04 (4) 0.89 ± 0.04 (2) 0.84 ± 0.03 (3)

house-votes 0.92 ± 0.02 (1.5) 0.92 ± 0.03 (1.5) 0.9 ± 0.03 (3) 0.83 ± 0.03 (5) 0.89 ± 0.02 (4)

clean1 0.71 ± 0.04 (4) 0.74 ± 0.04 (2) 0.63 ± 0.07 (5) 0.76 ± 0.06 (1) 0.72 ± 0.04 (3)

isolet 0.98 ± 0.01 (3.5) 0.99 ± 0.01 (1.5) 0.98 ± 0.01 (3.5) 0.54 ± 0.02 (5) 0.99 ± 0.01 (1.5)

australian 0.86 ± 0.02 (1.5) 0.85 ± 0.03 (3) 0.83 ± 0.02 (4.5) 0.83 ± 0.03 (4.5) 0.86 ± 0.03 (1.5)

diabetes 0.75 ± 0.03 (1.5) 0.73 ± 0.02 (3.5) 0.73 ± 0.03 (3.5) 0.72 ± 0.04 (5) 0.75 ± 0.03 (1.5)

german 0.71 ± 0.01 (2) 0.7 ± 0.03 (3.5) 0.68 ± 0.04 (5) 0.7 ± 0.04 (3.5) 0.72 ± 0.01 (1)

krvskp 0.95 ± 0.01 (1.5) 0.93 ± 0.01 (4) 0.91 ± 0.01 (5) 0.94 ± 0.01 (3) 0.95 ± 0.01 (1.5)

sick 0.94 ± 0 (2) 0.9 ± 0.01 (4.5) 0.9 ± 0.12 (4.5) 0.94 ± 0 (2) 0.94 ± 0 (2)

SVM: win/tie/loss 8/3/5 11/2/3 6/6/4 2/9/5

avg. acc. 0.809 0.801 0.771 0.780 0.811

avg. rank 2.4063 2.9063 4.0000 3.2188 2.3438

Table 4: Accuracies on various data sets with 15% labeled examples.

WELLSVM is comparable to LapSVM. Figure 2 shows the objective values of WELLSVM on five

representative UCI data sets. We can observe that the number of iterations is always fewer than 25.

As mentioned above, the SDP-based S3VMs (Xu and Schuurmans, 2005; De Bie and Cristianini,

2006), in contrast, cannot converge in 3 hours even on the smallest data set Echocardiogram. Hence,

WELLSVM scales much better than these SDP-based approaches.
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Figure 1: CPU time on the UCI data sets.
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Figure 2: Number of WELLSVM iterations on the UCI data sets.

5.1.2 LARGE-SCALE EXPERIMENTS

In this section, we study the scalability of the proposed WELLSVM and other state-of-the-art ap-

proaches on two large data sets, real-sim and RCV1. The real-sim data has 20,958 features and

72,309 instances. while the RCV1 data has 47,236 features and 677,399 instances. The linear ker-

nel is used. The S3VMs compared in Section 5.1.1 are for general kernels and cannot converge in

24 hours. Hence, to conduct a fair comparison, an efficient linear S3VM solver, namely, SVMlin9

9. SVMlin can be found at http://vikas.sindhwani.org/svmlin.html.

2173



LI, TSANG, KWOK AND ZHOU

   1    2    5   15   35   55   75%
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of Unlabeled Training Instances (72309 in total)

A
cc

u
ra

cy

 

 

SVM

SVMlin

WellSVM

   1    2    5   15   35   55   75%
10

-2

10
0

10
2

10
4

10
6

R
u

n
n

in
g

 t
im

e 
(i

n
 s

ec
.)

Percentage of Unlabeled Training Instances (72309 in total)

 

 

SVM

SVMlin

WellSVM

Figure 3: Semi-supervised learning results on the real-sim data with different amounts of unlabeled

examples.
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Figure 4: Semi-supervised learning results on the RCV1 data with different number of unlabeled

examples.

using deterministic annealing (Sindhwani and Keerthi, 2006), is employed. All the parameters are

determined in the same manner as in Section 5.1.1.

In the first experiment, we study the performance at different numbers of unlabeled examples.

Specifically, 1%,2%,5%,15%,35%,55% and 75% of the data (with 50 of them labeled) are used for

training, and 25% of the data are for testing. This is repeated 10 times and the average performance

is reported.

Figure 3 shows the results. As can be seen, WELLSVM is always superior to SVMlin, and

achieves highly competitive or even better accuracy than the SVM as the number of unlabeled ex-

amples increases. Moreover, WELLSVM is much faster than SVMlin. As the number of unlabeled

examples increases, the difference becomes more prominent. This is mainly because SVMlin em-

ploys gradient descent while WELLSVM (which is based on LIBLINEAR (Hsieh et al., 2008))

uses coordinate descent, which is known to be one of the fastest solvers for large-scale linear SVMs

(Shalev-Shwartz et al., 2007).

Figure 4 shows the results on the larger RCV1 data set. As can be seen, WELLSVM obtains

good accuracy at different numbers of unlabeled examples. More importantly, WELLSVM scales

well on RCV1. For example, WELLSVM takes fewer than 1,000 seconds with more than 500,000

instances. On the other hand, SVMlin cannot converge in 24 hours when more than 5% examples

are used for training.
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# of labeled examples 25 50 100 150 200

real-sim SVM 0.78 ± 0.03 0.81 ± 0.02 0.84 ± 0.02 0.86 ± 0.01 0.88 ± 0.01

WELLSVM 0.81 ± 0.08 0.84 ± 0.02 0.89 ± 0.01 0.9 ± 0.01 0.91 ± 0.01

rcv1 SVM 0.77 ± 0.03 0.83 ± 0.01 0.87 ± 0.01 0.89 ± 0.01 0.9 ± 0.01

WELLSVM 0.83 ± 0.03 0.9 ± 0.02 0.91 ± 0.01 0.92 ± 0.01 0.93 ± 0.01

Table 5: Accuracy (with standard derivations) on the real-sim and rcv1 data sets, with different

numbers of labeled examples. Results for which the performance of WELLSVM is signif-

icantly better than SVM are in bold.

Our next experiment studies how the performance of WELLSVM changes with different num-

bers of labeled examples. Following the setup in Section 5.1.1, 75% of the examples are used for

training while the rest are for testing. Different numbers (namely, 25,50,100,150, and 200) of la-

beled examples are randomly chosen. Since SVMlin cannot handle such a large training set, the

SVM is used instead. The above process is repeated 30 times. Table 5 shows the average testing ac-

curacy. As can be seen, WELLSVM is significantly better than SVM in all cases. The high standard

deviation of WELLSVM on real-sim with 25 labeled examples may be due to the fact that the large

amount of unlabeled instances lead to a large variance in deriving a large margin classifier, whereas

the amount of labeled examples is too small to reduce the variance.

5.1.3 COMPARISON WITH OTHER BENCHMARKS IN THE LITERATURE

In this section, we further evaluate the proposed WELLSVM with other published results in the

literature. First, we experiment on the benchmark data sets in Chapelle et al. (2006b) by using their

same setup. Results on the average test error are shown in Table 6. As can be seen, WELLSVM is

highly competitive.

g241c g241d Digit1 USPS COIL BCI Text

SVM 47.32 46.66 30.60 20.03 68.36 49.85 45.37

TSVM 24.71 50.08 17.77 25.20 67.50 49.15 40.37

WELLSVM 37.37 43.33 16.94 22.74 70.73 48.50 33.70

Table 6: Test errors (%) on the SSL benchmark data sets (using 10 labeled examples). The SVM

and TSVM results are from Table 21.9 in Chapelle et al. (2006b).

Next, we compare WELLSVM with the SVM and other state-of-the-art S3VMs reported in

Chapelle et al. (2008). These include

1. ∇S3VM (Chapelle and Zien, 2005), which minimizes the S3VM objective by gradient de-

scent;

2. Continuation S3VM (cS3VM) (Chapelle et al., 2006a), which first relaxes the S3VM objective

to a continuous function and then employs gradient descent;

3. USVM (Collobert et al., 2006);

4. TSVM (Joachims, 1999);
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SVM ∇S3VM cS3VM USVM TSVM ∇DA Newton BB WELLSVM

2moons 35.6 65.0 49.8 66.3 68.7 30.0 33.5 0.0 33.5

g50c 8.2 8.3 8.3 8.5 8.4 6.7 7.5 - 7.6

text 14.8 5.7 5.8 8.5 8.1 6.5 14.5 - 8.7

uspst 20.7 14.1 15.6 14.9 14.5 11.0 19.2 - 14.3

coil20 32.7 23.9 23.6 23.6 21.8 18.9 24.6 - 23.0

Table 7: Test errors (%) of the WELLSVM and various S3VM variants. Results of the S3VMs

compared are from Table 11 in Chapelle et al. (2008). BB can only be run on the 2moons

data set due to its high computational cost. Note that in Chapelle et al. (2008), USVM is

called CCCP and TSVM is called S3VMlight .

5. Deterministic annealing S3VM with gradient minimization (∇DA) (Sindhwani et al., 2006),

which is based on the global optimization heuristic of deterministic annealing;

6. Newton S3VM (Newton) (Chapelle, 2007), which uses the second-order Newton’s method;

and

7. Branch-and-bound (BB) (Chapelle et al., 2007).

Results are shown in Table 7. As can be seen, BB attains the best performance. Overall, WELLSVM

performs slightly worse than ∇DA, but is highly competitive compared with the other S3VM vari-

ants.

Finally, we compare WELLSVM with MMC (Xu et al., 2005), a SDP-based S3VM, on the data

sets used there. Table 8 shows the results. Again, WELLSVM is highly competitive.

HWD 1-7 HWD 2-3 Australian Flare Vote Diabetes

MMC 3.2 4.7 32.0 34.0 14.0 35.6

WELLSVM 2.7 5.3 40.0 28.9 11.6 41.3

Table 8: Test errors (%) of WELLSVM and MMC (a SDP-based S3VM) on the data sets used in

Xu et al. (2005). The MMC results are copied from their Table 2.

5.2 Multi-Instance Learning for Locating ROIs

In this section, we evaluate the proposed method on multi-instance learning, with application to

ROI-location in CBIR image data. We employ the image database in Zhou et al. (2005), which

consists of 500 COREL images from five image categories: castle, firework, mountain, sunset and

waterfall. Each image is of size 160×160, and is converted to the multi-instance feature representa-

tion by the bag generator SBN (Maron and Ratan, 1998). Each region (instance) in the image (bag)

is of size 20 × 20. Some of these regions are labeled manually as ROIs. A summary of the data

set is shown in Table 9. It is very labor-expensive to collect large image data with all the regions

labeled. Hence, we will leave the experiments on large-scale data sets as a future direction.

The one-vs-rest strategy is used. Specifically, a training set of 50 images is created by randomly

sampling 10 images from each of the five categories. The remaining 450 images constitute the test

set. This training/test split is randomly generated 10 times, and the average performance is reported.
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concept #images average #ROIs per image

castle 100 19.39

firework 100 27.23

mountain 100 24.93

sunset 100 2.32

waterfall 100 13.89

Table 9: Some statistics of the image data set.

Although many multi-instance methods have been proposed, they mainly focus on improving

the classification performance, whereas only some of them are used to identify the ROIs. We list

these state-of-the-art methods (Andrews et al., 2003; Maron and Ratan, 1998; Zhang and Goldman,

2002; Zhou et al., 2005) as well as related SVM-based methods for comparisons in experiments.

Specifically, the WELLSVM is compared with the following SVM variants: 1) MI-SVM (Andrews

et al., 2003); 2) mi-SVM (Andrews et al., 2003); and 3) SVM with multi-instance kernel (MI-

Kernel) (Gärtner et al., 2002). The Gaussian kernel is used for all the SVMs, where its width σ is

picked from {0.25
√

γ,0.5
√

γ,
√

γ,2
√

γ,4
√

γ} with γ being the average distance between instances;

C1 is picked from {C2,4C2,10C2}; and C2 is from {1,10,100}. We also compare with three state-

of-art non-SVM-based methods that can locate ROIs, namely, Diverse Density (DD) (Maron and

Ratan, 1998), EM-DD (Zhang and Goldman, 2002) and CkNN-ROI (Zhou et al., 2005). All the

parameters are selected by ten-fold cross-validation (except for CkNN-ROI, in which its parameters

are based on the best setting reported in Zhou et al. (2005)).

In each image classified as relevant by the algorithm, the image region with the maximum

prediction value is taken as its ROI.10 The following two measures are used in evaluating the per-

formance of ROI location.

1.

success rate of relevant images =
number of ROI successes

number of relevant images
. (33)

Here, for each image predicted as relevant by the algorithm, the ROI returned by the algorithm

is counted as a success if it is a real ROI.

2. The ROI success rate computed based on those images that are predicted as relevant, that is,

success rate of ROIs =
number of ROI successes

number of images predicted as relevant
. (34)

Notice that there is a tradeoff between these two measures. When an algorithm classifies many

images as relevant, the success rate of relevant images (Equation (33)) is high while the success

rate of ROIs (Equation (34)) can be low, since there are many relevant images predicted by the

algorithm. On the other hand, when an algorithm classifies many images as irrelevant, the success

rate of ROIs is high while the success rate of relevant images is low since many relevant images are

missing. To compromise these two goals, we introduce a novel success rate of ROIs

success rate =
2#ROI successes

#relevant images+#predicted relevant images
.

10. Alternatively, if we allow an algorithm to output multiple ROI’s for an image, a heuristic thresholding of the prediction

values will be needed. For simplicity, we defer such a setup as future work.
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method castle firework mountain sunset waterfall

WELLSVM 0.57 ± 0.12 0.68 ± 0.17 0.59 ± 0.10 0.32 ± 0.07 0.39 ± 0.13

SVM mi-SVM 0.51 ± 0.04 0.56 ± 0.07 0.18 ± 0.09 0.32 ± 0.01 0.37 ± 0.08

methods MI-SVM 0.52 ± 0.22 0.63 ± 0.26 0.18 ± 0.13 0.29 ± 0.10 0.06 ± 0.02

MI-Kernel 0.56 ± 0.08 0.57 ± 0.11 0.23 ± 0.20 0.24 ± 0.03 0.20 ± 0.11

DD 0.24 ± 0.16 0.15 ± 0.28 0.56 ± 0.11 0.30 ± 0.18 0.26 ± 0.24

non-SVM EM-DD 0.69 ± 0.06 0.65 ± 0.24 0.54 ± 0.18 0.36 ± 0.15 0.30 ± 0.12

methods CkNN-ROI 0.48 ± 0.05 0.65 ± 0.09 0.47 ± 0.06 0.31 ± 0.04 0.20 ± 0.05

Table 10: Success rate in locating the ROIs. The best performance and those which are comparable

to the best performance (paired t-test at 95% significance level) on each data set are

bolded.

This is similar to the F-score in information retrieval as

1

success rate
=

#relevant images+#predicted relevant images

2#ROI successes

=
1

2

(

1
#ROI successes
#relevant images

+
1

#ROI successes
#predicted relevant images

)

.

Intuitively, when an algorithm correctly recognizes all the relevant images and their ROIs, the suc-

cess rate will be high.

Table 10 shows the success rates (with standard deviations) of the various methods. As can

be seen, WELLSVM achieves the best performance among all the SVM-based methods. As for

its performance comparison with the other non-SVM methods, WELLSVM is still always better

than DD and CkNN-ROI, and is highly comparable to EM-DD. In particular, EM-DD achieves

the best performance on castle and sunset, while WELLSVM achieves the best performance on

the remaining three categories (firework, mountain and waterfall). Figure 5 shows some example

images with the located ROIs. It can be observed that WELLSVM can correctly identify more ROIs

than the other SVM-based methods.

5.3 Clustering

In this section, we further evaluate our WELLSVM on clustering problems where all the labels

are unknown. As in semi-supervised learning, 16 UCI data sets and 2 large data sets are used for

comparison.

5.3.1 SMALL-SCALE EXPERIMENTS

The WELLSVM is compared with the following methods: 1) k-means clustering (KM); 2) kernel

k-means clustering (KKM); 3) normalized cut (NC) (Shi and Malik, 2000); 4) GMMC (Valizadegan

and Jin, 2007); 5) IterSVR11 (Zhang et al., 2007); and 6) CPMMC12 (Zhao et al., 2008). In the pre-

liminary experiment, we also compared with the original SDP-based approach in Xu et al. (2005).

11. IterSVR can be found at http://www.cse.ust.hk/˜twinsen.

12. CPMMC can be found at http://binzhao02.googlepages.com/.
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Figure 5: ROIs located by (from left to right) DD, EM-DD, CkNN-ROI, MI-SVM, mi-SVM, MI-

Kernel, and WELLSVM. Each row shows one category (top to bottom: firework, sunset,

waterfall, castle and mountain).

However, similar to the experimental results in semi-supervised learning, it does not converge after

3 hours on the smallest data set echocardiogram. Hence, GMMC, which is also based on SDP but

about 100 times faster than Xu et al. (2005), is used in the comparison.

For GMMC, IterSVR, CPMMC and WELLSVM, the C parameter is selected in a range

{0.1,0.5,1,5,10,100}. For the UCI data sets, both the linear and Gaussian kernels are used. In par-

ticular, the width σ of the Gaussian kernel is picked from {0.25
√

γ,0.5
√

γ,
√

γ, 2
√

γ,4
√

γ}, where γ

is the average distance between instances. The parameter of normalized cut is chosen from the same

range of σ. Since k-means and IterSVR are susceptible to the problem of local minimum, these two

methods are run 10 times and the average performance reported. We set the balance constraint in

the same manner as in Zhang et al. (2007), that is, β is set as 0.03N for balanced data and 0.3N for

imbalanced data. To initialize WELLSVM, 20 random label assignments are generated and the one

with the maximum kernel alignment (Cristianini et al., 2002) is chosen. We also use this to initial-

ize KM, KKM and IterSVR, and the resultant variants are denoted KM-r, KKM-r and IterSVR-r,

respectively. All the methods are reported with the best parameter setting.

We follow the strategy in Xu et al. (2005) to evaluate the clustering accuracy. We first remove

the labels for all instances, and then obtain the clusters by the various clustering algorithms. Finally,

the misclassification error is measured w.r.t. the true labels.

We first study the clustering accuracy on 16 UCI data sets that cover a wide range of proper-

ties. Results are shown in Table 11. As can be seen, WELLSVM outperforms existing clustering

approaches on most data sets. Specifically, WELLSVM obtains the best performance on 10 out

of 16 data sets. GMMC is not as good as WELLSVM. This may due to that the convex relax-

ation proposed in GMMC is not the same as the original SDP-based approach (Xu et al., 2005) and

WELLSVM.

The CPU time on the UCI data sets are shown in Figure 6. As can be seen, local optimiza-

tion methods, such as IterSVR and CPMMC, are often efficient. As for the global optimization

method, WELLSVM scales much better than GMMC. On average, WELLSVM is about 10 times

faster. These results validate that WELLSVM achieves much better scalability than the SDP-based
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Iter Iter CP WELL

Data KM KM-r KKM KKM-r NC GMMC SVR SVR-r MMC SVM

Echocardiogram 0.76 0.76 0.76 0.77 0.76 0.7 0.74 0.78 0.82 0.84

House 0.89 0.89 0.89 0.88 0.89 0.78 0.87 0.87 0.53 0.90

Heart 0.66 0.59 0.69 0.59 0.57 0.7 0.59 0.59 0.56 0.59

Heart-statlog 0.68 0.79 0.78 0.79 0.79 0.77 0.76 0.76 0.56 0.81

Haberman 0.6 0.59 0.69 0.64 0.7 0.6 0.62 0.57 0.74 0.74

LiverDisorders 0.55 0.54 0.56 0.56 0.57 0.55 0.53 0.51 0.58 0.58

Spectf 0.58 0.57 0.77 0.77 0.63 0.64 0.53 0.53 0.73 0.73

Ionosphere 0.7 0.71 0.73 0.74 0.7 0.73 0.71 0.65 0.64 0.72

House-votes 0.87 0.87 0.87 0.87 0.86 0.6 0.83 0.82 0.61 0.87

Clean1 0.54 0.54 0.59 0.62 0.52 0.66 0.61 0.53 0.56 0.55

Isolet 0.98 0.96 0.89 0.95 0.98 0.56 1.00 1.00 0.5 0.98

Australian 0.54 0.55 0.57 0.57 0.56 0.6 0.56 0.51 0.56 0.83

Diabetes 0.67 0.67 0.69 0.69 0.66 0.69 0.66 0.66 0.65 0.69

German 0.57 0.56 0.68 0.62 0.66 0.56 0.56 0.64 0.7 0.7

Krvskp 0.52 0.51 0.55 0.55 0.56 - 0.51 0.51 0.52 0.54

Sick 0.68 0.63 0.88 0.77 0.84 - 0.63 0.59 0.94 0.94

Table 11: Clustering accuracies on various data sets. “-” indicates that the method does not con-

verge in 2 hours or out-of-memory problem occurs.
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Figure 6: CPU time (in seconds) on the UCI data sets.

GMMC approach. However, in general, convex methods are still slower than non-convex optimiza-

tion methods on the small data sets.

5.3.2 LARGE-SCALE EXPERIMENTS

In this section, we further evaluate the scalability of WELLSVM on large data sets when the linear

kernel is used. In this case, the WELLSVM only involves solving a sequence of linear SVMs. As

packages specially designed for the linear SVM (such as LIBLINEAR) are much more efficient than

those designed for general kernels (such as LIBSVM), it can be expected that the linear WELLSVM

is also scalable on large data sets.

The real-sim data contains 72,309 instances and has 20,958 features. To study the effect of

sample size on performance, different sampling rates (1%, 2%, 5% and 10%,20%, . . . ,100%) are

considered. For each sampling rate (except for 100%), we perform random sampling 5 times, and

report the average performance. Since k-means depends on random initialization, we run it 10 times
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Figure 7: Clustering results on the real-sim data with different numbers of examples.
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Figure 8: Clustering results on the RCV1 data with different numbers of examples.

for each sampling rate, and report its average accuracy. Figure 7 shows the accuracy and running

time.13 As can be seen, WELLSVM outperforms k-means and can be used on large data sets.

The RCV1 data is very high-dimensional and contains more than 677,000 instances. Following

the same setup as for the Real-sim data, WELLSVM is compared with k-means under different

sampling rates. Figure 8 shows the results. Note that k-means does not converge in 24 hours when

more than 20% training instances are used. As can be seen, WELLSVM obtains better performance

than k-means and WELLSVM scales quite well on RCV1. It takes fewer than 1,000 seconds for

RCV1 with more than 677,000 instances and 40,000 dimensions.

6. Conclusion

Learning from weakly labeled data, where the training labels are incomplete, is generally regarded

as a crucial yet challenging machine learning task. However, because of the underlying mixed

integer programming problem, this limits its scalability and accuracy. To alleviate these difficulties,

we proposed a convex WELLSVM based on a novel “label generation” strategy. It can be shown that

WELLSVM is at least as tight as existing SDP relaxations, but is much more scalable. Moreover,

13. k-means is implemented in matlab, and so its running time is not compared with WELLSVM, whose core procedure

is implemented in C++.
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since it can be reduced to a sequence of standard SVM training, it can directly benefit from advances

in the development of efficient SVM software.

In contrast to traditional approaches that are tailored for a specific weak-label learning prob-

lem, our WELLSVM formulation can be used on a general class of weak-label learning problems.

Specifically, WELLSVM on three common weak-label learning tasks, namely (i) semi-supervised

learning where labels are partially known; (ii) multi-instance learning where labels are implicitly

known; and (iii) clustering where labels are totally unknown, can all be put under the same for-

mulation. Experimental results show that the WELLSVM obtains good performance and is readily

scalable on large data sets. We believe that similar conclusions can be reached on other weak-label

learning tasks, such as the noisy-tolerant problem (Angluin and Laird, 1988).

The focus of this paper is on binary weakly labeled problems. For multi-class weakly labeled

problems, they can be easily handled by decomposing into multiple binary problems (Crammer and

Singer, 2002). However, one exception is clustering problems, in which existing decomposition

methods cannot be applied as there is no label. Extension to this more challenging multi-class

clustering scenario will be considered as a future work.
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Appendix A. Proof of Theorem 2

Proof Let {ᾱ(t), µ̄(t)} be the optimal solution of Equation (9), which can be viewed as a saddle-point

problem. Let J(α,µ) = ∑ŷ∈C (t) µŷgŷ(α). Using the saddle-point property (Boyd and Vandenberghe,

2004), we have

J(α, µ̄(t))≥ J(ᾱ(t), µ̄(t))≥ J(ᾱ(t),µ), ∀α,µ.

In other words, ᾱ(t) minimizes J(α, µ̄(t)). Note that gy(α) is λ-strongly convex and ∑y∈C (t) µ̄
(t)
y = 1,

thus J(α, µ̄(t)) is also λ-strongly convex. Using the Taylor expansion, we have

J(α, µ̄(t))− J(ᾱ(t), µ̄(t))≥ λ

2
‖α− ᾱ(t)‖2, ∀α ∈ A .

Using the definition of J(α,µ), we then have

∑
ŷ∈C (t)

µ̄
(t)
ŷ gŷ(α)− ∑

ŷ∈C (t)

µ̄
(t)
ŷ gŷ(ᾱ

(t))≥ λ

2
∑

ŷ∈C (t)

µ̄
(t)
ŷ ‖α− ᾱ(t)‖2 =

λ

2
‖α− ᾱ(t)‖2. (35)
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Let ŷ(t+1) be the violated label vector selected at iteration t +1 in Algorithm 1, that is, C t+1 =
C (t)⋃ ŷ(t+1). From the definition, we have

gŷ(t+1)(ᾱ(t)) =−G(ᾱ(t), ŷ(t+1)) ≥ max
ŷ∈C (t)

−G(ᾱ(t), ŷ)+ ε = max
ŷ∈C (t)

gŷ(ᾱ
(t))+ ε

≥ ∑
ŷ∈C (t)

µ̄
(t)
ŷ gŷ(ᾱ

(t))+ ε =−p(t)+ ε. (36)

Consider the following optimization problem and let p̂(t+1) be its optimal objective value

p̂(t+1) =−min
α∈A

max
0≤θ≤1

θ ∑
ŷ∈C (t)

µ̄
(t)
ŷ gŷ(α)+(1−θ)gŷ(t+1)(α). (37)

When θ = 1, it reduces to Equation (9) at iteration t, and so p̂(t+1) ≤ p(t). On the other hand, note

that θ∑ŷ∈C (t) µ̄
(t)
ŷ +(1−θ) = θ+(1−θ) = 1, the optimal solution in Equation (37) is suboptimal to

that of Equation (9) at iteration t +1. Then we have p(t+1) ≤ p̂(t+1). Let p̂(t+1) = p(t)−η, now we

aims at showing η≥ (−c+
√

c2+4ε
2

)2 which obviously induces our final inequality Equation (10).

Let {α̃(t), θ̃} be the optimal solution of Equation (37), we have following inequalities

p(t)−η ≤ − ∑
ŷ∈C (t)

µ̄
(t)
ŷ gŷ(α̃

(t)), (38)

p(t)−η ≤ −gŷ(t+1)(α̃(t)). (39)

Using Equations (35), (36), (38) and (39), we have

η ≥ ∑
ŷ∈C (t)

µ̄
(t)
ŷ gŷ(α̃

(t))− ∑
ŷ∈C (t)

µ̄
(t)
ŷ gŷ(ᾱ

(t))≥ λ

2
‖α̃(t)− ᾱ(t)‖2, (40)

ε−η ≤ gŷ(t+1)(ᾱ(t))−gŷ(t+1)(α̃(t))≤M‖α̃(t)− ᾱ(t)‖. (41)

On combining Equations (40) and (41), we obtain

ε−η≤M

√

2η

λ
,

and then finally we have η≥
(

−c+
√

c2+4ε
2

)2

, where c = M√
λ/2

.
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