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Abstract

There are two main approaches to binary classification problems: the loss function approach and

the uncertainty set approach. The loss function approach is widely used in real-world data analysis.

Statistical decision theory has been used to elucidate its properties such as statistical consistency.

Conditional probabilities can also be estimated by using the minimum solution of the loss function.

In the uncertainty set approach, an uncertainty set is defined for each binary label from training

samples. The best separating hyperplane between the two uncertainty sets is used as the decision

function. Although the uncertainty set approach provides an intuitive understanding of learning

algorithms, its statistical properties have not been sufficiently studied. In this paper, we show that

the uncertainty set is deeply connected with the convex conjugate of a loss function. On the basis

of the conjugate relation, we propose a way of revising the uncertainty set approach so that it

will have good statistical properties such as statistical consistency. We also introduce statistical

models corresponding to uncertainty sets in order to estimate conditional probabilities. Finally, we

present numerical experiments, verifying that the learning with revised uncertainty sets improves

the prediction accuracy.

Keywords: loss function, uncertainty set, convex conjugate, consistency

1. Introduction

In classification problems, the goal is to predict output labels for given input vectors. For this pur-

pose, a decision function defined on the input space is estimated from training samples. The output

value of the decision function is used for predicting the labels. In binary classification problems,

the sign of the decision function is expected to provide an accurate prediction of the labels. Many

learning algorithms use loss functions as a penalty of misclassifications. A decision function mini-

mizing the empirical mean of the loss function over the training samples is employed as an estimator

(Cortes and Vapnik, 1995; Schölkopf et al., 2000; Freund and Schapire, 1997; Hastie et al., 2001).

For example, the hinge loss, exponential loss and logistic loss are used for support vector machine

(SVM), Adaboost and logistic regression, respectively. In regards to binary classification tasks,

recent studies have elucidated the statistical properties of learning algorithms using loss functions
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(see Bartlett et al. 2006; Steinwart 2005, 2003; Schapire et al. 1998; Zhang 2004; Vapnik 1998 for

details).

The loss function approach provides not only an estimator of the decision function, but also an

estimator of the conditional probability of binary labels for a given input. The sign of the estimated

decision function is used for the label prediction, and the magnitude of the decision function is

connected to the conditional probability via the loss function. This connection has been studied by

many researchers (Friedman et al., 1998; Bartlett and Tewari, 2007). For example, the logistic loss

and exponential loss produce logistic models, whereas the hinge loss cannot be used to estimate the

conditional probability except the probability 0.5 (Bartlett and Tewari, 2007).

Another approach to binary classification problems, the maximum-margin criterion, is taken

in statistical learning. Under the maximum-margin criterion, the best separating hyperplane be-

tween the two output labels is used as the decision function. Hard-margin SVM (Vapnik, 1998)

defines a convex-hull of input vectors for each binary label, and takes into account the maximum-

margin between the two convex-hulls. For the non-separable case, ν-SVM gives us a similar picture

(Schölkopf et al., 2000; Bennett and Bredensteiner, 2000). Ellipsoidal sets as well as polyhedral sets

such as the convex-hull of finite input points can be used to solve classification problems (Lanckriet

et al., 2003; Nath and Bhattacharyya, 2007). In this paper, the set used in the maximum-margin

criterion is referred to as an uncertainty set. This term comes from the field of robust optimization

in mathematical programming (Ben-Tal et al., 2009).

There have been studies on the statistical properties of learning with uncertainty sets. For ex-

ample, Lanckriet et al. (2003) proposed minimax probability machine (MPM) using ellipsoidal

uncertainty sets and studied its statistical properties in the worst-case setting. In statistical learning

using uncertainty sets, the main concern is to develop optimization algorithms under the maximum

margin criterion (Mavroforakis and Theodoridis, 2006). So far, however, the statistical properties of

learning with uncertainty sets have not been studied as much as those of learning with loss functions.

The main purpose of this paper is to study the relation between the loss function approach and

uncertainty set approach, and to use the relation to transform learning with uncertainty sets into

loss-based learning in order to clarify the statistical properties of learning algorithms. As men-

tioned above, loss functions naturally involve statistical models of conditional probabilities. As a

result, we can establish a correspondence between uncertainty sets and statistical models of condi-

tional probabilities. Note that some of the existing learning methods using uncertainty sets do not

necessarily have good statistical properties, such as the statistical consistency. We propose a way of

revising uncertainty sets to establish statistical consistency.

Figure 1 shows how uncertainty sets, loss functions and statistical models are related. Starting

from a learning algorithm with uncertainty sets, we obtain the corresponding loss function and

statistical model via the convex conjugate. Usually, uncertainty sets are designed on the basis of

an intuitive understandings of real-world data. By revising uncertainty sets, we can obtain the

corresponding loss functions and statistical models. We also derive sufficient conditions under

which the corresponding loss function produces a statistically consistent estimator. We think that

our method of revising uncertainty sets can bridge the gap between intuitive statistical modeling and

the nice statistical properties of learning algorithms.

The paper is organized as follows. Section 2 reviews the existing learning methods using loss

functions and uncertainty sets. We describe the relation between the loss function and uncertainty

set in ν-SVM. Section 3 is an investigation of the general relation between loss functions and uncer-

tainty sets. In addition, we describe statistical models derived from loss functions. Section 4 shows
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⇓ Loss Minimization: Sec. 3.2

Figure 1: Relations among uncertainty sets, loss functions and statistical models. In Section 3.1,

we derive uncertainty sets from loss functions by using the convex conjugate of loss

functions. In Section 3.2, we derive statistical models from loss functions. Section 4.2

shows how to revise uncertainty sets in order to obtain loss functions from them. By

applying the relations in the diagram, we can transform learning with uncertainty sets

into loss-based learning so that we can benefit from good statistical properties such as

statistical consistency.

how to revising the uncertainty set so that it will have good statistical properties. Section 5 describes

a kernel-based learning algorithm derived from uncertainty sets. Section 6 proves that the kernel-

based algorithm has statistical consistency. The results of numerical experiments are described in

Section 7. We conclude in section 8. The details of the proofs are shown in the Appendix.

Let us summarize the notations to be used throughout the paper. The indicator function is

denoted as [[A ]]; that is, [[A ]] equals 1 if A is true, and 0 otherwise. The column vector x in Euclidean

space is written in boldface. The transposition of x is denoted as xT . The Euclidean norm of the

vector x is expressed as ‖x‖. For a set S in a linear space, the convex hull of S is denoted as convS

or conv(S). The number of elements in S is denoted as |S|. The expectation of the random variable

Z w.r.t. the probability distribution P is described as EP[Z]. We will drop the subscript P when it

is clear from the context. The set of all measurable functions on the set X relative to the measure

P is denoted by L0. The supremum norm of f ∈ L0 is denoted as ‖ f‖∞. Elements in X are written

in Roman alphabets such as x ∈ X if X is not necessarily a subset of the Euclidean space. For the

reproducing kernel Hilbert space H , ‖ f‖H is the norm of f ∈ H defined from the inner product

〈·, ·〉H on H .

2. Preliminaries and Previous Studies

We define X as the input space and {+1,−1} as the set of binary labels. Suppose that the training

samples (x1,y1), . . . ,(xm,ym)∈X ×{+1,−1} are drawn i.i.d. according to a probability distribution

P on X ×{+1,−1}. The goal is to estimate a decision function f : X → R such that the sign of

f (x) provides an accurate prediction of the unknown binary label associated with the input x under

the probability distribution P. In other words, the probability of sign( f (x)) 6= y for the estimated
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decision function f is expected to be as small as possible.1 In this article, the composite function of

the sign function and the decision function, sign( f (x)), is referred to as classifier.

2.1 Learning with Loss Functions

In binary classification problems, the prediction accuracy of the decision function f is measured

by the 0-1 loss [[sign( f (x)) 6= y ]], which equals 1 when the sign of f (x) is different from y and 0

otherwise.

The average prediction performance of the decision function f is evaluated by the expected 0-1

loss, that is,

E( f ) = E[ [[sign( f (x)) 6= y ]] ].

The Bayes risk E∗ is defined as the minimum value of the expected 0-1 loss over all the measurable

functions on X ,

E∗ = inf{E( f ) : f ∈ L0}. (1)

The Bayes risk is the lowest achievable error rate given the probability P. Given a set of training

samples, T = {(x1,y1), . . . ,(xm,ym)}, the empirical 0-1 loss is expressed as

ÊT ( f ) =
1

m

m

∑
i=1

[[sign( f (xi)) 6= yi ]].

In what follows, the subscript T in ÊT ( f ) will be dropped if it is clear from the context.

In general, minimization of ÊT ( f ) is a hard problem (Arora et al., 1997). The main difficulty

comes from the non-convexity of the 0-1 loss [[sign( f (x)) 6= y ]] as a function of f . Hence, many

learning algorithms use a surrogate loss in order to make the computation tractable. For example,

SVM uses the hinge loss, max{1−y f (x),0}, and Adaboost uses the exponential loss, exp{−y f (x)}.

Both the hinge loss and the exponential loss are convex in f , and they provide an upper bound of

the 0-1 loss. Thus, the minimizer under the surrogate loss is also expected to minimize the 0-1 loss.

The quantitative relation between the 0-1 loss and the surrogate loss was studied by Bartlett et al.

(2006) and Zhang (2004).

Regularization is used to avoid overfitting of the estimated decision function to the training sam-

ples. The complexity of the estimated classifier is limited by adding a regularization term such as

the squared norm of the decision function to an empirical surrogate loss. The balance between the

regularization term and the surrogate loss is adjusted by using a regularization parameter (Evgeniou

et al., 1999; Steinwart, 2005). Accordingly, regularization controls the deviation of the empirical

loss from the expected loss. The optimization is computationally tractable when both the regular-

ization term and the surrogate loss are convex.

Besides computational tractability, surrogate loss functions have another benefit. As discussed

by Friedman et al. (1998) and Bartlett and Tewari (2007), surrogate loss functions provide statistical

models for the conditional probability of a label y for a given x, that is, P(y|x). A brief introduction

to this idea is given below.

1. As Bartlett et al. (2006) pointed out, the particular choice of the value of sign(0) is not important, but we need to

choose some value in {+1,−1}.

1464



CONJUGATE RELATION IN CLASSIFICATION PROBLEMS

Let us consider a minimization problem of the expected loss, min f∈L0
E[ℓ(−y f (x))], where

ℓ(−y f (x)) is a surrogate loss of a decision function f (x). The function ℓ : R→ R is assumed to be

differentiable. In a similar way to Lemma 1 of Friedman et al. (1998), it is sufficient to minimize

the loss function conditional on x:

E[ℓ(−y f (x))|x] = P(y =+1|x)ℓ(− f (x))+P(y =−1|x)ℓ( f (x)).

At the optimal solution, the derivative is equal to zero, that is,

∂

∂ f (x)
E[ℓ(−y f (x))|x] =−P(y =+1|x)ℓ′(− f (x))+P(y =−1|x)ℓ′( f (x)),

where ℓ′ is the derivative of ℓ. Therefore, we have

P(y =+1|x) = ℓ′( f (x))

ℓ′( f (x))+ ℓ′(− f (x))

for the optimal solution f . An estimator of the conditional probability can be obtained by substi-

tuting an estimated decision function into the above expression. For example, the exponential loss

exp{−y f (x)} yields the logistic model

P(y =+1|x) = e f (x)

e f (x)+ e− f (x)
.

The relation between surrogate losses and statistical models was extensively studied by Bartlett and

Tewari (2007).

2.2 Learning with Uncertainty Sets

Besides statistical learning using loss functions, there is another approach to binary classification

problems, that is, statistical learning based on the uncertainty set. What follows is a brief introduc-

tion to the basic idea of the uncertainty set. We assume that X is a subset of Euclidean space.

Uncertainty sets describe uncertainties or ambiguities present in robust optimization problems

(Ben-Tal et al., 2009). The parameter in the optimization problem may not be precisely determined.

For example, in portfolio optimization, the objective function may depend on a future stock price.

Instead of precise information, we have an uncertainty set which probably includes the true pa-

rameter of the optimization problem. Typically, the worst case is the setting in which the robust

optimization problem with uncertainty sets is solved.

Statistical learning with uncertainty sets is an application of robust optimization to classification

problems. An uncertainty set is prepared for each binary label. Each uncertainty set is assumed to

include the mean vector of the distribution of input point x conditioned on each label (Takeda et al.,

2013). For example, Up and Un are confidence regions such that the conditional probabilities,

P(x ∈ Up|y = +1) and P(x ∈ Un|y = −1), are both equal to 0.95. Another example is one in

which the uncertainty set Up (resp. Un) consists of the convex hull of input vectors in training

samples having the positive (resp. negative) label. The convex hull of data points is used in hard

margin SVM (Bennett and Bredensteiner, 2000). An ellipsoidal uncertainty set is also used for

the robust classification in the worst-case setting (Lanckriet et al., 2003; Nath and Bhattacharyya,

2007).
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Figure 2: Decision boundary estimated by solving the minimum distance problem with the uncer-

tainty sets Up and Un.

We use the uncertainty set to estimate the linear decision function f (x) =wTx+ b. Here, let

us consider the minimum distance problem

min
xp,xn

‖xp −xn‖ subject to xp ∈ Up, xn ∈ Un. (2)

Let x∗
p and x∗

n be optimal solutions of (2). Then, the normal vector of the decision function, w,

can be estimated with c(x∗
p −x∗

n), where c is a positive real number. Figure 2 illustrates the es-

timated decision boundary. When both Up and Un are compact subsets satisfying Up ∩Un = /0,

the estimated normal vector cannot be the null vector. The minimum distance problem appears in

the hard margin SVM (Vapnik, 1998; Bennett and Bredensteiner, 2000), ν-SVM (Schölkopf et al.,

2000; Crisp and Burges, 2000) and the learning algorithms proposed by Nath and Bhattacharyya

(2007) and Mavroforakis and Theodoridis (2006). Section 2.3 briefly describes the relation be-

tween ν-SVM and the minimum distance problem. Another criterion is used to estimate the linear

decision function in minimax probability machine (MPM) proposed by Lanckriet et al. (2003), but

the ellipsoidal uncertainty set also plays an important role in MPM.

The minimum distance problem is equivalent to the maximum margin principle (Vapnik, 1998;

Bennett and Bredensteiner, 2000). When the bias term b in the linear decision function is estimated

such that the decision boundary bisects the line segment connecting x∗
p and x∗

n, the estimated de-

cision boundary will have the maximum margin between the uncertainty sets, Up and Un. Takeda

et al. (2013) studied the relation between the minimum distance problem and the maximum margin

principle.

2.3 Loss Functions and Uncertainty Sets in ν-SVM

Here, we will describe how the loss function approach and uncertainty set approach are related to

each other in ν-SVM (Schölkopf et al., 2000). We will follow the presentation laid out in Crisp and
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Burges (2000) and Bennett and Bredensteiner (2000). We will extend this relation to more general

learning algorithms in Section 3.

Suppose that the input space X is a subset of Euclidean space R
d , and we have the linear

decision function, f (x) =wTx+ b, where the normal vector w ∈ R
d and the bias term b ∈ R are

parameters to be estimated based on training samples. By applying the kernel trick (Berlinet and

Thomas-Agnan, 2004; Schölkopf and Smola, 2002), we can obtain rich statistical models for the

decision function, while maintaining computational tractability.

The decision function used in ν-SVM is estimated as the optimal solution of

min
w,b,ρ

1

2
‖w‖2 −νρ+

1

m

m

∑
i=1

max{ρ− yi(w
Txi +b), 0}, w ∈ R

d , b ∈ R, ρ ∈ R, (3)

where ν ∈ (0,1) is a prespecified constant that acts as the regularization parameter. ν-SVM uses a

variant of the hinge loss, max{ρ− yi(w
Txi +b), 0}, as a surrogate loss. As Schölkopf et al. (2000)

pointed out, the parameter ν controls the margin errors and number of support vectors. Roughly

speaking, the derivative of the objective function with respect to ρ yields

1

m

m

∑
i=1

[[yi(w
Txi +b)< ρ ]] = ν, (4)

where the subdifferential at ρ = yi(w
Txi + b) has been ignored for simplicity. The left side of

(4) is called the margin error. The quantity yi(w
Txi + b) is referred to as the margin, and the

equality above implies that an optimal ρ is the ν-quantile of the empirical distribution of margins

yi(w
Txi + b), i = 1, . . . ,m. The empirical loss in ν-SVM is minimized over training samples such

that yi(w
Txi + b) < ρ, and training samples having a large margin, that is, yi(w

Txi + b) ≥ ρ, do

not contribute to the loss function max{ρ− yi(w
Txi + b), 0}. As a result, the sum of the second

and third terms in ν-SVM (3) imply the mean of the negative margin −yi(w
Txi + b) such that

yi(w
Txi +b)< ρ, that is,

−νρ+
1

m

m

∑
i=1

max{ρ− yi(w
Txi +b), 0}= ν · 1

mν ∑
i:yi(wTxi+b)<ρ

(−yi(w
Txi +b))

at the optimal solution. The above loss function is known as the conditional value-at-risk in the

field of mathematical finance (Rockafellar and Uryasev, 2002). The relation between ν-SVM and

the conditional value-at-risk was studied by Takeda and Sugiyama (2008).

The original formulation of ν-SVM uses a non-negativity constraint, ρ ≥ 0. As shown by Crisp

and Burges (2000), the non-negativity constraint is redundant. Indeed, for an optimal solution

ŵ, b̂, ρ̂, we have

−νρ̂ ≤ 1

2
‖ŵ‖2 −νρ̂+

1

m

m

∑
i=1

max{ρ̂− yi(ŵ
Txi + b̂), 0} ≤ 0,

where the last inequality comes from the fact that the parameter, w = 0, b = 0, ρ = 0, is a feasible

solution of (3). As a result, we have ρ̂ ≥ 0 for ν > 0.

Now let us briefly show that the dual problem of (3) yields a minimum distance problem in

which the reduced convex-hulls of training samples are used as uncertainty sets (See Bennett and
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Bredensteiner 2000 for details). Problem (3) is equivalent to

min
w,b,ρ,ξ

1

2
‖w‖2 −νρ+

1

m

m

∑
i=1

ξi, subject to ξi ≥ 0, ξi ≥ ρ− yi(w
Txi +b), i = 1, . . . ,m.

The Lagrangian function is defined as

L(w,b,ρ,ξ,α,β) =
1

2
‖w‖2 −νρ+

1

m

m

∑
i=1

ξi +
m

∑
i=1

αi(ρ− yi(w
Txi +b)−ξi)−

m

∑
i=1

βiξi,

where αi, βi, i= 1, . . . ,m are non-negative Lagrange multipliers. For the training samples, we define

Mp and Mn as the set of sample indices for each label, that is,

Mp = {i | yi =+1}, Mn = {i | yi =−1}. (5)

The min-max theorem (Bertsekas et al., 2003, Proposition 6.4.3) provides

inf
w,b,ρ,ξ

sup
α≥0,β≥0

L(w,b,ρ,ξ,α,β)

= sup
α≥0,β≥0

inf
w,b,ρ,ξ

L(w,b,ρ,ξ,α,β)

= sup
α≥0,β≥0

inf
b,ρ,ξ

−1

2

∥∥
m

∑
i=1

αiyixi

∥∥2
+

m

∑
i=1

ξi

(
1

m
−αi −βi

)
+ρ

(
m

∑
i=1

αi −ν

)
−b

m

∑
i=1

αiyi (6)

= sup
α

{
− 1

2

∥∥
m

∑
i=1

αiyixi

∥∥2
:

m

∑
i=1

αi = ν,
m

∑
i=1

αiyi = 0, 0 ≤ αi ≤
1

m

}

=−ν2

8
inf
α

{∥∥ ∑
i∈Mp

γixi − ∑
j∈Mn

γ jx j

∥∥2
: ∑

i∈Mp

γi = ∑
i∈Mn

γi = 1, 0 ≤ γi ≤
2

mν

}
. (7)

The following equalities should hold in (6) above

1

m
−αi −βi = 0, (i = 1, . . . ,m),

m

∑
i=1

αi −ν = 0,
m

∑
i=1

αiyi = 0.

Otherwise the objective value tends to −∞. The last equality (7) is obtained by changing the variable

from αi to γi = 2αi/ν.

For the positive (resp. negative) label, we introduce the uncertainty set Up (reps. Un) defined

by the reduced convex-hull, that is,

o ∈ {p,n}, Uo =

{
∑

i∈Mo

γixi : ∑
i∈Mo

γi = 1, 0 ≤ γi ≤
2

mν
, i ∈ Mo

}
.

When the upper limit of γi is less than one, the reduced convex-hull is a subset of the convex-hull of

training samples. Hence, solving problem (7) is identical to solving the minimum distance problem

with the uncertainty set of reduced convex hulls,

inf
xp,xn

‖xp −xn‖ subject to xp ∈ Up, xn ∈ Un.

If the loss function in ν-SVM is scaled, such as,

1

ν
‖w‖2 −2ρ+

1

m

m

∑
i=1

2

ν
max{ρ− yi(w

Txi +b), 0}, (8)

the variable change from the Lagrange multipliers α1, . . . ,αm to γ1, . . . ,γm, as shown in (7), is not

required to obtain uncertainty sets, Up and Un.
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3. Relation between Loss Functions and Uncertainty Sets

Here, we present an extension of ν-SVM with which we can investigate the relation between loss

functions and uncertainty sets.

3.1 Uncertainty Sets Associated with Loss Functions

The decision function is defined as f (x) = wTx+ b on R
d , and let ℓ : R → R be a convex non-

decreasing function. For training samples, (x1,y1), . . . ,(xm,ym), we propose the following learning

method, which is an extension of ν-SVM with the expression (8),

inf
w,b,ρ

−2ρ+
1

m

m

∑
i=1

ℓ(ρ− yi(w
Txi +b)) subject to ‖w‖2 ≤ λ2, b ∈ R, ρ ∈ R. (9)

The regularization effect is introduced by the constraint ‖w‖2 ≤ λ2, where λ is a regularization

parameter which may depend on the sample size. The above formulation makes the proof of sta-

tistical consistency in Section 6 rather simple. Note that ν-SVM is recovered by setting ℓ(z) =
max{2z/ν,0} with an appropriate λ.

Let us consider the role of the parameter ρ in (9). As described in Section 2.3, ρ in ν-SVM is

chosen adaptively, and as a result, training samples with a small margin such as yi(w
Txi + b) < ρ

suffer a penalty. The number of training samples suffering a penalty is determined by the parameter

ν, and the optimal ρ is the ν-quantile of the empirical margin distribution. As shown below, the

ν parameter of ν-SVM is related to the slope of the loss function ℓ(z) in (9). In the extended

formulation, the ρ parameter in (9) is also adaptively estimated, and it is regarded as a soft-threshold;

that is, training samples with margins less than ρ suffer large penalties. The number of such training

samples is determined by the extremal condition of (9) with respect to ρ:

1

m

m

∑
i=1

ℓ′(ρ− yi(w
Txi +b)) = 2,

where ℓ is assumed to have a derivative ℓ′. In the generalized learning algorithm, the magnitude of

the derivative ℓ′ roughly controls the optimal ρ and the samples size such that margins are smaller

than ρ. Note that by placing a mild assumption on ℓ, the first term −2ρ in (9) prevents ρ from going

to −∞. The factor 2 in −2ρ can be replaced with an arbitrary positive constant, since multiplying a

positive constant by the objective function does not change the optimal solution. However, the factor

2 makes the calculation and interpretation of the dual expression somewhat simpler, as described in

the previous section.

We can derive the uncertainty set associated with the loss function ℓ in (9) in a similar way

to what was done with ν-SVM. We introduce slack variables ξi, i = 1, . . . ,m satisfying inequalities

ξi ≥ ρ− yi(w
Txi +b), i = 1, . . . ,m. Accordingly, the Lagrangian (9) becomes

L(w,b,ρ,ξ,α,µ) =−2ρ+
1

m

m

∑
i=1

ℓ(ξi)+
m

∑
i=1

αi(ρ− yi(w
Txi +b)−ξi)+µ(‖w‖2 −λ2),

where α1, . . . ,αm and µ are non-negative Lagrange multipliers. We define the convex conjugate of

ℓ(z) as

ℓ∗(α) = sup
z∈R

{zα− ℓ(z)}.
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The properties of the convex conjugate are summarized in Appendix A. The convex conjugate is

mainly used to improve the computational efficiency of learning algorithms (Sun and Shawe-Taylor,

2010). Here, we use the convex conjugate of the loss function to connect seemingly different styles

of learning algorithms.

The min-max theorem leads us to the dual problem as follows,

inf
w,b,ρ,ξ

sup
α≥0,µ≥0

L(w,b,ρ,ξ,α,µ)

= sup
α≥0,µ≥0

inf
w,b,ρ,ξ

L(w,b,ρ,ξ,α,µ)

= sup
α≥0,µ≥0

inf
w,b,ρ,ξ

{
ρ

(
m

∑
i=1

αi −2

)
−b

m

∑
i=1

αiyi

− 1

m

m

∑
i=1

(mαiξi − ℓ(ξi))−
m

∑
i=1

αiyix
T
i w+µ(‖w‖2 −λ2)

}

=− inf
α≥0,µ≥0

{
1

m

m

∑
i=1

ℓ∗(mαi)+
1

4µ

∥∥
m

∑
i=1

αiyixi

∥∥2
+µλ2 :

m

∑
i=1

αi −2 = 0,
m

∑
i=1

αiyi = 0

}

=− inf
α

{
1

m

m

∑
i=1

ℓ∗(mαi)+λ
∥∥ ∑

i∈Mp

αixi − ∑
i∈Mn

αixi

∥∥ : ∑
i∈Mp

αi = ∑
i∈Mn

αi = 1, αi ≥ 0

}
. (10)

Section 6 presents a rigorous proof that by placing certain assumptions on ℓ(ξ), the min-max theo-

rem works in the above Lagrangian function; that is, there is no duality gap. For each binary label,

we define parametrized uncertainty sets, Up[c] and Un[c], by

o ∈ {p,n}, Uo[c] =

{
∑

i∈Mo

αixi : αi ≥ 0, ∑
i∈Mo

αi = 1,
1

m
∑

i∈Mo

ℓ∗(mαi)≤ c

}
. (11)

Accordingly, the optimization problem in (10) can be represented as

inf
cp,cn,zp,zn

cp + cn +λ
∥∥zp −zn

∥∥

subject to zp ∈ Up[cp], zn ∈ Un[cn], cp, cn ∈ R.
(12)

Let ẑp and ẑn be the optimal solution of zp and zn in (12). Let ŵ be an optimal solution of w in

(9). The saddle point of the above min-max problem (10) leads to the relation between ẑp, ẑn and

ŵ. Some calculation yields that ŵ = λ(ẑp − ẑn)/‖ẑp − ẑn‖ holds for ẑp 6= ẑn, and for ẑp = ẑn any

vector such that ‖ŵ‖2 ≤ λ2 satisfies the KKT condition of (9).

The shape of uncertainty sets and the max-margin criterion respectively correspond to the loss

function and the regularization principle. Moreover, the size of the uncertainty set is determined by

the regularization parameter. Now let us show some examples of uncertainty sets (11) associated

with popular loss functions. The index sets in the following examples, Mp and Mn, are defined by

(5) for the training samples (x1,y1), . . . ,(xm,ym), and mp and mn be mp = |Mp| and mn = |Mn|.

Example 1 (ν-SVM) Problem (9) with ℓ(z) = max{2z/ν,0} reduces to ν-SVM. The conjugate

function of ℓ is

ℓ∗(α) =

{
0, α ∈ [0,2/ν],

∞, α 6∈ [0,2/ν],
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and the associated uncertainty set is defined by

o ∈ {p,n}, Uo[c] =





{
∑

i∈Mo

αixi : ∑
i∈Mo

αi = 1, 0 ≤ αi ≤
2

mν
, i ∈ Mo

}
, c ≥ 0,

/0, c < 0.

For c ≥ 0, the uncertainty set consists of the reduced convex hull of the training samples, and it does

not depend on the parameter c. In addition, a negative c is infeasible. Hence, the optimal solutions

of cp and cn in the problem (12) are cp = cn = 0, and the problem reduces to a simple minimum

distance problem.

Example 2 (Truncated quadratic loss) Let us now consider ℓ(z) = (max{1+ z,0})2. The conju-

gate function is

ℓ∗(α) =




−α+

α2

4
, α ≥ 0,

∞, α < 0.

For o ∈ {p,n}, we define x̄o and Σ̂o as the empirical mean and the empirical covariance matrix of

the samples {xi : i ∈ Mo}, that is,

x̄o =
1

mo
∑

i∈Mo

xi, Σ̂o =
1

mo
∑

i∈Mo

(xi − x̄o)(xi − x̄o)
T .

Suppose that Σ̂o is invertible. Then, the uncertainty set corresponding to the truncated quadratic

loss is

o ∈ {p,n}, Uo[c] =

{
∑

i∈Mo

αixi : ∑
i∈Mo

αi = 1, αi ≥ 0, i ∈ Mo, ∑
i∈Mo

α2
i ≤

4(c+1)

m

}

=

{
z ∈ conv{xi : i ∈ Mo} : (z− x̄o)

T Σ̂−1
o (z− x̄o)≤

4(c+1)mo

m

}
.

To prove the second equality, let us define a matrix X = (x1, . . . ,xmo
) ∈ R

d×mo . For αo = (αi)i∈Mo

satisfying the constraints, we get

z = ∑
i∈Mo

αixi = (X − x̄o1
T )αo + x̄o,

where 1 = (1, . . . ,1)T ∈ R
mo . The singular value decomposition of the matrix X − x̄o1

T and the

constraint ‖αo‖2 ≤ 4(c+1)/m yield the second equality. A similar uncertainty set is used in min-

imax probability machine (MPM) (Lanckriet et al., 2003) and maximum margin MPM (Nath and

Bhattacharyya, 2007), though the constraint, z ∈ conv{xi : i ∈ Mo}, is not imposed.

Example 3 (exponential loss) The loss function ℓ(z)= ez is used in Adaboost (Freund and Schapire,

1997; Friedman et al., 1998). The conjugate function is equal to

ℓ∗(α) =

{
−α+α logα, α ≥ 0,

∞, α < 0.
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Hence, the corresponding uncertainty set is

Uo[c] =

{
∑

i∈Mo

αixi : ∑
i∈Mo

αi = 1, αi ≥ 0, i ∈ Mo, ∑
i∈Mo

αi log
αi

1/mo

≤ c+1+ log
mo

m

}

for o ∈ {p,n}. The Kullback-Leibler divergence from the weights αi, i ∈ Mo to the uniform weight

is bounded from above in the uncertainty set.

3.2 Statistical Models Associated with Uncertainty Sets

The extended minimum distance problem (12) with the parametrized uncertainty set (11) corre-

sponds to the loss function in (9). We will show the relation between decision functions and condi-

tional probabilities in a similar way to what is shown in Section 2.1. However, instead of the linear

decision function wTx+b, we will consider any measurable function f ∈ L0.

In the learning algorithm (9), the loss function −2ρ+ℓ(ρ−y f (x)) is used for estimating the de-

cision function. When the sample size tends to infinity, the objective function converges in probabil-

ity to E[−2ρ+ℓ(ρ−y f (x))]. We will show a minimum solution of the expected loss for f ∈ L0. As

described in Section 2.1, it is sufficient to minimize the loss function conditional on x. Suppose that

ρ∗ is the optimal solution of E[−2ρ+ℓ(ρ−y f (x))], and let us minimize E[−2ρ∗+ℓ(ρ∗−y f (x))|x]
with respect to f (x), which leads to solving

∂

∂ f (x)
E[−2ρ∗+ ℓ(ρ∗− y f (x))|x]

=−P(y =+1|x)ℓ′(ρ∗− f (x))+P(y =−1|x)ℓ′(ρ∗+ f (x)) = 0.

The extremal condition yields

P(y =+1|x) = ℓ′(ρ∗+ f (x))

ℓ′(ρ∗+ f (x))+ ℓ′(ρ∗− f (x))
(13)

for the optimal solution ρ∗ ∈ R and f ∈ L0. An estimator of the conditional probability can be

obtained by substituting estimated parameters into the above expression. Given the uncertainty set

(11), the corresponding statistical model is defined as (13) via the loss function ℓ(z).

4. Revision of Uncertainty Sets

Section 3.1 derived parametrized uncertainty sets associated with convex loss functions. Conversely,

if an uncertainty set is represented as the form of (11), a corresponding loss function exists. There

are many mathematical tools to analyze loss-based estimators. However, if the uncertainty set does

not have the form of (11), the corresponding loss function does not exist. One way to deal with the

drawback is to revise the uncertainty set so that it possesses a corresponding loss function. This

section is devoted to this idea.

Let us consider two different representations of a parametrized uncertainty set: the vertex rep-

resentation, and the level-set representation. For index sets Mp and Mn defined in (5), let mp = |Mp|
and mn = |Mn|. For o ∈ {p,n}, let Lo be a closed, convex, proper function on R

mo , and L∗
o be

the conjugate function of Lo. The argument of L∗
o is represented by αo = (αi)i∈Mo

. The vertex
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representation of the uncertainty set is defined as

Uo[c] =

{
∑

i∈Mo

αixi : L∗
o(αo)≤ c

}
, o ∈ {p,n}. (14)

Example 2 uses the function L∗
o(αo) =

m
4 ∑i∈Mo

α2
i − 1. On the other hand, let ho : Rd → R be a

closed, convex, proper function and h∗o be the conjugate of ho. The level-set representation of the

uncertainty set is defined by

Uo[c] =

{
∑

i∈Mo

αixi : h∗o
(

∑
i∈Mo

αixi

)
≤ c

}
, o ∈ {p,n}. (15)

The function h∗o may depend on the population distribution. Now suppose that h∗o does not de-

pend on sample points, xi, i ∈ Mo. In Example 2, the second expression of the uncertainty set

involves the convex function h∗o(z) = (z− x̄o)
T Σ̂−1

o (z− x̄o). This function does not satisfy the

assumption, since h∗o depends on the training samples via x̄o and Σ̂o. Instead, the function h∗o(z) =
(z−µo)

T Σ−1
o (z−µo) with the population mean µo and the population covariance matrix Σo sat-

isfies the condition. When µo and Σo are replaced with the estimated parameters based on prior

knowledge or samples that are different from the ones used for training, h∗o with the estimated pa-

rameters still satisfies the condition imposed above.

4.1 From Uncertainty Sets to Loss Functions

In popular learning algorithms using uncertainty sets such as hard-margin SVM, ν-SVM, and maxi-

mum margin MPM, the decision function is estimated by solving the minimum distance problem (2)

with Up = Up[c̄p] and Un = Un[c̄n], where c̄p and c̄n are fixed constants. To investigate the statisti-

cal properties of learning algorithms using uncertainty sets, we will consider the primal expression

of a variant of the minimum distance problem (2).

In Section 3, we expressed problem (12) as the dual form of (9). Here, let us consider the

following optimization problem to obtain a loss function corresponding to a given uncertainty set:

min
cp,cn,zp,zn

cp + cn +λ‖zp −zn‖
subject to cp,cn ∈ R,

zp ∈ Up[cp]∩ conv{xi : i ∈ Mp},
zn ∈ Un[cn]∩ conv{xi : i ∈ Mn}.

(16)

The constraints, zo ∈ conv{xi : i∈Mo},o∈ {p,n}, are added because the corresponding uncertainty

set (11) has them. Suppose that Up[cp] and Un[cn] have the vertex representation (14). Then, (16)

is equivalent to

min
α

L∗
p(αp)+L∗

n(αn)+λ
∥∥

m

∑
i=1

αiyixi

∥∥

subject to ∑
i∈Mp

αi = 1, ∑
j∈Mn

α j = 1, αi ≥ 0 (i = 1, . . . ,m).

If there is no duality gap, the corresponding primal formulation is

inf
w,b,ρ,ξp,ξn

−2ρ+Lp(ξp)+Ln(ξn),

subject to ρ− yi(w
Txi +b)≤ ξi, i = 1, . . . ,m, ‖w‖2 ≤ λ2,

(17)
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where ξo is defined as ξo = (ξi)i∈Mo
for o ∈ {p,n}.

In the primal expression (17), Lp and Ln are regarded as loss functions for the decision function

wTx+ b on the training samples. In general, however, the loss function is not represented as the

empirical mean over training samples.

4.2 Revised Uncertainty Sets and Corresponding Loss Functions

The uncertainty sets can be revised such that the primal form (17) is represented as minimization of

the empirical mean of a loss function. Theorem 1 below is the justification for this revision.

Revision of uncertainty set defined by vertex representation: Suppose that the uncertainty set

is described by (14). For o ∈ {p,n}, we define mo-dimensional vectors 1o = (1, . . . ,1) and

0o = (0, . . . ,0). For the convex function L∗
o : Rmo → R, we define ℓ̄∗ : R→ R∪{∞} by

ℓ̄∗(α) =





L∗
p(

α

m
1p)+L∗

n(
α

m
1n)−L∗

p(0p)−L∗
n(0n) α ≥ 0,

∞, α < 0.
(18)

The revised uncertainty set Ūo[c], o ∈ {p,n} is defined as

Ūo[c] =

{
∑

i∈Mo

αixi : ∑
i∈Mo

αi = 1, αi ≥ 0, i ∈ Mo,
1

m
∑

i∈Mo

ℓ̄∗(αim)≤ c

}
. (19)

Revision of uncertainty set defined by level-set representation: Suppose that the uncertainty set

is described by (15) and that the mean of the input vector x conditioned on the positive (resp.

negative) label is given as µp (resp.µn). The null vector is denoted as 0. We define the

function ℓ̄∗ : R→ R by

ℓ̄∗(α) =

{
h∗p(α

mp

m
µp)+h∗n(α

mn

m
µn)−h∗p(0)−h∗n(0) α ≥ 0,

∞, α < 0.
(20)

For ℓ̄∗(α) in (20), the revised uncertainty set Ūo[c],o ∈ {p,n} is defined in the same way as

(19). We apply a parallel shift to the training samples so as to be µp 6= 0 or µn 6= 0.

Now let us explain why the revised uncertainty set is defined as it is. When the function L∗
p+L∗

n

is described in additive form such as ∑m
i=1 g(αi) for a function g, the uncertainty set defined by the

revision (18) does not change. Indeed, Theorem 1 below implies that the transformation of L∗
p +L∗

n

into 1
m ∑m

i=1 ℓ̄
∗(αim) is a projection onto the set of functions with an additive form. In other words,

performing the revision twice is the same as performing it once. In addition, the second statement

of Theorem 1 means that the projection is uniquely determined when we impose the condition in

which the function values on the diagonal {(α, . . . ,α) ∈ R
m : α ≥ 0} remain unchanged.

Theorem 1 Let L∗
o : Rmo →R, o ∈ {p,n} be convex functions and ℓ̄∗ be the function defined by (18)

for given L∗
p and L∗

n. Suppose that ℓ : R→ R∪{∞} is a closed, convex, proper function such that

ℓ∗(0) = 0 and ℓ∗(α) = ∞ for α < 0 hold.
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1. Suppose that

L∗
p(αp)+L∗

n(αn)−L∗
p(0p)−L∗

n(0n) =
1

m

m

∑
i=1

ℓ∗(αim) (21)

holds for all non-negative αi, i = 1, . . . ,m. Then, the equality ℓ̄∗ = ℓ∗ holds.

2. Suppose further that

L∗
p(α1p)+L∗

n(α1n)−L∗
p(0p)−L∗

n(0n) =
1

m

m

∑
i=1

ℓ∗(αm) = ℓ∗(αm)

holds for all α ≥ 0. Then, the equality ℓ̄∗ = ℓ∗ holds.

Proof Let us prove the first statement. From the definition of ℓ̄∗ and the assumption placed on ℓ∗,

the equality ℓ∗(α) = ℓ̄∗(α) holds for α < 0. Next, suppose α ≥ 0. The assumption (21) leads to

L∗
p(

α
m
1p)+L∗

n(
α
m
1n)−L∗

p(0p)−L∗
n(0n) = ℓ∗(α). Hence, we have ℓ∗ = ℓ̄∗. The second statement of

the theorem is straightforward.

Next, we show that the formula (20) is valid. We want to find a function ℓ̄∗(α) such that

h∗p(∑i∈Mp
αixi)+ h∗n(∑i∈Mn

αixi)− h∗p(0)− h∗n(0) is close to 1
m ∑m

i=1 ℓ̄
∗(mαi) in some sense. To do

so, we substitute αi =α/m into h∗o(∑i∈Mo
αixi), o∈ {p,n}. In the large sample limit, h∗o(∑i∈Mo

α
m
xi)

is approximated by h∗o(α
mo

m
µo). Suppose that

h∗p(α
mp

m
µp)+h∗n(α

mn

m
µn)−h∗p(0)−h∗n(0)

is represented as 1
m ∑m

i=1 ℓ̄
∗( α

m
m) = ℓ̄∗(α). As a result, we get (20).

The expanded minimum distance problem using the revised uncertainty sets Ūp[c] and Ūn[c] is

min
cp,cn,zp,zn

cp + cn +λ‖zp −zn‖ subject to zp ∈ Ūp[cp], zn ∈ Ūn[cn]. (22)

The corresponding primal problem is

inf
w,b,ρ,ξp,ξn

−2ρ+
1

m

m

∑
i=1

ℓ̄(ξi) subject to ρ− yi(w
Txi +b)≤ ξi, i = 1, . . . ,m, ‖w‖2 ≤ λ2.

The revision of uncertainty sets leads to the empirical mean of the revised loss function ℓ̄. Asymp-

totic analysis can be used to study the statistical properties of the estimator given by the optimal

solution of (22), since the objective in the primal expression is described by the empirical mean of

the revised loss function.

Now let us show some examples to illustrate how revision of uncertainty sets works.

Example 4 Let L∗
o, o ∈ {p,n} be the convex function L∗

o(αo) = αT
o Coαo, where Co is a positive

definite matrix. When both Cp and Cn are the identity matrix, the following equality holds:

L∗
p(αp)+L∗

n(αn) =
1

m

m

∑
i=1

ℓ̄∗(αim) =
m

∑
i=1

α2
i .
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The revised function defined by (18) is

ℓ̄∗(α) = α2
1

T
pCp1p +1

T
n Cn1n

m2

for α ≥ 0. Accordingly, we get

1

m

m

∑
i=1

ℓ̄∗(αim) =
1

T
pCp1p +1

T
n Cn1n

m

m

∑
i=1

α2
i .

Let k be k = 1
T
pCp1p +1

T
n Cn1n. The revised uncertainty set is

o ∈ {p,n}, Ūo[c] =

{
∑

i∈Mo

αixi : ∑
i∈Mo

αi = 1, αi ≥ 0(i ∈ Mo), ∑
i∈Mo

α2
i ≤

cm

k

}
.

For o ∈ {p,n}, let x̄o and Σ̂o be the empirical mean and the empirical covariance matrix,

x̄o =
1

mo
∑

i∈Mo

xi, Σ̂o =
1

mo
∑

i∈Mo

(xi − x̄o)(xi − x̄o)
T .

If Σ̂o is invertible, we have

Ūo[c] =

{
z ∈ conv{xi : i ∈ Mo} : (z− x̄o)

T Σ̂−1
o (z− x̄o)≤

cmmo

k

}
.

In the learning algorithm based on the revised uncertainty set, the estimator is obtained by solving

min
cp,cn,zp,zn

cp + cn +λ‖zp −zn‖ subject to zp ∈ Ūp[cp], zn ∈ Ūn[cn]

⇐⇒ min
cp,cn,zp,zn

cp + cn +
m2λ

4k
‖zp −zn‖ subject to zp ∈ Ūp

[
4cpk

m2

]
, zn ∈ Ūn

[
4cnk

m2

]
.

The corresponding primal expression is

min
w,b,ρ,ξ

−2ρ+
1

m
∑

i∈Mp

ξ2
i subject to ρ− yi(w

Txi +b)≤ ξi, 0 ≤ ξi, ∀i, ‖w‖2 ≤
(

m2λ

4k

)2

.

Example 5 We define h∗o : X → R for o ∈ {p,n} by

h∗o(z) = (z−µo)
TCo(z−µo)

where µo is the mean vector of the input vector x conditioned on each label and Co is a positive

definite matrix. In practice, the mean vector is estimated by using prior knowledge which is inde-

pendent of training samples {(xi,yi) : i = 1, . . . ,m}. Suppose that µo 6= 0. Accordingly, for α ≥ 0,

the revision of (20) leads to

ℓ̄∗(α) =
(
(α

mp

m
−1)2 −1

)
µT

pCpµp +
(
(α

mn

m
−1)2 −1

)
µT

n Cnµn

= b1α+b2α2,
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original uncertainty set Up[c] revised uncertainty set Ūp[c]

Figure 3: Training samples and uncertainty sets. Left panel: original uncertainty set for the positive

label. Right panel: revised uncertainty set consisting of the intersection of ellipsoid and

convex-hull of input vectors with the positive label.

where b1 and b2(> 0) are constant numbers. Thus, we have

Ūo[c] =

{
∑

i∈Mo

αixi : ∑
i∈Mo

αi = 1, αi ≥ 0(i ∈ Mo), ∑
i∈Mo

α2
i ≤

c−b1

mb2

}

=

{
z ∈ conv{xi : i ∈ Mo} : (z− x̄o)

T Σ̂−1
o (z− x̄o)≤ mo ·

c−b1

mb2

}
,

where x̄o and Σ̂o are the estimators of the mean vector and the covariance matrix for {xi : i ∈ Mo}.

The corresponding loss function is obtained in the same way as Example 4. Figure 3 illustrates an

example of the revision of the uncertainty set. In the left panel, the uncertainty set does not match

the distribution of the training samples. On the other hand, the revised uncertainty set in the right

panel well approximates the dispersal of the training samples.

Example 6 Suppose that for o ∈ {p,n}, µo is the mean vector and Σo is the covariance matrix of

the input vector conditioned on each label. We define the uncertainty set by

o ∈ {p,n}, Uo[c] =
{

z ∈ conv{xi : i ∈ Mo} : (z−µ)T Σ−1
o (z−µ)≤ c, ∀µ ∈ A

}
,

where A denotes the estimation error of the mean vector µ. For a fixed radius r > 0, A is defined

as

A =
{
µ ∈ X : (µ−µo)

T Σ−1
o (µ−µo)≤ r2

}
.

The uncertainty set with the estimation error is used by Lanckriet et al. (2003) in MPM. The above

uncertainty set is useful when the probability in the training phase is slightly different from that in

the test phase. A brief calculation yields a representation of Uo[c] in terms of the level set of the

convex function,

h∗o(z) = max
µ∈A

(z−µ)T Σ−1
o (z−µ) =

(√
(z−µo)T Σ−1

o (z−µo)+ r

)2

.
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The revised uncertainty set Ūo[c] is defined by the function ℓ̄∗:

ℓ̄∗(α) =

(∣∣∣∣α
mp

m
−1

∣∣∣∣
√
µT

p Σ−1
p µp + r

)2

−
(√

µT
p Σ−1

p µp + r

)2

+

(∣∣∣∣α
mn

m
−1

∣∣∣∣
√
µT

n Σ−1
n µn + r

)2

−
(√

µT
n Σ−1

n µn + r

)2

. (23)

Suppose that µp 6= 0 and µn = 0 hold. Let d =
√
µT

p Σ−1
p µp and h = r/d(> 0). The corresponding

loss function is

ℓ̄(z) =
md2

mp

u
( z

d2

)
,

where u(z) as defined as

u(z) =





0, z ≤−2h−2,
( z

2
+1+h

)2
, −2h−2 ≤ z ≤−2h,

z+2h+1, −2h ≤ z ≤ 2h,

z2

4
+ z(1−h)+(1+h)2, 2h ≤ z.

(24)

Figure 4 depicts the function u(z) with h = 1. When r = 0 holds, ℓ̄(z) reduces to the truncated

quadratic function shown in Example 4 and 5. For positive r, ℓ̄(z) is linear around z = 0. This im-

plies that by introducing the confidence set of the mean vector A , the penalty for the misclassification

reduces from quadratic to linear around the decision boundary, though the original uncertainty set

Uo[c] does not correspond to minimization of an empirical loss function.

5. Kernel-Based Learning Algorithm Derived from Uncertainty Set

Suppose that we have training samples (x1,y1), . . . ,(xm,ym) ∈ X ×{+1,−1}, where X is not nec-

essarily a linear space. Let us define a kernel function k : X 2 → R, and let H be the reproducing

kernel Hilbert space (RKHS) endowed with the kernel function k; see Schölkopf and Smola (2002)

for details about the kernel estimators in machine learning.

Let us start with the parametrized uncertainty sets Up[c] and Un[c] in H . Given uncertainty

sets, a kernel variant of (16) is expressed as

inf
cp,cn, fp, fn

cp + cn +λ‖ fp − fn‖H

subject to cp,cn ∈ R,
fp ∈ Up[cp]∩ conv{k(·,xi) : i ∈ Mp},
fn ∈ Un[cn]∩ conv{k(·,x j) : j ∈ Mn}.

(25)

Next, we find the corresponding loss function ℓ(z). Note that the revision of uncertainty sets pre-

sented in Section 4 can be used, if necessary. Suppose the uncertainty sets are represented as

Uo[c] =

{
∑

i∈Mo

αik(·,xi) ∈ H :
1

m
∑

i∈Mo

ℓ∗(mαi)≤ c

}
(26)
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Figure 4: Loss function u(z) in Example 6 that corresponds to the revised uncertainty set with the

estimation error.

for o∈ {p,n}. In the same way as in Section 3.1, we find that problem (25) is the dual representation

of

min
f ,b,ρ

−2ρ+
1

m

m

∑
i=1

ℓ(ρ− yi( f (xi)+b))

subject to f ∈ H , b ∈ R, ρ ∈ R, ‖ f‖2
H ≤ λ2.

(27)

We can obtain the estimated decision function f̂ + b̂ ∈ H +R by solving the problem (27). A

rigorous proof of the strong duality between (25) and (27) is presented in Section 6 and Appendix B.

Example 7 (ellipsoidal uncertainty sets in RKHS) Let us consider an uncertainty set U[c] in RKHS

H defined by

U[c] =

{
m

∑
i=1

αik(·,xi) :
m

∑
i=1

α2
i ≤ c

}
⊂ H ,

where x1, . . . ,xm are points in X . The corresponding loss is the truncated quadratic loss. Let us

define k̄ ∈ H as 1
m ∑m

i=1 k(·,xi). Furthermore, let us define the empirical variance operator Σ̂ : H →
H as

Σ̂h =
1

m

m

∑
i=1

(k(·,xi)− k̄)〈k(·,xi)− k̄,h〉H

for h ∈ H . Some calculation yields

U[c]∩ conv{k(·,xi) : i = 1, . . . ,m}

=
{

k̄+ Σ̂h : 〈Σ̂h,h〉H ≤ mc−1
}
∩ conv{k(·,xi) : i = 1, . . . ,m}.

This is the kernel variant of the ellipsoidal uncertainty set in Example 2.
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By transforming the uncertainty-set-based learning into loss-based learning, we can obtain a

statistical model for the conditional probability, as shown in Section 3.2. In addition, we can verify

the statistical consistency of the learning algorithm with the (revised) uncertainty sets by taking

the corresponding loss function into account. Other authors have proposed kernel-based learning

algorithms with uncertainty sets (Lanckriet et al., 2003; Huang et al., 2004), but they did not deal

with the issue of statistical consistency. In the following, we study the statistical properties of the

learning algorithm based on (27).

6. Statistical Properties of Kernel-Based Learning Algorithms

Here, we prove that the expected 0-1 loss E( f̂ + b̂) converges to the Bayes risk E∗ defined by (1).

We also determine whether certain popular uncertainty sets produce consistent learning methods.

All proofs are presented in Appendix B and Appendix C.

6.1 Assumptions for Statistical Consistency

Let us show four assumptions.

Assumption 1 (universal kernel) The input space X is a compact metric space. The kernel func-

tion k : X 2 → R is continuous, and satisfies

sup
x∈X

√
k(x,x)≤ K < ∞,

where K is a positive constant. In addition, k is universal, that is, the RKHS associated with k is

dense in the set of all continuous functions on X with respect to the supremum norm (Steinwart and

Christmann, 2008, Definition 4.52).

Assumption 2 (non-deterministic assumption) For the probability distribution of training sam-

ples, there exists a positive constant ε > 0 such that

P({x ∈ X : ε ≤ P(+1|x)≤ 1− ε})> 0,

where P(y|x) is the conditional probability of the label y for the input x.

Assumption 3 (basic assumptions on loss functions) The loss function ℓ : R→R satisfies the fol-

lowing conditions.

1. ℓ is a non-decreasing, convex function that is non-negative, that is, ℓ(z)≥ 0 for all z ∈ R.

2. Let ∂ℓ(z) be the subdifferential of the loss function ℓ at z ∈R (Rockafellar, 1970, Chapter 23).

Then, the equality limz→∞ ∂ℓ(z) = ∞ holds; that is, for any M > 0, there exists z0 such that

g ≥ M for all z ≥ z0 and all g ∈ ∂ℓ(z).

Note that the second condition in Assumption 3 assures that ℓ is not a constant function and that

limz→∞ ℓ(z) = ∞.

Assumption 4 (modified classification-calibrated loss)
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1. ℓ(z) is first order differentiable for z ≥ −ℓ(0)/2, and ℓ′(z) > 0 for z ≥ −ℓ(0)/2, where ℓ′ is

the derivative of ℓ.

2. Let ψ(θ,ρ) be the function

ψ(θ,ρ) = ℓ(ρ)− inf
z∈R

{
1+θ

2
ℓ(ρ− z)+

1−θ

2
ℓ(ρ+ z)

}
, 0 ≤ θ ≤ 1, ρ ∈ R.

There exists a function ψ̃(θ) and a positive real ε > 0 such that the following three conditions

are satisfied:

(a) ψ̃(0) = 0 and ψ̃(θ)> 0 for 0 < θ ≤ ε.

(b) ψ̃(θ) is a continuous and strictly increasing function on the interval [0,ε].

(c) The inequality ψ̃(θ)≤ inf
ρ≥−ℓ(0)/2

ψ(θ,ρ) holds for 0 ≤ θ ≤ ε.

Appendix B presents a rigorous proof of the duality between (27) and (25) with the uncertainty

set (26). Appendix C.3 presents sufficient conditions for the existence of the function ψ̃ in Assump-

tion 4.

Under Assumptions 1–4 and another mild assumption, we prove that the expected 0-1 loss

E( f̂ + b̂) converges to the Bayes risk E∗. In the mild assumption, the covering number of the

RKHS H is taken into account. The details of the conferring number are shown in Appendix C.1.

6.1.1 THEOREM (STATISTICAL CONSISTENCY)

For the RKHS H and the loss function ℓ, we assume Assumptions 1, 2, 3 and 4. Also, we assume that

H satisfies the covering number condition, that is, (41) in Appendix C.1 converges to zero for any

positive ε, when the sample size m tends to infinity. Then, E( f̂ + b̂) converges to E∗ in probability.

Appendix C presents the necessary definitions, lemmas, and theorems, and Theorem 8 of Ap-

pendix C.1 and Theorem 9 of Appendix C.2 summarize the main results. The examples presented

in Appendix C.3 show that some popular uncertainty sets and their revisions yield loss functions

satisfying the above sufficient conditions.

6.2 Supplementary Explanations

Let us discuss Assumptions 1–4.

Universal kernel: The universality of RKHSs in Assumption 1 is usually assumed, when dis-

cussing the statistical consistency of kernel methods. If the RKHS under consideration is not

universal, a decision function might exist that is not approximated well by any element in the

RKHS. The Gaussian kernel is universal, while the polynomial kernel is not universal.

Non-deterministic assumption: In Assumption 2, the label y is assigned in a non-deterministic

way. The label assignment is deterministic when the conditional probability P(y = +1|x) is

equal to 0 or 1 for all x. Steinwart (2005) introduced the y-degenerated condition defined as

P({x ∈ X : P(y|x) = 1}) = 1
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for a label y ∈ {+1,−1}. If the y-degenerated condition holds, the proof of the consistency

is straightforward for standard learning methods such as C-SVM. Involved mathematical ar-

guments are needed to prove consistency if the y-degenerated condition does not apply. Here,

the deterministic assumption means

P({x ∈ X : P(y|x) = 1or0}) = 1.

In our setup, the parameter ρ is a variable, and it makes the situation somewhat difficult.

Under the above deterministic assumption, the optimal value of (27) may go to −∞, as the

number of training samples tends to infinity; see Lemma 3 in Appendix C.1. In such a case, it

would be impossible to make an empirical approximation of the objective value in (27). We

introduced the non-deterministic assumption to avoid such a troublesome situation.

Basic assumptions on loss functions: Loss functions are based on Assumption 3 and Assump-

tion 4. Conditions such that ℓ(z) is convex, non-decreasing, and bounded from below are

standard ones, but the second condition in Assumption 3 is rather strong. The hinge loss

and logistic loss do not satisfy this assumption, whereas the quadratic loss and exponential

loss satisfy it. Assumption 3 is used to derive an upper bound of the optimal ρ in (27); see

Lemma 5 in Appendix C.1.

Modified classification-calibrated loss: Assumption 4 is related to the classification-calibrated

loss. Bartlett et al. (2006) introduced classification-calibrated losses to analyze the statis-

tical consistency of binary classification problems. Roughly speaking, if a loss function is

classification-calibrated, the minimizer of the loss function produces the minimizer of the 0-1

loss. See Bartlett et al. (2006) for details about classification-calibrated losses. Suppose that

the function ℓ(ρ−z) with a fixed ρ is convex in z ∈R. Then, a sufficient condition for ℓ(ρ−z)
to be a classification-calibrated loss is given as ℓ′(ρ) > 0; that is, ℓ is differentiable at ρ and

the derivative is positive. In our setup, ρ is variable, and hence the condition ℓ′(ρ) > 0 is

required for all possible values of ρ. As shown in the proof of Lemma 5 in Appendix C.1,

the optimal ρ of the problem (27) is bounded from below by −ℓ(0)/2. Thus, we assumed the

differentiability of ℓ(z) for z ≥ −ℓ(0)/2. The second condition of Assumption 4 defines the

functions, ψ(θ,ρ) and ψ̃(θ). Bartlett et al. (2006) defined the function ψ(θ,0) and derived

the quantitative relation between the classification calibrated loss and the 0-1 loss via ψ(θ,0).
We extended ψ(θ,0) to ψ(θ,ρ) having a variable ρ. The functions ψ(θ,ρ) and ψ̃(θ) describe

a qualitative relation between the convex loss ℓ and the 0-1 loss. Appendix C.2 uses the func-

tion ψ̃(θ) to prove that the convergence of the expected loss guarantees the convergence of

the expected 0-1 loss to the Bayes risk.

Appendix C.3 describes the sufficient conditions for the existence of the function ψ̃(θ) in

Assumption 4. It shows some simple conditions under which a given loss function ℓ(z) will

possess ψ̃(θ). As a result, it is shown that the existence of ψ̃ is guaranteed for the truncated

quadratic loss, exponential loss and the loss function derived from the uncertainty set with the

estimation error in Example 6; see the examples provide in Appendix C.3.
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7. Experiments

We conducted some numerical experiments to examine the prediction performance of our revision of

uncertainty sets methods. The results indicate that the method improves the estimator. In addition,

we evaluated the estimation accuracy of the conditional probability.

We compared the kernel-based learning algorithms using the Gaussian kernel. So far, many

studies have compared linear models and kernel-based models. The conclusion is that linear models

outperform kernel-based models when the linear models have good approximations of the deci-

sion boundary. Otherwise, linear models have an approximation bias, and kernel-based estimators

with a nice regularization outperform linear models. For this reason, we focused on kernel-based

estimators.

The following methods were examined using the synthetic data and the standard benchmark

data sets: C-SVM, MPM, unbiased MPM, and the learning method with (27). C-SVM is the one

implemented in the kernlab library (Karatzoglou et al., 2004). In the unbiased MPM, the bias term

b of the model was estimated by minimizing the training error rate after estimating the function part,

f̂ ∈ H . The unbiased estimator will outperform the original MPM when the probability of the class

label is heavily unbalanced. The loss function ℓ(z) of the proposed method was the function u(z) in

(24). This loss function corresponds to the revised uncertainty set of the ellipsoidal uncertainty set

with the estimation error. The parameter in the function u(z) of (24) was set to h = 0 or h = 1. The

kernel parameter and the regularization parameter were estimated by 5-fold cross validation.

We evaluated the learning results as follows. We used the test error over the test samples to

evaluate the classification accuracy. We assessed the estimation accuracies of the conditional prob-

abilities given by C-SVM and the proposed method. A C-SVM with such a probability estimation

is included in the kernlab library; the probability model is shown in Karatzoglou et al. (2004). We

used the squared loss to assess the estimation accuracy of the conditional probability:

E
[

∑
y=±1

(P̂(y|x)−P(y|x))2
]
= E

[
P̂(+1|x)2 + P̂(−1|x)2

]
−2E

[
P̂(y|x)

]

+E
[
P(+1|x)2 +P(−1|x)2

]
,

where P̂(y|x) is an estimator of the true conditional probability P(y|x). Since the last term of the

above expression does not depend on the estimator, we used only the first two terms as the mea-

sure of estimation accuracy. As a result, given test samples {(x̃i, ỹi) : ℓ = 1, . . . ,L}, the estimated

conditional probability P̂(y|x) can be approximately evaluated as follows:

squared-loss =
1

L

L

∑
ℓ=1

[
P̂(+1|x̃ℓ)2 + P̂(−1|x̃ℓ)2

]
− 2

L

L

∑
ℓ=1

P̂(ỹℓ|x̃ℓ).

This measure works even for benchmark data sets in which the true probability is unknown. Note

that the squared-loss above can take negative values, since the last term in the expansion of E
[

∑y=±1(P̂(y|x)−
P(y|x))2

]
is not taken into account. We did not use the Kullback-Leibler divergence or logarithmic

loss, since the estimator P̂(y|x) can take zero.

7.1 Synthetic Data

The input points conditioned on the positive label were generated from a two dimensional normal

distribution with mean µp = (0,0)T and variance-covariance matrix Σp = I, where I is the identity
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P(y=+1) C-SVM MPM unbiased MPM h = 0 h = 1

0.2 15.81±1.17 25.63±2.27 16.51±1.48 15.39±0.99 15.37±0.93

0.5 25.32±1.49 25.33±1.64 25.50±1.47 24.81±1.18 24.89±1.27

Table 1: Test error (%) and standard deviation of each learning method. We compared C-SVM,

MPM, unbiased MPM, and the proposed learning method using the loss function (24)

with h = 0 or h = 1.

matrix. The conditional distribution of the input points with the negative label was a normal dis-

tribution with mean µn = (1,1)T and variance-covariance matrix Σn = RT diag(0.52,1.52)R, where

R is the π/3 radian counterclockwise rotation matrix. The label probability was P(y = +1) = 0.2
or 0.5. The size of the training samples was m = 400. We computed test errors by averaging over

100 iterations. For C-SVM and the proposed method, we computed the average squared-loss of the

estimated conditional probability. We also evaluated average absolute difference between the true

conditional probability P(+1|x) and the estimator P̂(+1|x) on the test set, that is, the average of
1
L ∑L

ℓ=1 |P(+1|x̃ℓ)− P̂(+1|x̃ℓ)| over 100 iterations. This is possible, since the true probability of

synthetic data is known.

Table 1 shows the test errors of C-SVM, MPM, unbiased MPM, and the proposed method using

the loss function (24) with h = 0 or h = 1. The table shows that the MPM has an estimation bias

for unbalanced samples, that is, the case of P(y =+1) = 0.2. MPM is slightly better than unbiased

MPM on the setup of the balanced data. Overall, the proposed method is better than the other

learning methods. Indeed, the difference between it and C-SVM is statistically significant. On the

other hand, the parameter h in the loss function (24) does not significantly affect the experimental

results.

Table 2 shows the accuracy of the estimated conditional probabilities measured by the squared

loss and absolute difference. As shown in the lower table, the absolute error of the proposed method

is about 5%, while the error of C-SVM is about 10%. The proposed method also outperforms C-

SVM in terms of the squared-loss. C-SVM and the proposed method differ significantly in their

estimation accuracy of the conditional probability, though the difference in classification error rate

is less than 0.5%. Figure 5 presents the squared loss and absolute loss of the estimated conditional

probability versus the size of the training samples for C-SVM and the proposed method with h = 0

and h = 1. The proposed method outperforms C-SVM. For each sample size, the parameter h

does not significantly affect the estimation accuracy, though the loss function u(z) with h = 1 is

consistently slightly better than h = 0.

7.2 Benchmark Data

The experiments used thirteen artificial and real-world data sets from the UCI, DELVE, and STAT-

LOG benchmark repositories: banana, breast-cancer, diabetes, german, heart, image,

ringnorm, flare-solar, splice, thyroid, titanic, twonorm, and waveform. All data sets

are in the IDA benchmark repository. See Rätsch et al. (2001) and Rätsch et al. (2000) for de-

tails about the data sets. The properties of each data set are shown in Table 3, where “dim”,

“P(y = +1)”,“#train”, “#test” and “rep.” respectively denote the input dimension, the ratio of the

positive labels in training samples, the size of training set, the size of test set, and the number of

1484



CONJUGATE RELATION IN CLASSIFICATION PROBLEMS

squared-loss ×100

P(y=+1) C-SVM h = 0 h = 1

0.2 −75.43±1.78 −77.36±1.07 −77.42±1.08

0.5 −65.63±1.89 −67.90±1.07 −67.83±1.21

absolute difference (%) between P(+1|x) and P̂(+1|x)
P(y=+1) C-SVM h = 0 h = 1

0.2 9.37±1.96 4.57±1.28 4.43±1.14

0.5 10.10±2.34 5.11±1.10 5.19±1.32

Table 2: Squared loss and absolute loss of the estimated conditional probability P̂(y|x). We com-

pared C-SVM and the proposed method using the loss function (24) with h = 0 and h = 1.
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Figure 5: Squared loss and absolute loss of estimated conditional probability versus training sample

size are presented for C-SVM and the proposed method with h = 0 and h = 1.

replications of learning to evaluate the average performance. Table 4 shows the test errors (%) and

the standard deviation for the benchmark data sets.

First, we compared MPM, unbiased MPM and the proposed method with “h = 0”. The uncer-

tainty set of MPM and unbiased MPM is an ellipsoid defined by the estimated covariance matrix.

The corresponding loss function of the form of (9) does not exist, since the convex-hull of the input

points is not taken into account. The uncertainty set of the proposed method with “h = 0” is the

intersection of an ellipsoid and the convex-hull of the input vectors. The revision of the ellipsoidal

uncertainty set leads to the uncertainty set of our algorithm. The proposed method with “h = 0”

outperforms MPM and unbiased MPM for most data sets. Hence, the revision of uncertainty sets

can improve the prediction accuracy of uncertainty-set-based learning.
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data set dim P(y=+1) #train #test rep.

banana 2 0.454 400 4900 100

breast-cancer 9 0.294 200 77 100

diabetis 8 0.350 468 300 100

flare-solar 9 0.552 666 400 100

german 20 0.301 700 300 100

heart 13 0.445 170 100 100

image 18 0.574 1300 1010 20

ringnorm 20 0.497 400 7000 100

splice 60 0.483 1000 2175 20

thyroid 5 0.305 140 75 80

titanic 3 0.322 150 2051 100

twonorm 20 0.505 400 7000 100

waveform 21 0.331 400 4600 100

Table 3: The properties of each data sets: “dim”, “P(y =+1)”,“#train”, “#test” and “rep.” respec-

tively denote the input dimension, the ratio of the positive label in the training samples, the

size of the training set, the size of the test set, and the number of replications of learning.

The boldface letters in Table 4 indicate the smallest average test error for each data set. Over-

all, C-SVM and the learning method “h = 1” outperform the others. C-SVM is significantly better

than the proposed method with “h = 1” on flare-solar, ringnorm and twonorm, but the pro-

posed method with “h = 1” is significantly better than C-SVM on banana, diabetis, german and

waveform. These results show that the proposed method with “h = 1” is comparable to C-SVM.

Table 5 shows the squared-losses for estimated conditional probabilities. It shows that the proposed

method with “h = 1” outperforms the others in the conditional probability estimation.

In Section 6, we proved the statistical consistency of learning methods derived from the un-

certainty set approach. The numerical experiments described in this section indicate that learning

methods derived from revised uncertainty sets are an alternative for solving classification problems

involving conditional probability estimations.

8. Conclusion

We studied the relation between the loss function approach and the uncertainty set approach in

binary classification problems. We showed that these two approaches are connected via the convex

conjugate of the loss function. Given a loss function, there exists a corresponding parametrized

uncertainty set. In general, however, the uncertainty set does not correspond to the empirical loss

function. We presented a way of revising the uncertainty set so that it will correspond to an empirical

loss function. On the basis of this revision, we proposed a kernel-based learning algorithm and

proved statistical consistency. The way to estimate the conditional probability was also proposed.

Numerical experiments showed that learning methods derived from revised uncertainty sets are

alternatives means for solving classification problems involving conditional probability estimation.

Some problems remains with our methodology. The proof of the statistical consistency does not

include the hinge loss used in ν-SVM. Steinwart (2003) proved that ν-SVM is statistically consistent

with a nice choice of the regularization parameter. However, such a regularization parameter heavily

depends on the true probability distribution; that is, the parameter ν should be twice the Bayes error
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test error (%)

data set C-SVM MPM unbiased MPM h = 0 h = 1

banana 10.74±0.60 11.35±0.87 11.49±0.93 10.47±0.48 10.45±0.47

breast-cancer 26.96±4.57 34.77±4.53 33.26±5.01 26.60±4.64 26.77±4.60

diabetis 23.94±2.05 28.81±2.61 28.42±2.46 23.30±1.85 23.36±1.78

flare-solar 33.71±2.11 34.92±1.73 35.62±1.83 34.09±1.65 34.14±1.86

german 23.84±2.32 29.17±2.43 28.53±2.58 23.54±2.20 23.28±2.08

heart 16.56±3.51 25.41±4.34 25.82±4.17 16.62±3.48 16.70±3.17

image 3.17±0.66 3.11±0.58 3.30±0.73 3.20±0.67 3.21±0.62

ringnorm 1.73±0.27 3.21±0.49 2.81±0.38 2.02±0.25 2.01±0.24

splice 11.03±0.74 12.25±1.71 11.74±0.89 11.10±0.72 11.07±0.64

thyroid 5.25±2.10 6.58±2.96 6.83±3.23 5.27±2.16 5.08±2.23

titanic 22.47±0.81 24.27±2.60 22.47±1.23 22.59±1.37 22.62±1.36

twonorm 2.67±0.41 4.50±0.65 4.47±0.66 2.98±0.31 2.97±0.30

waveform 10.22±0.68 12.90±0.79 12.73±0.94 10.00±0.50 9.96±0.44

Table 4: Test errors (%) and the standard deviation for benchmark data sets. We compared C-SVM,

MPM, unbiased MPM, and the proposed method with loss functions (24) having h = 0 and

h = 1: boldface letters indicate that the average squared loss is the smallest.

squared loss ×100

data set C-SVM h = 0 h = 1

banana −83.99±0.90 −84.98±0.53 −85.15±0.50

breast-cancer −62.60±4.15 −64.04±3.88 −64.11±4.09

diabetis −67.51±2.01 −68.31±1.39 −68.13±1.52

flare-solar −56.52±1.67 −59.69±1.10 −59.79±1.15

german −67.29±2.20 −67.69±1.99 −67.98±2.09

heart −74.75±4.02 −74.14±3.23 −74.59±3.37

image −94.71±0.81 −94.67±0.68 −94.72±0.72

ringnorm −97.30±0.75 −96.27±0.27 −96.27±0.29

splice −83.88±0.75 −83.30±0.57 −83.32±0.54

thyroid −92.26±3.12 −92.94±2.48 −93.11±2.53

titanic −65.06±1.10 −66.26±1.28 −66.18±1.40

twonorm −95.92±0.60 −95.07±0.36 −95.11±0.35

waveform −85.50±0.89 −85.39±0.53 −85.57±0.48

Table 5: Squared loss ×100 of estimated conditional probability for C-SVM and the proposed

method with loss functions (24) having h = 0 and h = 1: boldface letters indicate that

the average test error is the smallest.
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that cannot be obtained before the learning. We are currently investigating of the possibility of

relaxing the assumptions so as to include the hinge loss and other popular loss functions such as the

logistic loss. We focused on binary classification problems in this paper. An interesting direction of

research is to extend the relation between loss-based learning and uncertainty-set-based learning to

more general statistical problems such as ranking problems and multiclass classification problems.

The statistical consistency of more general problem setups is an ongoing research topic, and we

expect that the duality based on the convex conjugate can be used to devise a new approach to these

problems.

The relation between the loss function approach and the uncertainty set approach is a useful tool

for statistical modeling. In optimization and control theory, the modeling based on the uncertainty

set is frequently applied to the real-world data; the reader may consult the modeling used in robust

optimization and related work (Ben-Tal and Nemirovski, 2002). We believe that learning algorithms

with revised uncertainty sets can bridge the gap between intuitive statistical modeling and nice

statistical properties.
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Appendix A. Preliminaries on Convex Conjugates

A convex conjugate is a standard tool in convex analysis. The convex conjugate is also referred to as

a Legendre transformation. We show a brief introduction of the convex conjugate. See Rockafellar

(1970) for details.

Let ℓ : Rk →R be a convex function. The convex conjugate ℓ∗ : Rk →R∪{+∞} of the function

ℓ is defined by

ℓ∗(α) = sup
z∈Rk

zTα− ℓ(z).

Note that ℓ∗(α) = +∞ can occur. Under a mild assumption, the equality (ℓ∗)∗ = ℓ holds.

Suppose that the function ℓ(z) is decomposed into

ℓ(z) = ℓ1(z1)+ ℓ2(z2), z = (z1,z2) ∈ R
k.

Then, the convex conjugate of ℓ(z) is the sum of convex conjugates of ℓ1 and ℓ2. Indeed,

ℓ∗(α) = sup
z

zTα− ℓ1(z1)− ℓ2(z2)

= sup
z1,z2

zT
1 α1 +zT

2 α2 − ℓ1(z1)− ℓ2(z2)

= ℓ∗1(α1)+ ℓ∗2(α2), α= (α1,α2) ∈ R
k.

The formula above is used in Section 4.2.
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Appendix B. Proof of Strong Duality between (25) and (27)

We prove that there is no duality gap between (25) and (27).

Lemma 2 Suppose that both Mp = {i : yi = +1} and Mn = {i : yi = −1} are non-empty, that is,

mp = |Mp| and mn = |Mn| are positive numbers. Under Assumption 1 and 3 in Section 6, there exists

an optimal solution for (27). Moreover, the dual problem of (27) yields the problem (25) with the

uncertainty set (26).

Proof First, we prove the existence of an optimal solution. According to the standard argument on

the kernel estimator, we can restrict the function part f to be the form of

f (x) =
m

∑
j=1

α jk(x,x j).

Then, the problem is reduced to the finite-dimensional problem,

min
α,b,ρ

−2ρ+
1

m

m

∑
i=1

ℓ(ρ− yi(
m

∑
j=1

α jk(xi,x j)+b))

subject to
m

∑
i, j=1

αiα jk(xi,x j)≤ λ2.
(28)

Let ζ0(α,b,ρ) be the objective function of (28). Let us define S be the linear subspace in R
m

spanned by the column vectors of the gram matrix (k(xi,x j))
m
i, j=1. We can impose the constraint

α= (α1, . . . ,αm) ∈ S , since the orthogonal complement of S does not affect the objective function

and the constraint in (28). We see that Assumption 1 and the reproducing property yield the in-

equality ‖yi ∑m
j=1 α jk(·,x j)‖∞ ≤ Kλ. Due to this inequality and the assumptions on the function ℓ,

the objective function ζ0(α,b,ρ) is bounded below by

ζ1(b,ρ) =−2ρ+
mp

m
ℓ(ρ−b−Kλ)+

mn

m
ℓ(ρ+b−Kλ).

Hence, for any real number c, the inclusion relation
{
(α,b,ρ) ∈ R

m+2 : ζ0(α,b,ρ)≤ c,
m

∑
i, j=1

αiα jk(xi,x j)≤ λ2,α ∈ S

}
(29)

⊂
{
(α,b,ρ) ∈ R

m+2 : ζ1(b,ρ)≤ c,
m

∑
i, j=1

αiα jk(xi,x j)≤ λ2,α ∈ S

}

holds. Note that any vector α satisfying ∑m
i, j=1 αiα jk(xi,x j)≤ λ2 and α∈ S is included in a compact

subset of Rm. We shall prove that the subset (29) is compact, if they are not empty. We see that the

two sets above are closed subsets, since both ζ0 and ζ1 are continuous. By the variable change from

(b,ρ) to (u1,u2) = (ρ−b,ρ+b), ζ1(b,ρ) is transformed to a convex function ζ2(u1,u2) defined by

ζ2(u1,u2) =−u1 +
mp

m
ℓ(u1 −Kλ)−u2 +

mn

m
ℓ(u2 −Kλ).

The subgradient of ℓ(z) diverges to infinity, when z tends to infinity. In addition, ℓ(z) is a non-

decreasing and non-negative function. Hence we have

lim
|u1|→∞

−u1 +
mp

m
ℓ(u1 −Kλ) = ∞.
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The same limit holds for −u2 +
mn

m
ℓ(u2 −Kλ). Hence, the level set of ζ2(u1,u2) is closed and

bounded, that is, compact. As a result, the level set of ζ1(b,ρ) is also compact. Therefore, the

subset (29) is also compact in R
m+2. This implies that (28) has an optimal solution.

Next, we prove the duality between (25) and (27). Since (28) has an optimal solution, the

problem with the slack variables ξi, i = 1, . . . ,m,

min
α,b,ρ,ξ

−2ρ+
1

m

m

∑
i=1

ℓ(ξi)

subject to
m

∑
i, j=1

αiα jk(xi,x j)≤ λ2,

ρ− yi

( m

∑
j=1

αik(xi,x j)+b
)
≤ ξi, i = 1, . . . ,m,

also has an optimal solution and the finite optimal value. In addition, the above problem clearly sat-

isfies the Slater condition (Bertsekas et al., 2003, Assumption 6.4.2). Indeed, at a feasible solution,

α= 0,b = 0,ρ = 0 and ξi = 1, i = 1, . . . ,m, the constraint inequalities are all inactive for positive λ.

Hence, Proposition 6.4.3 in Bertsekas et al. (2003) ensures that the min-max theorem holds, that is,

there is no duality gap. Then, in the same way as (10), we obtain (25) with the uncertainty set (26)

as the dual problem of (27).

Appendix C. Proof of Consistency

We define some notations. For a measurable function f : X →R or f ∈ H , and a real number ρ ∈R,

we define the expected loss R ( f ,ρ) and the regularized expected loss Rλ( f ,ρ) by

R ( f ,ρ) =−2ρ+E[ℓ(ρ− y f (x))],

Rλ( f ,ρ) =−2ρ+E[ℓ(ρ− y f (x))]+θ(‖ f‖2
H ≤ λ2),

where λ is a positive number and θ(A) equals 0 when A is true and ∞ otherwise. Let R ∗ be the

infimum of R ( f ,ρ),

R ∗ = inf{R ( f ,ρ) : f ∈ L0, ρ ∈ R}.

For the set of training samples, T = {(x1,y1), . . . ,(xm,ym)}, the empirical loss R̂T ( f ,ρ) and the

regularized empirical loss R̂T,λ( f ,ρ) are defined by

R̂T ( f ,ρ) =−2ρ+
1

m

m

∑
i=1

ℓ(ρ− yi f (xi)),

R̂T,λ( f ,ρ) =−2ρ+
1

m

m

∑
i=1

ℓ(ρ− yi f (xi))+θ(‖ f‖2
H ≤ λ2).

The subscript T is dropped if it is clear from the context. By a slight abuse of notation, for a function

f ∈ H and a real number b, the regularized expected loss Rλ( f +b,ρ) denotes

Rλ( f +b,ρ) =−2ρ+E[ℓ(ρ− y( f (x)+b))]+θ(‖ f‖2
H ≤ λ2).
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The similar notation R̂T,λ( f +b,ρ) is also used for the regularized empirical loss, that is,

R̂T,λ( f +b,ρ) =−2ρ+
1

m

m

∑
i=1

ℓ(ρ− yi( f (xi)+b))+θ(‖ f‖2
H ≤ λ2).

For the observed training samples T , clearly the problem (27) is identical to the minimization

of R̂T,λ( f +b,ρ). We define f̂ , b̂ and ρ̂ as an optimal solution of

min
f ,b,ρ

R̂T,λm
( f +b,ρ), f ∈ H , b ∈ R, ρ ∈ R, (30)

where the regularization parameter λm may depend on the sample size, m.

In this section, we prove that the error rate E( f̂ + b̂) converges to the Bayes risk E∗. The proof

consists of two parts. In Section C.1, we prove that the expected loss for the estimated decision

function, R ( f̂ + b̂, ρ̂), converges to the infimum of the expected loss R ∗, where f̂ , b̂ and ρ̂ are

optimal solutions of (30). Here, we apply the mathematical tools developed by Steinwart (2005). In

Section C.2, we prove the convergence of the error rate E( f̂ + b̂) to the Bayes risk E∗. In the proof,

the concept of the classification-calibrated loss (Bartlett et al., 2006) plays an important role.

In the following, Assumptions 1–4 are presented in Section 6.

C.1 Convergence to Optimal Expected Loss

In this section, we prove that R ( f̂ + b̂, ρ̂) converges to R ∗. Following lemmas show the relation

between the expected loss and the regularized expected loss.

Lemma 3 Under Assumption 2 and Assumption 3, we have R ∗ >−∞.

Proof Let S ⊂ X be the subset S = {x ∈ X : ε ≤ P(+1|x) ≤ 1− ε}, then Assumption 2 assures

P(S)> 0. Due to the non-negativity of the loss function ℓ, we have

R ( f ,ρ)≥−2ρ+
∫

S

{
P(+1|x)ℓ(ρ− f (x))+P(−1|x)ℓ(ρ+ f (x))

}
P(dx)

=
∫

S

{
− 2

P(S)
ρ+P(+1|x)ℓ(ρ− f (x))+P(−1|x)ℓ(ρ+ f (x))

}
P(dx).

For given η satisfying ε ≤ η ≤ 1− ε, we define the function ξ( f ,ρ) by

ξ( f ,ρ) =− 2

P(S)
ρ+ηℓ(ρ− f )+(1−η)ℓ(ρ+ f ), f ,ρ ∈ R.

We derive a lower bound inf{ξ( f ,ρ) : f ,ρ ∈R}. Since ℓ(z) is a finite-valued convex function on R,

the subdifferential ∂ξ( f ,ρ)⊂ R
2 is given as

∂ξ( f ,ρ) =

{(
0

−2/P(S)

)
+ηu

(
−1

1

)
+(1−η)v

(
1

1

)
: u ∈ ∂ℓ(ρ− f ), v ∈ ∂ℓ(ρ+ f )

}
.

Formulas of the subdifferential are presented in Theorem 23.8 and Theorem 23.9 of Rockafellar

(1970). We prove that there exist f ∗ and ρ∗ such that (0,0)T ∈ ∂ξ( f ∗,ρ∗) holds. Since the second

condition in Assumption 3 holds for the convex function ℓ, the union ∪z∈R∂ℓ(z) includes all the
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positive real numbers. Hence, there exist real numbers z1 and z2 satisfying 1
ηP(S) ∈ ∂ℓ(z1) and

1
(1−η)P(S) ∈ ∂ℓ(z2). Then, for f ∗ = (z2 − z1)/2, ρ∗ = (z1 + z2)/2, the null vector is an element of

∂ξ( f ∗,ρ∗). Since ξ( f ,ρ) is convex in ( f ,ρ), the minimum value of ξ( f ,ρ) is attained at ( f ∗,ρ∗).
Define zup as a real number satisfying

g >
1

εP(S)
, ∀g ∈ ∂ℓ(zup).

Since ε ≤ η ≤ 1− ε is assumed, both z1 and z2 are less than zup due to the monotonicity of the

subdifferential. Then, the inequality

ξ( f ,ρ)≥ ξ( f ∗,ρ∗) =−z1 + z2

P(S)
+ηℓ(z1)+(1−η)ℓ(z2)≥− 2zup

P(S)

holds for all f ,ρ ∈ R and all η such that ε ≤ η ≤ 1− ε. The right-side of the expression above

depends only on P(S) and ε. Hence, for any measurable function f ∈ L0 and ρ ∈ R, we have

R ( f ,ρ)≥
∫

S

−2zup

P(S)
P(dx)≥ −2zup.

As a result, we have R ∗ ≥−2zup >−∞.

Lemma 4 Under Assumption 1, 2 and 3, we have

lim
λ→∞

inf{Rλ( f +b,ρ) : f ∈ H , b,ρ ∈ R}= R ∗. (31)

Proof Corollary 5.29 of Steinwart and Christmann (2008) ensures that the equality

inf{E[ℓ(ρ− y( f (x)+b))] : f ∈ H , b ∈ R}= inf{E[ℓ(ρ− y f (x))] : f ∈ L0}

holds for any ρ ∈ R. Thus, we have

inf{R ( f +b,ρ) : f ∈ H , b ∈ R}= inf{R ( f ,ρ) : f ∈ L0}

for any ρ ∈ R. Then, the equality

inf{R ( f +b,ρ) : f ∈ H , b,ρ ∈ R}= R ∗

holds. Under Assumption 2 and Assumption 3, we have R ∗ >−∞ due to Lemma 3. Then, for any

ε > 0, there exist λε > 0, fε ∈ H , bε ∈ R and ρε ∈ R such that ‖ fε‖H ≤ λε and R ( fε + bε,ρε) ≤
R ∗+ ε hold. For all λ ≥ λε we have

inf{Rλ( f +b,ρ) : f ∈ H , b,ρ ∈ R} ≤ Rλ( fε +bε,ρε) = R ( fε +bε,ρε)≤ R ∗+ ε.

On the other hand, it is clear that the inequality R ∗ ≤ inf{Rλ( f + b,ρ) : f ∈ H , b,ρ ∈ R} holds.

Thus we obtain Equation (31).

We derive an upper bound on the norm of the optimal solution in (30).
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Lemma 5 Suppose limm→∞ λm = ∞. Under Assumption 1, 2 and 3, there are positive constants c

and C and a natural number M such that the optimal solution of (30) satisfies

‖ f̂‖H ≤ λm, |b̂| ≤Cλm, |ρ̂| ≤Cλm (32)

with the probability greater than 1− e−cm for m ≥ M.

More precisely, M depends on the label probability, the function value ℓ(0) and the divergence speed

of the sequence {λm}, and c depends only on the label probability. We can choose C = K+1, where

K is defined in Assumption 1.

Proof Under Assumption 2, the label probabilities, P(y = +1) and P(y = −1), are positive. We

assume that the inequalities

1

2
P(Y =+1)<

mp

m
,

1

2
P(Y =−1)<

mn

m
(33)

hold. Applying Chernoff bound, we see that there exists a positive constant c > 0 depending only on

the marginal probability of the label such that (33) holds with the probability higher than 1− e−cm.

Lemma 2 ensures that the problem (30) has optimal solution, f̂ , b̂, ρ̂. The first inequality in (32),

that is, ‖ f̂‖H ≤ λm, is clearly satisfied. Then, we have ‖ f̂‖∞ ≤ K‖ f̂‖H ≤ Kλm from the reproducing

property of the RKHSs. The definition of the estimator and the non-negativity of ℓ yield that

−2ρ̂ ≤−2ρ̂+
1

m

m

∑
i=1

ℓ(ρ̂− yi( f̂ (xi)+ b̂))≤ R̂T,λm
(0,0) = ℓ(0).

Then, we have

ρ̂ ≥−ℓ(0)

2
. (34)

Next, we consider the optimality condition of R̂T,λm
. According to the calculus of subdifferential

introduced in Section 23 of Rockafellar (1970), the derivative of the objective function with respect

to ρ leads to an optimality condition,

0 ∈ −2+
1

m

m

∑
i=1

∂ℓ(ρ̂− yi( f̂ (xi)+ b̂)).

The monotonicity and non-negativity of the subdifferential and the bound of ‖ f‖∞ lead to

2 ≥ 1

m

m

∑
i=1

∂ℓ(ρ̂− yib̂−Kλm)

=
1

m

mp

∑
i=1

∂ℓ(ρ̂− b̂−Kλm)+
1

m

mn

∑
j=1

∂ℓ(ρ̂+ b̂−Kλm)

≥ 1

m

mp

∑
i=1

∂ℓ(ρ̂− b̂−Kλm). (35)

The above expression means that there exists a number in the subdifferential such that the inequality

holds, where ∑
mp

i=1 ∂ℓ denotes the mp-fold sum of the set ∂ℓ, that is, {a1 + · · ·+ amp
: ai ∈ ∂ℓ, i =
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1, . . . ,mp}. Let zp be a real number satisfying 2m
mp

< ∂ℓ(zp), that is, all elements in ∂ℓ(zp) are greater

than 2m
mp

. Then, the inequality ρ̂− b̂−Kλm < zp should hold. Otherwise the inequality (35) does not

hold. In the same way, for zn satisfying 2m
mn

< ∂ℓ(zn), we have ρ̂+ b̂−Kλm < zn. The existence of

zp and zn is guaranteed by Assumption 3. Hence, the inequalities

−ℓ(0)

2
≤ ρ̂ ≤ Kλm +max{zp,zn}, |b̂| ≤ ℓ(0)

2
+Kλm +max{zp,zn} (36)

hold, in which ρ̂ ≥−ℓ(0)/2 is used in the second inequality. Define z̄ as a positive real number such

that

∀g ∈ ∂ℓ(z̄), max

{
4

P(Y =+1)
,

4

P(Y =−1)

}
< g.

Inequalities in (33) lead to

max

{
2m

mp

,
2m

mn

}
< max

{
4

P(Y =+1)
,

4

P(Y =−1)

}
.

Hence, we can choose z̄ > 0 satisfying max{zp,zn} < z̄. Note that z̄ depends only on the label

probability. Suppose that ℓ(0)/2+ z̄ ≤ λm holds for m ≥ M. Then from (36) we have

|ρ̂| ≤ (K +1)λm, |b̂| ≤ (K +1)λm.

for m ≥ M. Then we obtain (32) with C = K +1, when (33) holds.

Let us define the covering number for a metric space.

Definition 6 (covering number) For a metric space G , the covering number of G is defined as

N (G ,ε) = min
{

n ∈ N : g1, . . . ,gn ∈ G such that G ⊂
n⋃

i=1

B(gi,ε)
}
,

where B(g,ε) denotes the closed ball with center g and radius ε.

According to Lemma 5, the optimal solution ( f̂ , b̂, ρ̂) is included in the set

Gm = {( f ,b,ρ) ∈ H ×R
2 : ‖ f‖H ≤ λm, |b| ≤Cλm, |ρ| ≤Cλm}

with high probability. Suppose that the norm ‖ f‖∞ + |b|+ |ρ| is introduced on Gm. We define the

function parametrized by ( f ,b,ρ),

L(x,y; f ,b,ρ) =−2ρ+ ℓ(ρ− y( f (x)+b)),

and the function set

Lm = {L(x,y; f ,b,ρ) : ( f ,b,ρ) ∈ Gm}.

The supremum norm is defined on Lm. The expected loss and the empirical loss, R ( f + b,ρ) and

R̂T ( f + b,ρ), are represented as the expectation of L(x,y; f ,b,ρ) with respect to the population
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distribution and the empirical distribution, respectively. Since ℓ : R→ R is a finite-valued convex

function, ℓ is locally Lipschitz continuous. Then, for any sample size m, there exists a constant κm

depending on m such that

|ℓ(z)− ℓ(z′)| ≤ κm|z− z′| (37)

holds for all z and z′ satisfying |z|, |z′| ≤ (K + 2C)λm. Then, for any ( f ,b,ρ),( f ′,b′,ρ′) ∈ Gm, we

have

|L(x,y; f ,b,ρ)−L(x,y; f ′,b′,ρ′)| ≤ 2|ρ−ρ′|+κm(|ρ−ρ′|+ |b−b′|+‖ f − f ′‖∞)

≤ (2+κm)(|ρ−ρ′|+ |b−b′|+‖ f − f ′‖∞)

The covering number of Lm is evaluated by using that of Gm as follows:

N (Lm,ε)≤ N
(
Gm,

ε

2+κm

)
. (38)

Let the metric space Fm be

Fm = { f ∈ H : ‖ f‖H ≤ λm}

with the supremum norm, then we also have

N

(
Gm,

ε

2+κm

)
≤ N

(
Fm,

ε

3(2+κm)

)(
2Cλm

ε
3(2+κm)

)2

= N

(
Fm,

ε

3(2+κm)

)(
6Cλm(2+κm)

ε

)2

. (39)

An upper bound of the covering number of Fm endowed with the supremum norm is given by Cucker

and Smale (2002) and Zhou (2002).

We prove the uniform convergence of R̂ ( f +b,ρ).

Lemma 7 Let bm be bm = 4Cλm + ℓ((K + 2C)λm) in which C is the positive constant defined in

Lemma 5. Under Assumption 1 and 3, the inequality

P

(
sup

( f ,b,ρ)∈Gm

|R̂ ( f +b,ρ)−R ( f +b,ρ)| ≥ ε

)

≤ 2N (Lm,ε/3)exp

{
− 2mε2

9b2
m

}
(40)

≤ 2N

(
Fm,

ε

9(2+κm)

)(
18Cλm(2+κm)

ε

)2

exp

{
− 2mε2

9b2
m

}
(41)

holds, where κm is the Lipschitz constant defined by (37).
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Proof Since ‖ f‖∞ ≤ Kλm holds for f ∈ H such that ‖ f‖H ≤ λm, we have the following inequality

sup
(x,y)∈X×{+1,−1}

( f ,b,ρ)∈Gm

L(x,y; f ,b,ρ)− inf
(x,y)∈X×{+1,−1}

( f ,b,ρ)∈Gm

L(x,y; f ,b,ρ)

≤ 2Cλm + sup
(x,y)∈X×{+1,−1}

( f ,b,ρ)∈Gm

ℓ(ρ− y( f (x)+b))− (−2Cλm)

≤ 4Cλm + ℓ(Cλm +Kλm +Cλm)

= bm.

In the same way as the proof of Lemma 3.4 in Steinwart (2005), Hoeffding’s inequality leads to the

upper bound (40). Equation (41) is the direct conclusion of (38) and (39).

We present the main theorem of this section.

Theorem 8 Suppose that limm→∞ λm = ∞ holds. Suppose that Assumption 1, 2 and 3 hold. More-

over we assume that (41) converges to zero for any ε > 0, when the sample size m tends to in-

finity. Then, R ( f̂ + b̂, ρ̂) converges to R ∗ in probability in the large sample limit of the data set

T = {(xi,yi) : i = 1, . . . ,m}.

Later on we show an example in which 7 converges to zero.

Proof Lemma 4 assures that, for any γ > 0, there exists sufficiently large M1 such that

| inf{Rλm
( f +b,ρ) : f ∈ H , b,ρ ∈ R}−R ∗| ≤ γ

holds for all m ≥ M1. Thus, there exist fγ,bγ and ργ such that

|Rλm
( fγ +bγ,ργ)−R ∗| ≤ 2γ

and ‖ fγ‖H ≤ λm hold for m ≥ M1. Due to the law of large numbers, the inequality

|R̂T ( fγ +bγ,ργ)−R ( fγ +bγ,ργ)| ≤ γ

holds with high probability, say 1− δm, for m ≥ M2. The boundedness property in Lemma 5 leads

to

P(( f̂ , b̂, ρ̂) ∈ Gm)≥ 1− e−cm

for m ≥ M3. In addition, by the uniform bound shown in Lemma 7, the inequality

sup
( f ,b,ρ)∈Gm

|R̂T ( f +b,ρ)−R ( f +b,ρ)| ≤ γ

holds with probability 1−δ′m. Hence, the probability such that the inequality

|R̂T ( f̂ + b̂, ρ̂)−R ( f̂ + b̂, ρ̂)| ≤ γ
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holds is greater than 1− e−cm −δ′m for m ≥ M3. Let M0 be M0 = max{M1,M2,M3}. Then, for any

γ > 0, the following inequalities hold with probability higher than 1− e−cm −δ′m −δm for m ≥ M0,

R ( f̂ + b̂, ρ̂)≤ R̂T ( f̂ + b̂, ρ̂)+ γ

≤ R̂T ( fγ +bγ,ργ)+ γ (42)

≤ R ( fγ +bγ,ργ)+2γ

= Rλm
( fγ +bγ,ργ)+2γ

≤ R ∗+4γ.

The second inequality (42) above is given as

R̂T ( f̂ + b̂, ρ̂) = R̂T,λm
( f̂ + b̂, ρ̂)≤ R̂T,λm

( fγ +bγ,ργ) = R̂T ( fγ +bγ,ργ).

We show the order of λm admitting the assumption in Theorem 8.

Example 8 Suppose that X = [0,1]n ⊂ R
n and the Gaussian kernel is used. According to Zhou

(2002), we have

logN

(
Fm,

ε

9(2+κm)

)
= O

((
log

λm

ε
9(2+κm)

)n+1
)

= O
((

log(λmκm)
)n+1)

.

For any ε > 0, (41) is bounded above by

exp

{
O

(
− m

b2
m

+(log(λmκm))
n+1

)}
.

For the truncated quadratic loss, we have

κm ≤ 2((K +2C)λm +1) = O(λm),

bm ≤ 4Cλm +((K +2C)λm +1)2 = O(λ2
m).

Let us define λm = mα with 0 < α < 1/4. Then, for any ε > 0, (41) converges to zero when m tends

to infinity. In the same way, for the exponential loss we obtain

κm = O(e(K+2C)λm), bm = O(e(K+2C)λm).

Hence, λm = (logm)α with 0 < α < 1 assures the convergence of (41).

C.2 Convergence to Bayes Risk

We prove that the expected 0-1 loss E( f̂ + b̂) converges to the Bayes risk E∗, when the sample size

m tends to infinity.

Theorem 9 Suppose that R ( f̂ + b̂, ρ̂) converges to R ∗ in probability, when the sample size m tends

to infinity. For the RKHS H and the loss function ℓ, we assume Assumption 1, 3 and 4. Then,

E( f̂ + b̂) converges to E∗ in probability.
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As a result, we find that the prediction error rate of f̂ + b̂ converges to the Bayes risk under As-

sumption 1, 2, 3, 4, and the assumption on the covering number in Theorem 8.

Proof Suppose that ρ satisfies ρ ≥ −ℓ(0)/2. Since ℓ′(ρ) > 0 holds, the loss function ℓ(ρ− z) is

classification-calibrated (Bartlett et al., 2006). Hence, for ρ ≥−ℓ(0)/2 Theorem 1 and Theorem 2

of Bartlett et al. (2006) guarantee that ψ(θ,ρ) in Assumption 4 satisfies ψ(0,ρ) = 0, ψ(θ,ρ) > 0

for 0 < θ ≤ 1 and that ψ(θ,ρ) is continuous and strictly increasing in θ ∈ [0,1]. In addition, for all

f ∈ H and b ∈ R the inequality

ψ(E( f +b)−E∗,ρ)≤ E[ℓ(ρ− y( f (x)+b))]− inf
f∈H ,b∈R

E[ℓ(ρ− y( f (x)+b))]

holds. Here we used the equality

inf{E[ℓ(ρ− y( f (x)+b))] : f ∈ H ,b ∈ R}= inf{E[ℓ(ρ− y( f (x)+b))] : f ∈ L0,b ∈ R},

which is shown in Corollary 5.29 of Steinwart and Christmann (2008). Hence, we have

ψ(E( f̂ + b̂)−E∗, ρ̂)≤ E[ℓ(ρ̂− y( f̂ (x)+ b̂))]− inf
f∈H ,b∈R

E[ℓ(ρ̂− y( f (x)+b))]

= R ( f̂ + b̂, ρ̂)− inf
f∈H ,b∈R

R ( f +b, ρ̂),

since ρ̂≥−ℓ(0)/2 holds due to (34). Since R ( f̂ + b̂, ρ̂) is assumed to converge to R ∗ in probability,

for any ε > 0 the inequality

R ∗ ≤ inf
f∈H ,b∈R

R ( f +b, ρ̂)≤ R ( f̂ + b̂, ρ̂)≤ R ∗+ ε

holds with high probability for sufficiently large m. Thus, ψ(E( f̂ + b̂)−E∗, ρ̂) converges to zero in

probability. The inequality

0 ≤ ψ̃(E( f̂ + b̂)−E∗)≤ ψ(E( f̂ + b̂)−E∗, ρ̂)

and the assumption on the function ψ̃ ensure that E( f̂ + b̂) converges to E∗ in probability, when m

tends to infinity.

C.3 Sufficient Conditions for Existence of the Function ψ̃ in Assumption 4

We present some sufficient conditions for existence of the function ψ̃ in Assumption 4.

Lemma 10 Suppose that the first condition in Assumption 3 and the first condition in Assumption 4

hold. In addition, suppose that ℓ is first-order continuously differentiable on R. Let d be d = sup{z∈
R : ℓ′(z) = 0}, where ℓ′ is the derivative of ℓ. When ℓ′(z)> 0 holds for all z ∈R, we define d =−∞.

We assume the following conditions:

1. d <−ℓ(0)/2.

2. ℓ(z) is second-order continuously differentiable on the open interval (d,∞).
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3. ℓ′′(z)> 0 holds on (d,∞).

4. 1/ℓ′(z) is convex on (d,∞).

Then, for any θ ∈ [0,1], the function ψ(θ,ρ) is non-decreasing as the function of ρ for ρ ≥−ℓ(0)/2.

When the condition in Lemma 10 is satisfied, we can choose ψ(θ,−ℓ(0)/2) as ψ̃(θ) for 0 ≤ θ ≤ 1,

since ψ(θ,−ℓ(0)/2) is classification-calibrated under the first condition in Assumption 4.

Proof For θ = 0 and θ = 1, we can directly confirm that the lemma holds. In the following, we

assume 0 < θ < 1 and ρ ≥ −ℓ(0)/2. We consider the following optimization problem involved in

ψ(θ,ρ),

inf
z∈R

1+θ

2
ℓ(ρ− z)+

1−θ

2
ℓ(ρ+ z). (43)

The function in the infimum is a finite-valued convex function for z ∈ R, and diverges to infinity

when z tends to ±∞. Thus the problem (43) has an optimal solution z∗ ∈R. The optimality condition

leads to the equality

(1+θ)ℓ′(ρ− z∗)− (1−θ)ℓ′(ρ+ z∗) = 0.

We assumed that both 1+ θ and 1− θ are positive and that ρ ≥ −ℓ(0)/2 > d holds. Hence, both

ℓ′(ρ− z∗) and ℓ′(ρ+ z∗) should not be zero. Indeed, if one of them is equal to zero, the other is also

zero, and we have ρ− z∗ ≤ d and ρ+ z∗ ≤ d. We find that these inequalities contradict ρ > d. As a

result, we have ρ− z∗ > d and ρ+ z∗ > d, that is, |z∗|< ρ−d. In addition, we have

1+θ

2
=

ℓ′(ρ+ z∗)
ℓ′(ρ+ z∗)+ ℓ′(ρ− z∗)

.

Since ℓ′′(z)> 0 holds on (d,∞), the second derivative of the objective in (43) satisfies the positivity

condition,

(1+θ)ℓ′′(ρ− z)+(1−θ)ℓ′′(ρ+ z)> 0

for all z such that ρ− z > d and ρ+ z > d. Therefore, z∗ is uniquely determined. For a fixed

θ ∈ (0,1), the optimal solution can be described as the function of ρ, that is, z∗ = z(ρ). By the

implicit function theorem, z(ρ) is continuously differentiable with respect to ρ. Then, the derivative

of ψ(θ,ρ) is given as

∂

∂ρ
ψ(θ,ρ) =

∂

∂ρ

{
ℓ(ρ)− 1+θ

2
ℓ(ρ− z(ρ))− 1−θ

2
ℓ(ρ+ z(ρ))

}

= ℓ′(ρ)− 1+θ

2
ℓ′(ρ− z(ρ))

(
1− ∂z

∂ρ

)
− 1−θ

2
ℓ′(ρ+ z(ρ))

(
1+

∂z

∂ρ

)

= ℓ′(ρ)− ℓ′(ρ+ z(ρ))

ℓ′(ρ+ z(ρ))+ ℓ′(ρ− z(ρ))
ℓ′(ρ− z(ρ))

(
1− ∂z

∂ρ

)

− ℓ′(ρ− z(ρ))

ℓ′(ρ+ z(ρ))+ ℓ′(ρ− z(ρ))
ℓ′(ρ+ z(ρ))

(
1+

∂z

∂ρ

)

= ℓ′(ρ)− 2ℓ′(ρ− z(ρ))ℓ′(ρ+ z(ρ))

ℓ′(ρ+ z(ρ))+ ℓ′(ρ− z(ρ))
.
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The convexity of 1/ℓ′(z) for z > d leads to

0 <
1

ℓ′(ρ)
≤ 1

2ℓ′(ρ+ z(ρ))
+

1

2ℓ′(ρ− z(ρ))
=

ℓ′(ρ+ z(ρ))+ ℓ′(ρ− z(ρ))

2ℓ′(ρ− z(ρ))ℓ′(ρ+ z(ρ))
.

Hence, we have

∂

∂ρ
ψ(θ,ρ)≥ 0

for ρ ≥−ℓ(0)/2 > d and 0 < θ < 1. As a result, we see that ψ(θ,ρ) is non-decreasing as the func-

tion of ρ.

We give another sufficient condition for existence of the function ψ̃ in Assumption 4.

Lemma 11 Suppose that the first condition in Assumption 3 and the first condition in Assumption 4

hold. Let d be d = sup{z ∈R : ∂ℓ(z) = {0}}. When 0 6∈ ∂ℓ(z) holds for all z ∈R, we define d =−∞.

Suppose that the inequality −ℓ(0)/2 > d holds. For ρ ≥−ℓ(0)/2 and z ≥ 0, we define ξ(z,ρ) by

ξ(z,ρ) =





ℓ(ρ+ z)+ ℓ(ρ− z)−2ℓ(ρ)

zℓ′(ρ)
, z > 0,

0, z = 0.

Suppose that there exists a function ξ̄(z) for z ≥ 0 such that the following conditions hold:

1. ξ̄(z) is continuous and strictly increasing on z≥ 0, and satisfies ξ̄(0) = 0 and limz→∞ ξ̄(z)> 1.

2. supρ≥−ℓ(0)/2 ξ(z,ρ)≤ ξ̄(z) holds.

Then, there exists a function ψ̃ defined in the second condition of Assumption 4.

Note that Lemma 11 does not require the second order differentiability of the loss function.

Proof We use the result of Bartlett et al. (2006). For a fixed ρ, the function ξ(z,ρ) is continuous for

z ≥ 0, and the convexity of ℓ leads to the non-negativity of ξ(z,ρ). Moreover, the convexity and the

non-negativity of ℓ(z) lead to

ξ(z,ρ)≥ ℓ(ρ+ z)− ℓ(ρ)

zℓ′(ρ)
− ℓ(ρ)

zℓ′(ρ)
≥ 1− ℓ(ρ)

zℓ′(ρ)

for z > 0 and ρ ≥−ℓ(0)/2, where ℓ(ρ) and ℓ′(ρ) are positive for ρ >−ℓ(0)/2. The above inequality

and the continuity of ξ(·,ρ) ensure that there exists z satisfying ξ(z,ρ) = θ for all θ such that

0 ≤ θ < 1. We define the inverse function ξ−1
ρ by

ξ−1
ρ (θ) = inf{z ≥ 0 : ξ(z,ρ) = θ}

for 0≤ θ< 1. For a fixed ρ≥−ℓ(0)/2, the loss function ℓ(ρ−z) is classification-calibrated (Bartlett

et al., 2006). Hence, Lemma 3 in Bartlett et al. (2006) leads to the inequality

ψ(θ,ρ)≥ ℓ′(ρ)
θ

2
ξ−1

ρ

(θ

2

)
,
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for 0 ≤ θ < 1. Define ξ̄−1 by

ξ̄−1(θ) = inf{z ≥ 0 : ξ̄(z) = θ}.

From the definition of ξ̄(z), ξ̄−1(θ) is well-defined for all θ ∈ [0,1). Since ξ(z,ρ)≤ ξ̄(z) holds, we

have ξ−1
ρ (θ/2)≥ ξ̄−1(θ/2). In addition, ℓ′(ρ) is non-decreasing as the function of ρ. Thus, we have

ψ(θ,ρ)≥ ℓ′(−ℓ(0)/2)
θ

2
ξ̄−1
(θ

2

)

for all ρ ≥−ℓ(0)/2 and 0 ≤ θ < 1. Then, we can choose

ψ̃(θ) = ℓ′(−ℓ(0)/2)
θ

2
ξ̄−1
(θ

2

)
.

It is straightforward to confirm that the conditions of Assumption 4 are satisfied.

We show some examples in which the existence of ψ̃ is confirmed from above lemmas.

Example 9 For the truncated quadratic loss ℓ(z) = (max{z+1,0})2, the first condition in Assump-

tion 3 and the first condition in Assumption 4 hold. The inequality −ℓ(0)/2 = −1/2 > sup{z :

ℓ′(z) = 0}=−1 in the sufficient condition of Lemma 10 holds. For z >−1, it is easy to see that ℓ(z)
is second-order differentiable and that ℓ′′(z) > 0 holds. In addition, for z > −1, 1/ℓ′(z) is equal

to 1/(2z+ 2) which is convex on (−1,∞). Therefore, the function ψ̃(θ) = ψ(θ,−1/2) satisfies the

second condition in Assumption 4.

Example 10 For the exponential loss ℓ(z) = ez, we have 1/ℓ′(z) = e−z. Hence, due to Lemma 10,

ψ(θ,ρ) is non-decreasing in ρ. Indeed, we have ψ(θ,ρ) = (1−
√

1−θ2)eρ.

Example 11 In Example 6, we presented the uncertainty set with estimation errors. The uncertainty

sets are defined based on the revised function ℓ̄(z) in (23). Here, we use a similar function defined

by

ℓ̄∗(α) =

{
(|αw−1|+h)2 − (1+h)2, α ≥ 0,

∞, α < 0,
(44)

for the construction of uncertainty sets. The function of the form (44) is derived by setting µT
p Σ−1

p µp =
1 and µn = 0 in (23). Here, w and h are positive constants, and we suppose w > 1/2. The

corresponding loss function is given as ℓ̄(z). Then we have ℓ̄(z) = u(z/w) defined in (24). For

w > 1/2, we can confirm that sup{z : ℓ̄′(z) = 0} < −ℓ̄(0)/2 holds. Since u(z) is not strictly con-

vex, Lemma 10 does not work. Hence, we apply Lemma 11. A simple calculation yields that

ℓ̄′(−ℓ̄(0)/2) ≥ (4w− 1)/(4w2) > 0 for any h ≥ 0. Note that ℓ̄(z) is differentiable on R. Thus,

the monotonicity of ℓ̄′ for the convex function leads to

ξ(z,ρ) =
1

ℓ̄′(ρ)

(
ℓ̄(ρ+ z)− ℓ̄(ρ)

z
− ℓ̄(ρ)− ℓ̄(ρ− z)

z

)
≤ ℓ̄′(ρ+ z)− ℓ̄′(ρ− z)

ℓ̄′(ρ)
.
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Figure 6: The derivative of the loss function corresponding to the revised uncertainty set with the

estimation error.

Figure 6 depicts the derivative of ℓ̄ with h = 1 and w = 1. Since the derivative ℓ̄′(z) is Lipschitz

continuous and the Lipschitz constant is equal to 1/(2w), we have ℓ̄′(ρ + z)− ℓ̄′(ρ − z) ≤ z/w.

Therefore, the inequality

sup
ρ≥−ℓ̄(0)/2

ξ(z,ρ)≤ sup
ρ≥−ℓ̄(0)/2

z/w

ℓ̄′(ρ)
=

z/w

ℓ̄′(−ℓ̄(0)/2)
≤ 4w

4w−1
z ≤ 2z

holds. We see that ξ̄(z) = 2z satisfies the sufficient condition of Lemma 11. The inequality

ℓ̄′(−ℓ̄(0)/2)
θ

2
ξ̄−1(

θ

2
)≥ 4w−1

32w2
θ2

ensures that ψ̃(θ) = 4w−1
32w2 θ2 is a valid choice. Therefore, the loss function corresponding to the

revised uncertainty set in Example 6 satisfies the sufficient conditions for the statistical consistency.
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G. Rätsch, T. Onoda, and K.-R. Müller. Soft margins for adaboost. Machine Learning, 42(3):

287–320, 2001.

R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, NJ, USA, 1970.

R. T. Rockafellar and S. Uryasev. Conditional value-at-risk for general loss distributions. Journal

of Banking & Finance, 26(7):1443–1472, 2002.

R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. Boosting the margin: A new explanation for

the effectiveness of voting methods. The Annals of Statistics, 26(5):1651–1686, 1998.

B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, Cambridge, MA, 2002.

B. Schölkopf, A. Smola, R. Williamson, and P. Bartlett. New support vector algorithms. Neural

Computation, 12(5):1207–1245, 2000.

I. Steinwart. On the optimal parameter choice for ν-support vector machines. IEEE Trans. Pattern

Anal. Mach. Intell., 25(10):1274–1284, 2003.

I. Steinwart. Consistency of support vector machines and other regularized kernel classifiers. IEEE

Transactions on Information Theory, 51(1):128–142, 2005.

I. Steinwart and A. Christmann. Support Vector Machines. Springer Publishing Company, Incorpo-

rated, 1st edition, 2008.

S. Sun and J. Shawe-Taylor. Sparse semi-supervised learning using conjugate functions. Journal of

Machine Learning Research, 11:2423–2455, 2010.

A. Takeda and M. Sugiyama. ν-support vector machine as conditional value-at-risk minimization.

In Proceedings of the 25th International Conference on Machine Learning, pages 1056–1063,

2008.

A. Takeda, H. Mitsugi, and T. Kanamori. A unified classification model based on robust optimiza-

tion. Neural Computation, 25(3):759–804, 2013.

V. Vapnik. Statistical Learning Theory. Wiley, 1998.

T. Zhang. Statistical behavior and consistency of classification methods based on convex risk mini-

mization. Annals of Statitics, 32(1):56–85, 2004.

D.-X. Zhou. The covering number in learning theory. Journal of Complexity, 18(3):739–767, 2002.

1504


