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Abstract

The performance of orthogonal matching pursuit (OMP) for variable selection is analyzed for ran-

dom designs. When contrasted with the deterministic case, since the performance is here measured

after averaging over the distribution of the design matrix, one can have far less stringent sparsity

constraints on the coefficient vector. We demonstrate that for exact sparse vectors, the performance

of the OMP is similar to known results on the Lasso algorithm (Wainwright, 2009). Moreover,

variable selection under a more relaxed sparsity assumption on the coefficient vector, whereby one

has only control on the ℓ1 norm of the smaller coefficients, is also analyzed. As consequence of

these results, we also show that the coefficient estimate satisfies strong oracle type inequalities.

Keywords: high dimensional regression, greedy algorithms, Lasso, compressed sensing

1. Introduction

Consider linear regression model,

Y = Xβ+ ε (1)

where X ∈R
n×p, the coefficient vector β ∈R

p and noise ε ∈R
n. The high dimensional case, where

p is of the same order, or possibly much larger than n, has been of immense interest nowadays. In

many applications, interest is not primarily on prediction of the response Y , but on the accuracy

of estimation of the coefficient β. Examples of such applications include, micro-array data analy-

sis, graphical model selection (Meinshausen and Buhlmann, 2006), compressed sensing (Donoho,

2006a; Candès and Tao, 2006), and in communications (Barron and Joseph, 2012, 2010; Tropp,

2006). As is well known, in the high dimensional setting, β is unidentifiable unless the design

matrix X is well-structured and there is some sparsity constraint on the coefficient vector β. This

sparsity assumption corresponds to restricting β to few non-zero entries (ℓ0-sparsity), or more gen-

erally, assuming that β has only few terms that are large in magnitude.

The orthogonal matching pursuit (Pati et al., 1993) is a variant of the matching pursuit algorithm

(Mallat and Zhang, 1993), where, successive fits are computed through the least squares projection

of Y on the current set of selected terms. For deterministic X matrices, variable selection properties

of this algorithm, for ℓ0-sparse vectors, have been analyzed for the noisy case in Zhang (2009a)

and Cai and Wang (2011). However, as we shall review Section 1.2, although they give strong

performance guarantees under certain conditions on the X matrix, they impose severe constraints

on the sparsity of β. Similar results have been shown for the Lasso, for example in Zhao and Yu

(2006).With random designs one can have reliable detection of the support with far less stringent
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sparsity constraints; the performance is here measured after averaging over the distribution of X .

For example, Wainwright (2009) proved such results for the Lasso algorithm. The main results of

this paper, apart from showing that similar properties hold for the OMP, demonstrate two important

additional properties. Firstly, we give results on partial support recovery, which is important since

exact recovery of support places strong requirements on n if some of the non-zero elements are

small in magnitude. Secondly, and more importantly, we relax the assumption that β is ℓ0-sparse

and address variable selection under a more general notion of sparsity, whereby one has only control

on the ℓ1 norm of the smaller elements of β. We demonstrate that even under this more relaxed

assumption, one can reliably estimate the position of the larger entries using the OMP. This has

certain parallels with recent work on the Lasso by Zhang and Huang (2008). As a consequence

of these results, we show that our coefficient estimate, after running the algorithm, satisfies strong

oracle inequalities, similar to that demonstrated for the Lasso (Zhang, 2009b) and Dantzig selector

(Candès and Tao, 2007).

The paper is organized as follows. Below, we describe the OMP algorithm. The stopping crite-

rion we use is slightly different from what is traditionally used in literature. Section 1.2 motivates in

greater detail our interest in random designs. In Section 2.1 we give results for design matrices that

have i.i.d sub-Gaussian entries and ℓ0-sparse vectors. This extends the results in Tropp and Gilbert

(2007) for the noisy case. In Section 2.2 we describe more general results with correlated Gaussian

designs, where we only have control over the ℓ1 norm of the smaller coefficients. Sections 3, 4 and

5 gives proofs of our main results. The appendices contains auxiliary results.

1.1 The Orthogonal Matching Pursuit Algorithm

Denote as J = J1 = {1, 2, . . . , p} to be the set of indices corresponding to columns in the X matrix.

For each step i, with i ≥ 1, a single index a(i) is detected to be non-zero in that step. Accordingly,

denoting d(i) = a(1)∪ a(2) . . .∪ a(i) as the set of detected columns after i steps, step i+ 1 of the

algorithm only operates on the columns in Ji+1 = J − d(i), that is, the columns not detected in the

previous steps. In other words, indices detected in previous steps remain detected.

The decision on whether a particular index j is detected during a particular step i is based on the

absolute value of a statistic Zi j. Here, Zi j is simply the inner product between X j and the normalized

residual Ri−1 computed for the previous step.

Apart from the response vector Y and design matrix X , the other input to the algorithm is a

positive threshold value τ. Our theoretical analysis assumes that each entry of X has a sub-Gaussian

distribution with mean 0 and scale 1. In practice, however, the algorithm should be performed after

standardizing the columns of X to have average 0 and norm
√

n. Denote ‖.‖ as the euclidean norm.

We now describe the OMP algorithm.

• Initialize R0 = Y, d(0) = /0. Start with step i = 1.

• Update

Zi j = XT

j

Ri−1

‖Ri−1‖
, for j ∈ Ji.

• If max j∈Ji
|Zi j|> τ, do the following:

– Assign a(i) = argmax{|Zi, j| : j ∈ Ji}.
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– Set d(i) = d(i−1)∪a(i). Update Ri = (I −Pi)Y , where Pi is the projection matrix for

the column space of Xd(i), and set Ji+1 = Ji −a(i).

– Increase i by one and go to step 2.

• Stop if max j∈Ji
|Zi j| ≤ τ.

We remark that for any step i, the inner product XT

j Ri−1, for j ∈ d(i−1), is 0. Correspondingly,

since Zi j = 0, for j ∈ d(i− 1), the maximum of Zi j over j ∈ Ji, is the same as the maximum over

all j ∈ J. Also, the newly selected term a(i) may be equivalently expressed as,

a(i) = argmin
j∈J

inf
w∈R

‖Y −Fiti−1 −wX j‖2,

where Fiti−1 is the least squares fit of Y on the columns in d(i− 1). In this respect, the OMP is

similar to other greedy algorithms such as relaxed greedy and forward-stepwise algorithms (Barron

et al., 2008; Huang et al., 2008; Jones, 1992; Lee et al., 1996), that operate through successive

reduction in the approximation error.

As mentioned earlier, the stopping criterion considered here is slightly different from that con-

sidered in literature. Traditionally, for the no noise setting, the algorithm is run until there is a

perfect fit between Y and the selected terms, that is Ri = 0 (Tropp, 2004; Tropp and Gilbert, 2007).

In the noisy case, as analyzed over here, there are two standard approaches. The first method (Cai

and Wang, 2011; Zhang, 2009a) is to stop when max j∈J |XT

j Ri−1| is less than some fixed threshold.

The second approach (Donoho et al., 2006; Cai and Wang, 2011), is to stop when ‖Ri‖ is less than

some pre-specified value.

Our stopping criterion, which is more similar to the first approach, is equivalent to continuing

the algorithm until max j∈J |XT

j Ri−1| ≤ τ‖Ri−1‖. The motivation for the use of such a statistic comes

from the analysis of a similar iterative algorithm in Barron and Joseph (2010) for a communications

setting. However, there the values of the non-zero β j’s were known in advance; this added infor-

mation played an important role in the analysis of the algorithm. A similar statistic was used by

Fletcher and Rangan (2011) for an asymptotic analysis of the OMP for exact support recovery using

i.i.d designs.

Notation: Let a = a(n, p, k), b = b(n, p, k) be two positive functions of n, p and k. We denote

as a = O(b), if a ≤ c1b for some constant positive constant c1 that is independent of n, p or k.

Similarly, a = Ω(b) means a ≥ c2b for positive c2 independent of n, p or k.

1.2 Related Work

As mentioned earlier, we are interested in variable selection in the high dimensional setting. Apart

from iterative schemes, another popular approach is the convex relaxation scheme Lasso (Tibshirani,

1996). In order to motivate our interest in random design matrices, we describe existing results

on variable selection, using both methods, with deterministic as well as random design matrices.

For convenience, we concentrate on implications of these results assuming the simplest sparsity

constraint on β, namely that β has only a few non-zero entries.

In particular, we assume that,

|S0(β)|= k, where S0(β) = { j : β j 6= 0}. (2)
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In other words, attention is restricted to all k-sparse vectors, that is, those that have exactly k non-

zero entries. For convenience, we drop the dependence on β and denote S0(β) as S0 whenever there

is no ambiguity. The simplest goal then is to recover S0 exactly, under the additional assumption

that all β j, for j ∈ S0, have magnitude at least βmin, where βmin > 0. Denote as C ≡ C (βmin, k), as

the set of coefficient vectors satisfying this assumption.

Further, denote Ŝ as the estimate of S0 obtained using either method, and E = {Ŝ 6= S0} the error

event that one is not able to recover the support exactly. For deterministic X , interest is mainly on

conditions on X so that

Perr,X = sup
β∈C

Pβ (E |X) (3)

can be made arbitrarily small when n, p, or k become large. Here Pβ(.|X) denotes the distribution

of Y for the given X and β.

A common sufficient condition on X for this type of recovery is the mutual incoherence con-

dition, which requires that the the inner product between distinct columns be small. In particular,

letting ‖X j‖2/n = 1, for all j ∈ J, it is assumed that

γ(X) =
1

n
max
j 6= j′

∣

∣XT

j X j′
∣

∣ (4)

is O(1/k). Another related criterion is the irrepresentable criterion (Tropp, 2004; Zhao and Yu,

2006), which assumes, for all subset T of size k, that

‖(XT

T XT )
−1XT

T X j‖1 < 1, for all j ∈ J−T. (5)

Here ‖.‖1 denotes the ℓ1 norm.

Observe that if Perr,X (3) is small, it gives strong guarantees on support recovery, since it ensures

that any β, with |S0(β)| = k, can be recovered with high probability. However, it imposes severe

constraints on the X matrix. As as example, when the entries of X are i.i.d Gaussian, the coherence

γ(X) is around
√

2log p/n. Correspondingly, for (4) to hold, n needs to be Ω(k2 log p). In other

words, the sparsity k should be O(
√

n/ log p), which is rather strong since ideally one would like k

to be of the same order as n. Similar requirements are needed for the irrepresentable condition to

hold. Recovery using the irrepresentable condition has been shown for Lasso (Zhao and Yu, 2006;

Wainwright, 2009), and for the OMP (Zhang, 2009a; Cai and Wang, 2011).

A natural question is to ask about requirements on X to ensure recovery in an average sense, as

opposed to the strong sense described above. One way to proceed, as done over here, is to consider

random X matrices and ask about the requirements on n, p, k, as well as βmin, so that

Perr = sup
β∈C

Pβ (E) (6)

is small. Here Pβ (E) = EXPβ (E |X), where the expectation on the right is over the distribution of

X . For the Lasso, Wainwright (2009) considers random X matrices, with rows drawn i.i.d Np(0,Σ).
It is shown that under certain conditions on Σ, which can be described as population counterparts of

the conditions for deterministic X’s, one can recover S0 with high probability with n = Ω(k log p)
observations, with the constant depending inversely on β2

min. The form of n is in a sense ideal since

now k = O(n/ log p) is nearly the same n, if we ignore the log p factor. As mentioned earlier, apart

from establishing similar properties to hold for the OMP with k-sparse vectors, we also demonstrate
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strong support recovery results under a more general notion of sparsity. These results are described

in the next section.

We also note that instead of averaging over X , one could assume a distribution on β and analyze

the average probability of E over this distribution. This is done in Candès and Plan (2009) for the

Lasso. Here, for fixed magnitudes of the k non-zero β, the support of β is uniformly assigned over

all possible subsets of size k. Once the support is chosen, the signs for the non-zero β j’s are assigned

±1 with equal probability. If Avg[.] denotes the expectation with this distribution of β, it is shown

that one could keep Avg
[

Pβ (E |X)
]

low for γ(X) as high as O(1/ log p). This condition on γ(X) is

less stringent than before and leads to a demonstration that n = Ω(k log p) is sufficient for support

recovery, provided |||X ||| ≈
√

p/n, where |||.||| denotes the spectral norm. We provide comparisons

with this work in Section 6.

Notation: For a set A ⊆ J, we denote as XA the sub-matrix of X comprising of columns with

indices in A . Similarly, for any p×1 vector β, we denote as βA the |A |×1 sub-vector with indices

in A . Also let Ac = J−A .

2. Results

Before discussing our main results with Gaussian matrices, in Section 2.1 we state results when the

entries of X are i.i.d sub-Gaussian and when the vector β has k non-zero entries. The noise vector

is also assumed to come from a sub-Gaussian distribution with scale σ. This generalizes the results

of Tropp and Gilbert (2007) for the noisy case. While preparing this manuscript we discovered

that Fletcher and Rangan (2011) have analyzed the OMP for i.i.d designs and for k-sparse vectors,

similar to that in Section 2.1. However, there the analysis was for exact support recovery and was

asymptotic in nature. Further, they focused on a specific regime, where kβ2
min/σ2 tends to infinity.

We provide more comparisons with this work later on in the paper.

One consequence of our results is that n = Ω(k log p) samples are sufficient for the recovery of

any coefficient vector with βmin that is at least the same order as the noise level. More specifically,

define

µn =
√

(2log p)/n. (7)

The quantity σµn can thought of as the noise level. To see why this is so, consider the orthogonal

design where XTX/n = I and noise ε ∼ N(0,σ2I). Assume that, as usual, we are interested in

recovering any β with |S0(β)|= k. A natural estimate of the support would be,

Ŝ = { j : |z j|> t} with z j = XT

j Y/n, (8)

where t is positive. Notice that z j ∼ N(β j,σ
2/n) for each j ∈ J. Correspondingly, since z j ∼

N(0,σ2/n), for j ∈ J − S0, one sees that t has to be of the form σµn in order to prevent false

discoveries with high probability. Similarly β j, for all j ∈ S0, has to have magnitude at least σµn if

one wanted to avoid false negatives.

The analysis of iid designs, as done in Section 2.1, forms an important ingredient to compressed

sensing (Candès and Tao, 2006; Donoho, 2006a). However, it may not be useful for statistical

applications, where typically the choice of the X matrix is not under ones control. Accordingly, in

Section 2.2, we assume that the rows of X are drawn i.i.d from Np(0,Σ), with certain assumptions on

Σ. This model was also employed to detect the neighborhood of a node in high dimensional graphs

by Meinshausen and Buhlmann (2006). Moreover, we relax the assumption that β is k-sparse and
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only assume that there is a set S = S(β), of size k, such that βSc is sparse in a more general sense.

Here βSc denotes the vector of coefficients outside of S. More specifically, for a constant ν ≥ 0, if

S =
{

j : |β j|> σνµn

}

, with |S|= k, (9)

we assume

‖βSc‖1 ≤ σηµn, (10)

for an appropriately chosen η. A natural choice would be to take ν = 1. Then, S would correspond

to the indices above the noise level. We show that for η not too large, the OMP can detect the large

indices in S with high probability, provided Σ satisfies certain conditions. As a consequence of these

results, we show that the coefficient estimate satisfies strong oracle inequalities.

2.1 Recovery With Sub-Gaussian Designs

In this section we address the requirements on n, p, k as well as βmin, to recover the support of β,

either exactly or nearly so, where we assume that |S0(β)| = k. Here S0(β) is as in (2). We allow

the case that k may be zero. Further, since it may not be a realistic assumption that k is known, we

assume that we only know an upper bound k̄ on k, with k̄ ≥ max{k, 1}.

Let Xℓ j, for ℓ = 1, . . . , n and j = 1, . . . , p, denote the entries of the X matrix. Throughout

this section we assume that the Xℓ j’s are independent sub-Gaussian with mean 0 and scale 1, that

is EetXℓ j ≤ et2/2, for t ∈ R. Further, we assume that the noise vector ε is independent of X and

has independent sub-Gaussian entries with mean 0 and scale σ, that is Eetεℓ ≤ eσ2t2/2, for t ∈ R,

ℓ= 1, . . . , n. Additionally, if k ≥ 1, we assume that the following two conditions are satisfied with

high probability.

Condition 1. There exists λmax ≥ λmin > 0, so that the eigenvalues of XT

S0
XS0

/n are between λmin

and λmax, that is

λmax‖v‖2 ≥ ‖XS0
v‖2/n ≥ λmin‖v‖2 for all v ∈ R

k.

Condition 2. The ℓ2 norm of the noise vector is bounded, that is ‖ε‖2/n ≤ σ2λ, for some λ > 0.

Let Econd be the event that Conditions 1 or 2 fail. The first assumption is related to the restricted

isometry property (Candès and Tao, 2005) and the sparse eigenvalues conditions (Zhang and Huang,

2008). Condition 1 is satisfied for a wide variety of random ensembles. For example (Baraniuk et al.,

2007), it is satisfied with high probability for the Gaussian ensemble, where the Xℓ j are i.i.d N(0,1)
and the binary ensemble, where the Xℓ j are i.i.d uniform on {−1,+1}. Notice that since we are

interested in controlling the probability Perr in (6), because of the averaging over X , we do require

that the Condition 1 hold uniformly over all S0, with |S0| = k. Condition 2, which bounds the ℓ2

norm of the noise vector, is required for controlling the norm of the residuals Ri. It is satisfied with

high probability, for example, when the noise ε ∼ N(0,σ2).

Below, we state the theorem giving sufficient conditions on n for reliable recovery of the support

of β. The threshold τ is taken to be

τ =
√

2(1+a) log p, (11)
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for some a > 0. Here n will be a function k̄ and p, as well as the various quantities defined above.

The results of course hold with k̄ replaced by k, provided k is non-zero. In particular, for α, δ > 0,

define

ξ ≡ ξ(α, δ) = max
{

(1+δ)r1, σ2r2
2 f (δ)/(k̄α)

}

. (12)

where,

r1 =
max{λmax, λ}

λ3
min

r2 =

[

1√
λmin

+
√

r1

]

(13)

and

f (δ) =
1

(

1−1/
√

1+δ
)2
.

Denote as Ŝ = Ŝ(Y,X , τ), the estimate of the support obtained after running the algorithm with

the given Y, X and threshold τ. Further, denote the undetected elements of the support as F̂ = S0− Ŝ.

The theorem below, provides bounds on ∑
j∈F̂

β2
j , the signal strength of the undetected components;

here we assume that ∑
j∈F̂

β2
j = 0 if F̂ = /0.

The following function of k characterizes the probability of failure of the algorithm.

perr,k = P(Econd)+2(k+1)/pa +2k/p1+a, for k ≥ 1, (14)

and perr,0 = 2/pa. Here, recall that Econd is event that Conditions 1 or 2 fail. Notice that perr,k ≤
perr, k̄, since k ≤ k̄.

Regarding the choice of a, if k is O(log p), then a can be taken to be slightly larger than 0 for

perr,k to be small, assuming p is large; however, if k scales, for example, linearly with p, then a

needs to be taken to be larger than 1. We now state our theorem.

Theorem 1 Let the threshold τ be as in (11). Further, let n be of the form

n = ξk̄τ2, (15)

with ξ as in (12).

Then, if k ≥ 1, the following condition holds, except on a set with probability perr,k:

Ŝ ⊆ S0 and ∑
j∈F̂

β2
j ≤ α|F̂|. (16)

In particular, if β2
min > α then Ŝ = S0, that is the support is recovered exactly, with probability at

least 1− perr,k.

If k = 0, Ŝ = /0 with probability at least 1− perr,0.

We remark that the proof of the theorem shows that the algorithm stops in at most k steps, with

probability at least 1− perr,k. Also, notice that α controls accuracy to which the support is estimated.

Assuming F̂ is non-empty, another way of stating the theorem is that the average signal strength of

the undetected components, that is ‖βF̂‖2/|F̂ |, is at most α. It may seem desirable to make α as

small as possible, however, doing so increases the value of n in (15), since n is inversely related to α
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through ξ(α, δ). Further, if α is taken to be less than β2
min, then the above theorem guarantees exact

recovery of the support. Correspondingly, from (15) and (12), one sees that if

n = max

{

b1k̄,
b2

β2
min

}

log p,

for some b1, b2 > 0, then the support can recovered exactly with high probability.

The following corollary, which is a consequence of Theorem 4, shows that if n = Ω(k̄ log p),
one can reliably detect the indices with large coefficient values, while ensuring that there are no

false discoveries. Further, if all the non zero components are above the noise level (up to a constant

factor), one can estimate the support exactly with the same number of observations.

Corollary 2 Define ξ̄ = 32r2
2(1+a) and r = 2r2

√
1+a. Let

n ≥ ξ̄ k̄ log p.

Then, if k ≥ 1, with probability at least 1− perr,k, the estimate Ŝ is contained in S0 and further,

{

j : |β j|> r σ
√

kµn

}

⊆ Ŝ.

Further, if βmin > r σµn, then algorithm can recover the entire support of β, that is Ŝ = S0, with

probability at least 1− perr,k.

If k = 0, then Ŝ = /0 with probability at least 1− perr,0. Here perr, . is as in (14).

2.2 More General Results With Gaussian Designs

For Gaussian ensembles, the methods used in the proof of Theorem 1 can be extended to give more

general results on support recovery. In particular, we relax the assumption that X has i.i.d entries

and assume that rows of the X matrix are i.i.d Np(0,Σ). We remark that knowledge of Σ is not

required for the implementation of the algorithm. The noise vector is assumed to be independent of

X , with entries i.i.d. N(0,σ2). As mentioned earlier, here we also address a more general type of

variable selection question, where we are not interested in recovering all non-zero entries but only

the ones that are large compared to the noise level. In particular, for a constant ν ≥ 0, let S be a set

of size k as in (9), consisting of the indices corresponding to the larger elements (in magnitude) of

β. Once again, we do not assume that k is known, but only assume that we have an upper bound

k̄ on k, with k̄ ≥ 1. Unlike before, we do not require that the coefficients outside of S are zero, but

only assume that that ‖βSc‖1 ≤ σηµn, where η is allowed to scale at most linearly with k̄, that is we

assume that η̄ = η/k̄ is O(1).

Through a permutation of the columns one can, without loss of generality, write Σ as

Σ =

[

ΣSS ΣSSc

ΣScS ΣScSc

]

,

where for A , A ′ ⊆ J, ΣA ,A ′ = Cov(X1,A ,X1,A ′) is the covariance matrix between terms in A and A ′.
We denote the elements of the matrix as σi j, or Σi j, and use both notations interchangeably.

Without loss, we may assume that σ j j = 1 for all j. To see this, notice that if the covariance

matrix Σ were known, we could divide each X j by σ j j. If Σ were unknown, we suggest dividing the
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statistic Zi j by ‖X j‖/
√

n. This is equivalent to scaling the columns to have norm
√

n. In this case,

the statistic becomes,

Z̃i j :=

√
nXT

j Ri−1

‖X j‖‖Ri−1‖
=

(√
nσ j

‖X j‖

)

XT

j Ri−1

σ j‖Ri−1‖
.

From Lemma 15, for any a > 1, with probability 1−1/pa−1,

‖X j‖/
√

n ≤ 1+
√

2a(log p)/n, for all j = 1, . . . , p.

Correspondingly, if n were large compared to log p, the statistic Z̃i j is close to Zi j and the analysis

can be shown to carry through.

In a more general case, where the rows of X are i.i.d. N(µ,Σ), with an unknown mean vector µ,

we recommend that one estimates the parameter µ by taking the average of rows. As mentioned in

Section 1.1, the algorithm should be implemented after standardizing the X matrix by subtracting

out this estimated mean vector, followed by scaling the columns to ensure that they have norm√
n. This case is more difficult to analyze theoretically since subtracting the estimated mean vector

removes the independence of the rows, which is required for the analysis. However, we mention

that one can obtain the same order of magnitude results on the sample size n by doing the following:

Divide the rows of X into two sets, each of size n/2. Estimate µ by taking the average of the rows

in the first set. Implement the algorithm on the second set after standardizing the columns in this set

using the above estimated mean vector from the first set.

Notice that doing the above transforms the rows of the second set to have mean zero, while

preserving its independence. The covariance matrix of the second set, after subtracting the mean

vector, becomes (1+2/n)Σ, which is near Σ for large n.

Correspondingly, from hereon, we assume that µ = 0 and σ j j = 1 for each j. We make the

following assumptions on the correlation matrix Σ, when k ≥ 1. These are essentially population

analogs of the sparse eigenvalue and the irrepresentable conditions respectively.

1. There exists smin, smax > 0 so that,

λmin(ΣT T )≥ smin and λmax(ΣT T )≤ smin, (17)

uniformly for all subsets T , with |T | = k. Here λmin(A), λmax(A) denotes the minimum and

maximum eigenvalues respectively of a square matrix A.

2. For some ω ∈ [0,1), the following holds,

max
j∈J−T

‖Σ−1
T T ΣT j‖1 ≤ ω, (18)

uniformly for all subsets T of size k. This is essentially the population analog of the irrepre-

sentable condition (5).

Additionally, for k ≥ 1, we make the following assumption that imposes bounds on certain in-

teractions between βSc and the correlation matrix Σ. As stated below, they are not very intuitive.

Lemma 3, however, shows that under a simple condition, which controls the magnitude of correla-

tions of the off diagonal elements of Σ, and along with (10), one can show (17) - (19) to hold.

Let ΣSc|S = ΣScSc −ΣScSΣ−1
SS ΣSSc , denote the variance of the conditional distribution of X1,Sc given

X1,S, where we recall that S is the subset of indices comprising of the k largest elements (in magni-

tude) of β. Let µn be as in (7). We make the following additional assumption.

1779



JOSEPH

3. For constants ν1, ν̃1 ≥ 0, the following holds,

‖Σ−1
SS ΣSScβSc‖∞ ≤ σν̃1 µn and ‖ΣSc|SβSc‖∞ ≤ σν1 µn. (19)

Notice that condition (19) is not required when β is exactly sparse, that is when it has k non-

zero entries, since in this case βSc is identically equal to zero. In this case, assumptions (17, 18) for

exactly sparse vectors are identical to the sufficient conditions for support recovery for the Lasso by

Wainwright (2009).

As an example, for the standard Gaussian design, condition (17) is satisfied with smin = smax = 1.

Condition (18) is satisfied with ω = 0. Condition (19) reduces to requiring that max j∈Sc |β j| ≤
σν1 µn, which is satisfied with ν1 = ν.

For the case k = 0, instead of (17) - (19), we only make the assumption,

‖Σβ‖∞ ≤ σν1 µn. (20)

Notice that since in this case S = /0 and J = Sc, alternatively, one may express the left side of the

above as ‖ΣSc|SβSc‖∞.

It is well known, see, for example, Cai and Wang (2011), Tropp (2004), that if the correlations

between any two distinct columns are small, as given by the incoherence condition, it implies both

the sparse eigenvalue condition (17) as well as the irrepresentable condition (18). We use these

results to give simple sufficient conditions for (17) - (19), as well as (20) when k= 0, in the following

lemma. For this, define the coherence parameter,

γ ≡ γ(Σ) = max
1≤ j 6= j′≤p

|Σ j j′ |.

Further, recall that η̄ = η/k̄. Then we have the following.

Lemma 3 Let S, with |S|= k, be as in (9). Assume that the correlation matrix Σ satisfies,

γ(Σ)≤ ω0/(2k̄), where 0 ≤ ω0 < 1. (21)

Further, assume that the coefficient vector β satisfies, for some η ≥ 0,

‖βSc‖1 ≤ σηµn. (22)

Define:

smin = 1−ω0/2, smax = 1+ω0/2, ω = ω0, (23)

ν̃1 = ω0η̄, ν1 = ν+ω0η̄, (24)

Then, conditions (17) - (19) holds, for k = 1, . . . , k̄, with the above values of smin, smax, ω, ν1 and

ν̃1.

If k = 0, condition (20) holds with ν1 in (24).

The above lemma is proved in Appendix C. Equation (21) controls the maximum correlation

between distinct columns and can be regarded as the population analog of the incoherence condition

(4). Condition (22) imposes that βSc has ℓ1 norm that is O(ηµn), where as mentioned before, η is

allowed to scale at most linearly with k̄.
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Henceforth, for convenience sake, assume that we have control over the incoherence parameter

as in (21) and that β satisfies (22). Further, the quantities smin, smax, ω, ν1 and ν̃1 will be as in (23)

and (24).

Condition (22) is more appropriate than an ℓ1 constraint on the whole vector β since it does

not impose any constraint on the larger coefficient values. Since the β j, for j ∈ Sc, has magnitude

at most σνµn, which is of the same order as the noise level, it makes sense for any algorithm to

only estimate S accurately. In Theorem 4 below, we give sufficient conditions on n so that one

can reliably estimate S. We note that this goal is different from that required in Zhang and Huang

(2008) for support recovery with approximately sparse β. There, the only constraint on β was that

‖βA0
‖1 = O(ηµn), for some set A0, with |Ac

0| = k, and where η is also allowed to grow at most

linearly k. Since there was no constraint on the magnitude of β j, for j ∈ A0, some these β j’s may

have magnitude as high as O(kµn). For this reason, it made no longer sense to estimate Ac
0 accurately.

Their criterion for an estimate Ŝ to be good was that |Ŝ|= O(k) and that the least squares fit of Y on

the columns in Ŝ produced a good approximation to Xβ.

The quantities λmin, λmax and λ are redefined here. These will now be expressed as functions

ν, ω0 and η using the various quantities smin, smax, ω, ν̃1 and ν1 defined in (23) and (24).

We will need that the quantity h =
√

k/n+ µn to be strictly less than one. Below, we arrange

n> 2k̄ log p. Correspondingly, one sees that h< 1 if, for example, k̄ ≥ 5 and p≥ 8. Let hℓ = (1−h)2

and hu = (1+h)2. We define the values of λmin, λmax and λ in the following manner:

λmin = sminhℓ and λmax = smaxhu. (25)

Further,

λ = (1+ s2
maxν̃1

2 +ν1η̄)
(

1+ k̄−1/2
)2

. (26)

Let r1 be as in (13), now replaced with the above values of λmin, λmax, λ. The quantity r2 is now

given by,

r2 =

[

(1−ω)

(

ν̃1 +

√

1+ν1η̄

λmin

)

+
√

r1

]

. (27)

Notice that for the i.i.d Gaussian ensemble and when β is k-sparse, the quantities ω, ν̃1, ν1 and η̄

can be taken as zero. Correspondingly, r2 has the same form as that in (13).

Further, let ξ = ξ(α, δ) be as in (12), with r1 and r2 appearing in its definition replaced with

the values of these quantities defined above. The quantity p̃err,k, for k ≥ 1, which controls the

probability of failure of the algorithm, is defined as,

p̃err,k = 4/p +

√

2/π

τ

[

(k+1)/pa + k/p1+a
]

. (28)

We define p̃err,0 = 1/p+
√

(2/π)/(τpa). The threshold will now be denoted as τ1. It will be greater

than τ by a factor ρ ≥ 1. This factor is strictly greater than one if β is not ℓ0-sparse or if γ(Σ) is

non-zero. We are now in a position to state our main theorem.

Theorem 4 Let the assumptions of Lemma 3 hold. Set the threshold as τ1 = ρτ, where τ as in (11),

and

ρ =
ν1

(

1+ k̄−1/2
)

+1

1−ω
.
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Further, let

n = ξ k̄τ2
1. (29)

Then, if k ≥ 1 the following holds with probability at least 1− p̃err,k:

Ŝ ⊆ S and ∑
j∈F̂

β2
j ≤ α|F̂|, (30)

where F̂ = S− Ŝ. In particular, if β2
j > α, for all j ∈ S, then Ŝ = S with probability at least 1− p̃err,k.

If k = 0, one has that Ŝ = /0 with probability at least 1− p̃err,0.

Before stating the analog of Corollary 2, as an aside, we give implications of the above theorem

for exact recovery of support for k-sparse vectors and i.i.d designs for large n, p and k. This will

help in understanding the results of Theorem 4 better.

Wainwright (2009) show that for k-sparse vectors and i.i.d Gaussian designs, that there is a sharp

threshold, namely n≍ 2k log p, for exact recovery of the support as n, p, k, as well as kβ2
min/σ2, tends

to infinity. This was also proved for the OMP by Fletcher and Rangan (2011), under an additional

condition on rate of increase of the signal-to-noise ratio (‖β‖2/σ2). We can get similar results using

our method by recalling that for i.i.d Gaussian designs and exact sparse vectors, smin = smax = 1 and

ω, ν1, ν̃1 and η are all zero. Further, take k̄ = k. Correspondingly, since h goes to 0, the quantities

λmin, λmax and λ in (25, 26) tend to 1 as n, p and k become large. This implies that r1 tends to

one and r2 (27) tends to 2. Further, as kβ2
min/σ2 tends to infinity, one may also allow kα/σ2 tend to

infinity, while keeping α< βmin. From Theorem 4, this will ensure that the support will be recovered

exactly. Next, let’s evaluate the quantity ξ (12) appearing in the expression for n. As kα/σ2 tends

to infinity, one sees that the first term in the maximum in (12) is the active one and hence ξ tends to

(1+ δ) (using r1 tends to 1). One may also appropriately choose δ to tend to zero, making ξ tend

to 1. Accordingly, from (29), one sees that if n ≈ 2(1+a)k log p, for large k, p, one can recover the

support exactly, with probability at least 1− p̃err,k. When β is extremely sparse, for example, when

k = O(log p), then it is possible to arrange for a to decrease to 0, while making p̃err,k also to 0. In

this case, one gets the threshold n ≈ 2k log p for exact recovery. However, in the regime where k is

not negligible compared to p (for example, when k/p is constant), then our results only allow for

a to tend to 1 (from above), so as to ensure p̃err,k goes to zero. In this case our results are slightly

inferior, requiring n ≈ 4k log p for exact recovery. We remark in Section 6 on how the results in

Fletcher and Rangan (2011) may be carried over to the general case analyzed here.

We now state the analog of Corollary 2. The goal now is not to recover the non-zero entries, but

only those that are large compared to the noise level, which is a subset of S. We have the following.

Corollary 5 Let the assumptions of Lemma 3 hold and set the threshold to be τ1 as in Theorem 4.

Define ξ̄ = 32(r2ρ)2(1+a) and r = 2r2ρ
√

1+a, where r2 as in (27). Let

n ≥ ξ̄ k̄ log p.

Then, if k ≥ 1, with probability at least 1− p̃err,k, the estimate Ŝ is contained in S and,

{

j : |β j|> r σ
√

kµn

}

⊆ Ŝ. (31)

Further, if |β j|> r σµn, for all j ∈ S, one has Ŝ = S with probability at least 1− p̃err,k.

If k = 0, then Ŝ is /0 with probability at least 1− p̃err,0.
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We remark that it was assumed that the conditions of Lemma 3 holds for convenience. More

generally, the above holds under (17)-(19). In particular, for exact sparse vectors, the conditions are

exactly similar to those in Wainwright (2009). Also, as with the case with sub-Gaussian designs, the

proof also demonstrates that the algorithm stops within k steps, with probability at least 1− p̃err,k.

Corollary 5 gives strong performance guarantees for the OMP under certain conditions on the

correlation matrix and an ℓ1 constraint on the smaller coefficients. From (31), one sees that the larger

coefficients, that is, those with magnitude Ω(
√

kµn), are contained in Ŝ with high probability. Better

performance can be demonstrated when all β j’s, for j ∈ S, have magnitude Ω(µn). In this case, it

is possible to recover S, while ensuring that there are no false positives. This is in a sense ideal,

since it is nearly what one would expect in the orthogonal design case discussed in the beginning

of Section 2. In this case, assuming Ŝ is as in (8), one sees that in order to prevent false positives, t

needs to be Ω(µn). Thus |β j|, for j ∈ S, also needs to be Ω(µn), with a slightly larger constant, to

ensure Ŝ = S. For example, if the |β j|’s, for j ∈ S, is at least t̃ = (ν+ 2
√

1+a)σµn, then it is not

hard to see that the probability Ŝ = S is at least 1−2/pa. Of course, the factor of rσ obtained here,

is larger than the corresponding factor for the orthogonal case, since the X matrix is in general quite

far from being orthogonal; indeed, it is singular when p > n.

As a consequence of the above, we state results demonstrating strong oracle inequalities for

parameter estimation under the ℓ2-loss.

2.2.1 ORACLE INEQUALITIES UNDER ℓ2-LOSS

Let β̂ be the coefficient estimate obtained after running the algorithm. More explicitly, (β̂ j : j ∈ Ŝ)

is simply the least squares estimate when Y is regressed on XŜ and β̂ j = 0 for j ∈ Ŝc.

We assume that the correlation matrix Σ satisfies (21), that is,

γ(Σ)≤ ω0/(2k̄), (32)

where 0 ≤ ω0 < 1.

For simplicity, we consider the case that β satisfies (9) with ν = 1, that is,

S = { j : |β j|> σµn} and ‖βSc‖1 ≤ σηµn, (33)

where |S|= k and η is allowed to grow at most linearly with k̄, that is η̄ = η/k̄ is O(1). With ν = 1,

S denotes the set of indices greater than the noise level.

For the above values of η, ω0 and with ν = 1, evaluate the quantities smin, smax as well as ν̃1, ν1

and ω using expressions (23) and (24). Evaluate r2 as in (27), where the quantities λ, λmin, λmax are

calculated using Equations (25, 26). Further, let ξ̄ and r be as in Corollary 5. Then we have the

following.

Theorem 6 Let (32) and (33) hold. For fixed such β, if

n ≥ ξ̄ k̄ log p,

then the following holds with probability at least 1− p̃err,k:

‖β̂−β‖2 ≤C

p

∑
j=1

min
(

β2
j ,σ

2µ2
n

)

,

where C = (4/9)r2.
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The above theorem is essentially the analog of similar results for the Lasso (Zhang, 2009b,

Corollary 6.1) and Dantzig selector (Candès and Tao, 2007, Theorem 1.2). Note, the latter assumes

that β is k-sparse. Our results are more general since we only assume that the ℓ1 norm of the smaller

coefficients satisfies a certain bound. We proceed to state the corollary of the result assuming β is

k-sparse.

For k-sparse β, we only assume that (32) holds. Take η = k̄, so that η̄ = 1. Evaluate r2 using

this values of η, and with ν = 1, and call it r∗2, that is,

r∗2 =

[

(1−ω0)

(

ω0 +

√

2+ω0

λmin

)

+
√

r1

]

,

where once again, the quantities r1 and λmin as calculated using (13, 25) and Equations (23) and

(24). Further, let ξ∗ have the same expression as ξ̄, except it is evaluated using r∗2 instead of r2.

Similarly, let r∗ = 2r∗2ρ
√

1+a. Then we have the following.

Corollary 7 Let (32) hold and let β be a fixed k-sparse vector, for some k ≥ 0. If

n ≥ ξ∗ k̄ log p,

then for C1 = (4/9)(r∗)2, the following holds except on a set with probability p̃err,k:

‖β̂−β‖2 ≤C1

p

∑
j=1

min
(

β2
j ,σ

2µ2
n

)

.

We now proceed to give proofs of our main results. The proofs employs techniques developed

in Zhang (2009a) and Tropp and Gilbert (2007).

3. Proof Of Results In Section 2.1

Proof [Proof of Theorem 1] The following statistics will be useful in our analysis. Denote,

Zi = max
j∈S0

|Zi j| and Z̃i = max
j∈Sc

0

|Zi j|

Notice if Zi > τ and Zi > Z̃i, then the index detected in step i, that is a(i), belongs to S.

We first prove for the case k ≥ 1. Let E be the event that statement (16) in Theorem 1 does not

hold. We want to show that the probability of E is small. There are two types of errors that we wish

to control. Let E1 be the event that Ŝ in not contained in S0. Further, let E2 be the event that Ŝ is

contained is S0, however ∑ j∈F̂ β2
j > α|F̂|. Clearly, E = E1 ∪E2.

We use an argument similar to that used by Tropp and Gilbert (2007). We initially pretend

that X = XS0
and that the coefficient vector β is shortened to a k× 1 vector βS0

with all non-zero

entries. Notice that Y = XS0
βS0

+ ε. For a given threshold τ, we run the algorithm on this truncated

problem. Notice that m has to be less than k since the number of columns of XS0
is at most k. Let

R̃1, R̃2, . . . , R̃m be the associated residuals after each step. Also, denote as R̃0 the vector Y . Notice

that m, R̃0, R̃1, . . . , R̃m are functions of A = [XS0
: ε].

Let Eu be the event that statement (16) does not hold for the truncated problem. More explicitly,

taking Ŝ1 = Ŝ(Y,XS0
,τ) and F̂1 = S0 − Ŝ1, it is the event that ‖βF̂1

‖2 > α|F̂1|.
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Denote Ti = max j∈S0

∣

∣

∣XT

j R̃i−1/‖R̃i−1‖
∣

∣

∣ and T̃i = max j∈Sc
0

∣

∣

∣XT

j R̃i−1/‖R̃i−1‖
∣

∣

∣, for i = 1, . . . , m+1.

Notice that the statistics Ti, T̃i are similar to Zi, Z̃i, the only difference being that the residuals

involved in the former arise from running the algorithm on the truncated problem, whereas in the

latter they arise from consideration of the original problem. Further, let E f be the event

E f =
{

T̃i > τ, T̃i ≥ Ti for some i ≤ m+1
}

.

We now show that E ⊆ Eu ∪E f . To see this, write E as a disjoint union E1 ∪ Ẽ2, where Ẽ2 =
E2 ∩E c

1 . Let’s first consider the case that Ẽ2 occurs. Clearly this means that Eu has occurred if the

algorithm were run on the truncated problem for the given A.

Next, consider the case that E1 occurs. Let R0, R1 . . .etc. be the residuals for the original prob-

lem (1), for the given realization of [X : ε]. Let i∗ be the step for which the false alarm occurs for

the first time. Clearly, i∗ ≤ m+ 1, since otherwise it would mean that the truncated problem (with

X = XS0
) ran for more than m steps. Also, we must have {Zi > τ, Zi > Z̃i} occur for 1 ≤ i ≤ i∗−1

and {Z̃i∗ > τ, Z̃i∗ ≥ Zi∗} occur. Correspondingly, one sees that R0 = R̃0, . . . , Ri∗−1 = R̃i∗−1, which

implies that Ti∗ = Zi∗ and T̃i∗ = Z̃i∗ . Consequently, as {T̃i∗ > τ, T̃i∗ ≥ Ti∗} occurs, E f occurs. Hence,

E ⊆ Eu ∪E f which gives,

P(E)≤ P(Eu)+P(E f ).

Consequently, all we are left with is to bound the probabilities of E f and Eu.

We first bound the probability of E f . For this, notice that E f ⊆ E ′
f , where E ′

f =

{max1≤i≤m+1 T̃i > τ}. Since XSc
0

is independent of A = [XS0
: ε], one has that XSc

0
is independent

of R̃1, . . . , R̃m. Correspondingly, from Lemma 13 (a), conditional on A, we have that XT

j R̃i/‖R̃i‖ is

sub-Gaussian with mean 0 and scale 1, for j ∈ Sc
0 and 1 ≤ i ≤ m+ 1. Consequently, using stan-

dard results on the maximum of sub-Gaussian random variables (Lemma 13 (b)), if τ be as in (11),

one gets that P(E f |A) ≤ 2(m+ 1)/pa, using |Sc
0| ≤ p. Since m ≤ k, this probability is bounded by

2(k+1)/pa, which implies P(E f )≤ 2(k+1)/pa.

Next, we bound the probability of Eu. For this, consider a linear model of the form,

U = Hϕ+w, (34)

where H is an n×k matrix satisfying, w an n×1 vector and ϕ a k×1 dimensional coefficient vector.

After running the OMP on this model (with Y =U, X =H and threshold τ0), let Ŝ2 = Ŝ(U, H, τ0) be

the estimate of the support. Further, let ϕ̂ be the coefficient estimate obtained, that is, (ϕ̂ j : j ∈ Ŝ2)
is the least squares estimate when U is regressed on HŜ2

and ϕ̂ j = 0 for j not in Ŝ2. We use the

following Lemma, the proof of which is similar to the analysis by Zhang (2009a).

Lemma 8 For the model (34), let the following hold.

(i) Condition 1 holds for H, that is the eigenvalues of HTH/n are between λmin and λmax.

(ii) Condition 2 holds for w, that is ‖w‖2 ≤ nσ2λ, for some λ > 0.

(iii) ‖ϕ̂ls −ϕ‖∞ ≤ σc0τ0/
√

n, for some constant c0 > 0, where ϕ̂ls is the coefficient vector of the

least square fit of U on H.

Under the above, if the OMP is run with Y =U, X = H and threshold τ0, when the algorithm stops

we must have the following,
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(a)

(

1− τ0

√

r1k/n
)

‖ϕF̂2
‖ ≤ r̃2στ0

√

|F̂2|
n

, (35)

where F̂2 = {1, . . . ,k}− Ŝ2, denotes the indices not detected after running the algorithm. Fur-

ther, r1 has the same form as (13), replaced with the above values of λmin, λmax and λ. Also,

r̃2 = c0 +
√

r1.

(b)

‖ϕ̂−ϕ‖ ≤ r̃2στ0

√

k/n

1− τ0

√

r1k/n
.

The above lemma is proved in Appendix B. We only require the conclusions in part (a) of the

lemma for the time being. Part (b) will be required of Section 2.2.1 to get bounds on ℓ2-error of the

coefficient estimate.

Now apply Lemma 8 to the truncated problem, that is, with H = XS0
, ϕ = βS0

, U =Y and τ0 = τ.

Notice that in this case F̂2 = F̂1 and Ŝ2 = Ŝ1. We know that requirements (i) and (ii) of the Lemma

8 hold, except on a set Econd . The following lemma shows that (iii) holds with high probability.

Lemma 9 Let β̂ls be the least squares fit when Y is regressed on XS0
. Further, let

Els = {‖β̂ls −βS0
‖∞ > σc0τ/

√
n},

where c0 = 1/
√

λmin. Then P
(

Els ∩E c
cond

)

≤ 2k/p1+a.

The above lemma is proved after this proof. Using the above lemma, all requirements of Lemma

8 hold, except on a set Ẽu =Econd ∪Els, the probability of which is bounded by P(Econd)+2k/p1+a.

We now show that Eu ⊆ Ẽu. We do this by showing Ẽ c
u ⊆ E c

u . To see this, notice that on Ẽ c
u , one

has
(

1− τ
√

r1k/n
)

‖βF̂1
‖ ≤ r̃2στ

√

|F̂1|
n

. (36)

from (35). Assume that F̂1 is non-empty, since otherwise the claim is trivially true. Notice that since

n ≥ (1+δ)r1k̄τ2 from (15), one has τ
(

k̄r1/n
)1/2 ≤ 1/

√
1+δ. Now, since k ≤ k̄, the left side of (36)

is non-negative. Thus, (36) can be re-expressed as,

‖βF̂1
‖2 ≤ (σ2r2

2 f (δ)τ2/n)|F̂1|,

which follows from noticing that r2 = r̃2, where r2 is as in (13). Now, since n ≥ σ2r2
2 f (δ)τ2/α, the

left side of the above is at most α|F̂1|. Thus, ∑ j∈F̂1
β2

j ≤ α|F̂1| on Ẽ c
u , which implies that Eu ⊆ Ẽu.

Consequently, P(Eu) ≤ P(Econd)+ 2k/p1+a. Accordingly, since P(E) ≤ P(Eu)+P(E f ), one has

P(E) ≤ P(Econd)+ 2k/p1+a + 2(k+ 1)/pa, which is equal to perr,k. This completes the proof for

the case k ≥ 1.

For the case k = 0, we just need to show that the algorithm stops after the first step, in which

case Ŝ = /0. This is immediately seen by noticing that for k = 0, one has that Z1 j, for j ∈ J, are sub-

Gaussian with mean 0 and scale 1. Correspondingly, from Lemma 13(b), the event {max j∈J |Z1 j|>
τ} has probability at most perr,0 = 2/pa.
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Proof [Proof of Lemma 9] Note that β̂ls − βS0
can be expressed as Z = (XT

S0
XS0

)−1XT

S0
ε. Let

Z = (Z j : j = 1, . . . ,k). Now, conditioned on XS0
, each Z j is sub-Gaussian with mean 0 and scale

σ j = σ
√

eT

j(X
T

S0
XS0

)−1e j. Here, e j is the j th column of the size k identity matrix. Correspond-

ingly, from Lemma 13(b), one gets max j |Z j| is less than (max j σ j)τ, except on a set with prob-

ability 2k/p1+a. Finally, observe that on E c
cond , one has eT

j(X
T

S0
XS0

)−1e j ≤ 1/(nλmin), since the

maximum eigenvalue of (XT

S0
XS0

/n)−1 is at most 1/λmin. Thus, max j σ jτ is at most σcoτ/
√

n, with

c0 = 1/
√

λmin.

Proof [Proof of Corollary 2] Take α(δ) =σ2/[(1+δ)k̄]. Further, let ξ(δ) = ξ(α(δ), δ), which, using

r2
2 ≥ r1 and f (δ)≥ 1, can be written as,

ξ(δ) = (1+δ) f (δ)r2
2.

The function (1 + δ) f (δ), for δ > 0, has its minimum at δ∗ = 3. Further, it is increasing and

goes to infinity as δ tends to infinity. Now, using ξ(δ∗) = 16r2
2, notice that ξ(δ∗)k̄τ2 = ξ̄ k̄ log p.

Correspondingly, since n ≥ ξ̄ k̄ log p, one gets that

n = ξ(δ)k̄τ2, (37)

for some δ ≥ δ∗. Consequently, from Theorem 1, one has,

Ŝ ⊆ S0 and ∑
j∈F̂

β2
j ≤ α(δ)|F̂|, (38)

with probability at least 1− perr,k. Use f (δ) ≤ f (δ∗) = 4, to get from (37) that n ≤ (1+ δ)rk̄τ2.

Correspondingly, α(δ) is at most r2σ2µ2
n. Consequently, any j, with |β j|> rσ

√
kµn cannot be in F̂

since it would contradict the inequality in (38). Further, if βmin > rσµn, the inequality in (38) cannot

hold if F̂ is non-empty. In this case the algorithm recovers the entire support.

4. Proof Of Results In Section 2.2

Proof [Proof of Theorem 4] Once again, we first prove for the case k ≥ 1. As before, we are

interested in bounding the probability of E , where E = E1 ∪E2. Here E1 is the event that Ŝ is

not contained in S = S(β). Also, E2 is the event Ŝ ⊆ S and ‖βF̂‖2 > α|F̂|, where, here F̂ = S− Ŝ

and Ŝ = Ŝ(Y,X ,τ1). Write Y as Y = XSβS + ε̃, where ε̃ = XScβSc + ε. Analogous to before, we

initially pretend that X = XS and β = βS and run the algorithm on the truncated problem to get

residuals R̃0, R̃1, R̃2, . . . , R̃m. These residuals are functions of A = [XS : ε̃]. Further, as before, let

Eu be the event that statement (30) is not met for this truncated problem. With Ŝ1 = Ŝ(Y,XS,τ1)
and F̂1 = S− Ŝ1, it is the event that ‖βF̂1

‖2 > α|F̂1|. Similarly, we define Ti, T̃i as before, now with

the maximum taken over S instead of S0. Further, define the event E f analogous to before, with τ

replaced by τ1. Using the same reasoning as in Theorem 1, one has E ⊆Eu∪E f . We first proceed to

bound the probability of E f . Notice that unlike previously, the X j’s, for j ∈ Sc, are not independent

of the R̃i’s. This makes bounding the probability of E f more involved.

The following lemma will be useful, both in bounding P(E f ) as well as P(Eu). We denote as

β̂ls the least square estimate when Y is regressed on XS.
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Lemma 10 Parts (i)-(iii) of this lemma demonstrate that requirements (i)-(iii) of Lemma 8 are sat-

isfied with high probability.

(i) With λmin, λmax as in (25), the following holds with probability at least 1 - 2/p:

λmin‖v‖2 ≤ ‖XSv‖2/n ≤ λmax‖v‖2 for all v ∈ R
k.

(ii) Let λ be as in (26). Then ‖ε̃‖2/(nσ2)≤ λ, with probability at least 1−1/p.

(iii) Let Els = {‖β̂ls −βS‖∞ > σc0τ1/
√

n}, where

c0 = (1−ω)

[

ν̃1 +

√

1+ν1η̄

λmin

]

(39)

Then P(E c
cond ∩Els)≤ (

√

2/π)k/(τp1+a), where Econd , here, is the event that (i) or (ii) above

fails. From (i) and (ii) it has probability at most 3/p.

The above lemma is proved in Section 5. As mentioned before, the X j’s, for j ∈ Sc, are not

independent of the R̃i’s. We get around this by finding the conditional distribution of each X j given

XS and ε̃. Correspondingly, each X j may be represented as a linear combination of columns in

A = [XS : ε̃] plus a noise vector, which we call Z j. This noise term is independent of A and hence

R̃0, R̃1, . . . , R̃m.

Let a j = Σ−1
SS ΣS j and

b j =
eT

jΣSc|SβSc

√
d

, (40)

where e j is the jth column of the size p− k identity matrix and

d = σ2 +βT

ScΣSc|SβSc . (41)

The following lemma characterizes the conditional distribution of X j given A.

Lemma 11 Let a j, b j, for j ∈ Sc, be as above. Then we have the following:

(i) The distribution of X j, for j ∈ Sc, may be represented as

X j
D
= XS a j +b jW +Z j (42)

where W ∼ N(0, In) and is independent of XS. Further, Z j is independent of [XS : ε̃] and follows

N(0, σ̃ j jIn), with σ̃ j j ≤ σ j j = 1.

(ii) Define, for j ∈ Sc and i = 1, . . . , m+1,

Vji = b jW
T

R̃i−1

‖R̃i−1‖
+E ji, (43)

where E ji = ZT

j R̃i−1/‖R̃i−1‖. Let,

Ẽ f =

{

max
1≤i≤m+1, j∈Sc

|Vji|> (1−ω)τ1

}

.

Then P(Ẽ f )≤ 1/p+(
√

2/π)(k+1)/(τpa).
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The above lemma is proved in Section 5. We now show that E f ⊆ Ẽ f . To see this, notice that

on Ẽ c
f one has,

T̃i ≤ (max
j∈Sc

‖a j‖1)Ti +(1−ω)τ1,

≤ ωTi +(1−ω)τ1, (44)

for i = 1, . . . , m+ 1. Here, the first inequality follows from using (42) and

∣

∣

∣
aT

jX
T

S R̃i−1/‖R̃i−1‖
∣

∣

∣
≤

‖a j‖1Ti, along with the fact that |Vji| is bounded by (1−ω)τ1 on Ẽ c
f . The second inequality follows

from (18). We now show that

E
′ =
{

T̃i ≤ ωTi +(1−ω)τ1 for each i ≤ m+1
}

implies E c
f . To see this, for each i, consider two cases, viz. Ti > τ1 and Ti ≤ τ1. From (44), in the

first case one has T̃i < Ti, and in the second case, one has T̃i ≤ τ1. Correspondingly, E ′ is contained

in

{T̃i < Ti or T̃i ≤ τ1 for each i ≤ m+1},
which is E c

f . Consequently, E f ⊆ Ẽ f . Consequently, P(E f ) ≤ 1/p+(
√

2/π)(k+ 1)/(τpa) from

Lemma 11.

What remains to be seen is that the probability of the event Eu can be bounded as before. For

this we apply Lemma 8 once again. That conditions (i) - (iii), required for application of Lemma 8,

are satisfied with high probability is proved parts (i)-(iii) of Lemma 10. Consequently, as before, if

Ẽu = Econd ∪Els, where the sets on the right side are as in Lemma 10, one gets that on Ẽ c
u ,

(

1− τ1

√

r1k/n
)

‖βF̂1
‖ ≤ r̃2στ1

√

|F̂1|
n

. (45)

Here r̃2 = c0 +
√

r1, where c0 as in (39). Notice that r̃2 = r2, where r2 as in (27). Now, once again

use the fact that n ≥ (1+δ)r1kτ2
1 and n ≥ r2

2 f (δ)σ2τ2
1/α, to get that (45) implies E c

u . Accordingly,

P(Eu)≤ P(Ẽu). Consequently, one has,

P(E)≤ P(Eu ∪E f )

≤ P(Econd)+P(E c
cond ∩Els)+P(E f ),

which is at most p̃err,k = 4/p+ (
√

2/π/τ)
[

(k+1)/pa + k/p1+a
]

. This completes the proof for

k ≥ 1.

If k = 0, we will show that the probability that max j∈J |Z1 j| exceeds τ1 is at most p̃err,0. This

would imply that the algorithm stops after one step and Ŝ is empty. Notice that Sc = J and hence

ε̃ = Y . Consequently, X j
D
= b̃ jY/σY + Z j, where Z j ∼ N(0, σ̃ j) is independent of Y , with σ̃ j ≤ 1.

Also, b̃ j = eT

jΣβ/σY , where σ2
Y = Var(Y1) = σ2 +βTΣβ. Correspondingly,

Z1 j
D
= b̃ j‖Y‖/σY +ZT

j

Y

‖Y‖ (46)

Using σY ≥σ, one has b̃ j ≤ ν1µn. Further, using ‖Y‖/σY ≤ (1+µn), with probability at least 1−1/p

from Lemma 14, one has that the first term in the right side of (46) is at most ν1τ(1+ k̄−1/2) with
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probability at least 1−1/p. Further |ZT

jY/‖Y‖|, using the independence of Z j and Y , is less than τ for

all j with probability at least 1−
√

2/π/(τpa) (Lemma 13 (b)). Denoting, τ2 = [ν1(1+ k̄−1/2)+1]τ,

one sees max j∈J |Z1 j| ≤ τ2, with probability at least 1− p̃err,0. Notice that since τ1 ≥ τ2, the event

max j∈J |Z1 j| ≤ τ1 also has probability at least 1− p̃err,0. This completes the proof.

Proof [Proof of Corollary 5] The proof is exactly similar to that of Corollary 2. As before, taking

α(δ) = σ2/[(1+ δ)k̄] and ξ(δ) = ξ(α(δ), δ), we notice that ρ2ξ(δ∗)k̄τ2 = ξ̄ k̄ log p, where δ∗ = 3.

Correspondingly, if n ≥ ξ̄ k̄ log p, one has n = ρ2ξ(δ)k̄τ2 for some δ ≥ δ∗ and hence,

Ŝ ⊆ S and ∑
j∈F̂

β2
j ≤ α(δ)|F̂|

with probability at least 1− p̃err,k, from Theorem 4. Further, α(δ) is at most r2σ2µ2
n, using the same

reasoning as before. The conclusions on recovering the large coefficients follow immediately from

this.

Proof [Proof of Theorem 6] Notice that,

‖β̂−β‖2 = ‖β̂S −βS‖2 +‖β̂Sc −βSc‖2. (47)

We apply the result of Corollary 5, to get that except on a set with probability p̃err,k, one has Ŝ ⊆ S.

Correspondingly, the second term in (47) is simply ‖βSc‖2, which is equal to ∑ j∈Sc min{β2
j , σ2µ2

n}.

Let’s next concentrate on the first term in (47). Notice that since Ŝ ⊆ S, one has β̂S is same as the

coefficient estimate one would get if the OMP were run on the truncated problem. Correspondingly,

using part (b) of Lemma 8, with τ0 = τ1 and r̃2 = r2, one gets that

‖β̂S −βS‖ ≤
r2στ1

√

k/n

1− τ1

√

r1k/n
, (48)

with probability at least 1 − p̃err,k. Next, use the fact that τ1

√

k/n ≤ 1/(4r2) using ξ̄ k̄ log p =
16r2

2 k̄τ2
1. Consequently, the denominator in the right side of (48) is at least 1−√

r1/4r2. The latter

is at least 3/4 using r2 ≥
√

r1. Thus,

‖β̂S −βS‖ ≤
4r2ρ

√
1+a

3
σ
√

kµn,

=
√

Cσ
√

kµn,

where C = (4/9)r2. Correspondingly, from (47) one gets that,

‖β̂−β‖2 ≤Cσ2kµ2
n + ∑

j∈Sc

min{β2
j , σ2µ2

n}

≤C

p

∑
j=1

min{β2
j , σ2µ2

n},

where the last inequality from using σ2kµ2
n = ∑ j∈S min{β2

j , σ2µ2
n}, since S = { j : |β j|> σµn}.
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Proof [Proof of Corollary 7] For k-sparse β, once again let S = { j : |β j| > σµn}. Now ‖βSc‖1 ≤
ησµn, where η = k̄, since there are at most k̄ non-zero entries outside of S, with magnitude at most

σµn. Now apply Theorem 6, with η = k̄ (or η̄ = 1) to get the desired result.

5. Proof Of Results From Section 4

The following simple lemma will prove useful in proving Lemma 10.

Lemma 12 Let θn = k̄1/2µn. Conditions (17) - (19) imply the following:

(i) Let d be as in (41). Then d ≤ σ2(1+ν1η̄θ2
n).

(ii) ‖ΣSSg‖2 ≤ σ2s2
maxν̃1

2θ2
n, where g = Σ−1

SS ΣSScβSc .

Remark: Since we take n > 2k̄ log p, we have θn ≤ 1. Accordingly, the above bound holds with θn

replaced by 1.

Proof [Proof of Lemma 12] We first prove part (i). Recall that d = σ2 + βT

ScΣSc|SβSc . Write

βT

ScΣSc|SβSc as ∑ j∈Sc β je
T

jΣSc|SβSc , which can be bounded by (‖ΣSc|SβSc‖∞)‖βSc‖1, which is at most

σν1η̄θ2
n from (19) and (10). This completes the proof.

For part (ii) use the fact that ‖ΣSSg‖2 ≤ s2
max‖g‖2 from (17) and ‖g‖ ≤ σ

√
kν̃1µn from (19), to

complete the proof.

Proof [Proof of Lemma 10] We use a result in Szarek (1991) that gives tails bounds for the largest

and smallest singular values of Gaussian random matrices. Let U ∈ R
n×k be a matrix with i.i.d.

standard Gaussian entries. Then, for r > 0, one has,

P(λk

(

U/
√

n
)

> 1+
√

k/n+ r)≤ e−nr2/2

P(λ1

(

U/
√

n
)

< 1−
√

k/n− r)≤ e−nr2/2,

where λk(.) and λ1(.) gives the largest and smallest singular values respectively, of an n× k matrix.

Now, taking r = µn, one has, using the above, that with probability at 1−2/p the following holds:

hℓ‖v‖2 ≤ 1

n
‖Uv‖2 ≤ hu‖v‖2 for all v ∈ R

k.

Now, notice that since XS
D
=UΣ

1/2

SS , one has from the above that, with probability at least 1−2/p,

hℓ‖Σ
1/2

SS v‖2 ≤ 1

n
‖XSv‖2 ≤ hu‖Σ

1/2

SS v‖2 for all v ∈ R
k.

Correspondingly, from (17), since smin ≤‖Σ
1/2

SS v‖2/‖v‖2 ≤ smax, which implies that, with probability

at least 1−2/p,

λmin‖v‖2 ≤ 1

n
‖XSv‖2 ≤ λmax‖v‖2 for all v ∈ R

k,

where λmin, λmax as in (26).
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Before proving parts (ii) and (iii), observe that by conditioning on XS, the distribution of ε̃ may

be expressed as,

ε̃
D
= XSg+

√
dW, (49)

where g = Σ−1
SS ΣSScβSc and d as in (41). Here W ∼ N(0, In) and is independent of XS.

For part (ii), notice that from the above σ̃2 := Var(ε̃1) = ‖ΣSSg‖2 +d, which is at most σ2(1+
s2

maxν̃1
2 +ν1η̄) from Lemma 12. Further, ‖ε̃‖2/σ̃2 ∼ X 2

n . Now from Lemma 14, the probability of

the event ‖ε̃‖2/(nσ̃2)> (1+µn)
2 is bounded 1/p. Use µn ≤ k̄−1/2 and σ̃2 ≤ σ2(1+ s2

maxν̃1
2 +ν1η̄),

to get that P
(

‖ε̃‖2/(nσ2)> λ
)

≤ 1/p, where λ as in (26).

For part (iii), notice that β̂ls −βS = (XT

S XS)
−1XT

S ε̃, which using (49), can be expressed as,

β̂ls −βS
D
= g+

√
d(XT

S XS)
−1XT

SW.

Let Ẽls = {
√

d‖(XT

S XS)
−1XT

SW‖∞ > σ
√

1+ν1η̄τ/
√

λminn}. Now, since W is independent of XS, and

d ≤ σ2(1+ν1η̄), one can use the same logic as in the proof of Lemma 9 to get that, P(E c
cond ∩Ẽls)≤

√

2/πk/(τp1+a). Further, ‖g‖∞ ≤ σν̃1µn using (19), which, using µn ≤ τ/
√

n, is at most σν̃1τ/
√

n.

Accordingly, on E c
cond ∩ Ẽ c

ls, one has,

‖β̂ls −βS‖∞ ≤ σ

[

ν̃1 +

√

1+ν1η̄

λmin

]

τ/
√

n,

= σ
c0√

n

τ

1−ω
,

where c0 as in (39). Now use τ/(1−ω) ≤ τ1, to get that P(E c
cond ∩Els) ≤

√

2/πk/(τp1+a). This

completes the proof of the lemma.

Proof [Proof of Lemma 11] We first prove part (i). Recall, from (49), one has, ε̃
D
= XSg+

√
dW ,

where g = (ΣSS)
−1ΣSScβSc and d as in (41). Further, W is independent of XS and follows N(0, In).

Correspondingly, the conditional distribution of X j given [XS : W ] may be expressed as,

X j
d
= XSa j +b jW +Z j

where a j = Cov(X1,S, X1 j)[Var(X1,S)]
−1 and b j = Cov(X1 j,W1). Further, Z j ∼ N(0, σ̃ j jIn) and is

independent of XS and W , with

σ̃ j j = σ j j −aT

jΣSSa j −b2
j ,

which is at most 1. Clearly, the expression for a j matches that given in the statement of the lemma.

Further, from (49), one has that,

Cov(X1 j,W1) =
1√
d
[Cov(X1 j, ε̃1)−Cov(X1 j,X1,Sg)] .

Notice that Cov(X1 j, ε̃1) = Σ jScβSc and Cov(X1 j,X1,Sg) = Cov(X1 j,X1,S)g, which is Σ jSΣ−1
SS ΣSScβSc .

Correspondingly, the numerator of the above is eT

jΣSc|SβSc , and hence, the expression for b j given

above matches that in (40).
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We now prove part (ii) of Lemma 11. Firstly, notice that max j∈Sc |b j| ≤ ν1µn. This follows from

observing that d ≥ σ2, from (41), and also the fact that |eT

jΣSc|SβSc | ≤ σν1µn, for all j ∈ Sc, from

(19).

Recall the statistic Vji given by (43). One sees that,

|Vji| ≤ |b j|‖W‖+
∣

∣E ji

∣

∣ .

Now ‖W‖2 ∼ X 2
n . Correspondingly, from Lemma 14, the event {‖W‖/√n > (1+ µn)} has proba-

bility at most 1/p.

Further, Z j’s are independent of [XS : ε̃] and, hence, are also independent of R̃0, . . . , R̃m, since

these residuals are functions of [XS : ε̃]. Consequently, the E ji’s are standard normal random vari-

ables; Indeed, conditional on the R̃i’s, they follow N(0,1), and hence, follow the same distribution

unconditionally. Accordingly, using the same logic as in the proof of Theorem 1, the event

{

max
1≤i≤m+1, j∈Sc

∣

∣E ji

∣

∣> τ

}

(50)

has probability bounded by
√

2/π(k+1)/(τpa).
Consequently, using the bounds on |b j| and the above, one gets that except on a set with proba-

bility 1/p+
√

2/π(k+1)/(τpa), one has

max
1≤i≤m+1, j∈Sc

|Vji| ≤ ν1µn

√
n(1+µn)+ τ.

Using τ ≥ µn

√
n and µn ≤ k̄−1/2, the right side of the above is at most (1−ω)τ1. This completes the

proof of the lemma.

6. Conclusion

The paper analyzed variable selection for the OMP for random X matrices. We analyzed perfor-

mance with i.i.d sub-Gaussian designs, which has uses in compressed sensing. We remark that for

these i.i.d designs, the analysis carries over for the hard thresholded version of the algorithm, in

which, instead of choosing the j which maximizes the |Zi j|’s, one chooses all j satisfying |Zi j|> τ.

It is only when there is some correlation within the rows that we find it advantageous to choose the

index which maximizes |Zi j|.
For Gaussian designs, with correlation within rows, we give much more general results. Apart

from showing that results similar to that by Wainwright (2009), for exact support recovery, are

also possible using the OMP, we show additional recovery properties by relaxing the assumption of

exact sparsity to a more realistic assumption of a control over the ℓ1-norm of the smaller coefficients.

Oracle inequalities for the coefficient estimate also followed easily as a consequence of these results.

As mentioned earlier, one drawback of the analysis is the crude manner in which the probability

of event (50), that no terms outside of S are selected, is bounded. This gives rise to the
√

2/π(k+
1)/(τpa) term in the expression for p̃err,k (28), because of which a has to be greater than 1 when k

is not negligible compared to p. In Fletcher and Rangan (2011), a more careful analysis had been

carried out for exact recovery with i.i.d. designs and ℓ0-sparse vectors. Their analysis carries over,

for the general case analyzed here, by noting that the random variables E ji, for i = 1, . . . ,m+ 1,
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defined in Lemma 11, has the same covariance structure as a normalized Brownian motion at times

t1, . . . , tm+1, where ti = ‖R̃i−1‖2. This should improve the probability of the event (50) to something

closer to 1/pa.

For random designs, we measure the performance after averaging over the distribution of X . As

mentioned before, this can be contrasted to another method, as done by Candès and Plan (2009) for

the Lasso, in which a distribution is assigned to β and the performance is measured after averaging

over this distribution. Although these two methods do not imply each other, it is interesting to

compare the average performance using both methods. To be consistent with their notation, let’s

assume that the entries of X are scaled so that the columns have norm equal (or nearly equal) to one.

Under a mild assumption on the incoherence, it is shown that for ℓ0-sparse vectors the support can

be recovered, if

k = O(p/[|||X |||2 log p]), (51)

where |||X ||| denotes the spectral norm of X . If X has i.i.d N(0,1/n) entries, then |||X ||| ≈
√

p/n,

so that the sparsity requirement (51) would translate to k = O(n/ log p), which is of the same order

as what we get here. However, the situation is different in the general case when the rows are

i.i.d N(0,Σ/n). Then X may be expressed as X̃Σ1/2, where X̃ has i.i.d N(0,1/n) entries. Consider

the example where Σii = 1 and Σi j = c/k, when i 6= j, with c appropriately chosen. In this case

|||X ||| ≈ c′p/
√

nk. Consequently, (51) translates to assuming n = Ω(p log p). Our results are better

in this case, since we only require Ω(k log p) observations even for such correlated designs.

An advantage of the work by Candès and Plan (2009) is its applicability to broad classes of

deterministic designs. It is unclear at this stage whether such results also hold for the OMP.

Appendix A. Tail Bounds

A random variable Z is said to be sub-Gaussian with mean 0 and scale σ > 0, if EetZ ≤ et2σ2/2 for

each t ∈ R.

Lemma 13 Let W = (Wj : 1 ≤ j ≤ n)T, with each Wj sub-Gaussian with mean 0 and scale σ j > 0.

Let σ = max j{σ j}. The following hold.

(a) Let h ∈ R
n, with ‖h‖ ≤ 1. If the entries of W are independent then hTW is sub-Gaussian with

mean 0 and scale σ.

(b) Let ρ = σ
√

2(1+a) log p with a > 0. Then P(max j |Wj|> ρ)≤ 2n/p1+a. Further, if the Wj ∼
N(0,σ2) then this probability can be bounded by

√

2/π(σn)/(ρ p1+a).

Proof For part (a), we need to show that Eexp{t hTW} ≤ exp{t2σ2/2}. To see this, notice that

Eexp{t hTW}= Eexp
{

t2 ∑n
j=1 h2

jσ
2
j/2
}

, using independence of Wj’s. The claim is proved by notic-

ing that ∑n
j=1 h2

jσ
2
j/2 ≤ σ2, using ‖h‖ ≤ 1 and σ j ≤ σ.

For part (b), use a Chernoff bound, followed by optimizing the exponent to get that,

P(|Wj|> ρ)≤ 2exp

(

− ρ2

2σ2

)

.

If the Wj’s were normal, standard tail bounds (Feller, 1950) reveals that the above bound can be im-

proved to (2/(
√

2πρ))exp
(

− ρ2

2σ2

)

. Now use a union bound, along with the fact that exp
(

− ρ2

2σ2

)

=
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1/p1+a, to prove the claim.

Next we give a simple lemma on chi-square tail bounds, which will be used repeatedly.

Lemma 14 Let W follow N(0, In). Then

P
(

‖W‖/
√

n ≥ 1+µn

)

≤ 1/p,

where µn =
√

(2log p)/n.

Proof Use the fact (Donoho, 2006b) that for h > 0, one has

P
(

‖W‖/
√

n ≥ 1+h
)

≤ e−nh2/2.

Substitute h =
√

(2log p)/n to get the result.

Corollary 15 Let Wj ∼ N(0, In). Then, with probability at least 1− pa−1, for each j = 1, . . . ,n,

‖Wj‖/
√

n ≤ 1+

√
2a log p√

n
.

Proof Substitute h =
√

2a log p/
√

n in Lemma 14 and take a union bound over the j events.

Appendix B. Proof Of Lemma 8

For convenience, let S = {1, . . . , k}. Let H j, 1 ≤ j ≤ k denote the columns of the H matrix. Assume

that the algorithm runs for m steps and let R1, . . . ,Rm−1 denote the associated residuals. Let R0 =Y .

Denote as ÛA , the least square fit when U is regressed on HA . We also denote as u(i) = S− d(i),
which corresponds to the terms in S undetected after step i. We assume u(0) = S and Ûd(0) = 0.

The following lemma is from Zhang (2009a).

Lemma 16 (Zhang, 2009a) For each i, with 0 ≤ i < m, if |u(i)|> 0, then

max
j∈u(i)

∣

∣

∣

∣

HT

j Ri

‖H j‖

∣

∣

∣

∣

≥
√

λmin

‖Ûd(i)−ÛS‖
√

|u(i)|
,

The results is a consequence of Lemmas 6 and 7 in Zhang (2009a, page 566). Using his notation,

in our case, λmin = ρ(F̄), Ri =Y −Xβ(k−1), Ûd(i) = Xβ(k−1), ÛS = XβX(F̄ , y) and u(i) = F̄ −F(k−1).

Lemma 17 For each i, with 0 ≤ i ≤ m, one has

‖Ri‖/
√

n ≤
√

λ̃max(‖ϕu(i)‖+σ),

where λ̃max = max{λ, λmax}.
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Proof [Proof of 17] Write Ri = (I −Pi)U , where here Pi is the projection matrix for column space

of Hd(i). Now U = Hd(i)ϕd(i) +Hu(i)ϕu(i) + ε and (I −Pi)Hd(i) = 0. Correspondingly, Ri = (I −
Pi)[Hu(i)ϕu(i)+ε]. Consequently, ‖Ri‖ ≤ ‖Hu(i)ϕu(i)‖+‖ε‖, since ‖(I−Pi)x‖ ≤ ‖x‖ for any x ∈R

n.

The result immediately follows from using ‖Hu(i)ϕu(i)‖/
√

n ≤
√

λmax‖ϕu(i)‖ and ‖ε‖/(√nσ)≤
√

λ.

This completes the proof of the lemma.

Now use the fact that ‖H j‖ ≥
√

n
√

λmin, to get from Lemma 16 that,

max
j∈u(i)

∣

∣HT

j Ri

∣

∣≥
√

nρ1

|u(i)|‖Ûd(i)−ÛS‖,

where ρ1 = λ2
min. Consequently, using Lemma 17 and the above, one has that,

max
j∈u(i)

∣

∣

∣

∣

HT

j

Ri

‖Ri‖

∣

∣

∣

∣

≥
√

nρ2

|u(i)|
‖Ûd(i)−ÛS‖/

√
n

‖ϕu(i)‖+σ
,

where ρ2 = ρ1/λ̃max. The algorithm continues as long as the left side of the above is at least τ0.

Consequently, following the reasoning in Zhang (2009a), when the algorithm stops, one must have

that either |F̂2| = 0 or the right side of the above, with u(i) replaced by F̂2, is at most τ0. Let’s

assume that |F̂2|> 0, since otherwise we would have correctly decoded all terms. Correspondingly,

we have,

‖ÛŜ −ÛS‖/
√

n ≤ τ0

√

|F̂2|
nρ2

(‖ϕF̂2
‖+σ) (52)

when the algorithm stops. Now,

‖ϕF̂2
‖ ≤

√

|F̂2|‖ϕ− ϕ̂ls‖∞ +‖ϕ̂ls − ϕ̂‖. (53)

To see this note that ‖ϕF̂2
‖ is bounded by the sum of ‖ϕF̂2

− ϕ̂ls, F̂2
‖ and ‖ϕ̂ls, F̂2

‖, where ϕ̂ls, F̂2
is

the sub-vector of ϕ̂ls with indices in F̂2. The first term in the bound is at most

√

|F̂2|‖ϕ− ϕ̂ls‖∞,

whereas the second term can be bounded by ‖ϕ̂ls − ϕ̂‖, since ϕ̂ j is zero for all indices j in F̂2. Now,

use the fact that ‖ϕ̂ls −ϕ‖∞ is bounded by c0στ0/
√

n along with the fact that ‖ÛŜ − ÛS‖/
√

n ≥√
λmin‖ϕ̂− ϕ̂ls‖, to get that from (52) and (53) that,

‖ϕF̂2
‖ ≤ c0στ0

√

|F̂2|
n

+ τ0

√

r1
|F̂2|
n

(‖ϕF̂2
‖+σ) (54)

when the algorithm stops. Here we use that r1 = 1/(λminρ2). One gets from (54) that



1− τ0

√

r1|F̂2|
n



‖ϕF̂2
‖ ≤ r̃2στ0

√

|F̂2|/
√

n,

where r̃2 = c0 +
√

r1 and r1 = 1/ρ. Using |F̂2| ≤ k, the term τ0

√

r1|F̂2|/n appearing in the left side

of the above can be bounded by τ0

√

r1k/n. This leads us to (35), which completes the proof of part

(a).
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For part (b), notice that

‖ϕ̂−ϕ‖ ≤
√

k‖ϕ̂ls −ϕ‖∞ +‖ϕ̂ls − ϕ̂‖. (55)

Now use,

‖ϕ̂ls − ϕ̂‖ ≤ τ0

√

r1k/n(‖ϕF̂2
‖+σ)

along with,

‖ϕF̂2
‖ ≤ r̃2στ0

√

k/n
(

1− τ0

√

r1k/n
) ,

to get, after rearranging, that,

‖ϕ̂ls − ϕ̂‖ ≤ στ0

√

r1k/n
(c0τ0

√

k/n+1)

1− τ0

√

r1k/n
.

Now use ‖ϕ̂ls −ϕ‖∞ ≤ σc0τ0

√

k/n, along with r̃2 = c0 +
√

r1, to get from (55) and the above that,

‖ϕ̂−ϕ‖ ≤ r̃2στ0

√

k/n
(

1− τ0

√

r1k/n
) .

This completes the proof of the lemma.

Appendix C. Proof Of Lemma 3

For a matrix A ∈ R
n×m, and a = 1 or ∞, denote as |||A|||a = supv6=0 ‖Av‖a/‖v‖a. Recall that |||A|||1 is

the maximum of the ℓ1 norms of the columns, whereas |||A|||∞ is the maximum of the ℓ1 norms of

the rows.

We first prove part (i). Use the fact (Cai and Wang, 2011, Lemma 2),

1− γ(k−1)≤ smin ≤ smax ≤ 1+ γ(k−1).

Now γ ≤ ω0/(2k), since k ≤ k̄, and hence, the left side of the above is at least 1−ω0/2 and the right

side is at most 1+ω0/2. Further (Tropp, 2004, Theorem 3.5),

‖Σ−1
SS ΣS j‖1 ≤

γk

1− γ(k−1)
.

The right side of the above is at most ω0. Correspondingly, we may take ω as ω0.

We next prove part (ii). Use the fact that,

‖Σ−1
SS ΣSScβSc‖∞ ≤ |||Σ−1

SS |||∞‖ΣSScβSc‖∞. (56)

Now as Σ−1
SS is symmetric, |||Σ−1

SS |||∞ = |||Σ−1
SS |||1; the latter is at most 1/(1− γ(k− 1)) from Tropp

(2004, Theorem 3.5). Further, ‖ΣSScβSc‖∞ ≤ γ‖βSc‖1, which is at most σγηµn. Correspondingly,

from (56), one gets

‖Σ−1
SS ΣSScβSc‖∞ ≤ σ

γk̄

1− γ(k−1)
η̄µn. (57)
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The right of the above is at most σω0η̄µn, using the bound on γ. Further,

‖ΣSc|S‖∞ ≤ ‖ΣScScβSc‖∞ +‖ΣScSΣ−1
SS ΣSScβSc‖∞. (58)

Now, ‖ΣScScβSc‖∞ ≤‖βSc‖∞+‖(ΣScSc −I)βSc‖∞. Further, use ‖βSc‖∞ ≤σνµn and ‖(ΣScSc −I)βSc‖∞ ≤
γ‖βSc‖1, the right side of which is at most σγηµn. Also, the second term in (58) can be bounded as

follows:

‖ΣScSΣ−1
SS ΣSScβSc‖∞ ≤ |||ΣScS|||∞‖Σ−1

SS ΣSScβSc‖∞.

The first term in the right side product is bounded by γk, whereas the second term, from (57), is

bounded by σω0η̄µn. Correspondingly, one gets that

‖ΣSc|SβSc‖∞ ≤ σνµn +σγηµn +σγω0ηµn.

Further, using γη+ γηω0 ≤ 2γη, which is at most ω0η̄, one gets the bound on ‖ΣSc|SβSc‖∞.

For k = 0, one has ‖ΣScScβSc‖∞ ≤ ν+ω0η̄, which is at most ν+ω0η̄, from the bound derived

above. This completes the proof of the lemma.
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